
Brazilian Journal of Probability and Statistics
2015, Vol. 29, No. 4, 767–777
DOI: 10.1214/14-BJPS245
© Brazilian Statistical Association, 2015

A note on space–time Hölder regularity of mild solutions to
stochastic Cauchy problems in Lp-spaces

Rafael Serrano
Universidad del Rosario

Abstract. This paper revisits the Hölder regularity of mild solutions of
parabolic stochastic Cauchy problems in Lebesgue spaces Lp(O), with p ≥ 2
and O ⊂ R

d a bounded domain. We find conditions on p,β and γ under
which the mild solution has almost surely trajectories in Cβ([0, T ];Cγ (Ō)).
These conditions do not depend on the Cameron–Martin Hilbert space as-
sociated with the driving cylindrical noise. The main tool of this study is a
regularity result for stochastic convolutions in M-type 2 Banach spaces by
Brzeźniak (Stochastics Stochastics Rep. 61 (1997) 245–295).

1 Introduction

Let d ≥ 1 and let O ⊂ R
d be a bounded domain. Let H be a separable Hilbert

space. In this short note, we revisit the spatial and temporal Hölder regularity of
mild solutions to stochastic Cauchy problems in Lp(O) of the form

du(t) + Apu(t) dt = G(t) dW(t), t ∈ [0, T ],
(1.1)

u(0) = 0,

where Ap is the realization in Lp(O) of a second-order differential operator with
smooth coefficients, G(·) is an L(H,Lp(O))-valued process and W(·) is an H-
cylindrical Wiener process.

Space–time regularity of linear (affine) stochastically forced evolution equa-
tions driven by cylindrical noise has been studied by several authors using the
mild solution approach in Hilbert (see, e.g., Section 5.5 of Da Prato and Zabczyk
(1992), Section 3 of Cerrai (2003)) and Banach spaces (see, e.g., Brzeźniak (1997),
Section 3.2 of Brzeźniak and Ga̧tarek (1999), and Dettweiler, Weis and van Neer-
ven (2006)).

In this paper, we find conditions on p,β and γ under which the mild solution
to (1.1) exists and has almost surely trajectories in Cβ([0, T ];Cγ (Ō)); see Proposi-
tion 3.2 below. It is worth noting that these conditions do not depend on the Hilbert
space H, unlike nearly all existing results in the literature.

Following completion of the first draft version of this note, the author became
aware of a space–time regularity result in a recent article by van Neerven, Veraar
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and Weis (2012) (see Theorem 1.2(1) in that article) which seems comparable to
our main result. However, their approach is much more involved as it is largely
based on McIntosh’s H∞-functional calculus and R-boundedness techniques. The
approach in this short note is simpler as it relies only on regularity results for
stochastic convolutions in M-type 2 Banach spaces by Brzeźniak (1997).

We argue that, using the factorization method introduced by Da Prato, Kwapień
and Zabczyk (1987) and fixed-point arguments as in Brzeźniak (1997), this result
can be easily generalized to mild solutions of semilinear stochastic PDEs with mul-
tiplicative cylindrical noise, linear growth coefficients and zero Dirichlet-boundary
conditions, as well as Neumann-type boundary conditions.

Let us briefly describe the contents of this paper. In Section 2, we outline the
construction of the stochastic integral and stochastic convolutions in M-type 2 Ba-
nach spaces with respect to a cylindrical Wiener process. For the details and proofs,
we refer to Brzeźniak (1995, 1997, 2003) and the references therein.

In Section 3, we state and prove our main result on Hölder space–time regularity
for mild solutions of equation (1.1). We apply this result to a linear stochastic PDE
with a noise term that is “white” in time but “colored” in the space variable. Such
noise terms are particularly relevant in d dimensions with d > 1. We also illus-
trate how the main result can be generalized to incorporate stochastic PDEs with
linear operators given as the fractional power of second-order partial differential
operators.

2 Stochastic convolutions in M-type 2 Banach spaces

Let (�,F,P) be a probability space endowed with a filtration F = {Ft }t≥0 and let
(H, [·, ·]H) denote a separable Hilbert space.

Definition 2.1. A family W(·) = {W(t)}t≥0 of bounded linear operators from H
into L2(�;R) is called an H-cylindrical Wiener process (with respect to the filtra-
tion F) iff the following hold:

(i) EW(t)y1W(t)y2 = t[y1, y2]H for all t ≥ 0 and y1, y2 ∈ H.
(ii) For each y ∈ H, the process {W(t)y}t≥0 is a standard one-dimensional Wiener

process with respect to F.

For q ≥ 1, T ∈ (0,∞) and a Banach space (V , | · |V ), let Mq(0, T ;V ) denote
the space of (classes of equivalences of) F-progressively measurable processes
� : [0, T ] × � → V such that

‖�‖q
Mq (0,T ;V ) := E

∫ T

0

∣∣�(t)
∣∣q
V dt < ∞.

This is a Banach space when endowed with the norm ‖ · ‖Mq (0,T ;V ).
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Definition 2.2. A process �(·) with values in L(H,E) is said to be elementary
(with respect to the filtration F) if there exists a partition 0 = t0 < t1 < · · · < tN =
T of [0, T ] such that

�(t) =
N−1∑
n=0

K∑
k=1

1[tn,tn+1)(t)[ek, ·]Hξkn, t ∈ [0, T ],

where (ek)k≥1 is an orthonormal basis of H and ξkn is an Ftn -measurable E-valued
random variable , for n = 0,1, . . . ,N − 1, k = 1, . . . ,K . For such processes, we
define the stochastic integral as

IT (�) :=
∫ T

0
�(t) dW(t) :=

N−1∑
n=0

K∑
k=1

(
W(tn+1)ek − W(tn)ek

)
ξkn.

Definition 2.3. Let (γk)k be a sequence of real-valued standard Gaussian random
variables. A bounded linear operator R : H → E is said to be γ -radonifying iff
there exists an orthonormal basis (ek)k≥1 of H such that the sum

∑
k≥1 γkRek

converges in L2(�;E).

We denote by γ (H,E) the class of γ -radonifying operators from H into E,
which is a Banach space equipped with the norm

‖R‖2
γ (H,E) := E

[∣∣∣∣
∑
k≥1

γkRek

∣∣∣∣
2

E

]
, R ∈ γ (H,E).

The above definition is independent of the choice of the orthonormal basis (ek)k≥1
of H. Moreover, γ (H,E) is continuously embedded into L(H,E) and is an op-
erator ideal in the sense that if H′ and E′ are Hilbert and Banach spaces, re-
spectively, such that S1 ∈ L(H′,H) and S2 ∈ L(E,E′) then R ∈ γ (H,E) implies
S2RS1 ∈ γ (H′,E′) with

‖S2RS1‖γ (H′,E′) ≤ ‖S2‖L(E,E′)‖R‖γ (H,E)‖S1‖L(H′,H).

It can be proved that R ∈ γ (H,E) iff RR∗ is the covariance operator of a cen-
tered Gaussian measure on B(E), and if E is a Hilbert space, then γ (H,E) coin-
cides with the space of Hilbert–Schmidt operators from H into E (see, e.g., van
Neerven (2008) and the references therein). The following is also a very useful
characterization of γ -radonifying operators in the case that E is a Lp-space,

Lemma 2.4 (van Neerven, Veraar and Weis (2008), Lemma 2.1). Let (S,A, ρ)

be a σ -finite measure space and let p ≥ 1. Then, for an operator R ∈ L(H,Lp(S))

the following assertions are equivalent:

1. R ∈ γ (H,Lp(S)).
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2. There exists a function g ∈ Lp(S) such that for all y ∈ H we have
∣∣(Ry)(ξ)

∣∣ ≤ |y|H · g(ξ), ρ-a.e. ξ ∈ S.

If either of these two assertions holds true, there exists a constant c > 0 such that
‖R‖γ (H,Lp(S)) ≤ c|g|Lp(S).

Definition 2.5. A Banach space E is said to be of martingale type 2 (and we write
E is M-type 2) iff there exists a constant C2 > 0 such that

sup
n

E|Mn|2E ≤ C2
∑
n

E|Mn − Mn−1|2E (2.1)

for any E-valued discrete martingale {Mn}n∈N with M−1 = 0.

Example 2.6. Hilbert spaces and Lebesgue spaces Lp(O), with p ≥ 2 and O ⊂
R

d a bounded domain, are examples of M-type 2 Banach spaces.

If E is a M-type 2 Banach space, it is easy to show (see, e.g., Dettweiler (1990))
that the stochastic integral IT (�) for elementary processes �(·) satisfies

E
∣∣IT (�)

∣∣2
E ≤ C2E

∫ T

0

∥∥�(s)
∥∥2
γ (H,E) ds, (2.2)

where C2 is the same constant in (2.1). Since the set of elementary processes
is dense in M2(0, T ;γ (H,E)) [see, e.g., Lemma 18 in Chapter 2 of Neidhardt
(1978)], by (2.2) the linear mapping IT extends to a bounded linear operator from
M2(0, T ;γ (H,E)) into L2(�;E). We denote this operator also by IT .

Finally, for each t ∈ [0, T ] and � ∈ M2(0, T ;γ (H,E)), we define
∫ t

0
�(s)dW(s) := IT (1[0,t)�).

Definition 2.7. Let A be a linear operator on a Banach space E. We say that A

is positive if it is closed, densely defined, (−∞,0] ⊂ ρ(A) and there exists C ≥ 1
such that

∥∥(λI + A)−1∥∥
L(E) ≤ C

1 + λ
, for all λ ≥ 0.

It is well known that if A is a positive operator on E, then A admits (not nec-
essarily bounded) fractional powers Az of any order z ∈ C; see, e.g., (Amann,
1995, Chapter III, Section 4.6). Recall that, in particular, for |�z| ≤ 1 the frac-
tional power Az is defined as the closure of the linear mapping

D(A) � x 
→ sinπz

πz

∫ +∞
0

tz(tI + A)−2Ax dt ∈ E. (2.3)
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Moreover, if �z ∈ (0,1), then A−z ∈ L(E) and we have

A−zx = sinπz

π

∫ +∞
0

t−z(tI + A)−1x dt.

See, e.g., Amann (1995), page 153.

Definition 2.8. The class BIP(θ,E) of operators with bounded imaginary powers
on E with parameter θ ∈ [0, π) is defined as the class of positive operators A on E
with the property that Ais ∈ L(E) for all s ∈ R and there exists a constant K > 0
such that ∥∥Ais

∥∥
L(E) ≤ Keθ |s|, s ∈R. (2.4)

We denote BIP−(θ,E) := ⋃
σ∈(0,θ) BIP(σ,E). The following is the main assump-

tion for the rest of this note:

A ∈ BIP−(π/2,E). (2.5)

Under this assumption, the linear operator −A generates an (uniformly bounded)
analytic C0-semigroup (St )t≥0 on E; see, e.g., Theorem 2 in Prüss and Sohr (1990).

Example 2.9. Let O be a bounded domain in R
d with smooth boundary and let A

denote the second-order elliptic differential operator

(Au)(ξ) := −
d∑

i,j=1

aij (ξ)
∂2u

∂ξi ∂ξj

+
d∑

i=1

bi(ξ)
∂u

∂ξi

+ c(ξ)u(ξ), u ∈ C2(O), ξ ∈ O,

with coefficients a, b and c satisfying the following conditions:

(i) a(ξ) = (aij (ξ))1≤i,j≤d is a real-valued symmetric matrix for all ξ ∈ O, and
there exists a0 > 0 such that

a0 ≤
d∑

i,j=1

aij (ξ)λiλj ≤ 1

a0
, for all ξ ∈ O, λ ∈ R

d, |λ| = 1.

(ii) aij ∈ Cα(Ō) for some α ∈ (0,1).
(iii) bi ∈ Lk1(O) and c ∈ Lk2(O), for some k1 > d and k2 > d/2.

For p > 1 and ν ≥ 0, let Ap,ν denote the realization of A+ νI in Lp(O), that is,

Ap,νu := Au + νu,
(2.6)

D(Ap,ν) := W 2,p(O) ∩ W
1,p
0 (O).

By Theorems A and D of Prüss and Sohr (1993), if p ≤ min {k1, k2} there exists
ν̄ ≥ 0 sufficiently large so that Ap,ν̄ ∈ BIP−(π/2,Lp(O)).
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Other examples of operators satisfying main assumption (2.5) include realiza-
tions in Lp(O) of higher order elliptic partial differential operators (see Seeley
(1971)), the Stokes operator (see Giga and Sohr (1991)) and second-order elliptic
partial differential operators with Neumann-type boundary conditions (see Sohr
and Thäter (1998)).

Theorem 2.10 (Brzeźniak (1997), Theorem 3.2). Let T ∈ (0,∞) and A ∈
BIP−(π/2,E) be fixed. Let E be an M-type 2 Banach space and G(·) an L(H,E)-
valued stochastic process satisfying

A−σG(·) ∈Mq(
0, T ;γ (H,E)

)
(2.7)

for some q ≥ 2 and σ ∈ [0, 1
2). Then, for each t ∈ [0, T ], we have St−rG(r) ∈

γ (H,E) and the map

[0, t] � r 
→ St−rG(r) ∈ γ (H,E)

belongs to Mq(0, t;γ (H,E)). Moreover, the E-valued process

u(t) :=
∫ t

0
St−rG(r) dW(r), t ∈ [0, T ], (2.8)

belongs to Mq(0, T ;E) and satisfies the estimate∥∥u(·)∥∥Mq (0,T ;E) ≤ C
∥∥A−σG(·)∥∥Mq (0,T ;γ (H,E))

for some constant C depending on E,A,T ,σ and q .

Definition 2.11. For u0 ∈ E given, a process u(·) ∈ Mq(0, T ;E) is called a mild
solution to the abstract stochastic Cauchy problem

du(t) + Au(t) dt = G(t) dW(t), t ∈ [0, T ],
(2.9)

u(0) = u0

iff for all t ∈ [0, T ] we have almost surely

u(t) = Stu0 +
∫ t

0
St−rG(r) dW(r).

Theorem 2.12 (Brzeźniak (1997), Corollary 3.5). Under the assumptions of The-
orem 2.10, let δ and β satisfy

β + δ + σ + 1

q
<

1

2
. (2.10)

Then there exists a modification of u(·), which we also denote with u(·), that has
trajectories almost surely in Cβ([0, T ];D(Aδ)) and satisfies

E
∥∥u(·)∥∥q

Cβ([0,T ];D(Aδ))
≤ C′∥∥A−σG(·)∥∥q

Mq (0,T ;γ (H,E))

for some constant C′ depending on E, T ,A,β, δ, σ and q .
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Remark 2.13. The above results are still valid if A+νI ∈ BIP−(π/2,E) for some
ν ≥ 0; see, e.g., Brzeźniak and Ga̧tarek (1999), page 192.

3 Main result

Let A be the second-order differential operator from Example 2.9, and let Ap :=
Ap,ν̄ denote the realization of A+ νI on Lp(O), with ν̄ ≥ 0 chosen so that Ap,ν̄ ∈
BIP−(π

2 ,Lp(O)). We consider the stochastic Cauchy problem in Lp(O):

du(t) + Apu(t) dt = G(t) dW(t), t ∈ [0, T ],
(3.1)

u(0) = 0.

Lemma 3.1. Assume m := min {k1, k2} > max {2, d} and

p ∈ (
max{2, d},m]

. (3.2)

Let G(·) be an L(H,Lp(O))-valued process such that

G(·) ∈ Mq(
0, T ;L(

H,Lp(O)
))

. (3.3)

Then, for any σ ∈ ( d
2p

, 1
2), A−σ

p G(·) is an γ (H,Lp(O))-valued process and we
have

A−σ
p G(·) ∈ Mq(

0, T ;γ (
H,Lp(O)

))
. (3.4)

Proof. By Theorem 1.15.3 in Triebel (1978), we have

D
(
Aσ

p

) = [
Lp(O),D(Ap)

]
σ ⊆ [

Lp(O),W 2,p(O)
]
σ = H 2σ,p(O)

with continuous embeddings. Here, [·, ·]σ denotes complex interpolation and
H 2σ,p(O) denotes the Bessel-potential space of fractional order 2σ ; see, e.g.,
Triebel (1978).

By the Sobolev embedding theorem, we have H 2σ,p(O) ⊂ C(Ō) with con-
tinuous embedding, and since O is bounded we also have C(Ō) ⊂ L∞(O). Let
cσ,p > 0 denote the norm of the continuous embedding D(Aσ

p) ⊂ L∞(O). Then,
for any y ∈ H we have∣∣A−σ

p G(t)y
∣∣
L∞(O) ≤ cσ,p

∣∣A−σ
p G(t)y

∣∣
D(Aσ

p)

= cσ,p

(∣∣A−σ
p G(t)y

∣∣
Lp(O) + ∣∣G(t)y

∣∣
Lp(O)

)

≤ cσ,p

(
1 + ∥∥A−σ

p

∥∥
L(Lp(O))

)∣∣G(t)y
∣∣
Lp(O)

≤ cσ,p

(
1 + ∥∥A−σ

p

∥∥
L(Lp(O))

)∥∥G(t)
∥∥
L(H,Lp(O))|y|H.

Hence, by Lemma 2.4, there exists c′ > 0 such that∥∥A−σ
p G(t)

∥∥
γ (H,Lp(O)) ≤ c′∥∥G(t)

∥∥
L(H,Lp(O))

and (3.4) follows from (3.3). �
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Proposition 3.2. Let G(·) be as in Lemma 3.1. Suppose further that p,q,β and γ

satisfy

β + γ

2
+ 1

q
+ d

p
<

1

2
. (3.5)

Then the mild solution to (3.1) exists and has almost surely trajectories in
Cβ([0, T ];Cγ (Ō)).

Proof. From (3.5), we can find σ such that

d

2p
< σ <

1

2
− 1

q
− d

2p
− γ

2
− β.

In particular, we have σ ∈ ( d
2p

, 1
2). Then, by Theorem 2.10 and Lemma 3.1 the

mild solution u(·) of equation (3.1) exists and is given by the stochastic convolu-
tion (2.8). We now choose δ satisfying

d

2p
+ γ

2
< δ <

1

2
− 1

q
− β − σ. (3.6)

The second inequality in (3.6) and Theorem 2.12 imply that u(·) has trajectories
almost surely in Cβ([0, T ];D(Aδ

p)). The first inequality in (3.6), Theorem 1.15.3
in Triebel (1978) and the Sobolev embedding theorem yield

D
(
Aδ

p

) = [
Lp(O),D(Ap)

]
δ ⊆ H 2δ,p(O) ↪→ Cγ (Ō)

and the desired result follows. �

Remark 3.3. Using results by Brzeźniak (1997) (see, e.g., Section 3.2 in
Brzeźniak and Ga̧tarek (1999)) one can prove that the same assertion in Propo-
sition 3.2 holds for H = Hθ,2(O) with θ > d

2 + 2
q

− 1, condition (3.3) replaced
with G(·) ∈ Mq(0, T ;L(H)), β and γ satisfying

β + γ

2
+ 1

q
+ d

4
<

1

2
(1 + θ)

and p sufficiently large. In contrast, our choice of β and γ in Proposition 3.2
depends on d,p and q but not on the separable Hilbert space H.

Example 3.4. Let m > 2d and g :� × [0, T ] × O → R be jointly measurable
and bounded with respect to ξ ∈ O such that g(ω, t, ·) ∈ Lm(O) for each (t,ω) ∈
[0, T ] × �, and the map

[0, T ] × � � (t,ω) 
→ g(ω, t, ·) ∈ Lm(O)

is an F-progressively measurable process and belongs to Mq(0, T ;Lm(O)), with
q sufficiently large so that

d

m
+ 1

q
<

1

2
.
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Let θ ∈ ( d
m

+ d−1
2 + 1

q
, d

2 ) also be fixed, and let w(·) be a cylindrical Wiener

process with Cameron–Martin space H = Hθ,2(O). We consider the following
linear stochastic PDE on [0, T ] ×O with zero Dirichlet-type boundary conditions
and perturbed by “colored” additive noise,

∂u

∂t
(t, ξ) + (

Au(t, ·))(ξ) = g(t, ξ)
∂w

∂t
(t, ξ), on [0, T ] ×O,

u(t, ξ) = 0, t ∈ (0, T ], ξ ∈ ∂O, (3.7)

u(0, ·) = 0, ξ ∈ O.

Theorem 3.5. Suppose β and γ satisfy

β + γ

2
< θ + 1

2
− d

(
1

2
+ 1

m

)
− 1

q
. (3.8)

Then equation (3.7) has a mild solution with trajectories almost surely in
Cβ([0, T ];Cγ (Ō)).

Proof. We formulate equation (3.7) as an evolution equation in Lp(O) with 1
p

:=
1
2 − θ

d
+ 1

m
. By the Sobolev embedding theorem, we have H = Hθ,2(O) ↪→ Lr(O)

continuously for 1
r

:= 1
p

− 1
m

= 1
2 − θ

d
. Let iθ,r denote this embedding. For each

(t,ω) ∈ [0, T ] × �, we define the Nemytskii multiplication operator G(t,ω) as(
G(t,ω)y

)
(ξ) := g(ω, t, ξ)iθ,r (y)(ξ), ξ ∈ O, y ∈ H.

By the assumptions on g and Hölder’s inequality, it follows that G(·) is a well de-
fined L(H,Lp(O))-valued process and belongs to Mq(0, T ;L(H,Lp(O))). From
condition (3.8), our choice of p satisfies (3.5). The desired result follows from
Proposition 3.2. �

Example 3.6 (Fractional powers of elliptic operators). Proposition 3.2 can be
easily generalized to incorporate stochastic Cauchy problems in Lp(O) of the form

du(t) + Aα/2
p u(t) dt = G(t) dW(t), t ∈ [0, T ],

(3.9)
u(0) = 0

with α ∈ (0,2]. Indeed, notice that A
α/2
p ∈ BIP−(π/2,E) for α ∈ (0,2]. Let G(·)

be as in Lemma 3.1, and suppose p,q,β and γ satisfy

β + 1

q
+ 1

α

(
γ + 2d

p

)
<

1

2
. (3.10)

Choose σ such that

d

αp
< σ <

1

2
− 1

α

(
d

p
+ γ

)
− 1

q
− β.
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In particular, we have ασ
2 ∈ ( d

2p
, 1

2). Then, by Theorem 2.10 and Lemma 3.1, the
mild solution u(·) of equation (3.1) exists. We now choose δ satisfying

1

α

(
d

p
+ γ

)
< δ <

1

2
− 1

q
− β − σ. (3.11)

The second inequality in (3.11) and Theorem 2.12 imply that u(·) has trajec-
tories almost surely in Cβ([0, T ];D(A

αδ/2
p )). The first inequality in (3.11) and

the Sobolev embedding theorem imply that u(·) has trajectories almost surely in
Cβ([0, T ];Cγ (Ō)), and the same conclusion of Proposition 3.2 follows.
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