
Statistical Science
2014, Vol. 29, No. 2, 214–226
DOI: 10.1214/14-STS476
© Institute of Mathematical Statistics, 2014

Scalable Genomics with R
and Bioconductor
Michael Lawrence and Martin Morgan

Abstract. This paper reviews strategies for solving problems encountered
when analyzing large genomic data sets and describes the implementation of
those strategies in R by packages from the Bioconductor project. We treat the
scalable processing, summarization and visualization of big genomic data.
The general ideas are well established and include restrictive queries, com-
pression, iteration and parallel computing. We demonstrate the strategies by
applying Bioconductor packages to the detection and analysis of genetic vari-
ants from a whole genome sequencing experiment.

Key words and phrases: R, Bioconductor, genomics, biology, big data.

1. INTRODUCTION

Big data is encountered in genomics for two reasons:
the size of the genome and the heterogeneity of pop-
ulations. Complex organisms, such as plants and an-
imals, have genomes on the order of billions of base
pairs (the human genome consists of over three bil-
lion base pairs). The diversity of populations, whether
of organisms, tissues or cells, means we need to sam-
ple deeply to detect low frequency events. To interro-
gate long and/or numerous genomic sequences, many
measurements are necessary. For example, a typical
whole genome sequencing experiment will consist of
over one billion reads of 75–100 bp each. The reads are
aligned across billions of positions, most of which have
been annotated in some way. This experiment may be
repeated for thousands of samples. Such a data set does
not fit within the memory of a current commodity com-
puter, and is not processed in a timely and interactive
manner. To successfully wrangle a large data set, we
need to intimately understand its structure and care-
fully consider the questions posed of it.

There are three primary types of data in genomics:
sequence vectors, annotated ranges and feature-by-
sample matrices of summary statistics (Figure 1). Bi-

Michael Lawrence is Computational Biologist, Genentech,
1 DNA Way, South San Francisco, California 94080, USA
(e-mail: michafla@gene.com). Martin Morgan is Principal
Staff Scientist, Fred Hutchinson Cancer Research Center,
1100 Fairview Ave. N., P.O. Box 19024, Seattle, Washington
98109, USA (e-mail: mtmorgan@fhcrc.org).

ological sequences are represented as strings of char-
acters from a restricted alphabet. For example, a DNA
sequence consists of the letters A, C, G and T, each
referring to a particular type of nucleotide. A genome
consists of a set of DNA sequences, one for each chro-
mosome. We generalize the concept of sequence and
define the term sequence vector to mean either a se-
quence or a vector that runs parallel to a sequence. The
latter may be some curated or computed value, such as
the cross-species conservation or coverage from a se-
quencing experiment. The coverage is a common sum-
mary that represents the number of features overlap-
ping each position in the reference sequence.

As we learn more about a genome, we annotate ge-
nomic ranges with information like gene structures and
regulatory binding sites. The alignment of sequences to
a reference genome is another type of range-based an-
notation.

To compare data across samples, we often summa-
rize experimental annotations over a set of reference
features to yield a feature-by-sample matrix. For ex-
ample, we might count read alignments overlapping
a common set of genes across a number of samples.
Larger matrices often arise in genetics, where thou-
sands of samples are compared over millions of SNPs,
positions that are known to vary within a population. In
every case, the summaries are tied to a genomic range.

To analyze the results of an experiment, we need to
integrate data of different types. For example, we might
have alignments for a ChIP-seq experiment, where the
sequences have been enriched for binding to a par-
ticular transcription factor. A typical analysis involves

214

http://www.imstat.org/sts/
http://dx.doi.org/10.1214/14-STS476
http://www.imstat.org
mailto:michafla@gene.com
mailto:mtmorgan@fhcrc.org


SCALABLE GENOMICS 215

FIG. 1. Cartoon visualization of all three types of genomic data: genome-length vectors, ranged, features and summaries (from bottom to
top). Data from two samples are compared (red vs. blue). The bottom plot displays the coverage, a genome-length vector. The exon ranges
are shown in the middle. The top plot presents summaries, the per-exon read counts.

checking coincidence with annotated binding sites for
that transcription factor, as well as looking for corre-
lation between gene expression and binding signal up-
stream of the gene. The gene expression values might
be drawn from a gene by a sample matrix summarized
from an RNA-seq experiment. The genomic range is
the common thread that integrates all three types of
data. The sequence, that is, the genome, acts as the
scaffold, and ranges coordinate the annotations and
summarized features by locating them on the same se-
quence.

The R language [13] is widely applied to problems
in statistics and data analysis, including the analysis
of genomic data [8], as evidenced by the large num-
ber of available software packages providing features
ranging from data manipulation to machine learning.
R provides high-level programming abstractions that
make it accessible to statisticians and bioinformatics
professionals who are not software engineers per se.
One aspect of R that is particularly useful is its “copy
on write” memory semantics, which insulates the user
from the details of reference-based memory manage-
ment. The fundamental R data structure is the atomic
vector, which is both convenient and efficient for mod-
erately sized data. An atomic vector is homogeneous in
data type and so easily stored in one contiguous block
of memory. Many vector operations are implemented

in native (C) code, which avoids invoking the R inter-
preter as it iterates over vector elements. In a typical
multivariate data set, there is heterogeneity in data type
across the columns and homogeneity along a column,
so vectors are naturally suited for column-oriented data
storage, as in the basic data.frame. Vectorized com-
putations can usually be expressed with simpler and
more concise code compared to explicit iteration. The
strengths of R are also its weaknesses: the R API en-
courages users to store entire data sets in memory
as vectors. These vectors are implicitly and silently
copied to achieve copy-on-write semantics, contribut-
ing to high memory usage and poor performance.

There are general strategies for handling large ge-
nomic data that are well suited to R programs. Some-
times the analyst is only interested in one aspect of the
data, such as that overlapping a single gene. In such
cases, restricting the data to that subset is a valid and
effective means of data reduction. However, once our
interests extend beyond a single region or the region
becomes too large, resource constraints dictate that we
cannot load the entire data set into memory at once,
and we need to iterate over the data to reduce them to
a set of interpretable summaries.

Iteration lends itself to parallelism, that is, comput-
ing on multiple parts of the same problem simulta-
neously. Thus, in addition to meeting memory con-



216 M. LAWRENCE AND M. MORGAN

straints, iteration lets us leverage additional process-
ing resources to reduce overall computation time. In-
vesting in additional hardware is often more econom-
ical than investment in software optimization. This is
particularly relevant in scientific computing, where we
are faced with a diverse, rapidly evolving set of un-
solved problems, each requiring specialized software.
The costs of investment in general purpose hardware
are amortized over each problem, rather than paid each
time for software optimization. This also relates to
maintainability: optimization typically comes at a cost
of increased code complexity. Many types of summary
and filter operations are cheap to implement in parallel
because the data partitions can be processed indepen-
dently. We call this type of operation embarrassingly
parallel. For example, the counting of reads overlap-
ping a gene does not depend on the counting for a dif-
ferent gene.

Given the complexity and scope of the data, analysts
often rely on visual tools that display summaries and
restricted views to communicate information at differ-
ent scales and level of detail, from the whole genome
to single nucleotide resolution. Plot interactivity is al-
ways a useful feature when exploring data, and this is
particularly true with big data. The view is always re-
stricted in terms of its region and detail level, so, in or-
der to gain a broader and deeper understanding of the
data, the viewer will need to adjust the view, either by
panning to a different region, zooming to see more de-
tails or adjusting the parameters of the summary step.
The size of the genome and the range of scales make it
infeasible to pre-render every possible view. Thus, the
views need to be generated dynamically, in lazy reac-
tion to the user. Performance is an important factor in
interpretability: slow transitions distract the viewer and
obfuscate relationships between views. Dynamic gen-
eration requires fast underlying computations to load,
filter and summarize the data, and fast rendering to dis-
play the processed data on the screen.

This paper describes strategies to surmount compu-
tational and visualization challenges in the analysis of
large genomic data and how they have been imple-
mented in the R programming language by a number
of packages from the Bioconductor project [5]. We
will demonstrate their application to a real data set:
the whole-genome sequencing of the HapMap cell line
NA12878, the daughter in the CEU trio. The GATK
project genotyped the sample according to their best
practices and included the calls in their resource bun-
dle, along with the alignments for chr20, one of the

shortest chromosomes. Realistically, one would ana-
lyze the data for the entire genome, but the chr20 subset
is still too large to be processed on a commodity laptop
and thus is sufficient for our purposes.

2. LIMITING RESOURCE CONSUMPTION

Our ultimate goal is to process and summarize a
large data set in its entirety, and iteration enables this
by limiting the resource commitment at a given point
in time. Limiting resource consumption generalizes be-
yond iteration and is a fundamental technique for com-
puting with big data. In many cases, it may render iter-
ation unnecessary. Two effective approaches for being
frugal with data are restriction and compression. Re-
striction means controlling which data are loaded and
lets us avoid wasting resources on irrelevant or exces-
sive data. Compression helps by representing the same
data with fewer resources.

2.1 Restricting Queries

Restriction is appropriate when the question of in-
terest requires only a fraction of the available data. It is
applicable in different ways to sequence vectors, range-
based annotations and feature-by-sample matrices. We
can restrict data along two dimensions: row/record-
wise and/or column/attribute-wise, with genomic over-
lap being an important row filter. Sequences and ge-
nomic vectors are relatively simple structures that are
often restricted by range, that is, extraction of a con-
tiguous subsequence of per-position values. Row-wise
restriction is useful when working with large sets of ex-
perimentally generated short sequences. The sequence
aligner generates alignments as annotations on a ref-
erence sequence, and these alignments have many at-
tributes, such as genomic position, score, gaps, se-
quence and sequence quality. Restriction can exclude
the irrelevant attributes. Analysts often slice large ma-
trices, such as those consisting of SNP calls, by both
row (SNP) and column (individual).

A special mode of restriction is to randomly gen-
erate a selection of records. Down-sampling can ad-
dress many questions, especially during quality assess-
ment and data exploration. For example, short reads
are initially summarized in FASTQ files containing a
plain text representation of base calls and correspond-
ing quality scores. Basic statistics of quality assess-
ment such as the nucleotide count as a function of se-
quencing cycle or overall GC content are very well
characterized by random samples of a million reads,
which might be 1% of the data. This sample fits easily



SCALABLE GENOMICS 217

in memory. Computations on this size of data are very
nimble, enabling interactive exploration on commod-
ity computers. An essential requirement is that the data
represent a random sample.

The ShortRead package is designed for the QA and
exploratory analysis of the output from high-througput
sequencing instruments. It defines the FastqSam-
pler object, which draws random samples from
FASTQ files. The sequence reads in our data set have
been extracted into a FASTQ file from the publicly
available alignments. We wish to check a few qual-
ity statistics before proceeding. We begin by loading a
random sample of one million reads from the file:

With the sequences loaded, we can compute some
QA statistics, like the overall base call tally:

In a complete workflow, we would generate an
HTML QA report via the report function.

An example of a situation where random sampling
does not work is when prototyping a statistical method
that depends on a significant amount of data to achieve
reasonable power. Variant calling is a specific example:
restricting the number of reads would lead to less cov-
erage, less power and less meaningful results. Instead,
we need to restrict the analysis to a particular region
and include all of the reads falling within it.

To optimize range-based queries, we often sort and
index our data structures by genomic coordinates. We
should consider indexing an investment because an in-
dex is generally expensive to generate but cheap to
query. The justification is that we will issue a sufficient
number of queries to outweigh the initial generation
cost. Three primary file formats follow this pattern:
BAM, Tabix and BigWig [7, 10]. Each format is best
suited for a particular type of data. The BAM format is
specially designed for sequence alignments and stores
the complex alignment structure, as well as the aligned
sequence. Tabix is meant for indexing general range-
based annotations stored in tabular text files, such as
BED and GFF. Finally, BigWig is optimized for stor-
ing genome-length vectors, such as the coverage from
a sequencing experiment. BAM and Tabix compress
the primary data with block-wise gzip compression and

save the index as a separate file. BigWig files are simi-
larly compressed but are self-contained.

The Rsamtools package is an interface between R
and the samtools library, which implements access to
BAM, Tabix and other binary file formats. Rsamtools
enables restriction of BAM queries through the Scan-
BamParam object. This object can be used as an ar-
gument to all BAM input functions, and enables re-
striction to particular fields of the BAM file, to spe-
cific genomic regions of interest and to properties of
the aligned reads (e.g., restricting input to paired-end
alignments that form proper pairs).

One common scenario in high-throughput sequenc-
ing is the calculation of statistics such as coverage (the
number of short sequence reads overlapping each nu-
cleotide in the genome). The data required for this
calculation usually come from very large BAM files
containing alignment coordinates (including the align-
ment “cigar”), sequences and quality scores for tens of
millions of short reads. Only the smallest element of
these data, the alignment coordinates, is required for
calculation of coverage. By restricting input to align-
ment coordinates, we transform the computational task
from one of complicated memory management of large
data to simple vectorized operations on in-memory ob-
jects.

We can directly implement a coverage estimation
by specifying a ScanBamParam object that restricts
to the alignment information. The underlying cover-
age calculation is implemented by the IRanges pack-
age, which sits at the core of the Bioconductor infras-
tructure and provides fundamental algorithms and data
structures for manipulating and annotating ranges. It is
extended by GenomicRanges to add conveniences for
manipulating ranges on the genome:

This is only an estimate, however, because we have
ignored the complex structure of the alignments, for
example, the insertions and deletions. Rsamtools pro-
vides a convenience function for the more accurate cal-
culation:

2.2 Compressing Genomic Vectors

Some vectors, in particular, the coverage, have long
stretches of repeated values, often zeroes. An efficient



218 M. LAWRENCE AND M. MORGAN

compression scheme for such cases is run-length en-
coding. Each run of repeated values is reduced to two
values: the length of the run and the repeated value.
This scheme saves space and also reduces computation
time by reducing computation size. For example, the
vector 0,0,0,1,1,5,5,5 would have run-values 0,1,5
and run-lengths 3,2,3. The data have been reduced
from a size of 8 to a size of 6 (3 values plus 3 lengths).
The IRanges Rle class is a run-length encoded vec-
tor that supports the full R vector API on top of the
compressed representation. Operations on an Rle gain
efficiency by taking advantage of the compression. For
example, the sum method computes a sum of the run
values, using the run lengths as weights. Thus, the time
complexity is on the order of the number of runs, rather
than the length of the vector.

The cov object we generated in the previous section
is a list of Rle objects, one per chromosome.

For this whole-genome sequencing, the data are
quite dense and complex, so the compression actually
decreases efficiency. However, in the course of analy-
sis we often end up with sparser data and thus better
compression ratios. In this analysis, we are concerned
about regions with extremely high coverage: these are
often due to alignment artifacts.

Calculating the sum is then more efficient than with
conventional vectors:

Sometimes we are interested in the values of a ge-
nomic vector that fall within a set of genomic features.
Examples include the coverage values within a set of
called ChIP-seq peaks or the conservation scores for
a set of motif hits. We could extract the subvectors of
interest into a list. However, large lists bring undesir-
able overhead, and the data would no longer be easily
indexed by genomic position. Instead, we combine the

original vector with the ranges of interest. In IRanges,
this is called a Views object. There is an RleViews
object for defining views on top of an Rle.

To demonstrate, we slice our original coverage
vector by our high coverage cutoff to yield the regions
of high coverage, overlaid on the coverage itself, as an
RleViews object:

This lets us efficiently calculate the average coverage
in each region:

The Biostrings package [12] provides XString-
Views for views on top of DNA, RNA and amino
acid sequences. XString is a reference, rather than
a value as is typical in R, so we can create multiple
XStringViews objects without copying the under-
lying data. This is an application of the fly-weight de-
sign pattern: multiple objects decorate the same pri-
mary data structure, which is stored only once in mem-
ory.

We can apply XStringViews for tabulating the
nucleotides underlying the high coverage regions.
First, we need to load the sequence for chr20, via the
BSgenome package and the addon package for human:

While the human genome consists of billions of
bases, our genome object is tiny. This is an example
of lazy loading: chromosomes are loaded, and cached,
as requested. In our case, we restrict to chr20 and form
the XStringViews.

We verify that the cached sequence occupies the
same memory as the subject of the views:



SCALABLE GENOMICS 219

Finally, we calculate and compare the nucleotide fre-
quencies:

We notice that the high coverage regions are A/T-
rich, which is characteristic of low complexity regions.

2.3 Compressing Lists

The high coverage regions in our data may be associ-
ated with the presence of repetitive elements that con-
fuse the aligner. We obtain the repeat annotations from
the UCSC genome browser with the rtracklayer pack-
age, which, in addition to a browser interface, handles
input and output for various annotation file formats, in-
cluding BigWig. Our query for the repeats is restricted
to chr20, which saves download time. We subset to the
simple and low complexity repeats, which are the most
likely to be problematic:

Our goal is to calculate the percent of each high cov-
erage region covered by a repeat. First, we split the re-
peats according to overlap with a high coverage region:

The repeats.split object is not an ordinary list.
Long lists are expensive to construct, store and pro-

cess. Creating a new vector for each group requires
time, and there is storage overhead for each vector. Fur-
thermore, data compression is less efficient when the
data are split across objects. Depending on the imple-
mentation of the list elements, these costs can be sig-
nificant. This is particularly true of the S4 object sys-
tem in R [2]. Another detriment to R lists is that list
elements can be of mixed type. Thus, there are few na-
tive routines for computing on lists. For example, the
R sum function efficiently sums the elements of a ho-
mogeneous numeric vector, but there is no support for
calling sum to calculate the sum of each numeric vec-
tor in a list. Even if such routines did exist for native
data types, there are custom data types, such as ranges,
and we aim to facilitate grouping of any data that we
can model as a vector.

FIG. 2. Grouping via partitioning vs. splitting into multiple ob-
jects. Top: the input vector, with elements belonging to three differ-
ent groups: red, blue and yellow. Middle: typical splitting of vector
into three vectors, one per group. This brings the overhead of mul-
tiple objects. Bottom: the data are virtually split by a partitioning,
encoded by the number of elements in each group (the vector is
assumed to be sorted by group).

While the R sum function is incapable of computing
group sums, there is an oddly named function called
rowsum that will efficiently compute them, given a
numeric vector and a grouping factor. This hints that a
more efficient approach to grouping may be to store the
original vector along with a partitioning. The IRanges
R package includes a CompressedList framework
that follows this strategy. A CompressedList con-
sists of the data vector, sorted by group, and a vector of
indexes where each group ends in the data vector (see
Figure 2). IRanges provides CompressedList im-
plementations for native atomic vectors and other data
types in the IRanges infrastructure, and the framework
is extensible to new data types. A CompressedList
is homogeneous, so it is natural to define methods on
subclasses to perform operations particular to a type of
data. For example, there is a sum method for the Nu-
mericList class that delegates internally to row-
sum. This approach bears similarity to storing data
by columns: we improve storage efficiency by storing
fewer objects, and we maintain the data in its most
readily computable form. It is also an application of
lazy computing, where we delay the partitioning of the
data until a computation requires it. We are then in po-
sition to optimize the partitioning according to the spe-
cific requirements of the operation.

Since repeats.list is a CompressedList,
we can take advantage of these optimizations:



220 M. LAWRENCE AND M. MORGAN

This value can be compared to the percent of chr20
covered:

Instead of a CompressedList, we could have
solved this problem usingcoverage andRleViews.

The downside of compression is that there is over-
head to explicit iteration because we need to extract
a new vector with each step. The Biostrings pack-
age has explored a solution. We can convert our
XStringViews object chr20.views to a DNA-
StringSet that contains one DNAString for each
view window. The data for each DNAString has
never been copied from the original chr20 sequence,
and any operations on a DNAString operate directly
on the shared data. While this solution may seem obvi-
ous, it relies heavily on native code and is far from the
typical behavior of R data structures:

The nascent XVector package aims to do the same for
other R data types, such as integer, double and logical
values.

3. ITERATING

3.1 Splitting Data

Iterative summarization of data may be modeled as
three separate steps: split, apply and combine [15]. The
split step is typically the only one that depends on the
size of the input data. The apply step operates on data
of restricted size, and it should reduce the data to a
scale that facilitates combination. Thus, the most chal-
lenging step is the first: splitting the data into chunks
small enough to meet resource constraints.

Two modes of splitting are particularly applicable
to genomic data: sequential chunking and genomic
partitioning. Sequential chunking is a popular and
general technique that simply loads records in fixed-
count chunks, according to the order in which they
are stored. Genomic partitioning iterates over a disjoint
set of ranges that cover the genome. Typical partition-
ing schemes include one range per chromosome and
sub-chromosomal ranges of some uniform size. Effi-
cient range-based iteration, whether over a partitioning
or list of interesting regions, depends on data struc-
tures, file formats and algorithms that are optimized
for range-based queries.

Under the assumption that repeat regions are lead-
ing to anomalous alignments, we aim to filter from our
BAM file any alignments overlapping a repeat. As we
will be performing many overlap queries against the
repeat data set, it is worth indexing it for faster queries.
The algorithms for accessing BAM, Tabix and BigWig
files are designed for genome browsers and have not
been optimized for processing multiple queries in a
batch. Each query results in a new search. This is un-
necessarily wasteful, at least when the query ranges are
sorted, as is often the case. We could improve the al-
gorithm by detecting whether the next range is in the
same bin and, if so, continuing the search from the
current position. The IRanges package identifies in-
terval trees [3] as an appropriate and well-understood
data structure for range-based queries, and implements
these using a combination of existing C libraries [6]
and new C source code. The query is sorted, and every
new search begins at the current node, rather than at the
root. We build a GIntervalTree for the repeats:

The GIntervalTree from GenomicRanges enables
the same optimization when data are aligned to multi-
ple chromosomes.

To configure streaming, we specify a yieldSize
when constructing the object representing our BAM
file. We will filter at the individual read level, but it
should be noted that for paired-end data Rsamtools
supports streaming by read pair, such that members of
the same pair are guaranteed to be in the same chunk.
Since BAM files are typically sorted by position, not
pair, this is a significant benefit:

To filter the BAM, we first need to define a fil-
ter rule that excludes reads that overlap a repeat. The
low-level Rsamtools interface provides the read data
as a DataFrame, which we convert into a GAlign-
ments object from the GenomicAlignments package,
which provides data structures and utilities for analyz-
ing read alignments:

Since we are writing a new BAM file, this is iteration
with a side effect rather than a reduction.

To demonstrate reduction, we will calculate the cov-
erage in an iterative fashion, which ends up identical to



SCALABLE GENOMICS 221

our original calculation:

Choosing an appropriate yield size for each itera-
tion is important. There is overhead to each iteration,
mostly due to I/O and memory allocation, as well as the
R evaluator. Thus, one strategy is to increase the size
of each iteration (and reduce the number of iterations)
until the data fit comfortably in memory. It is relatively
easy to estimate a workable yield size from the con-
sumption of processing a single chunk. The gc func-
tion exposes the maximum amount of memory con-
sumed by R between resets:

The memory usage started at about 500 MB and
peaked at about 1200 MB, so the iteration consumed
up to 700 MB. With 8 GB of ram, we might be able to
process up to 10 million reads at once, assuming linear
scaling.

As an alternative to streaming over chunks, we can
iterate over a partitioning of the genome or other
domain. Genomic partitioning can be preferable to
streaming when we are only interested in certain re-
gions. The tileGenome function is a convenience
for generating a set of ranges that partition a genome.
We rely on it to reimplement the coverage iterative
calculation with a partitioning:

A caveat with partitioning is that since many query
algorithms return ranges with any overlap of the query,
care must be taken to intersect the results with each
partition, so that reads are not double counted, for ex-
ample.

By computing the coverage, we have summarized
the data. Computing summaries is often time consum-
ing, but since the summaries are smaller than the orig-
inal data, it is feasible to store them for later use.

Caching the results of computations is an optimization
technique known as memoization. An analysis rarely
follows a linear path. By caching the data at each stage
of the analysis, as we proceed from the raw data to a
feature-level summary, often with multiple rounds of
feature annotation, we can avoid redundant computa-
tion when we inevitably backtrack and form branches.
This is an application of incremental computing. We
export our coverage as a BigWig file, for later use:

3.2 Iterating in Parallel

There are two basic modes of parallelism: data-level
and task-level. Embarrassingly parallel problems illus-
trate data parallelism. Work flows might less frequently
involve task parallelism, where different tasks are ap-
plied to the same data chunk. These are generally more
challenging to implement, especially with R, which
does not offer any special support for concurrency. The
Streamer package has explored this direction.

Multicore and cluster computing are similar in that
they are modular, and scaling algorithms to use mul-
tiple cores or multiple nodes can involve conceptually
similar steps, but there are some critical differences.
Multiple cores in the same system share the same mem-
ory, as well as other resources. Shared memory config-
urations offer fast inter-thread data transfer and com-
munication. However, the shared resources can quickly
become exhausted and present a bottleneck. Comput-
ing on a cluster involves significant additional expertise
to access and manage cluster resources that are shared
between multiple users and governed by a scheduler.
Interacting with a scheduler introduces an extra step
into a workflow. We place jobs in a queue, and the jobs
are executed asynchronously. Another complication is
that we need to share the data between every computer.
A naive but often sufficient method is to store the data
in a central location on a network file system and to dis-
tribute the data via the network. The network overhead
implied by this approach may penalize performance.

When the ratio of communication to computation
time is large, communication dominates the overall cal-
culation. The main strategies for addressing this are to
(a) ensure each task represents a significant amount of
work and (b) identify points where data sizes of inputs
(e.g., file names) and outputs (e.g., vector of counts
across regions of interest) are small. Data partitioning
is usually conveyed to workers indirectly, for exam-
ple, via specification of the range of data to be pro-
cessed, rather than inputting and explicitly partitioning



222 M. LAWRENCE AND M. MORGAN

data. This approach reduces the communication costs
between the serial and parallel portions of the compu-
tation and avoids loading the entire data set into mem-
ory.

The R packages foreach [14], parallel (distributed
with R [13]), pbdR [11] and BatchJobs [1] provide ab-
stractions and implementations for executing tasks in
parallel and support both the shared memory and clus-
ter configurations. BatchJobs and pbdR are primarily
designed for asynchronous execution, where jobs are
submitted to a scheduling system, and the user issues
commands to query for job status and collect results
upon completion. The other two, foreach and parallel,
follow a synchronous model conducive to interactive
use.

Different use cases and hardware configurations ben-
efit from different parallelization strategies. An ana-
lyst might apply multiple strategies in the course of
an analysis. This has motivated the development of an
abstraction oriented toward genomics workflows. The
BiocParallel package defines this abstraction and im-
plements it on top of BatchJobs, parallel and foreach
to support the most common configurations. An impor-
tant feature of BiocParallel is that it encapsulates the
parallelization strategy in a parameter object that can
be passed down the stack to infrastructure routines that
implement the iteration. Thus, for common use cases
the user can take advantage of parallelism by solely
indicating the appropriate implementation. Iteration is
carried out in a functional manner, so the API mirrors
the *apply functions in base R: bplapply, bpmap-
ply, etc.

To illustrate use of parallel iteration, we diagnose the
GATK genotype calls introduced earlier. One approach
is to generate our own set of nucleotide tallies, perform
some simple filtering to yield a set of variant calls, and
compare our findings to those from GATK. The set of
nucleotide tallies is a more detailed form of the cover-
age that consists of the count of each nucleotide at each
position, as well as some other per-position statistics.
Tallies are useful for detecting genetic variants through
comparison to a reference sequence.

The VariantTools package provides a facility for
summarizing the nucleotide counts from a BAM file
over a given range. We can iterate over the tiling in
parallel using the bplapply function. The BPPARAM
argument specifies the parallel implementation. Mul-
ticoreParam is appropriate for a multicore work-
station, whereas we might use BatchJobsParam for

scheduling each iteration as a job on a cluster:

The above is an example of explicit iteration. Thanks to
the encapsulation and abstraction afforded by Bioc-
ParallelParam, the pileupVariants function
supports parallel iteration directly, so the implementa-
tion becomes much simpler:

This is an example of an embarrassingly parallel so-
lution: each iteration is a simple counting exercise
and is independent of the others. An example of a
nonembarrassingly parallel algorithm is our demon-
stration of BAM filtering: each iteration has the side
effect of writing to the same file on disk. The increased
complexity of coordinating the I/O across jobs under-
mines the value of parallelism in that case.

4. SCALING GENOMIC GRAPHICS

4.1 Managing Graphical Resources

Graphics software is special in that it performs two
roles: distilling information from the data and visu-
ally communicating that information to the user. The
first role is similar to any data processing pipeline; the
unique aspect is the communication. The communica-
tion bandwidth of a plot is limited by the size and reso-
lution of the display device and the perceptive capabil-
ities of the user. These limitations become particularly
acute in genomics, where it would be virtually impos-
sible to communicate the details of a billion alignments
along a genome of 3 billion nucleotides.

When considering how best to manage graphical
resources, we recall the general technique of restric-
tion. Restriction has obvious applicability to genomic
graphics: we can balance the size of the view and the
level of detail. As we increase the size of the view, we
must decrease the level of detail and vice versa. This
means only so much information can be communicated
in a single plot, so the user needs to view many plots
in order to comprehend the data. It would be infeasible
to iteratively generate every possible plot, so we need
to lazily generate plots in response to user interaction.
For example, the typical genome browser supports pan-
ning and zooming about the genome, displaying data at
different levels of detail, depending on the size of the
genomic region.



SCALABLE GENOMICS 223

4.2 Displaying Summaries Efficiently

When plotting data along a restricted range, graph-
ics software can rely on the support for range-based
queries presented previously. Controlling the level of
detail is more challenging because it relies on sum-
maries. As the viewed region can be as large as the
genome, generating summaries is often computation-
ally intensive and introduces undesirable latency to
plot updates. One solution to this problem is caching
summaries at different levels of detail. Global sum-
maries will be regularly accessed and expensive to
compute, and thus are worth caching, whereas the de-
tailed data exposed upon drill-down can be computed
lazily. This strategy is supported by the BigWig format.
In addition to storing a full genomic vector, BigWig
files also contain summary vectors, computed over a
range of resolutions, according to the following statis-
tics: mean, min, max and standard deviation. Plotting
the aggregate coverage is a shortcut that avoids point-
less rendering of data that is beyond the display reso-
lution and the perceptive abilities of the viewer:

A good summary will guide the user to the most
interesting parts of the data. Genomic data are typ-
ically sparsely distributed along the genome, due to
the nonuniform distribution of genes and experimental
protocols that enrich for regions of interest. Coverage
is a particularly useful summary, as it helps guide the

viewer to the regions with the most data. The following
gets the average coverage for 800 windows (perhaps
appropriate for an 800 pixel plot). The result is shown
in the top panel of Figure 3:

In cases where a BigWig file or other cached sum-
mary is unavailable, we can rely on a heuristic that
estimates the coverage from the index of a BAM or
Tabix file. The index stores offsets into the BAM for
efficient range-based queries. Instead of accessing the
index to resolve queries, we calculate the difference in
the file offsets for each range and derive a relative cov-
erage estimate at a coarse level of resolution. In prac-
tice, this reduces the required time to compute the cov-
erage from many minutes to a few seconds. When the
plot resolution exceeds the resolution of the index, we
again rely on the index to query the BAM file for the
reads that fall within the relatively small region and
compute the coverage directly. A heuristic seems ac-
ceptable in this case, because improved accuracy is im-
mediately accessible by zooming. This is in contrast
to pure statistical computations, where crude estimates
are less appreciated, even in the exploratory context,
since resolution is not so readily forthcoming.

The estimateCoverage function from the bio-
vizBase package [17] estimates the coverage from the
BAM index file. The bottom panel of Figure 3 shows
the output of estimateCoverage for the example
data set and allows for comparison with the more ex-
act calculation derived from the BigWig file. The two
results are quite similar and both required only a few
seconds to compute on a commodity laptop.

FIG. 3. The results of two coverage calculations over chr20. Top: the calculation based on cached values in the BigWig file. Bottom: the
estimated coverage from the BAM index file.



224 M. LAWRENCE AND M. MORGAN

4.3 Generating Plots Dynamically

The design of interactive graphics software typi-
cally follows the model–view–controller pattern (see
Figure 4). The view renders data retrieved from the
data model, and the controller is the interface through
which the user manipulates the view and data model.
The data model abstracts the underlying data source,
which might be memory, disk or a dynamic computa-
tion. The abstraction supports the implementation of
complex optimizations without exposing any of the
complexity to client code. Data is communicated to
the user through the view, and user input is received
through the controller. A complex application will con-
sist of multiple interactive views, linked through a
common data model, itself composed of multiple mod-
ules, chained together as stages in a pipeline. The
viewer, plots and pipeline stages are interlinked to form
a network.

A simple data model abstracts access to the primary
data, such as an in-memory GRanges object of tran-
script annotations or a BAM file on disk. We can ex-
tend the simple model to one that dynamically com-
putes on data as they are requested by the application.
This is an example of lazy computing. Each operation
is encapsulated into a data model that proxies an un-
derlying model. The proxy models form a chain, lead-

ing from the raw data to the processed data that are
ready for plotting [16]. Dynamic computation avoids
unnecessarily processing the entire genome when the
user is only interested in a few small regions, especially
when the parameters of the transformations frequently
change during the session. The data may be cached as
they are computed, and the pipeline might also antici-
pate future requests; for example, it might prepare the
data on either side of the currently viewed region, in
anticipation of scrolling. Caching and prediction are
examples of complex optimizations that are hidden by
the data model. The plumbr R package [9] provides a
proxy model framework for implementing these types
of ideas behind the data frame API.

We have been experimenting with extending these
approaches to genomic data. The biovizBase pack-
age implements a graphics-friendly API for restricted
queries to Bioconductor-supported data sources. The
ggbio package builds on biovizBase to support ge-
nomic plot objects that are regenerated as the user ad-
justs the viewport.

To diagnose the GATK genotype calls, we combine
the reference sequence, nucleotide pileup and the geno-
type calls. The result is shown in Figure 5. The gg-
bio package produced the plot by relying on restricted
query support in biovizBase. We have already intro-
duced the extraction of genomic sequence and the cal-

FIG. 4. An application of the model–view–controller pattern and pre-computed summaries to genomic visualization. Coverage is displayed
at two levels of resolution (whole chromosome and the current zoom) after efficient extraction from the multi-resolution BigWig file. The BAM
file holding the read alignments is abstracted by a multi-stage data model, consisting of the BAM source, a dynamic read quality filter and
two filters that effectively split the alignments according to compatibility with the known transcript annotations. The view contains several
coordinately-zoomed plots, as well as an ideogram and coverage overview. Each plot obtains its data from one of the data model components.
The controller might adjust the data model filter settings and the current zoom in response to user commands.



SCALABLE GENOMICS 225

FIG. 5. Example plot for diagnosing genotype calls, consisting of the nucleotide tallies, genotype calls and reference sequence, from top to
bottom. The plot is dynamically generated for the selected region of interest, without processing the entire genome. The viewer might check
to see if the tallies support the called genotypes. In this case, the data are consistent.

culation of nucleotide pileups. The genotypes were
drawn by the VariantAnnotation package from a Vari-
ant Call Format (VCF, [4]) file with a range-based in-
dex provided by Tabix.

To generate the plot, we first select the region of in-
terest:

Next, we construct the plot object and render it:

Since the plot object is a logical representation of the
plot, that is, it references the original data, we can ad-
just various aspects of it and generate a new rendering.
In particular, we can change the currently viewed re-
gion, and the data for the new region are processed dy-
namically to generate the new plot. In this example, we
zoom out to a larger region around the first region:

Current work is focused on the MutableRanges
package, which generalizes and formalizes the de-
signs in biovizBase. It defines dynamic versions of the
GenomicRanges data structures, for example, there is a
DynamicGRanges that implements the GRanges API
on top of a BAM file. Only the requested regions
are loaded, and they are optionally cached for future
queries. A ProxyGRanges performs dynamic compu-
tations based on another GRanges. This will enable
a new generation of interactive genomic visualization
tools in R. An early adopter is epivizr, the R interface
to the web-based epiviz, a web-based genome browser
with support for general interactive graphics, including
scatterplots and histograms.

5. CONCLUSION

We have introduced software and techniques for
analyzing and plotting big genomic data. The Biocon-
ductor project distributes the software as a number of
different R packages, including Rsamtools, IRanges,
GenomicRanges, GenomicAlignments, Biostrings,
rtracklayer, biovizBase and BiocParallel. The soft-
ware enables the analyst to conserve computational
resources, iteratively generate summaries and visual-
ize data at arbitrary levels of detail. These advances
have helped to ensure that R and Bioconductor remain
relevant in the age of high-throughput sequencing. We



226 M. LAWRENCE AND M. MORGAN

plan to continue in this direction by designing and im-
plementing abstractions that enable user code to be ag-
nostic to the mode of data storage, whether it be mem-
ory, files or databases. This will bring much needed
agility to resource allocation and will enable the user
to be more resourceful, without the burden of increased
complexity.

ACKNOWLEDGMENTS

Supported in part by the National Human Genome
Research Institute of the National Institutes of Health
(U41HG004059 to M. M.) and the National Science
Foundation (1247813 to M. M.).

REFERENCES

[1] BISCHL, B., LANG, M., MERSMANN, O., RAHNEN-
FUEHRER, J. and WEIHS, C. (2011). Computing on high per-
formance clusters with R: Packages BatchJobs and BatchEx-
periments. Technical Report 1, TU Dortmund.

[2] CHAMBERS, J. M. (2008). Software for Data Analysis: Pro-
gramming with R. Springer, New York.

[3] CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L. and
STEIN, C. (2001). Introduction to Algorithms, 2nd ed.
McGraw-Hill, Boston, MA. MR1848805

[4] DANECEK, P., AUTON, A., ABECASIS, G., ALBERS, C. A.,
BANKS, E., DEPRISTO, M. A., HANDSAKER, R. E.,
LUNTER, G., MARTH, G. T., SHERRY, S. T., MCVEAN, G.,
DURBIN, R. and 1000 GENOMES PROJECT ANALYSIS

GROUP (2011). The variant call format and VCFtools. Bioin-
formatics 27 2156–2158.

[5] GENTLEMAN, R. C., CAREY, V. J., BATES, D. M. and OTH-
ERS (2004). Bioconductor: Open software development for
computational biology and bioinformatics. Genome Biol. 5
R80.

[6] KENT, W. J., SUGNET, C. W., FUREY, T. S., ROSKIN,
K. M., PRINGLE, T. H., ZAHLER, A. M. and HAUSSLER, D.

(2002). The human genome browser at UCSC. Genome Res.
12 996–1006.

[7] KENT, W. J., ZWEIG, A. S., BARBER, G., HINRICHS, A. S.
and KAROLCHIK, D. (2010). BigWig and BigBed: Enabling
browsing of large distributed datasets. Bioinformatics 26
2204–2207.

[8] LAWRENCE, M., HUBER, W., PAGÈS, H., ABOYOUN, P.,
CARLSON, M., GENTLEMAN, R., MORGAN, M. and
CAREY, V. (2013). Software for computing and annotating
genomic ranges. PLoS Computational Biology 9 e1003118.

[9] LAWRENCE, M. and WICKHAM, H. (2012). plumbr: Muta-
ble and dynamic data models. R package version 0.6.6.

[10] LI, H., HANDSAKER, B., WYSOKER, A., FENNELL, T.,
RUAN, J., HOMER, N., MARTH, G., ABECASIS, G.,
DURBIN, R. and 1000 GENOME PROJECT DATA PROCESS-
ING SUBGROUP (2009). The Sequence Alignment/Map for-
mat and SAMtools. Bioinformatics 25 2078–2079.

[11] OSTROUCHOV, G., CHEN, W.-C., SCHMIDT, D. and PA-
TEL, P. (2012). Programming with big data in R. Available at
http://r-pbd.org/.

[12] PAGÈS, H., ABOYOUN, P., GENTLEMAN, R. and
DEBROY, S. (2013). Biostrings: String objects repre-
senting biological sequences, and matching algorithms. R
package version 2.25.6.

[13] R DEVELOPMENT CORE TEAM (2010). R: A Language and
Environment for Statistical Computing. R Foundation for Sta-
tistical Computing, Vienna, Austria.

[14] REVOLUTION ANALYTICS and WESTON, S. (2013). fore-
ach: Foreach looping construct for R. R package version
1.4.1.

[15] WICKHAM, H. (2011). The split-apply-combine strategy for
data analysis. Journal of Statistical Software 40 1–29.

[16] WICKHAM, H., LAWRENCE, M., COOK, D., BUJA, A.,
HOFMANN, H. and SWAYNE, D. F. (2009). The plumb-
ing of interactive graphics. Comput. Statist. 24 207–215.
MR2506079

[17] YIN, T., LAWRENCE, M. and COOK, D. (2013). biovizBase:
Basic graphic utilities for visualization of genomic data.
R package version 1.9.1.

http://www.ams.org/mathscinet-getitem?mr=1848805
http://r-pbd.org/
http://www.ams.org/mathscinet-getitem?mr=2506079

	Introduction
	Limiting Resource Consumption
	Restricting Queries
	Compressing Genomic Vectors
	Compressing Lists

	Iterating
	Splitting Data
	Iterating in Parallel

	Scaling Genomic Graphics
	Managing Graphical Resources
	Displaying Summaries Efﬁciently
	Generating Plots Dynamically

	Conclusion
	Acknowledgments
	References

