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Abstract. Diverse phenomena from the real-world can be modeled using
random matrices, allowing matrix-variate distributions to be considered. The
normal distribution is often employed in this modeling, but usually the men-
tioned random matrices do not follow such a distribution. An asymmetric
non-normal model that is receiving considerable attention due to its good
properties is the Birnbaum—Saunders (BS) distribution. We propose a statisti-
cal methodology based on matrix-variate BS distributions. This methodology
is implemented in the statistical software R. A simulation study is conducted
to evaluate its performance. Finally, an application with real-world matrix-
variate data is carried out to illustrate its potentiality and suitability.

1 Introduction

Several phenomena from the real-world can be modeled by random variables that
are correlated, which allows us to consider random vectors and matrices, and
their corresponding multivariate and matrix-variate distributions in this modeling.
Matrix-variate distributions are used in economy, physics, psychology, shape the-
ory and in other fields; see, for example, Dryden and Mardia (1998). Multi-and-
matrix-variate versions of the well-known normal (or Gaussian) distribution have
been studied by a number of authors; see Johnson et al. (1994a, pp. 80-206), Kotz
et al. (2000, pp. 105-333), Tulino and Verdd (2004), and Anderson et al. (2009,
pp. 19-20). However, few has been made on matrix-variate non-normal distribu-
tions, despite diverse phenomena can be modeled by this type of distributions,
for example, when recognition of handwriting characters is analyzed. Due to the
human nature of these characters, the stochastic component is present, allowing
matrix-variate models to be used.

A non-normal (asymmetric) distribution, defined on the positive real line, with
two parameters (shape and scale) and skewness to the right, is the Birnbaum—
Saunders (BS) model. Different aspects of the univariate BS distribution have been
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considered in recent decades due to its attractive properties and its relationship
with the normal distribution; see Birnbaum and Saunders (1969a), Johnson et al.
(1994b, pp. 651-663) and Balakrishnan et al. (2011).

A univariate generalization of the BS distribution based on elliptically con-
toured distributions (EC) distributions, proposed by Diaz-Garcia and Leiva (2005),
is known as the generalized BS (GBS) distribution, which includes the BS distri-
bution as a particular case. Univariate GBS distributions have been implemented
in the R software by Barros et al. (2009); see www.R-project.org. Extensions of
the GBS distribution to the multivariate and matrix-variate cases have been devel-
oped by Diaz-Garcia and Dominguez-Molina (2007), Caro-Lopera et al. (2012)
and Kundu et al. (2013).

Although the BS distribution has its genesis from engineering, it has been ap-
plied to agriculture, air and water contamination, business, finance, industry, hu-
man and tree mortality, insurance, medicine, neuroscience, nutrition, pharmacol-
ogy, psychology, quality control, toxicology and wind energy, among other areas;
see, for example, Galea et al. (2004), Balakrishnan et al. (2009a, 2009b, 2011),
Leiva et al. (2008a, 2008c, 2009, 2010, 2011a, 2011b, 2012, 2014a, 2014b, 20144d),
Kotz et al. (2010), Vilca et al. (2010, 2011), Santana et al. (2011), Azevedo et
al. (2012), Ferreira et al. (2012), Paula et al. (2012) and Marchant et al. (2013a,
2013b).

The objectives of this study are (i) to propose a methodology based on matrix-
variate GBS distributions, (ii) to implement and evaluate the proposed methodol-
ogy computationally, and (iii) to apply these results to real-world matrix-variate
data. Specifically, we model data of postcodes by the landmarks of handwritten
digits. These landmarks are points of correspondence on each object matching be-
tween and within populations, which allow images of handwritten digits to be dis-
played; see Dryden and Mardia (1998, p. 13 and pp. 318-320). The main novelty of
the work proposed in this paper in relation to the existing works attributed to Caro-
Lopera et al. (2012) and Kundu et al. (2013) is that we introduce a new methodol-
ogy based on matrix-variate GBS distributions, including estimation, data analysis
and real-world applications, whereas Caro-Lopera et al. (2012) did not developed
neither estimation or data analysis, and Kundu et al. (2013) studied the multivari-
ate case instead of the matrix-variate case, which cannot be used for analyzing the
application here proposed.

The paper is organized as follows. In Section 2, we provide the tools required
for developing our methodology. In Section 3, we first estimate the parameters of
the matrix-variate model which allows us to propose the methodology and then we
study the performance of these estimators by Monte Carlo (MC) simulations. In
Section 4, we apply the proposed methodology to real-world matrix-variate data of
handwritten characters, which shows its potentiality. In Section 5, we sketch some
conclusions, consequences and future issues to be considered from this work.
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2 The matrix-variate model

In this section, we introduce several statistical aspects related to matrix-variate
GBS distributions.

2.1 A univariate GBS distribution
If Z ~N(O0, 1), then the random variable T given by

T =B[eZ/2+(@Z/2)? + 1] 2.1)

has a BS distribution with parameters of shape « > 0 and scale § > 0, which is
denoted by T ~ BS(«, B). The random variable T has positive support and the
transformation given in (2.1) is one-to-one, which allows us to establish that

1
Z= &[‘/T/,s —VB/T]~N(, ).

Diaz-Garcia and Leiva (2005) proposed a generalization of the transformation
given in (2.1) based on the family of EC distributions. The main motivation of
that generalization is to do the kurtosis of the BS distribution flexible, which im-
proves the data modeling. A random variable Z has a standard EC distribution
(symmetric in the univariate case) in R with kernel function g, which is denoted
by Z ~ S(g), if its probability density function (PDF) is expressed as

f2(2) = cg(z?), zeR, (2.2)

where ¢ is a normalizing constant such that ffooo g(zz) dz = 1/c. From (2.1), if
Z ~ S(g), then the random variable 7 has a GBS distribution with parameters of
shape o > 0, scale 8 > 0 and kernel g, which is denoted by T ~ GBS(«, B; g). In
this case, the PDF of T is given by

fr@) =

C 4 Blgk),  t>0 2.3)
2aB1/2 ’ ’
where k&, = [£(t/B)/al* = [t/B + B/t — 21/a?, with @) = u — 1/J/u =
2sinh(log(s/u)), and c, g are given in (2.2). If g is the normal kernel, then we
have the univariate BS distribution. If g corresponds to the Student-r kernel with v
degrees of freedom, we then have the univariate BS-¢ distribution, which random
variable is denoted by T~ BS-7(«, 8; v); see Azevedo et al. (2012) and Paula et
al. (2012).

2.2 A multivariate GBS distribution

The univariate GBS distribution can be extended to the multivariate case using EC
distributions. Specifically, let x = (X7q, ..., X,) T € R" be a random vector with
multivariate EC distribution, characterized by a location vector u € R", a scale
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matrix ¥ € R"*"  with rank(X) = n, and the corresponding kernel g, which is
denoted by x ~ EC,,(, X; g). In this case, the PDF of x is defined as

A& =27 g(x—p]"2 7 [x —n]), xeR",

where ¢, g are as given in (2.2). Let z= (Z1, ..., Z,) " ~EC,(0,,1,; g), with 0,,
and I, being the n x 1 zero vector and n x n identity matrix, t = (71, ..., )" e
RY, = (@1,...,0n)" € R and B = (,81,...,/3n)T € R’, such that Z; € R,
T;, i, Bi > 0 satisfy the relation in (2.1), for all i =1, ..., n. Then, the random
vector t has a multivariate GBS distribution, denoted by t ~ GBS, («, ; g), and
its PDF is given by

S, ..o )
=£ngz |:l+ﬁl_2] l—[, [z+/31]’
witht; >0,fori=1,...,n

2.3 A matrix-variate GBS distribution

GBS distributions can be also extended to the matrix-variate case using the EC
family. Specifically, let X = (X;;) € R"*k be a random matrix with EC distribu-
tion, characterized by a location matrix M € R"*k scale matrices R € R¥*k with
rank(2) =k, and ¥ € R"*", with rank(X) = n, and kernel g, which is denoted by
X ~EC,«x(M, 2, X; g). In this case, the PDF of X is expressed as
fx(X) = cl@ 2z |72
x g(tr(7'X-M]"Z7I X -M])), XeR™
where c, g are given in (2.2). Now, let Z = (Z;;) ~ ECyxx (0 xk, Ix, In; g), with
0,,.x being the n x k zero matrix, T = (T;;) € RT", A = (ajj) € R’rk and B =

(,8,']') € RiXk, with Tij = ﬂ,-j[aijZij/z + ,/(0[,‘jZ,‘j/2)2 + 1]2, for oij, ﬂ,‘j > (0 and
i=1,...,n, j=1,..., k. Then, the random matrix T has a matrix-variate GBS
distribution, denoted by T ~ GBS, «x (A, B; g), and its PDF is given by

fr(t) = znkg(ZZ |:l‘u ,B,u _2]>
i=1j=1 l] 'BU lij
ok P4 Bl
ij J J
X,-E[ljzl aij/Bij

with;; > 0,fori=1,...,nand j=1,...,k.
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2.4 Generation of random matrices and moments

Below, we present a generator of random matrices from the GBS distribution.
It is known that, for matrices U,V € RP*", C € R¥*k and D € R, the fol-
lowing properties that involve the Kronecker product (®) and the trace (tr) and
vectorization (vec) operators are satisfied: (i) tr(UTCVD) = (vec(U")) T (C ®
D) vec(VT); (i) |C ® D| = |C|"|DJ¥; and (iii)) (C®@D)' =C~' @D~ !, if C
and D are invertible.

Based in Gupta and Varga (1994), we have that if X € R"*¥ is a random
matrix and X = Vec(XT), then X ~ EC,«t(M, 2, %; g) if and only if x ~
Ean(Vec(MT), Y ® 2; g). Hence, it is possible to generate data from a matrix-
variate GBS distribution using multivariate EC random vectors. Thus, given the in-
teger numbers n and k, A = («;;) € ]R’fk, B=(8ij) € RiXk and g, matrix-variate
data from T ~ GBS, % (A, B; g) can be generated by Algorithm 1.

To perform recognition of handwriting characters, we need the mean of T ~
GBS, xx (A, B; g) given by

E[T] =0.5B O [2 + w;A*"], (2.4)

where © denotes the Hadamard product and w; = E[U], with U ~ G Xz(l; g), that
is, U follows a generalized chi-squared distribution with one degree of freedom;
see Fang et al. (1990) and Gupta and Varga (1993) for the central G XZ distribu-
tion, and Diaz-Garcia et al. (2002, 2003) for the non-central case. Note that the
power of a matrix in relation to the Hadamard product is simpler than that from
the usual matrix product. We denote the Hadamard powers by X¢H = (X f‘j), for

a € R and so we have that: (i) X/2H = (x ll j/ 2) denotes the positive root of X

Algorithm 1 Generator of matrix-variate data from the GBS distribution

1: Generate a random vector z; = (zyj,..., zkj)T e R¥ from zj ~
ECir(0f, Ix; g), for j=1,...,n;
2: Create a matrix Z = (z;;) € R"*k with the vector z = (z1, ..., z,) | filling it
by rows as
2]
7=\ :|;
-

n

3: Obtain the element 7;; from t;; = B;j[o;jzij/2+,/ (Oliijj/Z)z + 172, fixing o

and B;;, for each element z;; of the matrix Z. The matrix T = (;;) € R:’LXk is
an observation from T ~ GBS, «x (A, B; g).
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with respect to the Hadamard product, such that X(/2H o X(/2H — X: and (ii)
XH=q/x; ;) denotes the inverse matrix of X with respect to the Hadamard
product, such that X @ X~H = J, where J is an n x k matrix consisting of ones.
To specific the expression given in (2.4) for the case of the #(3), #(8), 1 (50) and
t(00) =N(0, 1) kernels, we have w; = 3,4/3,25/24 and 1, respectively; see Leiva
et al. (2008a).

2.5 Relation between matrix-variate and univariate GBS distributions

Matrix-variate and univariate EC distributions are related as follows. Let X ~
ECyxx (M, £, X; g), with X = (X;;), M = (m;;), & = (w;j) and ¥ = (0;;). Then,
Xij ~ECi(m;j, wijo;j; g),fori =1,...,nand j =1, ..., k; see Gupta and Varga
(1994). Thus, if Z = (Z;;j) ~ EC,xk (055, Ix, In; 8), Zij ~EC1(0, 1; g) = S(g).
Let T ~ GBS, xx(A,B; g), with T = (T;;), A = («;j) and B = (B;;). Because
T = y(Z), where () is an one-to-one transformation from R?k to RM*k
and Z ~ ECpxx (0, xk, Ix, I; g), or more precisely, T;; and Z;; satisfy the re-
lation given in (2.1), for ;; and B;;, where Z;; ~ S(g), we can conclude that
Tij NGBS(O[,‘j,,B,’j;g),fOI'i = 1,...,]1 andj= 1,...,k.

3 Estimation

In this section, we estimate the matrix-variate GBS parameters with the (ML) max-
imum likelihood method and evaluate their performance by simulation.

3.1 ML method

Based on the results given in Section 2.5, the ML estimates of the matrix-variate
GBS parameters can be obtained by means of the ML estimates of the univari-
ate GBS parameters as follows. Let TV, ... T be a random sample of size
m from T ~ GBS, «x(A, B; g), where T® = (T(l)) forl=1,. = (ij)
and B = (B;;). Then, the ML estlmators of the matrlx variate GBS parameters can
be obtained as A = (@;;) and B= (,8, i), where @;; and /3, ;j are the ML estima-
tors of the parameters of the GBS(«;;, B;;; g) distribution for the random sample

TZEI), e Tlim) withi =1,...,nand j =1, ..., k. Note that the problem of esti-
mation in a matrix-variate GBS distribution of dimension n x k can be solved by
nk estimation problems in univariate GBS distributions due to the result provided
in Section 2.5. Thus, to estimate the matrix-variate GBS parameters, we need sim-
ply a method to estimate the univariate GBS parameters. Several efforts have been
carried out to estimate the univariate GBS parameters, but some numerical prob-

lems remain, which we propose to solve in the third point considered next.
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First, it is well known the ML estimates of the GBS distribution do not have
explicit form. For the BS case, Birnbaum and Saunders (1969b) proposed a method
to find the ML estimates of « and B, @ and B say, which provides an explicit
form for @, but the ML estimate of 8 must be obtained numerically. Birnbaum
and Saunders’ method is summarized in Algorithm 2. Birnbaum and Saunders
(1969b) proved that, under certain conditions, the sequence {B\r+], r=0,1,...}
given in Step 2 of Algorithm 2 converges to the ML estimator of 8. Algorithm 2
is implemented in the R computer language; see Barros et al. (2009).

Second, Balakrishnan et al. (2009b) used the EM approach to estimate the pa-
rameters of BS distributions based in scale mixtures of normal models, between
which the BS-# distribution is a particular case. They proved that, using this ap-
proach for the BS-¢ distribution with v degrees of freedom, a similar method to
that proposed by Birnbaum and Saunders (1969b) and detailed in Algorithm 2 is
obtained, but now A4 (y) given in its Step 2 is replaced by

hu(y) = y2 = y[2ruit + K ()] + rulsu + aK ()],

where s, = [1/n]Y> 7 uiti, ry = [(1/n) 27—, u;t; -1 and @ = (1/n]1>7 u;,
with @; = [v + 1]/[v +&;;] and «;; as given in (2. 3) Balakrishnan et al. (2009b)
proposed as starting values to find the ML estimates of « and § their corresponding
values from the BS distribution. Balakrishnan et al.’s method can be seen as a gen-
eralization of Birnbaum and Saunders’ method, because if #; = 1,fori =1, ...,n
(degenerate case), Algorithm 2 is obtained.

Algorithm 2 ML estimation of the univariate BS parameters
1: Estimate the parameter o of the BS distribution with a sample of ob-
servations f{,...,t, by @ = [s/3+ E/r —2]Y/2, where s and r are arith-
metic and harmonic means of #1,...,, given by s =[1/n]>_7_;#; and r =
[(1/n) >, 1—1] I and ﬁ is the ML estimate of §;
2: Consider the starting value ﬂo = [sr]"/? and calculate the ML estimate of 8
by

- hB)

,3r+1 ,8r+h/('8r), r 0,1,...,
where h(y) = y* — y[2r + K()] + rls + K(»)], with K(y) =
(/) X (v +&)7 ' and W () = [y —rlll = K'(D]+y —r — K],
with K'(y) = K2(0)[1/n] 37_ (v + 1) 7%

3: Repeat Step 2 of Algorithm 2 until to reach convergence such as that inherited
from the R function uniroot (), in which a solution for z(y) = 0 converges
when h(y,41) =0, or when |y,+1 — y,| < 1073, where Vr41 is the current
value of y and y, its previous value.
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Third, Step 2 of Algorithm 2 corresponds to Newton—Raphson’s iterations to
solve h(y) = 0, which does not always converge. Thus, to overcome this con-
vergence problem, we propose to use a search procedure of zeros. Brent (1973)
developed this type of procedures combining the bisection, inverse quadratic in-
terpolation and secant techniques, which guarantees the convergence to zero of
the function, it does not require a starting value and is implemented in the R lan-
guage by the function uniroot (). We use Brent’s procedure to obtain the ML
estimates of the parameters of the BS distribution and the criterion of convergence
of the function uniroot (). We estimate the parameters of the BS-z distribution
with Balakrishnan et al.’s method, using as starting values those obtained from the
BS case and a similar criterion of convergence, selecting the parameter v of the
BS-¢ distribution with a non-failing optimum criterion such as described in Barros
et al. (2009).

3.2 Simulation

To evaluate the performance of the estimation method described in Section 3.1,
we use MC simulations and the generator of univariate GBS random numbers
proposed by Leiva et al. (2008b). The simulations consider the setting: (S1) sam-
ple size m € {10, 25, 100}, covering small, moderate and large sizes; (S2) shape
parameter o € {0.2, 0.5, 1.0}, considering low, moderate and high asymmetry, re-
spectively, fixing the scale parameter at 8 = 1.0, without loss of generality; and
(S83) kernel g € {t(3), t(8), t(50)}, corresponding to high, moderate and low kur-
tosis, respectively, in relation to the normal case ¢ (c0) = N(0, 1). The quality of the
method is studied by the empirical relative bias (RS) and root of the mean square
error (+/MSE) of the ML estimators. The sample is generated from the GBS model
with a specific kernel (normal or #(v)), called “true kernel”, and the estimation of
parameters is computed from samples obtained using the same or another kernel,

called “assumed kernel”. The empirical RS and ~/MSE are averages of 5000 MC
replications for each combination of m, o, g (settings S1-S3). The results of the
simulations are presented in Tables 1 and 2 for & and 3 , respectively. Other results
(omitted here) based on the direct maximization of the log-likelihood function of
« and B (by the L-BFGS-B procedure) showed, in some cases, convergence prob-
lems. Furthermore, the method proposed in this paper based on Algorithm 2 and
Brent’s procedure has a processing time smaller than that based on the L-BFGS-B
procedure. From Tables 1 and 2, note that when the true and assumed models are
the same, the performance of the method is evaluated using the empirical RS of
the estimators of o and 8. We get the results expected when the empirical RS is
analyzed. For instance, it decreases when m increases, increases when the asym-
metry increases and decreases when the kurtosis increases. A misspecification of
the GBS model (i.e., when true and assumed models are different) introduces em-
pirical RS and +/MSE greater in the estimation of « than in 8. The sensitivity
of the estimation method is studied by the empirical +/MSE of the estimators of «
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Figure 1 Empirical distributions of the ML estimators of o and B from a BS-t(0.5, 25; 8) distribu-
tion.

and B. In general, when the assumed model becomes away from the true model, the
empirical ~/MSE increases, such as expected, but it decreases when m increases,
which also occurs when the asymmetry decreases. Furthermore, in the case of the
estimation of «, the empirical v/ MSE decreases when the kurtosis increases. Fig-
ure 1 shows histograms of the empirical distributions of the ML estimators of «
and B for a particular setting. Note that the shape of these histograms is close to
the normal distribution. The lines constructed below of the histograms represent
the asymptotic confidence intervals of level 95% given by 6 + 1.96SE(®), where
0 =« or B, and 6 and §E(§) are the estimated parameter and estimated standard
error (SE) of the estimator, respectively. These results show an empirical behav-
ior for the distribution of the ML estimators of « and g that is expected for the
corresponding asymptotic distributions.

4 Application

In this section, we use matrix-variate GBS distributions to model real-world data of
handwritten digits and compare them to some symmetric distributions. We choose
the best distribution and estimate the mean shape of digit 3.



Table 1 Empirical RS and ~/MSE of the estimator of « for the indicated values and distributions (8 = 1.0)

True distribution

Assumed BS-£(2) BS-£(8) BS-£(50)
m distribution RS MSE RS MSE RS MSE RS MSE
0.2 10 BS-£(2) —0.0254 0.1316 —0.2691 0.0446 —0.3191 0.0392 —0.3276 0.0383
BS-7(8) 0.5647 0.2646 —0.0554 0.0530 —0.1422 0.0429 —0.1563 0.0413
BS-1(50) 0.9221 0.3327 0.0358 0.0601 —0.0726 0.0457 —0.0897 0.0436
BS 0.9761 0.3412 0.0539 0.0617 —0.0587 0.0464 —0.0764 0.0442
25 BS-1(2) 0.0123 0.2017 —0.2313 0.0281 —0.2799 0.0250 —0.2885 0.0246
BS-1(8) 0.5160 0.2476 —0.0190 0.0332 —0.1046 0.0272 —0.1189 0.0263
BS-1(50) 1.1313 0.3517 0.0893 0.0386 —0.0257 0.0289 —0.0440 0.0278
BS 1.2787 0.3744 0.1150 0.0406 —0.0080 0.0295 —0.0274 0.0282
100 BS-£(2) —0.0008 0.0225 —0.2170 0.0140 —0.2641 0.0124 —0.2724 0.0122
BS-£(8) 0.4798 0.0391 —0.0043 0.0165 —0.0894 0.0135 —0.1036 0.0130
BS-1(50) 1.1158 0.1791 0.1135 0.0195 —0.0060 0.0145 —0.0247 0.0138
BS 1.6546 0.3259 0.1459 0.0212 0.0139 0.0148 —0.0063 0.0140
0.5 10 BS-1(2) —0.0082 0.3643 —0.2704 0.1115 —0.3202 0.0980 —0.3287 0.0957
BS-7(8) 0.5895 0.6055 —0.0570 0.1323 —0.1433 0.1072 —0.1573 0.1033
BS-1(50) 0.8309 0.6762 0.0314 0.1484 —0.0747 0.1139 —0.0916 0.1089
BS 0.8703 0.6875 0.0485 0.1518 —0.0612 0.1156 —0.0785 0.1104
25 BS-1(2) 0.0100 0.3931 —-0.2319 0.0703 —0.2804 0.0625 —0.2890 0.0614
BS-£(8) 0.5488 0.5562 —0.0197 0.0828 —0.1050 0.0679 —0.1193 0.0659
BS-1(50) 1.0830 0.7379 0.0874 0.0961 —0.0266 0.0723 —0.0448 0.0694
BS 1.1876 0.7759 0.1123 0.1005 —0.0091 0.0737 —0.0283 0.0705
100 BS-£(2) —0.0009 0.0562 —-0.2171 0.0350 —0.2642 0.0311 —0.2725 0.0304
BS-1(8) 0.4847 0.1902 —0.0044 0.0412 —0.0895 0.0337 —0.1037 0.0326
BS-1(50) 1.1845 0.5709 0.1131 0.0488 —0.0062 0.0362 —0.0249 0.0345
BS 1.5832 0.7445 0.1451 0.0528 0.0136 0.0370 —0.0065 0.0351

uoneorjdde pue uoneWNS? Iy} puB SUOHNQLUSIP SE SIBLIBA-XLIIRW UQ
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Table 1 (Continued)

True distribution

Assumed BS-1(2) BS-1(8) BS-1(50) BS
o m distribution RS MSE RS MSE RS MSE RS MSE
1.0 10 BS-1(2) 0.0170 0.7314 —0.2730 0.2241 —0.3227 0.1971 —0.3311 0.1924
BS-£(8) 0.5684 1.0649 —0.0599 0.2663 —0.1457 0.2151 —0.1596 0.2075
BS-£(50) 0.7488 1.1769 0.0220 0.2930 —0.0799 0.2278 —0.0962 0.2181
BS 0.7807 1.1981 0.0376 0.2985 —0.0671 0.2309 —0.0839 0.2208
25 BS-1(2) 0.0108 0.6485 —-0.2332 0.1408 —0.2816 0.1252 —0.2901 0.1231
BS-#(8) 0.5707 0.9780 —0.0210 0.1657 —0.1061 0.1360 —0.1202 0.1320
BS-1(50) 1.0324 1.3098 0.0835 0.1909 —0.0286 0.1446 —0.0465 0.1389
BS 1.1173 1.3858 0.1070 0.1986 —0.0115 0.1473 —0.0304 0.1410
100 BS-#(2) —0.0011 0.1125 —0.2174 0.0701 —0.2645 0.0622 —0.2728 0.0609
BS-1(8) 0.4885 0.3765 —0.0047 0.0824 —0.0898 0.0675 —0.1039 0.0652
BS-£(50) 1.2133 1.0781 0.1121 0.0974 —0.0067 0.0724 —0.0254 0.0690
BS 1.5297 1.3597 0.1435 0.1049 0.0130 0.0740 —0.0070 0.0702
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Table 2 Empirical RS and ~/MSE of the estimator of B for the indicated values and distributions (8 = 1.0)

True distribution

Assumed BS-1(2) BS-1(8) BS-1(50)
m distribution RS MSE RS MSE RS MSE RS MSE
0.2 10 BS-1(2) 0.0132 0.6450 0.0026 0.0751 0.0022 0.0724 0.0022 0.0720
BS-1(8) 0.0249 0.7793 0.0022 0.0706 0.0018 0.0654 0.0019 0.0646
BS-£(50) 0.0403 0.8386 0.0021 0.0723 0.0018 0.0646 0.0018 0.0635
BS 0.0432 0.8492 0.0022 0.0731 0.0018 0.0646 0.0018 0.0635
25 BS-1(2) 0.0215 1.4371 0.0009 0.0472 0.0009 0.0458 0.0010 0.0455
BS-1(8) 0.0322 1.5952 0.0010 0.0444 0.0008 0.0413 0.0009 0.0408
BS-£(50) 0.0532 1.5799 0.0011 0.0457 0.0008 0.0407 0.0008 0.0399
BS 0.0586 1.5607 0.0011 0.0465 0.0008 0.0408 0.0008 0.0399
100 BS-1(2) —0.0006 0.0261 —0.0004 0.0235 —0.0004 0.0229 —0.0004 0.0228
BS-1(8) —0.0002 0.0297 —0.0004 0.0221 —0.0004 0.0207 —0.0004 0.0204
BS-#(50) 0.0083 0.3012 —0.0004 0.0227 —0.0003 0.0204 —0.0003 0.0200
BS 0.0327 0.5134 —0.0004 0.0232 —0.0003 0.0204 —0.0003 0.0200
0.5 10 BS-1(2) 0.0694 2.1200 0.0167 0.1905 0.0150 0.1832 0.0149 0.1821
BS-1(8) 0.1556 2.3517 0.0139 0.1766 0.0120 0.1625 0.0119 0.1605
BS-£(50) 0.2018 2.4160 0.0144 0.1821 0.0115 0.1600 0.0115 0.1572
BS 0.2098 2.4263 0.0147 0.1844 0.0115 0.1602 0.0115 0.1571
25 BS-1(2) 0.0899 4.5456 0.0063 0.1184 0.0061 0.1147 0.0062 0.1140
BS-1(8) 0.1565 4.2842 0.0060 0.1103 0.0051 0.1019 0.0051 0.1004
BS-£(50) 0.2162 3.3221 0.0065 0.1146 0.0049 0.1001 0.0048 0.0980
BS 0.2302 3.1044 0.0068 0.1172 0.0049 0.1002 0.0048 0.0979
100 BS-1(2) —0.0001 0.0655 0.0001 0.0586 —0.00004 0.0570 —0.00002 0.0567
BS-1(8) 0.0016 0.0822 —0.0001 0.0544 —0.0001 0.0506 —0.0001 0.0499
BS-1(50) 0.1121 1.7014 0.0000 0.0564 —0.0001 0.0497 —0.0001 0.0487
BS 0.1867 1.8125 0.0001 0.0584 —0.0001 0.0498 —0.0001 0.0486
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Table 2 (Continued)

True distribution

Assumed BS-1(2) BS-1(8) BS-1(50) BS
o m distribution RS MSE RS MSE RS MSE RS MSE
1.0 10 BS-1(2) 0.2416 4.6552 0.0626 0.3900 0.0577 0.3739 0.0572 0.3718
BS-£(8) 0.4556 47577 0.0501 0.3481 0.0422 0.3138 0.0417 0.3097
BS-£(50) 0.5134 4.6820 0.0534 0.3604 0.0407 0.3080 0.0400 0.3017
BS 0.5224 4.6610 0.0546 0.3645 0.0408 0.3082 0.0400 0.3015
25 BS-1(2) 0.2313 9.0645 0.0248 0.2347 0.0234 0.2268 0.0235 0.2254
BS-#(8) 0.3729 7.4173 0.0211 0.2112 0.0174 0.1918 0.0170 0.1887
BS-1(50) 0.4742 4.6997 0.0233 0.2227 0.0166 0.1873 0.0159 0.1826
BS 0.4865 43616 0.0245 0.2285 0.0166 0.1875 0.0159 0.1824
100 BS-1(2) 0.0042 0.1303 0.0031 0.1136 0.0028 0.1105 0.0028 0.1097
BS-1(8) 0.0337 1.3959 0.0022 0.1019 0.0018 0.0936 0.0018 0.0922
BS-£(50) 0.3020 2.9321 0.0030 0.1080 0.0019 0.0914 0.0017 0.0891
BS 0.3837 2.8438 0.0037 0.1136 0.0019 0.0916 0.0018 0.0889
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Figure 2 Landmarks for handwritten British postcodes of digit 3.

4.1 The data set

Dryden and Mardia (1998, pp. 318-320) presented landmark data corresponding to
handwritten British postcodes of digit 3. A landmark is a point of correspondence
on each object that matches between and within populations; see Dryden and Mar-
dia (1998, p. 13). Figure 2 shows 13 landmarks of an image of handwritten digit 3.
Landmark 1 is at the extreme bottom left; landmark 4 is at the maximum curvature
of the bottom arc; landmark 7 is at the extreme of the central protrusion; landmark
10 is at the maximum curvature of the top arc; and landmark 13 is the extreme top
left point. The other landmarks are pseudo-landmarks, localized at approximately
equal intervals between the previous landmarks.

The data set contain m = 30 handwritten records of digit 3, with n = 13 land-
marks and k = 2 dimensions, because the handwritten digit 3 is considered in a
Cartesian system. The data set is presented in the Appendix, where each row cor-
responds to an observation of the handwritten digit 3, and the coordinates are of the
type (x1, y1), (x2, ¥2), ..., (xn, yn). Here, we estimate the mean shape of the hand-
written digit 3. Thus, first, we suppose that the data follow a specific matrix-variate
asymmetric or symmetric distribution within a set of possible options, which are
the BS and BS-# asymmetric models and N(0, 1) and Student-¢ symmetrical mod-
els. Then, we choose the distribution that fits the data better using model selection
criteria. Thus, with the best model, we estimate the mean digit 3 shape.

4.2 Estimation

First, we estimate the parameters of the EC distributions, that is, of the normal
and Student-z (v) models, with v € {3, 8, 50}, considering high (v = 3), moderate
(v =8) and low (v = 50) kurtosis levels. The scale matrices are chosen as 2 =
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o2I,, where 0% corresponds to a dispersion parameter, and ¥ = I;3. Then, the

parameters to estimate are o2 and M (the mean of the distribution).

Because of the equivalence between the matrix-variate and multivariate EC
models given in Section 2.5, we develop the estimation procedure using equiva-
lent multivariate EC models. Thus, the models under which we do the estimation
are ECag (i, 0%Ine; g), where u = vec(MT). By using the R software, the ML es-
timates of the corresponding parameters are displayed in Table 3.

Now, using the estimation method proposed in Section 3.1, we fit the matrix-
variate GBS distribution using N(0,1), #(3), #(8) and #(50) kernels. As mentioned,
the values v € {3, 8, 50} are chosen to vary the kurtosis level of the GBS model
from high (v = 3) to low (v = 50) kurtosis levels. Once again using the R software,
the ML estimates of the parameter matrices A and B of the matrix-variate GBS
distribution for the indicated kernel (g) are displayed in Table 3.

4.3 Selection of the best model

To select the best model (from the set of considered models) for digit 3 data,
we use selection criteria based on loss of information, such as Akaike (AIC) and
Schwarz’s Bayesian (BIC). These criteria allow us to compare models for the same
data set, which are given by

AIC =2p — 2£(0)
and
BIC = plog(m) — 2£(9),

where 8 is the estimated parameter, 6(5) is the log-likelihood function evaluated at
0, m is the sample size and p is the number of parameters of the model. A smaller
value for AIC or BIC is an indication of a better model. In Table 5, we present AIC
and BIC values for the different matrix-variate models presented in Section 4.2,
from where, according to both criteria, is concluded that the BS-7(3)13x2 distribu-
tion is the best model.

In order to evaluate the magnitude of the differences between two values of the
BIC, the Bayes factor (BF) can be used. The BF allows us to compare M| (model
considered as correct) to M, (model to be contrasted with M1), which is given by

B, =P(DMy)/P(DM2), 4.1)

where D is the data set assumed to be generated from one of two hypothetical
models (M; and M»). Based on (4.1), we can use the approximation

2log(B12) ~2[£(B1) — £02)] — [p1 — pa)log(m), 4.2)

where e(ﬁk) is the log:likelihood function for the parameter @ under the model
My evaluated at @ = 0; and py is the dimension of 6, for k = 1, 2. Note that
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Table 3 ML estimates of the indicated parameter and model for digit 3 data

N(O, 1) t(3) t(8) t(50)

M, M, M; M,
13.3667 38.4333 14.0576 38.8459 13.9340 38.8275 13.6284 38.6976
19.3667 40.3333 19.8927 40.2032 19.8352 40.3077 19.6380 40.4264
27.4000 39.4667 27.2996 39.0374 27.3968 39.1596 27.5206 39.3787
31.6000 34.4000 30.8704 34.0054 31.0851 34.0686 31.4969 34.2284
29.0333 29.1667 28.2512 28.7918 28.4093 28.8254 28.7728 28.9533
23.9000 26.4333 22.9471 26.2481 23.1013 26.2279 23.5003 26.2710
18.0000 25.5000 17.3756 25.9259 17.4012 25.7506 17.5804 25.4958
22.5000 23.9333 22.0327 24.4572 22.0840 24.3266 22.2579 24.0694
25.6667 21.5333 25.5007 21.8989 25.5180 21.8218 25.5839 21.6507
27.1667 18.3333 27.4817 18.3404 27.4373 18.3328 27.3152 18.3221
24.2000 15.4333 24.5527 15.2791 24.5181 15.3117 24.3837 15.3874
17.6667 14.5000 17.8412 14.5514 17.8616 14.5111 17.8136 14.4816
11.6333 15.2000 12.1077 15.6311 12.0995 15.4718 11.9306 15.2417

- -

0% =19.7130 oF =12.0416 o? = 13.0665 o} =16.3321

BS BS-1(3) BS-£(8) BS-£(50)

A A, A; Ay
0.4365 0.0952 03469  0.0611 03906 00738 04275  0.0899
0.2439 0.0837 02032  0.0636 02272 00723 02411  0.0812
0.1748 0.0873  0.1411 00761 01579  0.0825  0.1715  0.0864
0.1347 0.1016  0.1169  0.0874 01272  0.0953  0.1334  0.1004
0.1519 0.1413 0339 0.1147 01442 01302  0.1506  0.1394
0.2038 0.1583  0.1468  0.1193 01746  0.1419  0.1979  0.1556
0.3977 0.1510 02608  0.1203 03225  0.1374 0382  0.1486
0.2377 0.1557 01776  0.1186 02088  0.1397 02324  0.1530
0.1847 0.1884  0.1489  0.1437  0.1670  0.1669  0.1813  0.1844
0.1864 02170 0.1541  0.1738 01714  0.1942  0.1836  0.2124
0.2229 02760 01729 02065  0.1975 02431 02180  0.2702
0.3097 03212 02270 02376 02662 02796 03010  0.3136
0.7378 03617 04089 02570 05250 03068  0.6936  0.3508

BS BS-(3) BS-£(8) BS-£(50)

By B, B; B,

12.1970 38.2601 13.0256 38.7383 12.6100 38.5673 12.2790 38.3511
18.8071 40.1926 19.4314 40.5242 19.0513 40.3918 18.8464 40.2420
26.9874 39.3170 27.3225 39.6436 27.1965 39.4449 27.0338 39.3382
31.3159 34.2235 31.1008 34.4611 31.2372 34.3058 31.3037 34.2357
28.7021 28.8785 28.4134 29.0507 28.5938 28.9357 28.6848 28.8861
23.4136 26.1060 23.1543 26.7615 23.3910 26.3956 23.4309 26.1558
16.6738 25.2126 17.3786 25.7152 17.1638 25.4417 16.7972 25.2529
21.8816 23.6468 22.0528 24.1690 22.0225 23.8762 21.9151 23.6854
25.2363 21.1577 25.4177 21.5491 25.3520 21.3491 25.2618 21.1947
26.7029 17.9115 26.9817 18.0472 26.7753 18.0002 26.7094 17.9350
23.6129 14.8665 24.0705 15.2160 23.8649 15.0828 23.6660 14.9091
16.8562 13.7868 17.4440 14.3519 17.2214 14.1087 16.9387 13.8518
9.0338 14.2620 11.2807 15.3127 10.5798 14.8229 9.3736 14.3765
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Table 4 [Interpretation of 21og(B3) associated with the BF

2log(B12) Evidence in favor of M
<0 Negative (M5 is accepted)
[0,2) Weak

[2,6) Positive

[6, 10) Strong

>10 Very strong

Table 5§ Values of AIC, BIC and 21og(B1>) between M1 (BS-t(3)) and My for the indicated model
with digit 3 data

Matrix-variate model (Mj) AIC BIC 2log(B12) Evidence in favor of M|
t(3) 4474.200 4512.032 1811.809 Very strong

t(8) 4475.490 4513.322 1813.099 Very strong

t(50) 4531.207 4569.039 1868.816 Very strong
Normal 4592.943 4630.775 1930.552 Very strong
BS-£(3) 2627.361 2700.223 - -

BS-£(8) 3414.185 3487.048 786.825 Very strong
BS-7(50) 4281.617 4354.479 1654.256 Very strong

BS 4643.942 4716.804 2016.581 Very strong

the approximation given in (4.2) is computed subtracting the BIC value from the
model M;, given by BIC, = p; log(m) — 2((52), to the BIC value of the model
M, given by BIC| = p; log(m) — 25(/0\1).

In general, the BF is informative because it presents ranges in which the level of
superiority of a model with respect to another can be quantified. An interpretation
of the BF is displayed in Table 4; see Vilca et al. (2011).

Table 5 presents the values of the BF which are useful for comparing the model
BS-1(3)13x2 (model M1, used as reference) to the rest of models (each one con-
sidered as model M»). Note that, in all the cases, there is a very strong evidence in
favor of the model M instead of any of the others. Interesting, the GBS model, that
is asymmetrical, fits best than the EC models, which, as it is known, are symmetri-
cal. Therefore, by these three criteria (AIC, BIC and BF), the model BS-7(3)13x2
is preferred, so that we consider it as the best one for modeling the matrix-variate
data of digit 3.

4.4 Statistical analysis

By using the invariance property of the ML estimators, the estimated mean of the
handwritten digit 3 can be obtained by replacing the corresponding estimates in
the mean shape. Figure 3 (first panel left) shows the digit 3 estimate under the
normal, #(3), #(8) and 7(50) models. From this figure, it is clear that negligible
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Figure 3 Plots of the estimated mean shape located at coordinates (x, y) for the indicated matrix—
variate model and superposition of it on digit 3 data.

differences among the estimates based on symmetric models of the digit 3 shape
are observed. However, the graphical comparison provided in Figure 3 (first panel
right) for the estimate of the mean digit 3 shape based on the BS, BS-7(3), BS-
t(8), and BS-7(50) models, establishes that the corresponding estimate for the best
selected model, that is, the BS-7(3) model, is different from the others. Thus, col-
lecting the eight models in Figure 3 (second panel left), a remarkable difference
for the estimate of the mean digit 3 shape from the BS-#(3) model is observed. Fo-
cusing on the best model, the estimated mean digit 3 shape under the BS-#(3)13x2

model is obtained by replacing the ML estimates A3z and B3 in the expression given
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by (2.4), reaching the estimated mean with values given in (4.3).

15.3762 38.9555
20.6353 40.7703
28.1387 39.9878
31.7388 34.8560
29.1770  29.6243
23.9033 27.3330
19.1515 26.2733 |. 4.3)
23.0961 24.6791
26.2634 22.2163
27.9433 18.8654
25.1499 16.1890
18.7918 15.5673
14.1099 16.8298

=)
Il

Figure 3 (second panel right) displays a graphical plot that superimposes the
estimate of the mean digit 3 shape (bold curve) on the observations of the sample
(gray curves). From this figure, we detect a clear tendency to enlarge more the
upper curve of digit 3 that of the below part and, visibly, a suitable estimate for the
mean digit 3 shape is obtained.

5 Conclusions and future work

We proposed a methodology by using matrix-variate Birnbaum—Saunders distri-
butions, which was based on an estimation method for the parameters of matrix-
variate Birnbaum—Saunders and Birnbaum—Saunders—Student-¢ distributions. We
evaluated the quality of these estimators by a Monte Carlo study, which showed
their good performance. We applied the proposed methodology to real-world
matrix-variate data of handwritten characters, comparing some matrix-variate
symmetric and asymmetric models, which illustrated its potentiality. Interesting
consequences of this work can be implemented in future studies, some of them
can avoid complex open problems in shape theory under matrix-variate general-
ized Birnbaum—Saunders distributions. For instance, it seems that the methodology
proposed for landmark data behaves similarly to certain classic invariant distribu-
tions based on elliptically contoured models. The proof of this heuristic equiva-
lence for invariant statistics is a shortcut for some of the open problems proposed
in Caro-Lopera et al. (2012), which are unsolved until now, because they require a
special algebra and group and integration theories involving Hadamard products.
Once this is solved, a comparison between two generalized Birnbaum—Saunders
populations of landmark data can be a feasible task.
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Appendix: Data of handwritten digit 3

This appendix provides the data used in the application, where each of m = 30
rows is an observation with n = 13 landmarks (x;, y;), fori =1,...,13,ink =2
dimensions. For example, the first coordinate of the first landmark is (9, 27) and
so far by rows for the other coordinates.

9 27 12 31 17 36 26 39 34 37 36 33 38 27 35 19 30 15 21 14 21 8 16 6 8 5
17 40 21 38 26 36 27 32 25 28 22 27 19 29 24 25 26 20 28 16 26 13 18 14 15 17
19 38 24 38 29 33 30 29 27 24 21 25 17 26 27 24 30 22 31 19 31 16 27 15 24 15

9 40 15 43 24 41 29 36 24 30 20 26 12 22 20 22 24 20 21 16 18 14 13 12 9 10
14 41 21 42 29 42 35 37 32 33 26 30 16 26 25 26 29 24 33 20 30 16 23 11 16 12
24 39 28 40 35 38 38 35 34 30 29 27 22 24 27 24 29 22 31 19 28 15 20 11 13 12

9 39 15 39 21 40 25 36 23 31 21 27 19 25 21 25 23 24 25 22 22 19 15 17 8 17

8 38 14 41 25 43 29 38 25 33 18 29 8 28 12 27 16 25 18 23 13 21 7 21 1 22

4 34 12 39 22 42 31 36 27 30 23 28 11 25 20 25 22 24 22 22 19 19 13 18 8 18
21 36 25 37 31 36 33 32 32 28 29 25 27 22 29 21 31 20 31 18 28 16 24 16 20 16
14 40 20 39 25 37 27 31 26 28 20 29 16 31 21 28 25 23 28 16 25 13 17 15 13 18
12 40 20 42 30 42 36 33 31 24 23 22 16 23 25 22 31 18 33 13 31 9 24 8 17 8

9 35 17 36 26 34 30 31 26 27 20 25 13 27 19 25 23 21 26 15 22 12 12 12 7 13
17 38 24 39 30 37 34 34 31 28 22 25 16 28 21 26 27 24 30 20 26 15 18 14 10 17
21 35 27 36 36 35 39 28 38 22 34 18 28 19 31 18 33 17 31 15 26 15 20 17 14 20
16 40 20 43 25 39 27 31 24 24 19 21 17 23 19 22 21 21 23 21 22 18 19 16 15 16
15 41 21 45 34 44 40 39 36 35 26 30 16 29 24 25 28 20 31 16 28 14 21 14 12 12
11 42 22 42 32 39 35 34 32 29 25 26 20 27 25 26 31 23 35 19 31 14 21 12 16 15

5 44 15 43 24 41 29 36 22 28 13 28 5 29 14 28 24 26 29 22 26 19 17 17 10 20
14 37 19 39 25 38 28 32 25 26 20 22 14 23 17 23 21 20 23 17 21 15 16 15 11 15
16 35 22 38 30 36 32 29 29 23 23 20 17 20 20 19 24 17 26 14 21 11 16 12 12 15
14 38 17 40 25 42 28 38 27 32 24 28 20 25 23 25 26 24 28 21 24 18 18 17 10 18

7 40 13 43 22 45 31 42 27 38 21 34 13 32 18 31 24 30 27 27 23 23 15 22 6 22
14 35 21 36 26 34 31 30 28 26 25 22 21 18 21 17 22 16 23 15 20 12 13 10 5 10
10 46 17 47 27 43 29 36 26 30 22 29 16 28 20 27 21 25 23 21 21 19 15 20 9 20
18 39 24 42 33 41 38 35 37 30 32 28 28 27 33 22 37 18 41 15 37 13 29 11 21 12
18 38 22 42 30 42 34 36 33 32 29 30 22 28 25 26 28 24 28 20 27 19 22 18 18 18

9 41 17 43 30 40 34 31 30 23 23 19 11 19 15 17 18 13 21 10 17 8 12 7 5 7

8 36 12 42 20 43 25 38 24 35 23 33 21 32 20 31 20 30 20 27 16 25 9 24 2 25
19 41 24 45 33 45 38 38 36 31 28 27 21 23 24 22 26 20 28 17 26 14 20 13 14 11
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