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Community detection, which aims to cluster N nodes in a given graph
into r distinct groups based on the observed undirected edges, is an important
problem in network data analysis. In this paper, the popular stochastic block
model (SBM) is extended to the generalized stochastic block model (GSBM)
that allows for adversarial outlier nodes, which are connected with the other
nodes in the graph in an arbitrary way. Under this model, we introduce a
procedure using convex optimization followed by k-means algorithm with
k=r.

Both theoretical and numerical properties of the method are analyzed.
A theoretical guarantee is given for the procedure to accurately detect
the communities with small misclassification rate under the setting where
the number of clusters can grow with N. This theoretical result admits to the
best-known result in the literature of computationally feasible community de-
tection in SBM without outliers. Numerical results show that our method is
both computationally fast and robust to different kinds of outliers, while some
popular computationally fast community detection algorithms, such as spec-
tral clustering applied to adjacency matrices or graph Laplacians, may fail
to retrieve the major clusters due to a small portion of outliers. We apply a
slight modification of our method to a political blogs data set, showing that
our method is competent in practice and comparable to existing computation-
ally feasible methods in the literature. To the best of the authors’ knowledge,
our result is the first in the literature in terms of clustering communities with
fast growing numbers under the GSBM where a portion of arbitrary outlier
nodes exist.

1. Introduction. Driven by applications in a wide range of fields, including
engineering, genomics, sociology, psychology and computer science, analysis of
graph and network data has drawn significant recent interest. Random graph mod-
els have been introduced to characterize the structure of the networks and a large
number of algorithmic approaches have been proposed for various applications.
See, for example, Fienberg (2010, 2012), Goldenberg et al. (2010), and the refer-
ences therein for overviews and recent work.
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An important problem in the analysis of network data is that of community
detection which aims to cluster the nodes in a given graph into distinct groups
or communities based on the observed undirected edges. Community detection
has proven to be both technically and computationally challenging. It also has
deep connections to other fields such as spin-glass theory and signal processing. In
terms of statistical modeling, the most well-known model for community detection
is perhaps the stochastic block model (SBM) proposed in Holland, Laskey and
Leinhardt (1983). Under the SBM, the graph of interest is assumed to be a random
one with independent edges, and the within-group edge density is assumed to be
greater than the between-group edge density.

To be specific, suppose G = (V, E) is a random graph where V is a fixed set
of vertices consisting of n nodes, and E is a random set of edges. Assume that
the n nodes are indexed by [n] := {1, ..., n} and each of these nodes belongs to
one and only one of the » nonoverlapping groups. This amounts to assigning each
node j € [n] a group label by a labeling function ¢ (j) € {1,...,r}. We denote
by A = (A;j)1<i, j<n the random adjacency matrix of this random graph. Then for
each pair (i, j), 1 <i, j <n, A;; =0or 1, indicating whether the nodes i and j
are connected or not, respectively. We only consider undirected graph with no self
loops, so A is symmetric, and all its diagonal entries are 0. For pairs (i, j) with
I <i < j=<n, A;’s are assumed to be independent Bernoulli random variables
with parameters By ()¢ (), wWhere the symmetric matrix B € R"*" is referred to
as the connectivity matrix. In a basic model, denote by g+ and p~ the maximum
cross-group density and the minimum within-group density, namely
(1.1) gt := max By, p = min B;;.

I<i<j<r 1<i<r
Moreover, the within-group densities are assumed to be greater than the cross-
group densities, that is,

(1.2) p-—qt:=8>0.

This is a common assumption in the literature of community detection un-
der the SBM; see, for example, Chaudhuri, Chung and Tsiatas (2012), Rohe,
Chatterjee and Yu (2011). Denote the minimum community size by npi :=
minj <<, |¢_l ()], where |S| denotes the cardinality of the set S. Then the dif-
ficulty of the community detection problem is determined by the tuple (n,7, g,
P~ Mmin)-

Under the SBM, various community detection algorithms have been proposed
and studied in the literature, with different emphases on computational complex-
ity and statistical accuracy. These include greedy algorithms, such as hierarchical
agglomeration [see, e.g., Clauset, Newman and Moore (2004)]; greedy methods
guided by global criterion maximization, such as modularity function maximiza-
tion [see, e.g., Newman and Girvan (2004)] and profile likelihood function max-
imization [see, e.g., Bickel and Chen (2009), Zhao, Levina and Zhu (2012)];
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stochastic model based methods, such as variational likelihood methods [see, e.g.,
Bickel et al. (2013), Celisse, Daudin and Pierre (2012)], pseudo-likelihood meth-
ods with EM algorithm [see, e.g., Amini et al. (2013)], Bayesian methods with
Gibbs sampling, Markov chain Monte Carlo and belief propagation [see, e.g.,
Decelle et al. (2011), Nowicki and Snijders (2001), Snijders and Nowicki (1997)];
graph distance methods [see, e.g., Bhattacharyya and Bickel (2014)]; spectral clus-
tering, its variations and other spectral methods [see, e.g., Balakrishnan et al.
(2011), Chaudhuri, Chung and Tsiatas (2012), Coja-Oghlan and Lanka (2009/10),
Fishkind et al. (2013), Giesen and Mitsche (2005), Jin (2015), Joseph and Yu
(2013), Lei and Rinaldo (2015), McSherry (2001), Rohe, Chatterjee and Yu (2011),
Sarkar and Bickel (2013), Sussman et al. (2012)]; and convex optimization meth-
ods [see, e.g., Ames (2014), Ames and Vavasis (2014), Chen, Sanghavi and Xu
(2012), Jalali et al. (2014), Mathieu and Schudy (2010), Oymak and Hassibi
(2011)].

Among these methods, greedy methods are usually computationally feasible,
while their statistical accuracy has not been fully established in theory. Modular-
ity or profile likelihood methods are proven to be consistent when the number of
groups is fixed. However, they are in principle computationally NP hard. Similarly,
stochastic model based methods are usually computationally difficult and not fully
justified in theory. Spectral clustering is a popular algorithm for community de-
tection, since it is fast in computation and easy to implement. It has been proven
that spectral clustering is consistent even when the number of groups r grows on
the order of O(4/n). Although in practice spectral clustering is believed to work
well only for dense graphs, several recent papers, Amini et al. (2013), Joseph and
Yu (2013), Lei and Rinaldo (2015), Sarkar and Bickel (2013), have shown that
spectral clustering or its variations also work well for sparse graphs.

The SBM is admittedly an oversimplified model for many applications, and
different generalizations have been proposed in the literature, which encompass
mixture model [see Newman and Leicht (2007)], where the parametric model for
the connectivity probabilities is based on the relationship between vertices and
groups, instead of between different groups; degree corrected model [see Coja-
Oghlan and Lanka (2009/10), Karrer and Newman (2011), Zhao, Levina and Zhu
(2012)]; Latent variable method [see Handcock, Raftery and Tantrum (2007)] and
mixed membership model [see Airoldi et al. (2008)]. However, each of these GS-
BMs focuses on a single latent graph structure, while in practice, due to lack of
information, this additional structure is not easy to detect if it only applies to a
few nodes of the graph. Different types of outliers may appear in a single graph,
and it is difficult to use a complex generalization of the SBM to model multiple
types of outlier nodes. The SBM is usually the first model to fit the data because
of its simple form, even if it is believed that there is possibly a small portion of
nodes which are not modeled well. Robustness in presence of arbitrary outliers
is an important property for given community detection algorithms. In this paper
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we consider robust community detection in the presence of arbitrary outlier nodes,
and the main question we wish to answer is the following:

Does there exist a computationally fast community detection method that is robust to a
portion of arbitrary outlier nodes with theoretical guarantees?

Our answer is affirmative, and we will introduce our model, methodology, nu-
merical results and theoretical guarantees with rigorous proofs in this paper. We be-
gin by formalizing the GSBM which allows for a small portion of arbitrary nodes.

1.1. Generalized stochastic block model. We introduce a flexible model for
community detection which covers a range of settings in practice where the
usual SBM is not suitable. More specifically, we assume the undirected graph
G = (V, E) has N :=n + m nodes, among which there are n “inliers” obeying the
SBM described above, while the other m nodes are “outliers” which are connected
with the other nodes in an arbitrary way. We refer to this model as generalized
stochastic block model (GSBM). Denote V = [N] =1 U O, where I is the set of
indices of the inliers, while O is the set of indices of outliers. Each inlier node
i €1 is assigned a label ¢ (i) € {1,...,r}, while all outliers are simply labeled
¢ (i) =r + 1. For any two nodes i, j € I, P((i, j) € E) = By()¢(j)> and moreover
we assume the event {(i, j) € E}, i < j € I are independent. The r x r symmetric
connectivity matrix B only represents the likelihood of connectivity of the inlier
nodes. The connectivity between the outliers and the inliers and the connectivity
among the outliers themselves are arbitrary. The only restriction of the connectivity
of the outliers is that there is no self-loop.

The GSBM can be equivalently expressed in terms of its adjacency matrix A.
To be specific, define

Ky ... Ky Z4
K Z : . : :
(1.3) A= [T ]PT=P ) ) © | PT,
T W K| ... K, Z
ZI A

where W € R”™*™ ig an arbitrary symmetric O—1 matrix with all diagonal entries
being 0, Z € R"*™ is an arbitrary 0—1 matrix, P is an unknown N x N permutation
matrix, in which there is only one 1 in each row and column, while all other entries
are 0’s, and K is an n x n symmetric matrix which captures the connectivity of
the inliers, thus corresponding to the usual SBM. The off-diagonal entries of K
are independent Bernoulli variables, with parameter B;; if the entry belongs to
the submatrix K;;. Denote the dimension of K;; to be [; for i =1,...,r. Then
n =7y "_,;l;. Similar to SBM, npyi, = minj<;<, /;. The parameters p~ and g™ are
defined as in (1.1) and é in (1.2). Then the difficulty of community detection under
the GSBM is parameterized by the tuple (n, m,r, p—, q+, Nmin)-
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Here we emphasize that Z and W are not necessarily fixed with respect to the
randomness of K. Both Z and W can depend on K in arbitrary forms. In other
words, the connectivity between the outliers and the inliers is allowed to depend
on the connectivity among the inlier nodes. This is also a generalization of stan-
dard SBM, where the connectivity between each pair of nodes is stochastically
independent of the connectivity between other pairs.

The GSBM is a flexible model and is widely applicable. It covers various types
of outliers which are common in practice, and we name a few as follows:

o Mixed membership. The SBM assumes that each node belongs to one and only
one predetermined cluster. If most nodes obey this property, while there is a
small portion of nodes each belonging to more than one clusters, these nodes are
referred to as having mixed membership. When only a small portion of nodes
have mixed membership, it is natural to treat them as outliers in an ordinary
SBM.

e Hubs. In social networks and others, it is natural that some nodes have many
more connections than most of others. Moreover, it is possible that these nodes
belong to several groups without obvious bias to any specific one. These nodes
are referred to as hubs, and can be treated as outliers in our GSBM.

e Small clusters. The SBMs are usually employed to model big and significant
clusters, while small clusters are difficult to detect. Small clusters are often not
detectable because they are too small and possibly weak. The number of small
clusters is also difficult to estimate; however, this information is essential for
most popular algorithms in the literature, such as spectral clustering and modu-
larity methods. The nodes in the small clusters can be treated as outliers in our
GSBM.

e Independent neutral nodes. In a given graph, in addition to the well-classified
nodes, there might be some nodes which do not belong to any significant groups,
and also have fewer connections than most other nodes. We refer to these ob-
jects as independent neutral nodes. For example, in the political blogs data set
introduced later, a small portion of blogs have very few connections. Such blogs
may have strong preference in politics; however, this cannot be seen from only
the graph representation. Therefore, these nodes are regarded as independent
neutral nodes, which are naturally taken as outliers.

In practice, it is difficult or even impossible to modify the usual SBM to model
precisely the possible combinations of mixed membership, hubs, small clusters,
independent neutral nodes and other types of settings. Moreover, complex statis-
tical models may also result in overfitting and high computational complexity in
clustering. Therefore, the SBM is usually set up based on the basic properties of
the graph. For example, in the political blogs network application discussed in Sec-
tion 4.2, an SBM with 2 clusters is preferred, since it is known that there are mainly
two significant clusters: liberals and conservatives. However, it is also known that
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there are many independent groups advocating various causes that lie outside of
the two main clusters.

The GSBM can also be taken as a criterion to evaluate the robustness of com-
munity detection algorithms. When an SBM is adopted based on the properties of
most nodes of a given graph, or equivalently, most nodes can be well modeled by
an SBM in use, the robustness of a given community detection algorithm depends
on whether a small portion of outliers will completely change the clustering result,
or most nodes can be still well clustered. Therefore, a graph clustering algorithm
is robust if it is guaranteed to have good performance under the GSBM.

1.2. Organization of the paper. The rest of the paper is organized as follows.
In Section 2 the method of convexified likelihood method is introduced, followed
by a detailed alternating directional augmented Lagrangian algorithm. Section 3
is focused on the theoretical consistency of the convex optimization method in
the inference of the underlying groups specified by the GSBM. Numerical results
on the analyses of the simulated data and a real data set about political blogs are
presented in Section 4. A discussion is given in Section 5, and the proofs of the
main theoretical results are contained in Section 6. Additional technical proofs are
given in the Supplementary Material.

2. Methodology. In this section we propose a community detection algorithm
which is robust and computationally feasible with theoretical guarantee of consis-
tency. In the literature, greedy algorithms such as hierarchical clustering are not
fully justified in theory, while modularity and profile maximum likelihood meth-
ods are computationally NP hard. Stochastic model based methods, such as maxi-
mum likelihood or variational likelihood method, have been proven to have certain
consistency when the number of blocks is fixed as the number of nodes going to
infinity. However, they are also computationally difficult. EM algorithm is natu-
rally proposed for solving relevant maximum likelihood formulation, but there is
no theoretical guarantee of convergence with reasonable rate. Bayesian methods
such as Gibbs sampling and belief propagation have also been proposed in the
literature without rigorous theoretical justifications.

Unlike the aforementioned methods, the spectral clustering methods have the
advantage of fast algorithms. Spectral clustering algorithms are easy to implement
because there is no tuning parameter. Moreover, strong theoretical results have
been established under various conditions; see the references mentioned in the
previous section. However, as indicated in Joseph and Yu (2013), ordinary spectral
clustering applied to the graph Laplacian may not work due to the existence of
small and weak clusters. We use a simulated data set to illustrate that ordinary
spectral clustering applied to the graph Laplacian or the adjacency matrix is not
consistent under the GSBM. Other types of numerical examples can be found in
Joseph and Yu (2013).
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Orlgnlal graph adjacency representation Ordered graph adjacency representation
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FI1G. 1. The upper left panel illustrates the adjacency matrix of 1000 nodes satisfying the ordinary
SBM. The upper right panel is the adjacency matrix obtained by permuting the adjacency matrix
such that nodes 1 to 500 belong to the same cluster while the remaining ones constitute another
cluster. The lower left panel plots the eigenvectors of the graph Laplacian corresponding to the
top 2 eigenvalues in absolute value (red for the first and black for the second), while those for the
adjacency matrix are plotted in the lower right panel. In both cases, these two eigenvectors are
capable of discriminating between the two communities.

First, we create a data set of n = 1000 nodes obeying the ordinary SBM with
r = 2 clusters. We also assume that the two clusters are perfectly balanced; that
is, there are 500 nodes in each cluster. The within-group probability is p = 0.17,
while the cross-group probability is ¢ = 0.11. Under this set-up, the adjacency
matrix is shown as in Figure 1.

Spectral clustering applied directly to either the graph Laplacian or the adja-
cency matrix of this graph data has good performance of clustering. To illustrate
this, we plot the eigenvectors corresponding to the top two eigenvalues (in absolute
value) of the graph Laplacian and the adjacency matrix, respectively, in Figure 1.
In each case, the two eigenvectors combined are capable of discriminating between
the two clusters. Therefore, spectral clustering methods work for our data set when
there are no outliers.

Now we consider the GSBM by adding only m = 30 outliers into the above
model with » = 2 clusters. To specify this GSBM, it suffices to explain Z and W
in (1.3). We assume W is the adjacency matrix of a random graph with 30
nodes and independent edges. Moreover, we assume the probability of connec-
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Orignial graph adjacency representation Ordered graph adjacency representation

ol
200 |-
300k
400
500 |
600}
700 |
800
900
1000 | 5

200 400 600 800 1000 200 400 600 800 1000

i

0.1

-0.15 -0.15
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

FIG. 2. The upper left panel illustrates the adjacency matrix of 1030 nodes satisfying the GSBM
with two major clusters and 30 outliers. The upper right panel is obtained by permuting the nodes
such that nodes belonging to the same group are consecutive. The lower left panel plots the eigenvec-
tors of the graph Laplacian corresponding the top 3 eigenvalues in absolute value (red for the first,
black for the second and green for the third), while those for the adjacency matrix are plotted in the
lower right panel. Ordinary spectral clustering with r =2 or r = 3 is ineffective or even powerless
on this data set since the top three eigenvectors cannot clearly discriminate between the two main
communities.

tivity is 0.7. We define Z as a 1000 x 30 with independent Bernoulli entries. We
also let EZ = 1T = [B, B, ..., B]. The components of B are 1000 i.i.d. copies
of U2, and U is a uniform random variable on [0, 1]. The unordered and ordered
adjacency matrices are given in Figure 2.

Suppose the data set is still modeled approximately by the SBM with r = 2. For
this new data set, the two eigenvectors corresponding to the top two eigenvalues
(in absolute value) of the graph Laplacian or the adjacency matrix cannot discrim-
inate between the two major clusters. Even if we treat the 30 outliers as a single
group due to their homogeneous behavior in the graph and thereby use r = 3, the
third eigenvector of the adjacency matrix is still unable to distinguish the two ma-
jor clusters. The third eigenvector of the graph Laplacian can only discriminate a
part of nodes in the two major clusters. Actually, our numerical simulation shows
that after applying spectral clustering on the graph Laplacian with » = 3, the mis-
classification rate among the inliers is above 30 percent. These three eigenvectors
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are plotted in Figure 2 for both cases. The figures indicate that standard spectral
clustering is not a robust community detection method in the presence of very few
adversarial outliers.

It was shown in Joseph and Yu (2013) that under certain conditions, penalized
spectral clustering may reduce the effects of the small weak clusters, but it is not
clear whether penalized spectral clustering applied to the graph Laplacian can di-
minish the influence of other types of outliers. Another method to improve stan-
dard spectral clustering methods is to detect outlier nodes based on the first several
eigenvectors. However, it is not clear whether there exists an approach which can
uniformly detect all kinds of outliers with a theoretical guarantee.

In order to find in one shot the major clusters among the inlier nodes, we intro-
duce in Section 2.1 a convex optimization method as well as a detailed algorithm
which is implementable. It will be shown in Section 3 that the proposed procedure
is robust against a small portion of arbitrary outliers with theoretical guarantees.

2.1. Convex optimization. In this section, we will choose the method of
semidefinite programming (SDP) to fit the GSBM, followed by a k-means cluster-
ing. Numerically, SDP is well known to be computationally feasible, and various
efficient algorithms were proposed for solving different types of SDP. Theoreti-
cally, under the ordinary SBM, SDP methods are shown to be capable in detecting
communities; see Ames and Vavasis (2014), Chen, Sanghavi and Xu (2012), Jalali
et al. (2014), Mathieu and Schudy (2010), Oymak and Hassibi (2011). We pro-
pose a new convex optimization method inspired by existing SDP methods in the
literature. The significantly novel part is that we will prove that this SDP method
can consistently cluster the nodes when there is a portion of arbitrary type of out-
liers. The formal statement is given in Section 3, and all the proofs are deferred to
Section 6 and the supplemental article Cai and Li (2015).

First, we derive the convex optimization from the viewpoint of fitting a para-
metric model. This viewpoint was originally proposed in Chen, Sanghavi and Xu
(2012), but we are going to derive a different convex optimization. For now we
only consider the ordinary SBM, which implies that m = 0 and N = n. By the
definition of SBM, for all 1 <i < j < n, the events {A;; = 1} are independent.
Recall that here A is the observed adjacency matrix. Moreover, we define a sym-
metric matrix X with all diagonal entries equal to 1. For any 1 <i < j <n, we
let X;; = 0 if the labeling functions ¢ (i) # ¢(j), while X;; =1 if ¢ (i) = ¢ ().
Obviously, this matrix X is of rank r since there are r groups.

Moreover, we consider a special case of the ordinary SBM. Suppose 1 > p >
g >0.Forany 1 <i < j <N, when X;; =0 let P(A;; = 1) = g; otherwise let
P(A;j =1) = p. This gives

logP(A;; = 11X;;) = X;jlog p + (1 — X;j) logg
and

IOgP(A,'j =O|Xij) = X,‘j IOg(l - ]?) + (1 — X,-j)log(l —q).
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Since {A;; = 1} are independent events, we have the log-likelihood function
CAX)= Y [Aij(Xijlogp+ (1 - Xij)logq)
I<i<j<n
+ (1 — A;j)(X;jlog(1 — p) + (1 — X;j) log(1l — g))].

For any fixed p and ¢, given A, we would like to choose an appropriate X to
maximize £(A|X). If we let

_ log(l —¢q) —log p
log p —logg + log(1 — ¢) —log(1 — p)’

since the diagonal entries of A are all equal to 0, the maximization is equivalent to

m)?x(X, (1—=MA -1y — Iy — A)),

2.1

where Ju is the N x N matrix with all entries 1. Now let us figure out the constraint
of X. By the SBM, it is easy to check that X must have the following form:

Ji,
2.2) X=P PT,
Ji

where P is some unknown permutation matrix, while J; is an s x s matrix with
all entries 1’s. Solving optimization (2.2) under such constraint is computationally
infeasible, so we seek for some relaxed form. Here we notice there are three major
features of X. First, it is positive semidefinite; second, all its entries are between 0
and 1; third, it is of rank-r, which is relatively low. If we convexify the second inte-
ger constraint and neglect the third requirement, the relaxed maximum likelihood
method becomes

max (X, (1—2)A - 1(Jy — Iy — A))
subject to X >0,
0<X;;<1 forl<i,j<N.

The above optimization method is different from that in Chen, Sanghavi and Xu
(2012), where the relaxation is based on the observation that X is of low rank and
hence a nuclear norm penalization is added up to the original objective function.
On the contrary, our convex relaxation is derived from the observation that X is
both low-rank and positive semidefinite, and consequently we impose constraint
of the positive semidefinite cone.

Now let us come back to the robust community detection under the GSBM.
To control the possible outliers as formalized in the GSBM model, for the conve-
nience of theoretical analysis, we add an additional term in the objective function
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to penalize the trace
min (X, aly — (1 = )A+AJy — Iy — A))
subject to X >0,
0<X;;<1 forl<i,j<N,

which is equivalent to

min ()NI, E)
2.3) subject to X >0,
0<X;;<1 forl<i, j<N,
where
(2.4) E=aly—(1-MDA+1Jy — Iy —A).

REMARK 2.1. At first glance, there are seemingly two tuning parameters: o
and A. In our theoretical result as shown later in Section 3, the parameter « is re-
quired to be much greater than the number of outlier nodes m. The introduction
of @ amounts to the trace penalization of X, which is usually adopted in the liter-
ature of SDP relaxation in order to recover a low-rank structure; see, for example,
Candges, Strohmer and Voroninski (2013), Li and Voroninski (2013). In our prob-
lem, we intend to use (2.3) to solve for a low-rank matrix to reveal the clustering
structure of the GSBM, so this trace penalization is possibly a natural heuristic.
However, in our numerical simulations in Section 4, the clustering effectiveness of
the convex optimization method (2.3) is not significantly improved by choosing a
positive «. Instead, (2.3) works even by letting « be a small constant or zero. On
the contrary, there is a risk for choosing a large o, which may result in a positive
definite E. If so, the solution to (2.3) must be 0, which is useless in analyzing the
networking data.

Therefore, we only need to tune the parameter A in practice, and it has a clear
statistical meaning as indicated in (2.1) in a special case of the ordinary SBM.
In Section 3, it is shown that if A lies in an interval determined by p~ and q*
as defined in (1.1), under mild technical conditions, any solution X to (2.3) is
capable of detecting the underlying group structure among the inliers. A simple
and heuristic data dependent choice of A is given in Section 4, where we also
show numerically that the performance of our method for clustering is robust to
the choice of A.

When X is obtained, in the pursuit of an explicit clustering solution, a further
step of k-means clustering is conducted to the normalized column vectors of X
with k = r, provided the number of major clusters r is assumed known. Further-
more, in Section 3 it is shown that the misclassification rate after the k-means
clustering can be tightly controlled.
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In summary, our proposed community detection procedure consists of the fol-
lowing two steps:

Step 1. Choose an appropriate tuning parameter A, and then solve (2.3). The
solution is denoted as X.

Step 2. Conduct k-means clustering algorithm to the normalized column vec-
tors of X with k = r, so that we can solve for the assigning function d3 that maps
from {1 <i <N}to{l,...,r}.

Finally, we introduce the augmented Lagrange multiplier algorithm to
solve (2.3). Augmented Lagrange multiplier algorithms have been employed in
a variety of SDP optimizations in order to recover the underlying low-rank matrix
structure; see, for example, Candes et al. (2011), Chen, Sanghavi and Xu (2012),
Jalali et al. (2014), Lin, Liu and Su (2011) and a nice review paper on alternating
direction method of multipliers (ADMM) Boyd et al. (2010). Notice that (2.3) can
be rewritten as

I{{liél (Y=0)+:(0<Z=<Jy)+(Y,E),

subject to Y=2Z,

where the indicator function t(a € A) is defined as

0, acA,
L(aEA)={
+00, aé¢A.

By this definition, we can easily conclude that ((a € A) is a convex function if and

only if A is a convex set. Define the augmented Lagrangian of this optimization
problem as

Ly(Y.Z;A) = (Y= 0) + (0 <Z<Jy)+ (Y.E) + §||Y—Z+AII%.

If both A and Z are fixed, and we aim to minimize L,(Y, Z; A) with respect
to Y, it is equivalent to minimizing
P E|?
(Y>>0 +=-|Y-Z+A+—
2 P
For any symmetric matrix X whose eigenvalue decomposition is VEVT, define
X4 := VX VT. Then the solution to the above minimization has an explicit form

F

E
argminL,(Y,Z; A) = (Z —A— —> .
Y o+

REMARK 2.2. This step has dominating computational complexity in each
iteration of ADMM. In fact, an exact implementation of this subproblem of opti-
mization requires a full SVD of Z — A — %, whose computational complexity is
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O(N?). When N is as large as hundreds of thousands, the full SVD has scalability
issue. An open question is how to facilitate the implementation, or whether there
exists a surrogate that is computationally inexpensive. A possible remedy is ap-
plying the low-rank iterative method, which means in each iteration of ADMM,
the full SVD is replaced by a partial SVD where only the leading eigenvalues
and eigenvectors are computed. Although this type of method may be stuck in
local minimizers, given the fact that SDP implementation can be viewed as a pre-
processing before k-means clustering, such a low-rank iterative method might be
helpful. We leave this large-scale computing problem as a future research project.

On the other hand, if both A and Y are fixed, to minimize L,(Y,Z; A) with
respect to Z is equivalent to minimizing

(0=Z=Jy)+5IZ-Y - Al
Again, we have a closed-form solution

argmin L, (Y, Z; A) :== min(max(Y + A, 0), Jn),
Z

which changes the negative entries of Y + A into zeros and those greater than one
into one.

As to the Lagrange multiplier, as the convention in the literature of augmented
Lagrange multiplier algorithms, A is updated to A + (Y — Z).

The above augmented Lagrange multiplier method derives an iterative algo-
rithm for solving the convex optimization (2.3), which is summarized in Algo-
rithm 1. In numerical simulations, we let Zg = 0 and Ay = 0 for initialization, and
simply choose p = 1 and run the algorithm for itfer = 100 iterations. Numerical

Algorithm 1 Robust community detection via alternating direction method
Initialization: Zy =0, Ao =0, p = 1 and iter = 100.

while k < iter

L Ypq1:=Zx — Ap — %)+;

2. Zyy 1 :=min(max(Yia1 + Ar, 0), In);
3. A=A+ (Yiwr —Zgy);

end while.

Output the final Y., .
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analyses of the algorithm applied to simulated data and a real data set of political
blogs are deferred to Section 4, where its efficiency and effectiveness are clearly
demonstrated. Moreover, for the purpose of comparison, we also implement ordi-
nary spectral clustering methods on the synthetic data sets. The numerical simu-
lations clearly show that our method outperforms spectral clustering methods in
terms of robustness against outliers.

3. Theoretical guarantees. In this section, we will introduce our main theo-
retical results that guarantee that the clustering procedure derived in the previous
section can detect the underlying communities under the GSBM. The following
theorem provides an explicit condition of the parameters n, m, p—, g™ and npin,
as well as the tuning parameters (&, 1), under which the solution to (2.3) is capa-
ble of unveiling the underlying group structures among the inliers in presence of a
portion of outlier confounders.

THEOREM 3.1.  Let A be the adjacency matrix of the semi-random graph un-
der the GSBM, as defined in (1.3). Let X be a solution to the semidefinite pro-
gram (2.3) and the density gap § be defined as in (1.2), and the minimum within-
group density p~ and the maximum cross-group density q* be defined as in (1.1).
As defined in Section 1, the integer n denotes the number of inlier nodes, m denotes

the number of outlier nodes and nyiy denotes the minimum community size among
logn
Nmin

—logn o vngt  mr nmp~
3.1 5>CQW gn o vngt omir P )
Nmin Nmin Nmin Nmin (o¢ — 2m)nin

for some sufficiently large numerical constant C, and the tuning parameter A sat-
isfies

the inliers. Suppose that p~ > C , o >3m and

3 8
32 Tho<i<p —-.
(3.2) "t P =7
Then with probability at least 1 — % — z—g — rﬁ% for some numerical constant c, X

min

must be of the form

Ji Z,

(3.3) X=P e,
Jlr Z,
Z} e VW

where P is defined as in (1.3).

Theorem 3.1 guarantees that any solution to (2.3) X satisfies X jk=1lfor¢(j)=
¢ (k) <r, and ﬁjk =0 for ¢(j) # ¢ (k) and ¢ (j) <r, ¢(k) <r. In other words,
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for each pair of inlier nodes j and k, whether they belong to the same group or not
solely depends on whether X jk €quals 1 or 0. It is noteworthy that condition (3.2)
is similar to the tuning parameter condition imposed in Chen, Sanghavi and Xu
(2012).

To interpret condition (3.1), it is helpful to consider two examples. First, let us
consider the very sparse case where p~ ~ g+ ~ § ~ 0(10,%"), Amin =~ O(n) and
hence r >~ O(1). This condition implies that our procedure works even for a graph
whose average degree of inlier nodes is on the oder of O(logn). This is consistent
with the best-known result in the literature of community detection without outliers
by spectral clustering based on the adjacency matrices or graph Laplacians [see
Lei and Rinaldo (2015)], although the logn barrier could be resolved by more
sophisticated nonbacktracking matrix methods; see Krzakala et al. (2013). In this
case, condition (3.1) becomes

5>C(logn +g+ﬂ+ m logn>.

n n n a—m n

Then by letting @ =log N, m = logn outliers are allowed.

In the second example, we assume 8 >~ p~ >~ g ~ O(1), and the number of
clusters r grows with n. As a specific example, we let r ~ n!/4. Moreover, we
assume nmin =~ n3/4. Then condition (3.1) becomes

1z lognn =8 + an=3/* 4+ flognn=Y* + mn=>/8 4 n1/4 .
o —2m
Then by letting & = N34, m = O (n'/>7¢) outliers are allowed for any & > 0.

A prominent feature of Theorem 3.1 is its consistency with the state-of-the-art
community detection under the ordinary SBM in the literature. Assume there is
no outlier node, that is, m = 0, and we simply let « = O(1) or just &« = 0. Then
condition (3.1) becomes

5o C( p~logn L \/nq+logn).

Nmin Nmin

If the number of clusters is fixed, that is, r = O (1), we also assume the size of the
smallest community npmi, = O (n). As mentioned above, this condition is guaran-
teed by letting the minimum within-group density p~ to be as low as O (101%") and
the density gap § = 0(105"). In another example where p~ = O(1), g7 = 0(1)
and § = O(1), condition (3.1) is equivalent to nmiy > O(y/nlogn). By mod-
ifying Lemma 6.7 as discussed in Section 6, this condition can be relaxed to
nmin > O(y/n). This is consistent with the state-of-the-art result in the commu-
nity detection literature by spectral clustering [see, e.g., Chaudhuri, Chung and
Tsiatas (2012)], and planted partition [see, e.g., Ames (2014), Chen, Sanghavi and
Xu (2012), Giesen and Mitsche (2005), Oymak and Hassibi (2011), Shamir and
Tsur (2007)] where the within-group densities are usually assumed to be the same,




1042 T. T. CAIAND X. LI

so do the cross-group densities. The O (4/n) barrier of the small cluster size is well
known in the literature of planted clique problems; see Deshpande and Montanari
(2015) and the references therein.

REMARK 3.1. The proof of Theorem 3.1 is involved, and the details are given
in Section 6. It is helpful to understand the intuition behind the proof. The opti-
mization (2.3) consists of two parts: a linear objective function and a constraint set
which is the intersection of a polytope and the semidefinite cone. In order to show
that the solution of (2.3) has the form of (3.3), we find a point on the boundary of
the constraint set such that this point has the form of (3.3). Moreover, we prove
that a level set of the linear objective function is tangent to the tangent cone of the
constraint set at the selected point. This shows that the selected point is the solu-
tion of (2.3). It is noteworthy that the level set of the linear objective function is
in fact a hyperplane with co-dimension 1, so the selected point is a sharp vertex of
the constraint set. For more details, see the remark before the proof Lemma 6.10
in the supplemental article Cai and Li (2015).

Theorem 3.1 shows that the semidefinite programming (2.3) can discriminate
the different groups among the inlier nodes. However, the clustering result is not
clear by only the observation of X, and it is not clear how the outliers could affect
the final clustering result. Given the extra knowledge of the number of clusters, we
propose to cluster the normalized column vectors of X by k-means with parame-
ter . To be specific, without loss of generality, let us assume P =1, and define

Ji, Z,
SZ: R =[X1,...,XN].

Jl, Z,

zi - Z] W

Moreover, define y; = X;/||x;||2- Then all y;’s belong to the set of N-dimensional
vectors with two-norm 1 and all coordinates being nonnegative. Notice that if
x; =0, we then define y; as an arbitrary nonnegative vector with norm 1. Then,
for any inlier indices i, j € I and ¢ (i) # ¢ (j), we have
2 T Zm
lyi —yjllz=2-2y;y; >2— .

Nmin

and forany i, j € [ and ¢ (i) = ¢ (j) =k, we have
2l 2m 2m
— = < —.
k+m lxy+m ™ [k

Moreover, for any y; and y;, since both of them are nonnegative, we have

lyi —y;il3=2-2yly; <2

ly: —yjlI5=2-2yly; <2.
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By definition, the solution to the k-means applied to {yy,...,yn} is

(3.4) argmin Y Y [ly; — il

Sl k=1y; €S

where S = {S1, ..., S,} is all r nonoverlapping partitions of [N ]. It is obvious that
= ﬁ Zyjesk y;. We define D; = ¢_1(k) forallk=1,...,r + 1, and choose
1 as any vector y; belonging to the kth community, that is, ¢ (i) = k. Then there
holds

r r—1
min > 3 ly; —mlP <D Y My —mdlP+ Yy &P

Sbsees Her k=1y;€eSk k=1y;eDy Y;€D;UD; 4
r
~ 0 ~ 2
(3.5) <Y > lyi—mdP+ Yy — iyl
k=ly;eDy V€D 4
,
2m
< (Zlk—) +2m =2mr +2m.
Ik
k=1
Suppose the solution to the k-means clustering is Si,....S, and =
1 R . . =~ R . . Nmin
B 2yeS i For each j € S, define ¢(j) := k. Now we show thatif m < 2r“£4,
each D;, i =1,...,r must account for more than 50 percent in some cluster Sg.

Assume this is not true. Then there is a D; being minority in each Sk, and hence
foreachy,; € D;, thereexistsayy; ¢ D;, but ¢(yq;) = ¢(yp;). Moreover, all these
2[; indices are distinct. This implies

r I;
R | m
> % = el = 3 5 ey~ 13 G —m (1 )
=1

= N
k=ly;e5; min

We then have (npin — m)(1 — n::_m) < 2m(r + 1), which is contradictory to the
assumption m < 5. R

Since each D; is the majority of some estimated community S, we can give
the definition of misclassification rate among the inliers: suppose there are p

pairs (Ya,, Yb,)s -« -» (Ya,» ¥b,) such that all 2p indices are distinct, 1 < ¢(yaj) <

qb(ybj) <rforall j=1,...,p but (]B(yaj) = ¢?(ybj). The misclassification rate
among the inliers is defined as max 5 for all possible p satisfying the above prop-
erty. Now we give an example showing why this definition of misclassification
rate is appropriate. Suppose n balls have r colors as well as m uncolored balls, and
we assign them into » boxes. In the ith box, we assume there are s; balls having
color i, while there are #; balls which are colored other than i. Moreover, we also
assume the assignment is acceptable in the sense that s; > ;. In the ith box, there
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are at most ¢#; distinct pairs of colored balls such that in each pair the colors are dif-
ferent. By our definition, the misclassification rate is %, which is the natural
definition.

Back to our robust community detection problem, if we assume the misclassifi-

ml )
Nmi

,
S lly; — dgl? >—Z||ya, ybj||%zp(1—

k=1yje§k

Therefore, we have
p 2mr +2m - 2r+3)m

n = (I—=(m/nmin))n — n
provided m < Z"rmﬁ. In summary, we have proven the following theorem, which
guarantees that the misclassification rate among the inliers can be well controlled:

THEOREM 3.2. Suppose the assumptions in Theorem 3.1 hold as well as m <
'min Then, with high probability, the misclassification rate among the inlier nodes

2r+-4
i € 1 is less than or equal to W

Rigorously speaking, k-means minimization is computationally NP-hard, al-
though in practice it is often easy and fast to implement with a number of repe-
titions. However, as shown in Kumar, Sabharwal and Sen [(2011), Theorem 4.9],
there is a (1 4+ ¢) approximate k-means clustering for (3.4) with computational

time O(2"/ ©” N2, which is polynomial time when r is a constant. Suppose

{S1,..., Sy} is a polynomial time approximate k-means solution, such that
r
2 20 Iyl = (1+e)  min Z > Ny = wal?®
k=ly. e, Bri=iy;es

<1 4+¢&)C2mr +2m).

Then if within the inliers there are p misclassified nodes by {5‘ Lyvvns S’r}, similarly
to the previous argument, we get % < w

When r grows with N, one can also cluster the rows of X in (3.3) based on the ¢;
distance. If two inlier nodes belong to the same community, their corresponding
rows in X have ¢ 1 distance less than m; on the other hand, if two inlier nodes
belong to different communities, their corresponding rows have £ distance greater
than 2npyj,. If the number of outliers is far less than the minimum size of the major
clusters, for example, nmin > O(m?), a pairwise comparison between the rows
of X can detect the inlier communities accurately even without the knowledge
of r. However, this method does not work as effectively as k-means clustering
in numerical simulations. An interesting direction for future research is to figure
out whether there is a polynomial time (1 4 ¢) approximation k-means clustering
for (3.4) when r grows with N.
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4. Numerical results. In this section, synthetic data and a real-world network
data are employed to demonstrate the efficiency and effectiveness of our com-
munity detection procedure: convex optimization (2.3) followed by k-means. As
discussed in Section 2, throughout all numerical simulations of the augmented La-
grange multiplier method Algorithm 1, we fix « = 0. All simulations were carried
out with MATLAB R2014b on a MacBook Pro with a 2.66 GHz Intel Core i7
Processor and 4GB 1067 MHz DDR3 memory. As indicated in Algorithm 1, for
the initialization, let Ag = Zg = 0. Also, we fix iter = 100 and p = 1. As to the
k-means clustering to the normalized columns of X, we use the “kmeans” function
in MATLAB with 100 replicates.

4.1. Synthesized data simulations. We consider again the synthetic data set
used in Section 2. Figure 2 illustrates the adjacency matrix of a concrete realization
of the original network. Suppose one knows that there are 2 major clusters, and a
GSBM with r =2 clusters is adopted.

We now explain in detail our implementation of Algorithm 1. First, we need to
choose the tuning parameter A between the maximum cross-group density g+ and
the minimum within-group density p~ . Ideal choices of A are formalized by condi-
tion (3.2) in Theorem 3.1. In practice, we propose a simple method to choose A as
the mean connectivity density in a subgraph determined by nodes with “moderate”
degrees. If the adjacency matrix of the graph is denoted as A, and 1y represents
the N-dimensional vector with all coordinates equal to 1, then Aly represents
the degrees of the N nodes. The nodes with degrees above the 80th percentile or
below the 20th percentile are eliminated from the graph, and X is chosen as the
mean density of the subgraph determined by the remaining nodes. The purpose of
choosing nodes with moderate degrees is to diminish the influence of the outliers.
Notice that the mean density of the subgraph may be very different from the mean
of Aly, which is usually significantly affected by the outliers.

The convex method is implemented with A mentioned above. As an illustra-
tion, in one realization of the synthetic data set, the solution to convex optimiza-
tion (2.3), and the community detection result by further implementing k-means
clustering with k = r =2 are plotted in Figure 3.

We generated 10 independent graphical data sets, and correspondingly imple-
mented 10 trials of Algorithm 1 followed by k-means clustering, as well as spectral
clustering on the graph Laplacians and adjacency matrices. The average misclas-
sification rate among the 1000 inlier nodes of our convex optimization method
is 0.0063, which is much smaller than 1 percent. The average time cost for run-
ning Algorithm 1 followed by k-means clustering is 87.65 seconds. In contrast,
if we apply spectral clustering to the graph Laplacians and adjacency matrices
with k = 2, respectively, the average misclassification rates among the 1000 inlier
nodes are 0.4792 and 0.5000, which are almost equivalent to random guessing. If
we treat the 30 outliers as an additional group, and apply spectral clustering to the
graph Laplacians and adjacency matrices with & = 3, the misclassification rates
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FIG. 3. On the right is the plot of the solution to convex optimization (2.3). Based on it, the com-
munity detection result followed by k-means algorithm is shown on the left.

among all 1030 nodes are correspondingly 0.3083 and 0.4730. Consequently, the
misclassification rates are high in terms of detecting the two major clusters.

Now let us study the sensitivity of our algorithm to the choice of A. To be sure
that A is between ¢ = 0.11 and p = 0.17, in Figure 4 the community detection
results are plotted with A =0.11,0.12, ..., 0.16. It is obvious that for our data set
the clustering power is robust to A, unless A is too close to p. To our surprise, even
when A = g, the two major clusters are well clustered. This is possibly due to the
facts that the graph is relatively sparse and the solution after 100 iterations is still
not exactly the solution to (2.3).

On the right of Figure 3, we see that the solution to (2.3) is close to but not
exactly equal to what Theorem 3.1 predicts. A possible reason is that the density
gap in our synthetic data is not large enough. It is interesting that although the
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FI1G. 4. The performance of convex community detection with different values of X.
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FI1G. 5. The solutions of (2.3) with different values of p.

solution does not have exactly the same form as in Theorem 3.1, the k-means in
the second step can still successfully cluster the two groups of nodes. We replace
the within density p = 0.17 with 0.19,0.21, ..., 0.29, and the solutions to (2.3)
are plotted in Figure 5, respectively. The solutions appear to be closer to the form
in Theorem 3.1 as the density gap increases.

4.2. Real data application. In this section, our robust community detection
procedure is tested by implementing a modified version of convex optimiza-
tion (2.3) on a political blogs network data set analyzed in Adamic and Glance
(2005). This network data set collected in 2005 is composed of political blogs and
their connections by hyperlinks, and it demonstrates the division and interaction
between the liberal and conservative blogs prior to the 2004 presidential election.
By ignoring the directions of the hyperlinks and selecting the largest connected
component, there are totally 1222 nodes and 16,714 edges, which implies that the
average degree is about 27. As indicated in Zhao, Levina and Zhu (2012), the dis-
tribution of the degrees is highly skewed to the right and has high variability. Also,
the political memberships of all blogs are clearly studied and labeled manually in
Adamic and Glance (2005), and are treated as the truth for the purpose of evaluat-
ing the clustering efficacy of different algorithms. The upper left panel of Figure 6
plots the adjacency matrix of the observed political blogs network.

Since the degrees in this real-world network data have high variability, most
community detection methods derived from the simple SBM do not perform well.
Instead, algorithms based on the so-called degree-corrected SBM are proposed and
proven to work well. For instance, a polynomial time spectral method based on
such a model is introduced in Coja-Oghlan and Lanka (2009/10). Back to convex



1048 T. T. CATAND X. LI

Original Graph 0 1Ieading two eigenvectors of graph Laplacian

200 o
s0b
600
800

1000 |

1200

" " i gy i 0.7 " " a
200 400 600 800 1000 1200 0 500 1000 1500

o I2eading two eigenvectors of adjacency matrix convex method followed by K-means

800

1000

. . 1200
0 500 1000 1500 200 400 600 800 1000 1200

FI1G. 6. Political blogs data of two clusters of conservatives and liberals, along with the perfor-
mance of convex optimization.

optimization (2.3), modification of the matrix E is needed to adapt to the hetero-
geneity of the degrees. As mentioned earlier in Section 4.1 on the synthetic data
simulation, A is chosen data dependently as the mean of the degrees in a trimmed
graph. When the degrees have high variability, we propose to change the scalar
matrix Aly to the diagonal matrix D = Diag(Aly)/N, the diagonal entries of
which are the degrees of all nodes divided by N. In brief, the modified convex
optimization is (2.3) with

4.1) E:=—~Iy-D)'?Ady = D)2+ D?>(Jy — Iy — A)D'/2.

In the second step of our proposed community detection procedure, we choose k =
r = 2 in the k-means clustering. As a result, our community detection procedure
applied to the real-world network data set only costs 137.16 seconds to accurately
cluster these 1222 nodes with a misclassification rate about 63/1222 ~ (0.052. The
lower right panel of Figure 6 shows this clustering result by plotting the adjacency
matrix of the clustered graph, in which two nodes are connected if and only if they
are clustered in the same group.
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The misclassification rate is comparable to the best-known results in the litera-
ture. The SCORE method proposed in Jin (2015) leads to a misclassification rate
of 58/1222. Profile likelihood method under degree-corrected SBM [Karrer and
Newman (2011)] and Newman—Girvan modularity method [Newman and Girvan
(2004), Zhao, Levina and Zhu (2012)] usually have misclassification rates about
0.05. However, as indicated in Jin (2015), the tabu algorithm implemented to max-
imize these criteria is computationally expensive and is numerically unstable due
to bad initializations. It is shown in Jin (2015) that the average misclassification of
the modularity method is about 105/1222 based on 100 independent repetitions.

As to classical spectral clustering, the upper right and lower left panels of Fig-
ure 6 show that the two eigenvectors of the graph Laplacian/adjacency matrix cor-
responding to the top two eigenvalues are not capable in detecting and distinguish-
ing the liberal and conservative political blogs. Hence, ordinary spectral clustering
does not work when applied to this data set. A data-dependent penalized spectral
clustering applied to the graph Laplacian was proposed in Joseph and Yu (2013),
but the misclassification rate is nearly 0.2, which is much worse than our result.

5. Discussion. In this paper we introduce the GSBM for robust community
detection in the presence of arbitrary outlier nodes, and propose a computation-
ally feasible method using convex optimization. Strong theoretical guarantees are
established under mild technical conditions. In particular, when the number of
clusters is fixed and the edge density within the inliers is 0(10%), O(logn) out-
liers are allowed; when the edge density within the inliers is on the order of O (1),
and the number of clusters grows with n, for example, O(nl/ 4), our method is
robust against O (n'/?>~%) adversarial outliers. Under the special case when there
is no outlier node, our theoretical result is also consistent with the state-of-the-art
results in the literature of computationally feasible community detection under the
SBM.

There are a number of possible extensions to the current results. The proposed
community detection procedure as well as the theoretical guarantees depend on the
assumption § = p~ — g > 0. Although this assumption is common in the litera-
ture of community detection, it is actually a strong assumption which sometimes
does not hold in real-world network data applications. For example, suppose there
are r = 3 clusters, and the connectivity matrix is

04 02 0.05
02 03 0.05
0.05 0.05 0.1

For each node, its associated within-group density is bigger than its associated
cross-group densities; however,

max B;; > min Bj;.
I<i<j<r I<i<r
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Therefore, in the current framework no choice of the tuning parameter A is capable
of the consistent community detection, which implies the matrix E in the convex
optimization step must be modified. In fact, in our simulations, X is replaced by
a data-dependent diagonal matrix based on the degrees of all nodes in order to
adapt to high-degree variation. We are interested in justifying this choice under
the degree-corrected SBM proposed in Coja-Oghlan and Lanka (2009/10) and an-
alyzed in Chaudhuri, Chung and Tsiatas (2012), Jin (2015), Karrer and Newman
(2011), Lei and Rinaldo (2015), Zhao, Levina and Zhu (2012).

In our numerical simulations, contrary to the established theoretical guarantees,
the choices of o are much smaller than the number of outlier nodes m. In fact,
the procedure works well with the choice « = 0. An open question is whether
this tuning parameter is actually redundant. In addition, in the second step of our
procedure, the number of major inlier clusters r is needed. Since the solution of the
convex optimization usually increases the connections within the major groups and
diminishes the connections across them, it is natural and interesting to investigate
whether r can be inferred exactly from the data. For reasons of space, we leave
these as future work.

6. Proofs.

6.1. Notation. Throughout the proofs we will use the following notation: the
£ x £ identity matrix is denoted by I;. An £1 x £, matrix whose entries all equal to 1
is denoted as J¢, ¢,). For square matrices, we write Jo := J ¢, ¢). An £-dimensional
vector whose coordinates all equal to 1 is denoted as 1,.

If all coordinates of a vector v are nonnegative, we write v > 0. When all co-
ordinates of v are positive, we write v > (. We use u > v to denote u — v > 0,
and similarly, u > v denotes u — v > 0. We also denote by ||X||cc the maximum
absolute values over all coordinates of x.

Similarly, if all entries of the matrix M are nonnegative, we write M > 0. When
all entries of M are positive, we write M > (. The inequality M| > M, denotes
M; — M; > 0, while M; > M; denotes M; — M, > 0. Denote by |[M|| the
maximum absolute value over all entries of M. The norms || - || and || - || 7 represent
the operator and Frobenius norms, respectively.

We use M > 0 to denote that the symmetric matrix M is positive definite and use
M > 0 to denote that M is positive semidefinite. Similarly M| > Mj and M > M»
represent that M| — M, is positive definite and positive semidefinite, respectively.

For any vector v € R", we denote by Diag(v) the n x n diagonal matrix whose
diagonal entries are correspondingly the coordinates of v.

Denote by C, Co, c, etc. numerical constants, whose values could change from
line to line.

6.2. Preliminaries. Before proving Theorem 3.1, we introduce several well-
known theorems in linear algebra and probability theory.



ROBUST COMMUNITY DETECTION 1051

LEMMA 6.1 (Weyl [Horn and Johnson (2013), Theorem 4.3.1]). Let H and P
be two n x n Hermitian matrices. Suppose that H + P, H and P have real eigen-
values {1, H+P)}?_,, {r; (H)}?_, and {X; (P)}'_,, each arranged in algebraically
nonincreasing order. Then fori =1, ..., n we have

Ai(H) + 1, (P) <2;(H+P) < A;(H) + A1 (P).

LEMMA 6.2 (Cauchy’s interlacing theorem [Horn and Johnson (2013), Theo-
rem 4.3.28]). Let H be an n x n Hermitian matrix and G its k x k principal sub-
matrix. Suppose that H and G have real eigenvalues {\; (H)}?:1 and {\; (G)}]<

i=1
each arranged in algebraically nonincreasing order. Then for j =1, ..., k we have

AjH) = 4(G) = 4 jyn—r(H).
LEMMA 6.3 (Chernoft’s inequality [Chernoff (1981)]). Let X1, ..., X, be in-
dependent random variables with
P(X;i =1 = pi, P(X;=0)=1-p;.
Then the sum X =37 | X; has expectation E(X) = }_7_, p;, and we have
P(X <E(X) — 1) < ¢ */CEC),
P(X > E(X)+ 1) < oM/ QEX)+1/3))
Finally, we consider the following problem: suppose that A = (a;;)1<;, j<n 18
a random symmetric matrix, whose diagonal entries are all zeros, while a;;, 1 <
i < j < n areindependent zero-mean Bernoulli random variables obeying |a;;| < 1
and Var(a;;) < o>. Can we prove that with high probability, |A|| < C(o+/nTogn+
logn) for some numerical constant C? In the sequel, this upper bound is derived

by applying the following matrix Bernstein inequality, which is an improvement
of Ahlswede and Winter (2002):

LEMMA 6.4 [Tropp (2012), Theorem 6.1].  Consider a finite sequence {Xy} of
independent, random, self-adjoint matrices with dimension d. Assume that

EX; =0 and |Xi| <R.

If the norm of the total variance satisfies

] v
k

then the following inequality holds for all t > 0O:

IP{ ijxk > t} < 2dexp<i>.

M?+ Rt/3
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COROLLARY 6.5. Let A = (a;j)1<i, j<n be a symmetric random matrix whose
diagonal entries are all zeros. Moreover, suppose a;j, 1 <i < j < n are indepen-
dent zero-mean random variables satisfying |a;;| < 1 and Var(a;;) < o2. Then,
with probability at least 1 — n‘—;, we have

IA] < Co(o,/nlogn + logn)

for some numerical constants ¢ and Cy.

PROOF. For each pair (i, j): 1 <i < j <n, let X;; be the matrix whose (i, j)
and (j, i) entries are both a;;, whereas other entires are zeros. Then we have

A= > X
I<i<j<n

Moreover, we can easily have EX;; =0, || X;;|| < I and

0= Y EX} =<(n-—Do’l,.
I<i<j<n

They by applying Lemma 6.4, the proof is complete. [

6.3. Supporting lemmas. Notice that optimization (2.3) is determined by the
adjacency matrix A. Here we derive some properties of A and leave the detailed
proofs in the supplemental article Cai and Li (2015). More precisely, we give some
properties of the random matrix K, which is a principal submatrix of A; see (1.3).

LEMMA 6.6. Recall that p~ = minliiir B;;, q+ =maX|<i<j<r Bij and § =
p-—qt.If

+1 1
6.1) 5>c</q ogn | Og”),
Nmin Nmin

for some sufficiently large numerical constant C, then with probability at least
2 2r

—;—n—z,foralli=1,...,rand1§j<k§r,wehave
(6.2) Kiil; > (i — 1)Bii —2,/(li — 1)B;; logn)1,,,

)

(6.3) K1, < <Bjk + E>lklljs
T )

(6.4) Kjkllj <|Bjk+ 6 11y,
T )

(6.5) llejkllk > | Bjx — 6 Iil;j.
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LEMMA 6.7. Suppose p~ > C(IO%). With probability at least 1 — cn+, we

n .
min

have
(6.6) |Bii (Ji; — X;,) — Kii | < Coy/li Biilogl;, I<i<r
and

(6.7) U]l < Co(y/ng*tlogn + logn),

where U is an n x n symmetric matrix defined as
0 oo By da) — Ky
U:= : ) :
B Jai — K, ... 0

whose diagonal blocks are all 0’s. Here C, Co and c are some numerical constants.

It is worth noting that by applying a very recent result Vu [(2014), Lemma 8],
which is an improvement of Fiiredi and Komlés (1981), Vu (2007), we can prove
U] < Co(v/ngt + /logn). Condition (3.1) in Theorem 3.1 can then be relaxed

to
—logn o ngt  m\/r nmp~
8>C<‘/p gn @ yngt myr p )
Nmin Nmin Nmin Nmin (a — 2m)nmin

The benefit is that when m = O(1), p~ = O(1), g* = O(1) and § = O(1), nmin
can be as small as O(+/N) by letting o = +/N. In particular, if there is no outlier
node, that is, the ordinary SBM, this is consistent with the state-of-the-art result in
the literature of computationally feasible community detection.

6.4. Proof of Theorem 3.1. In this section, we will rigorously prove Theo-
rem 3.1. First, to simplify the calculations, we can assume the permutation matrix
P to be the identity matrix Iy. This suggestion is formalized by the following
lemma:

LEMMA 6.8. If Theorem 3.1 is true for P =1y, it is also true for any permu-
tation matrix P.

The proof is given in the supplemental article Cai and Li (2015). Lemma 6.8
guarantees that in order to prove Theorem 3.1, we can assume without loss of

generality that P=1, thatis, A=[ 7 +].
In the following, we will prove Theorem 3.1 based on the following idea: In
order to analyze a solution X to (2.3), we need to explore several inequalities that it

satisfies. The obvious ones are X >0and 0 < X < Jn as the feasibility conditions
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in (2.3). However, the optimality condition of X implies that for any feasible X, we
have (f(, E) < ()NC, E). To sufficiently utilize this condition, we need to construct a
feasible matrix X, such that (f(, E) < (X, E) is a tight constraint. In Section 6.4.1
we will show how to construct this X.

After establishing these inequalities for any solution X, we give in Section 6.4.2
a sufficient condition which guarantees that X has the form (3.3) (with P =1), and
then in Section 6.4.3 we prove that with high probability this sufficient condition is
true by using the supporting lemmas proven previously. Consequently, these three
steps imply Theorem 3.1.

6.4.1. Solution candidate. 1In this section, we will construct a candidate solu-
tion X feasible to (2.3). Denote

E=oaly+2Jy—1Iy) —

(=M +2J, — K1 ... M) — Ky 7,
Ma,.n — K, o @=L, +2T, K Z,
/Al . z] w
which is equivalent to defining
(6.8) Zi=gm—2Zi, i=1,....m,
(6.9) W=(—y+AJ,—W

The following lemma, the proof of which is given in the supplemental article Cai
and Li (2015), guarantees the existence of r vectors xi, ..., X, € R, which will
be employed to construct a candidate solution:

LEMMA 6.9. Ifa >2m and 0 < A < 1, the solution to

-
min Z x,,Z 1;)+ ZXTle
i=1
(6.10) subject to x; >0 for 1<i<r,
r
Zx}(eje})xi <1 forl1<j<m,
i=1

exists uniquely. Moreover, denote the solutions by X1, ..., X, € R™, which by defi-
nition satisfy ||X; |loo < 1. Then there are nonnegative vectors B, ..., B, € R™ and
an m X m nonnegative diagonal matrix

E =diag(§1,...,8m),
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such that

(6.11) Wx; + 711, = B; — Ex;,
r

(6.12) sj(l —Zx}(eje})x,-) =0, j=lL....m
i=1

and

(6.13) (xi, B;) =0, i=1,...,r

Forall1 < j,k <r, there holds

(6.14) X[(W + E)x <m, /1.
Furthermore, foralli =1,...,rand j =1,...,m, we have
m
(6.15) Bij + el ZIy, < (@ — A+ E)xi; + i + 4 ) X,
k=1
Finally, foralli =1, ...,r,
(6.16) 0<B, <(m-+1 —1)1,.
Throughout the paper, we define
1, 0 ... 07
0 1, ... 0
Vi=[vy,...,v,]:= :
0 o0 1;
_Xl X2 e Xr -
and
Jl] “e. 0 11]X-1r
X=VVl= ) : :
0 J[r 11,_X;r
xlllT1 XrllT, X1X{+---+xrer

Since x;’s are feasible to optimization (6.10), we can easily see that X is feasible
to optimization (2.3). We aim to prove that under mild technical conditions, X is
actually a solution to optimization (2.3).
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6.4.2. Sufficient condition for the optimality of X. In this section, we propose
a condition which guarantees that any solution X to (2.3) must be in the form
of (3.3) with P =1I. This sufficient condition is equivalent to constructing a ma-
trix A satisfying a series of equalities and inequalities as indicated in the following
lemma. We call it a dual certificate. In Section 6.4.3, we will show that with high
probability, this dual certificate can be constructed in an explicit way.

LEMMA 6.10. Suppose E and By, ..., B, are defined as in Lemma 6.9. If
there exist symmetric matrices A € RN*N L FTRS RL*1j (1 < j <r) and matrices
D€ RI*k (1 < Jj <k <r), such that

— - 1 -
(@=L +AJ, - K+ ¥y ... May ) — Ky — @4 Z, _ElllﬁI
6.17) A= |
T T 5 T
}”J[rvll — Klr — q)lr oo (x 7}»)I[r +}LJ],. K +V¥ Z,— fllrﬁr
r
~ 1 ~ 1 ~
T T T T =
i Zl - a1 ZF - 81] Wiz |

satisfies W;; > 0, ® jx >0, AV =0and A > 0, then any minimizer X t0 (2.3) must
be of the form

J, 0 111XI+H1

<= : . : : ’
0 e J[r 11},X-rr + H,

xi1f +H] - x1] +H] xix]+-- +xx] +Hp

which is the same as (3.3). Moreover, X is a solution to (2.3).

An intuition behind the theorem and the rigorous proof are given in the sup-
plemental article Cai and Li (2015). It is noteworthy that the condition on A is
weaker if the number of clusters r gets smaller. The reason is that the equality
condition is AV = 0. Obviously when r gets smaller, V has fewer columns, and
hence the equality constraint becomes milder. We emphasize that the choices of
V¥;; and ®;; are intended to fit the equality constraint of A, that is, AV = 0. To
make sure A > 0, we need to first project A onto the orthogonal compliment of V,
and then show the projection is positive definite. This is based on the spectral norm
bound as indicated in Lemma 6.7, which provides a concentration inequality for a
random matrix.

6.4.3. Construction of dual certificate. It suffices to construct a matrix A in
the form of (6.17) in Lemma 6.10, which satisfies AV =0, ¥;; > 0, ®; > 0 and
A > 0. The following lemma guarantees the existence of such A, and its proof is
given in the supplemental article Cai and Li (2015).
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logn

LEMMA 6.11. Suppose p~ > C(
Moreover, assume

) qT+2<i<p —%§anda>3m.

Nmin

—logn o ngtlogn mi/r nmp~
p”logn L Yng*logn ¢_+ p )

Nmin Nmin Nmin Nmin (a — 2m)nmin

(6.18) 5>c<

for some sufficiently large numerical constant C. Then, with probability at least

—y %, there exist matrices W;;’s and ® ji’s satisfying W;; >0, ® j; > 0

and the matrixmK defined by W¥;;’s and ® ji’s obey AV =0and A > 0.

SUPPLEMENTARY MATERIAL

Supplemental materials to “Robust and computationally feasible commu-
nity detection in the presence of arbitrary outliers nodes” (DOI: 10.1214/14-
AOS1290SUPP; .pdf). We give in the supplement proofs to Lemmas 6.6, 6.7, 6.8,
6.9,6.10 and 6.11.
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