
The Annals of Statistics
2014, Vol. 42, No. 4, 1635–1656
DOI: 10.1214/14-AOS1241
© Institute of Mathematical Statistics, 2014

E-OPTIMAL DESIGNS FOR SECOND-ORDER RESPONSE
SURFACE MODELS

BY HOLGER DETTE1,2 AND YURI GRIGORIEV1

Ruhr-Universität Bochum and St.-Petersburg State Electrotechnical University

E-optimal experimental designs for a second-order response surface
model with k ≥ 1 predictors are investigated. If the design space is the
k-dimensional unit cube, Galil and Kiefer [J. Statist. Plann. Inference 1
(1977a) 121–132] determined optimal designs in a restricted class of designs
(defined by the multiplicity of the minimal eigenvalue) and stated their uni-
versal optimality as a conjecture. In this paper, we prove this claim and show
that these designs are in fact E-optimal in the class of all approximate de-
signs. Moreover, if the design space is the unit ball, E-optimal designs have
not been found so far and we also provide a complete solution to this optimal
design problem.

The main difficulty in the construction of E-optimal designs for the
second-order response surface model consists in the fact that for the mul-
tiplicity of the minimum eigenvalue of the “optimal information matrix” is
larger than one (in contrast to the case k = 1) and as a consequence the cor-
responding optimality criterion is not differentiable at the optimal solution.
These difficulties are solved by considering nonlinear Chebyshev approxima-
tion problems, which arise from a corresponding equivalence theorem. The
extremal polynomials which solve these Chebyshev problems are constructed
explicitly leading to a complete solution of the corresponding E-optimal de-
sign problems.

1. Introduction. Response surface methodology has become a standard tool
in the analysis of experimental data. These models are used to study the influ-
ence of several input factors on a response variable by approximating complex
functional relationships by “simple” linear or quadratic multivariate polynomial
regression models, which are usually denoted as first or second-order response
surface models [see, e.g., Myers, Montgomery and Anderson-Cook (2009)]. Nu-
merous authors have worked on the construction of efficient and optimal exper-
imental designs for response surface models. For first-order models, 2k factorial
and fractional factorial 2k−p designs of resolution III are optimal with respect to
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the D-, G- and I -optimality criteria [see Anderson-Cook, Borror and Montgomery
(2009)]. On the other hand, for the second-order response surface model the situa-
tion is more complicated and intuitively reasonable designs with a “simple” struc-
ture such as central composite designs are not optimal.

For this model, approximate designs in the sense of Kiefer (1974) have been
investigated by several authors, where the methodology and optimal designs dif-
fer by the design space and optimality criterion under consideration (typical a
k-dimensional cube, ball or simplex). D-optimal approximate designs for the
second-order polynomial regression model on the ball and cube have been de-
termined explicitly by Kiefer (1959, 1961b), Kiefer and Wolfowitz (1959), Kôno
(1962), Farrell, Kiefer and Walbran (1967) [see also Rafajlowicz and Myszka
(1988), Lim and Studden (1988) and Dette and Röder (1997) who determined
optimal product designs for multivariate polynomial regression models in more
general situations]. In particular, it is shown that D-optimal designs on a ball are at
the same time rotatable designs. Considerably less attention has been paid to other
optimality criteria. Laptev (1974), Denisov and Popov (1976) and Golikova and
Pantchenko (1977) investigated A- and Q-optimal designs numerically, Galil and
Kiefer (1977b) determined numerically rotatable optimal designs for the second-
order response surface model, while Draper, Heiligers and Pukelsheim (2000) and
Draper and Pukelsheim (2003) investigated optimal design problems in second-
order mixture models. On the other hand, the explicit determination of optimal
designs in the class of all approximate designs with respect to other criteria than
the D-criterion seems to be a very hard problem, which has only been solved in
rare circumstances.

In this paper, we study E-optimal designs for the second-order response sur-
face models on the k-dimensional cube and ball. Among Kiefer‘s �p-criteria [see
Kiefer (1974)] the E-optimality criterion is not differentiable if the multiplic-
ity of the minimum eigenvalue of the information matrix of the optimal design
is larger than 1. This property makes the determination of E-optimal designs to
an extremely hard and challenging problem. In fact, an analytical construction of
E-optimal designs for linear regression models is very difficult and has only been
achieved in the one-dimensional case for a limited number of linear and nonlinear
models [see Melas (1982), Dette (1993), Pukelsheim and Studden (1993), Dette
and Haines (1994), among others]. For models with more than one predictor, re-
sults can only be found sporadically in the literature. For example, Cheng (1987)
and Dette and Studden (1993) identified E-optimal spring balance and chemi-
cal balance weighing designs. Galil and Kiefer (1977a) considered the second-
order response surface model on the cube with k predictors and determined the
E-optimal designs in the class of all designs, for which the corresponding informa-
tion matrix has a minimum eigenvalue of multiplicity k(k + 1)/2. However, to our
best knowledge, the answer to the question, if these designs are in fact E-optimal
in the class of all designs is still open. For the ball, the situation is even worse, and
only E-optimal designs in the class of all rotatable designs are available [see, e.g.,
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Galil and Kiefer (1977b)]. These designs are in fact not globally optimal and the
determination of E-optimal designs for the second-order response surface model
on the ball is an open and challenging problem.

The goal of the present paper is to provide complete answers to these ques-
tions and to characterize the structure and properties of E-optimal designs for the
second-order response surface model. Our approach relies on a specific duality
result for E-optimal designs, which relates the optimal design problem to a non-
linear Chebyshev approximation problem [see Melas (1982, 2006) or Pukelsheim
(2006)]. In the dual problem, one has to determine a nonnegative polynomial with
minimal sup-norm in a specific class of nonnegative (multivariate) polynomials,
that is,

P = {
f T (x)Zf (x)| trace(Z) = 1;Z ≥ 0

}
,(1.1)

where x denotes the k-dimensional predictor, f (x) is the vector of regression func-
tions in the second-order response surface model and Z is a nonnegative definite
matrix of appropriate dimension. This Chebyshev approximation problem is non-
linear and, therefore, extremely hard to solve explicitly. For the solution of the
E-optimal design problem, this “optimal” polynomial, which is called extremal
polynomial throughout this paper, will be constructed explicitly in Sections 3 and 4
if the design space is the cube and ball, respectively. As a consequence, we are
able to provide a complete solution of these E-optimal design problems. In gen-
eral, there exist several E-optimal designs which usually have a large number of
support points. For this reason, particular attention is paid to the problem of con-
structing E-optimal designs with a small number of support points.

2. Optimal designs for response surface models. We consider the common
linear regression model of the form

E(Y |x) = f T (x)θ,(2.1)

where Y denotes the (one-dimensional) response and the explanatory vari-
able x varies in a compact design space, say X ⊂ R

k . In (2.1), the vector
f (x) = (f1(x), . . . , fm(x))T ∈ R

m is the vector of regression functions and
θ = (θ1, . . . , θm)T ∈ R

m denotes a vector of unknown parameters. We assume
that N independent observations are available according to the model (2.1) where
at each experimental condition x the response y is a realization of a normal dis-
tributed random variable Y with expectation given by (2.1) and (constant) variance
σ 2 > 0. An approximate design in the sense of Kiefer (1974) is defined as prob-
ability measure on the design space X with finite support. The support points,
say x(1), . . . , x(n), of an approximate design ξ define the locations where observa-
tions are taken, while the weights give the corresponding relative proportions of
total observations to be taken at these points. If the design ξ has masses ωi > 0
at the different points x(i) (i = 1, . . . , n) and N observations can be made by
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the experimenter, the quantities ωiN are rounded to integers, say Ni , satisfying∑n
i=1 Ni = N , and the experimenter takes Ni observations at each location x(i)

(i = 1, . . . , n). The information matrix of an approximate design ξ is defined by

M(ξ) =
∫
X

f (x)f T (x) dξ(x) ∈ R
m×m,(2.2)

and it is well known [see Jennrich (1969)] that under appropriate assumptions
of regularity [in particular det(M(ξ)) > 0 and limNi,N→∞ Ni/N = ωi > 0; i =
1, . . . , n] the covariance matrix of the least squares estimator is approximately
given by σ 2M−1(ξ)/N , where N denotes the total sample size.

Optimal designs maximize an appropriate statistical meaningful functional,
say �, of the information matrix. Among the numerous criteria which have been
proposed in the literature for this purpose [see Silvey (1980), Pázman (1986) or
Pukelsheim (2006) among others], we consider in this paper the E-optimality cri-
terion

�−∞(ξ) = λmin
(
M(ξ)

)
.(2.3)

This criterion arises as a special case of Kiefer’s �p-optimality criteria, which are
defined for p ∈ (−∞,1] as

�p(M) = [
m−1 tr

(
Mp(ξ)

)]1/p =
(
m−1

m∑
i=1

λ
p
i

(
M(ξ)

))1/p

,(2.4)

that is �−∞(ξ) = limp→−∞ �p(ε) [see Kiefer (1974)]. In equation (2.4), the
quantities λ1(M(ξ)), . . . , λm(M(ξ)) denote the eigenvalues of the information ma-
trix M(ξ) and λmin(M(ξ)) its corresponding minimum eigenvalue. In contrast to
the �p-criteria with p ∈ (−∞,1] the E-optimality criterion is not differentiable if
the multiplicity of the minimum eigenvalue of the matrix M(ξ) is larger than 1 and
this property makes the determination of E-optimal designs to an extremely hard
problem. In fact, E-optimal designs have been determined for a limited number
of linear and nonlinear regression models [see the references cited in the Intro-
duction]. An important tool for the determination of E-optimal designs is the fol-
lowing equivalence theorem which has been proved by several authors [see Melas
(1982) or Pukelsheim (2006), e.g.].

THEOREM 2.1. Let ξ∗ denote a design and λmin(M(ξ∗)) the minimum
eigenvalue of the information matrix M(ξ∗) with multiplicity s. The design ξ∗
is E-optimal if and only if there exist orthonormal eigenvectors q0, . . . , qs−1
of the matrix M(ξ∗) corresponding to λmin(M(ξ∗)) and nonnegative weights
w0, . . . ,ws−1 with sum 1 such that the “extremal polynomial”

d(x, ξ) = f T (x)(q0, . . . , qs−1)diag(w0, . . . ,ws−1)(q0, . . . , qs−1)
T f (x)

=
s−1∑
i=0

wi

(
f T (x)qi

)2
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satisfies for all x ∈X the inequality

d(x, ξ) ≤ λmin
(
M

(
ξ∗))

.(2.5)

Moreover, the maximum on the left-hand side of (2.5) is attained at the support
points of the E-optimal design ξ∗.

REMARK 2.1. It follows from general equivalence theory developed in con-
vex design theory [see Pukelsheim (2006)] that there exists a duality between the
E-optimal design problem and a nonlinear Chebyshev approximation problem,
that is,

max
ξ

λmin
(
M(ξ)

) = min
PZ∈P max

x∈X
∣∣PZ(x)

∣∣,(2.6)

where P = {PZ(x) = f T (x)Zf (x)|Z ∈ R
m×m,Z ≥ 0, trace(Z) = 1} denotes a

subset of the nonnegative “polynomials.” In fact, if there is equality in (2.6) for
a pair (ξ∗,Z∗), then ξ∗ is an E-optimal design and PZ∗ a solution of the nonlin-
ear Chebyshev approximation problem. This explains the name “extremal polyno-
mial” in Theorem 2.1.

The second-order response surface model with a k-dimensional predictor ap-
pears as a special case of model (2.1), that is,

E[Y |x] =
2∑

‖α‖1=0

θαxα,(2.7)

where α = (α1, . . . , αk)
T ∈ {0,1,2}k is a multiindex xα = xα1 · · ·xαk and ‖α‖1 =

α1 + · · · + αk . In this case, the corresponding vector of regression function in the
general linear model (2.1) is given by

f (x) = (
1, x2

1 , . . . , x2
k , x1, . . . , xk, x1x2, . . . , xk−1xk

) ∈ R
m,(2.8)

where m = (k+1)(k+2)
2 , x = (x1, . . . , xk)

T . In the following section, we consider
optimal designs for the second-order regression model (2.7), where the design
spaces are the unit ball with respect to the maximum norm ‖ · ‖∞ and the Eu-
clidean norm ‖ · ‖2, that is,

X = B∞(1) := {
x ∈ R

k|‖x‖∞ ≤ 1
}
,

(2.9)
X = B2(1) := {

x ∈ R
k|‖x‖2 ≤ 1

}
.

It turns out that designs with certain symmetry properties play a particular role
for the construction of E-optimal designs. Throughout this paper, we call a design
symmetric if for any (α1, . . . , αk) ∈ {0,1,2}k with ‖α‖1 = |α1|+ · · ·+ |αk| ≤ 2 the
moments ∫

X
x

α1
1 , . . . , x

αk

k ξ(dx)
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are invariant with respect to all permutations of α1, . . . , αk and vanish if there is at
least one odd index among α1, . . . , αk . In the following discussion, let I
 ∈ R


×


denote the identity matrix and 1
 = (1, . . . ,1)T ∈ R

 denotes the vector with all

elements equal to 1, then a straightforward calculation shows that the information
matrix of a symmetric design in model (2.7) is of the form

M(ξ) =
∫
X

f (x)f T (x)ξ(dx)

(2.10)

=

⎛
⎜⎜⎝

1 a1T
k 0 0

a1k H 0 0
0 0 aIk 0
0 0 0 bI(k(k−1))/2

⎞
⎟⎟⎠ ∈ R

m×m,

where m = (k+1)(k+2)
2 , H = H(c;b) = (c − b)Ik + b1k1T

k ∈ R
k×k denotes a circu-

lant matrix with diagonal and off-diagonal elements c and b, respectively, and the
entries a, b and c in (2.10) are given by

a =
∫
X

x2
1ξ(dx), b =

∫
X

x2
1x2

2ξ(dx), c =
∫
X

x4
1ξ(dx).(2.11)

Designs with information matrix of the form (2.10) will serve as candi-
dates for E-optimal designs. Consider, for example, the case k = 1, where
model (2.7) reduces to the well-known one-dimensional quadratic regression
model θ0 + θ1x

2 + θ2x. If the designs space is given by X = [−1,1] and the de-
sign ξ puts masses 1/5, 1/5 and 3/5 at the points −1, 1 and 0, respectively, the
corresponding information matrix is given by

M
(
ξ∗) =

⎛
⎜⎝

1 2
5 0

2
5

2
5 0

0 0 2
5

⎞
⎟⎠ .

It was shown by Kiefer (1974) that this design is in fact E-optimal for the univari-
ate quadratic regression model and the minimum eigenvalue λmin = 1

5 has multi-
plicity s = 1. For a similar statement in the univariate polynomial regression model
of degree d ≥ 2, see Pukelsheim and Studden (1993).

However, in the case k ≥ 2, the multiplicity of the minimum eigenvalue of the
matrix (2.10) is larger than 1 and as consequence the corresponding optimality cri-
terion is not differentiable at the matrix M(ξ) given by (2.10). This makes the de-
termination of E-optimal designs substantially more difficult. For example, Galil
and Kiefer (1977a) determined the E-optimal design on the cube B∞(1) in the sub-
class of all designs with information matrix of the form (2.10), where its minimum
eigenvalue has multiplicity k(k+1)

2 (these calculations will be briefly presented at
the beginning of the following section). To our best knowledge, the question, if the
solution obtained by these authors in the restricted class yields in fact an E-optimal
design for the second-order response surface model in the class of all approximate
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designs on the cube, has not been answered. Moreover, the E-optimal design prob-
lem for second-order regression models seems to be completely unsolved if the
design space is given by the unit ball B2(1).

In the following two sections, we will present a complete solution to these prob-
lems. For this purpose, we proceed in the following sections in two steps:

(I) In a first step, a candidate for the E-optimal design in the class of all designs
with information matrix of the form (2.10) is identified. If the design space is given
by the cube, our arguments coincide with those of Galil and Kiefer (1977a) and
are presented here for the sake of completeness.

(II) In a second step, the E-optimality of the candidate design found by Galil
and Kiefer (1977a) is proved by an application of Theorem 2.1. This requires the
determination of an appropriate basis of the eigenspace corresponding to the mini-
mum eigenvalue of M(ξ) and the construction of the corresponding extremal poly-
nomial in (2.6).

The E-optimal designs for the second-order response surface model will be iden-
tified in terms of the masses that they assign to specific sets which depend on the
design space under consideration. Because in many applications it is desirable to
obtain optimal designs with a minimal number of support points, we add a third
step if the design space is the cube, that is,

(III) Identification of designs with a minimal number of support points.

3. E-optimal designs on the cube. In this section, we consider the second-
order response surface model (2.1) on the design space X = B∞(1) = [−1,1]k .
We start with a determination of a “good” candidate for an E-optimal symmetric
design. Our arguments are similar to those given in Galil and Kiefer (1977a) and
presented here for the sake of completeness (note that these authors only identified
the candidate design and in the following we will prove its optimality in the class
of all approximate designs). Observing the representation of the corresponding
information matrix (2.10) the eigenvalues of the matrix M(ξ) are given by a, b,
and the eigenvalues by its upper (k + 1) × (k + 1) block,

M11(ξ) =
(

1k a1T
k

a1k H

)
,(3.1)

where H = H(c;b) = (c − b)Ik + b1k1T
k . Define D = [1 − c − (k − 1)b]2 +

4ka2 > 0, then all eigenvalues of the information matrix of a symmetric E-optimal
design are given by

λ0 = 1 + c + (k − 1)b + √
D

2
, λ1 = 1 + c + (k − 1)b − √

D

2
,

λ2 = · · · = λk = c − b, λk+1 = · · · = λ2k = a,(3.2)

λ2k+1 = · · · = λm = b.
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Note that λ0 > λ1 and that λ1 and λ2 are increasing functions of c. Observing the
identity

detM(ξ) = akbk(k−1)/2(c − b)k−1[
c + (k − 1)b − ka2]

> 0

it is easy to see that the entries of a nonsingular matrix of the form (2.10) satisfy
the inequalities

1 >≥ a ≥ c > b > 0, c + b(k − 1) > ka2.(3.3)

Therefore, we obtain c = a and the problem of maximizing the minimum eigen-
value of M(ξ) reduces to the maximization of

λmin
(
M(ξ)

) = min
{

1 + a + (k − 1)b − √
D

2
, a − b, a, b

}
(3.4)

= min
{

1 + a + (k − 1)b − √
D

2
, a − b, b

}
,

where the constant D is now represented as D = [1 − a − (k − 1)b]2 + 4ka2

and the second equality in (3.4) follows from 0 < a − b < a [see (3.3)]. We will
now construct a candidate for the E-optimal design. Motivated by the solution of
similar maximin problems, we suppose for this purpose that

λ1 = 1 + a + (k − 1)b − √
D

2
= a − b = b,

which gives a = 2
5 , b = 1

5 as a unique (nontrivial) solution. This yields for the
eigenvalues of the matrix M(ξ)

λ0 = 1 + k

5
, λ1 = · · · = λk = 1

5
,

(3.5)

λ2k+1 = · · · = λ(k(k−1))/2 = 1

5
, λk+1 = · · · = λ2k = 2

5
,

where the corresponding multiplicities of λ0, λ1, λk+1 are given by 1, k(k+1)
2 and k,

respectively. Hence, we obtain as a candidate for an E-optimal information matrix
the matrix M(ξ∗) in (2.10) with a = c = 2

5 , b = 1
5 , where the minimum eigenvalue

is given by λmin(M(ξ∗)) = 1
5 . This means that the information matrix under con-

sideration has a minimal eigenvalue with multiplicity k(k+1)
2 ≥ 3 whenever k ≥ 2.

The following result gives an answer to the question if the determined values for a

and b yield in fact to an E-optimal information matrix.

THEOREM 3.1. Any design ξ∗ with an information matrix M(ξ∗) of the
form (2.10) and a = c = 2

5 b = 1
5 is E-optimal for the second-order response sur-

face model (2.7) on the k-dimensional unit cube. In particular, Theorem 2.1 holds
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with

d(x, ε) = 1

5

(
1 − 4

k

k∑
i=1

x2
i

(
1 − x2

i

))
.(3.6)

The proof of Theorem 3.1 is complicated and deferred to Appendix A.1. Note
that in contrast to the D-optimality criterion the optimal values for a and b do not
depend on a dimension of the design space. This fact has been independently ob-
served by Denisov and Popov (1976) and Galil and Kiefer (1977a), who identified
the correct E-optimal information matrix but did not prove its optimality.

In the next step, we determine designs with corresponding information matrix
specified in Theorem 3.1. For this purpose, we call a point x ∈ R

k a barycenter of
depth 0 ≤ j ≤ k if j coordinates are equal to 0 and the remaining k−j coordinates
are equal to ±1 [see Galil and Kiefer (1977a)]. The set of all barycenters of depth r

is denoted Er and for its cardinality we introduce the symbol

nr := |Er | =
(

k

r

)
2k−r , r = 0,1, . . . , k.(3.7)

It was shown by Kiefer (1961a) and Farrell, Kiefer and Walbran (1967) that the
support of every �p-optimal design for the second-order response surface model
on the cube is a subset of the set

E =
k⋃

j=0

Ej .(3.8)

Moreover, there always exists a symmetric optimal design. Throughout this sec-
tion, we will describe these symmetric designs on the cube in terms of the
(k + 1)-dimensional vector ξ = (ξ0, . . . , ξk)

T , where ξi represents the mass as-
signed by the design to the set Ei of barycenters of depth i, that is ξi = ξ(Ei)

(i = 0, . . . , k). It turns out that there always exists an E-optimal design supported
at most three sets Ei . For this purpose, we define for integers 0 ≤ r1 < r2 < r3 ≤ k

the matrix

Ar1,r2,r3 =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1
k − r1

k

k − r2

k

k − r3

k

k − r1

k

k − r1 − 1

k − 1

k − r2

k

k − r2 − 1

k − 1

k − r3

k

k − r3 − 1

k − 1

⎞
⎟⎟⎟⎟⎟⎠ .

LEMMA 3.1. There exists integers 0 ≤ r1 < r2 < r3 ≤ k such that the system
of linear equations

Ar1,r2,r3ξ = (
1, 2

5 , 1
5

)T(3.9)
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has a unique solution ξ∗ = (ξ∗
1 , ξ∗

2 , ξ∗
3 )T satisfying ξ∗

i ≥ 0,
∑3

i=1 ξ∗
i = 1. Any de-

sign with masses

ξ(Eri ) = ξ∗
i , i = 1,2,3,(3.10)

is E-optimal for the second-order response surface model (2.7).

PROOF. Let ξ denote a symmetric design and note that the moments in the
matrix M(ξ) defined in (2.10) have the representation

1 =
k∑

r=0

ξr , a =
k−1∑
r=0

arξr , b =
k−2∑
r=0

brξr ,(3.11)

where ξr = ξ(Er) is the measure of the set Er of barycenters of depth r and

ar :=
(

k − 1
r

)
2k−r , r ∈ {0, . . . , k − 1},

(3.12)

br :=
(

k − 2
r

)
2k−r , r ∈ {0, . . . , k − 2}.

By (3.11) and a remark on page 124 of Galil and Kiefer (1977a), there exist sym-
metric design ξ and three sets Er1,Er2 and Er3 such that (3.11) is satisfied for
a = 2

5 and b = 1
5 . A simple calculation shows that in this case the system of

equations in (3.11) is equivalent to (3.9), which has a unique solution because
det(A) = (r1−r2)(r1−r3)(r2−r3)

k2(k−1)
�= 0. �

It should be noted that not any solution of (3.9) will yield a vector of admissible
weights (ξr1, ξr2, ξr3) = (ξ(Er1), ξ(Er2), ξ(Er3)) (some components could be neg-
ative). Moreover, in general there exist many triples (r1, r2, r3), such that the sys-
tem (3.9) has a solution with nonnegative components and any such triple yields
to at least one symmetric E-optimal design. For example, if (r1, r2, r3) is such
a triple with corresponding solution (ξ(Er1), ξ(Er2), ξ(Er3)) of (3.9), then a de-
sign ξ which assigns masses

ωri,j = ξ
({xri,j }

) = ξ(Eri )

nri

; j = 1, . . . , nri ; i = 1,2,3;

to all points x(ri ,1) · · ·x(ri ,nri
) ∈ Eri is an E-optimal design for the second-order re-

sponse surface model (2.7) on the unit cube [−1,1]k , where nj = (k
j

)
2k−j denotes

the number of elements of the set Ej (j = 0, . . . , k). The number of support points
of such a design is given by

N(r1, r2, r3) =
3∑

i=1

(
k

ri

)
2k−ri
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and usually rather large. For this reason, it is of interest to find designs with
a minimal number of support points [see Farrell, Kiefer and Walbran (1967)
or Pesotchinsky (1975)]. A reasonable approach to this problem is to look for
E-optimal designs which are supported at only two sets of barycenters, say Er1

and Er2 . Because it can easily be shown that for a triple (r1, r2, r3) with an admis-
sible solution of (3.9) the weights ξ(Eri ) are given by

ξ(Er1) = 1

5
· 2k2 + k − 3k(r2 + r3) + 5r2r3

(r2 − r1)(r3 − r1)
, i = 1,2,3,(3.13)

it follows that symmetric E-optimal designs supported at only two sets of barycen-
ters can be obtained from the Diophantine equations

2k2 + k − 3k(s + t) + 5st = 0(3.14)

for s, t = 0, . . . , k. These equations have been solved numerically by Galil and
Kiefer (1977a) if k ≤ 25 (see Table 1 in this reference). It should be pointed here
that there does not always exist a solution of (3.14) (e.g., for k = 2,6 or 8). More-
over, in general it is not clear that a solution of (3.14) necessarily yields to an
E-optimal design with a minimal number of support points. For this reason, we
display in Table 1 the E-optimal symmetric designs with a minimal number of
support points for second-order response surface models with k ≤ 24 predictors.
For example, if k = 5, the design with a minimal number of support points in

TABLE 1
Symmetric E-optimal designs with a minimal number of support points for second-order response

surface models with k ≤ 24 predictors

k (r1, r2, r3) ξ(Er1) ξ(Er2) ξ(Er3) k (r1, r2, r3) ξ(Er1) ξ(Er2) ξ(Er3)

1 (0,1,–) 2
5

3
5 – 13 (0,9,–) 2

15
13
15 –

2 (0,1,2) 1
5

2
5

2
5 14 (0,9,14) 25

225
182
225

18
225

3 (–,1,3) – 3
5

2
5 15 (0,10,15) 3

25
21
25

1
25

4 (0,3,–) 1
5

4
5 – 16 (0,11,–) 7

55
48
55 –

5 (0,3,5) 2
15

10
15

3
15 17 (0,11,17) 18

165
136
165

11
165

6 (0,4,6) 3
20

15
20

2
20 18 (0,12,18) 7

60
51
60

2
60

7 (0,5,–) 4
25

21
25 – 19 (0,13,–) 8

65
57
65 –

8 (0,5,8) 9
75

56
75

10
75 20 (0,13,20) 49

455
380
455

26
455

9 (0,6,9) 2
15

12
15

1
15 21 (0,14,21) 4

35
30
35

1
35

10 (0,7,–) 1
7

6
7 – 22 (0,15,–) 3

25
22
25 –

11 (0,7,11) 8
70

55
70

7
70 23 (0,15,23) 32

300
253
300

15
300

12 (0,8,12) 5
40

33
40

2
40 24 (0,16,24) 9

80
69
80

2
80
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TABLE 2
Conjecture for the structure of E-optimal designs with a minimal number of support points for

second-order response surface models with k = 1,2 and k ≥ 4 predictors, where k = 3q + l and
s = 2q + l and l = 0,±1

l = +1 l = 0 l = −1

ξ(E0) ξ(Es) ξ(Ek) ξ(E0) ξ(Es) ξ(Ek) ξ(E0) ξ(Es) ξ(Ek)

1
5 · q+2

2q+1
3
5 · 3q+1

2q+1 0 1
5 · q+1

2q
3
5 · 3q−1

2q
1

5q
1
5 · q

2q−1
1
5 · (3q−1)(3q−2)

q(2q−1)
2

5q

only two sets has N(2,5) = 81 support points in the set E2 and E5 [see Galil
and Kiefer (1977a)], while the design with the minimal number of N(0,3,5) = 73
support points in the sets E0, E3 and E5.

REMARK 3.1. Based on our numerical results, we found a remarkable struc-
ture for the E-optimal designs with a minimal number of support points for the
second-order response surface model with k predictors, whenever k �= 3. The
E-optimal design for the second-order response surface model with a minimal
number of support points is always supported at the sets E0 and Ek and a third
set Es . If k = 3q + l where l = 0,±1, then s = 2q + l. The particular structure is
displayed in Table 2, which also contains the weights assigned by the E-optimal
design to these sets.

EXAMPLE 3.1. Galil and Kiefer (1977a) presented in Table 2 of their paper
E-optimal designs (obtained as limits of �p-optimal designs as p → −∞). Note
that not all designs in this class have the minimal number of support points. For
example, if k = 6 the E-optimal design obtained by Galil and Kiefer (1977a) puts
masses 0.040, 0.400 and 0.560 at the sets E0, E2 and E5, respectively, and has 316
support points. The E-optimal design obtained from Table 2 puts masses ξ(E0) =
0.15, ξ(E4) = 0.75, ξ(E6) = 0.10 and has only 125 support points.

4. E-optimal designs on the unit ball. In this section, we consider the
E-optimal design problem for the second-order response surface model on the
k-dimensional ball B2(1) = {x ∈ R

k:‖x‖2 ≤ 1}. The general strategy for the solu-
tion of the optimal design problem will be similar as the one given for the cube and
we start identifying a good candidate for the E-optimal design. If the design space
is the ball, then the sets Eri of barycenters of depth ri will be replaced by three
sets F0, Fk−1 and Fk as candidate sets for the support of E-optimal designs. Here,
F0 consists of the 2k vertices x = (± 1√

k
, . . . ,± 1√

k
)T ∈ R

k of the cube B∞(1/
√

k)

inscribed in k-dimensional ball B2(1), Fk−1 consists of the centers ±ei of the
(k − 1)-dimensional faces of B∞(1) [here ei = (0, . . . ,0,1,0, . . . ,0)T denotes the
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ith unit vector] and Fk contains only the center of the ball. Note that the cardinality
of these sets are given by

|F0| = 2k, |Fk−1| = 2k, |Fk| = 1.(4.1)

As a consequence, there is no necessity to search for the minimally supported
designs on the unit ball.

Consider a symmetric design ξ which is supported on the sets F0, Fk−1 and Fk

introduced in the previous paragraph. Its information matrix M(ξ) in the second-
order response surface model (2.1) is of the form (2.10) with corresponding eigen-
values given by (3.2) where D = [1 − (c − b) − kb]2 + 4ka2 > 0. Moreover, from
the definition of ξ we have for the entries defined in the matrix (2.10)

a = k−1ξ(F0) + k−1ξ(Fk−1),

b = k−2ξ(F0),(4.2)

c = k−2ξ(F0) + k−1ξ(Fk−1),

and it now follows that

ξ(Fk−1) = k(a − kb) = k(c − b).(4.3)

Substituting this identity into expression (3.2) for λ1 yields

λ1 = 1 + a − √
(1 − a)2 + 4ka2

2
.(4.4)

Therefore, the problem of determining an E-optimal (symmetric) design in the
class of measures supported at the sets F0, Fk−1 and Fk reduces to the maximiza-
tion of [note that a > b because otherwise by (3.3) and (4.3) we would obtain
ξ(Fk−1) = 0, hence a = b = c, which is impossible]

λmin
(
M(ξ)

) = min
{

1 + a − √
(1 − a)2 + 4ka2

2
, c − b, b

}
,(4.5)

where 0 ≤ a, b, c ≤ 1. In order to construct a good candidate, say ξ∗, for the
E-optimal information matrix we assume that for the optimal design all ele-
ments in (4.5) are identical, which yields by a straightforward calculation [ob-
serving (4.3)] for the elements in the matrix (2.10)

a = k + 1

k2 + 2k + 2
, b = 1

k2 + 2k + 2
, c = 2

k2 + 2k + 2
.(4.6)

In this case,

λmin
(
M

(
ξ∗)) = 1

k2 + 2k + 2
(4.7)

is the minimal eigenvalue of the matrix M(ξ∗) with multiplicity s = k(k+1)
2 . Since

this solution has been obtained under the constraint that the designs is supported at
the sets F0, Fk−1 and Fk and that all elements in (4.5) are identical, it is not clear
that the resulting information matrix is in fact E-optimal. In a second step, we
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establish this optimality. In order to explain the general principle, we begin with
an example.

EXAMPLE 4.1. Consider the second-order response surface model with k = 2
predictors. Thus, we have m = 6 regression functions, the minimum eigenvalue is
given by λmin = 1

10 , with multiplicity s = 3. For a corresponding orthogonal basis
in Theorem 2.1, we choose

q0 = (2,−3,−3,0,0,0)T ,

q1 = (0,−1,1,0,0,0)T ,

q2 = (0,0,0,0,0,1)T ,

which yields ‖q0‖2 = 22, ‖q1‖2 = 2, ‖q2‖2 = 1 and for the extremal polynomial

d(x, ε) = w0

‖q0‖2

(
2 − 3

2∑
j=1

x2
j

)2

+ w1

‖q1‖2

(
x2

1 − x2
2
)2 + w2

‖q2‖2 (x1x2)
2.(4.8)

The vector of weights w is identified by the condition that there must be equality
in (2.5) for the support points of the E-optimal design and the condition w0 +w1 +
w2 = 1. Using the points x(0) = (0,0)T ∈ F0 and x(1) = (1,0)T ∈ F1, we obtain

for the vector w = (11
20 , 3

20 , 6
20) and

d(x, ε) = 1

10

(
1 − 3

( 2∑
i=1

x2
i

)(
1 −

2∑
i=1

x2
i

))
= 1

10

(
1 − 3‖x‖2

2
(
1 − ‖x‖2

2
))

.

Obviously, we have for all x with ‖x‖2 ≤ 1

d(x, ε) ≤ 1

10
= λmin

(
M(ξ)

)
,

and by Theorem 2.1 any design with information matrix of the form (2.10) with
a = 3

10 , b = 1
10 , c = 2

10 is E-optimal for the second-order response surface model
on the ball.

The following result provides a similar statement in the general case. Its proof
is complicated and therefore deferred to Appendix A.2.

THEOREM 4.1. Let ξ∗ denote a symmetric design on the ball B2(1), which
puts masses

ξ(F0) = k2

k2 + 2k + 2
,

ξ(Fk−1) = k

k2 + 2k + 2
,(4.9)

ξ(Fk) = k + 2

k2 + 2k + 2



E-OPTIMAL DESIGNS FOR SECOND-ORDER MODELS 1649

at the sets F0, Fk−1 and Fk , respectively, then ξ∗ is E-optimal for the second-order
response surface model on the k-dimensional unit ball. Moreover, the minimal
eigenvalue of the matrix M(ξ∗) is given by (4.7) with multiplicity s = k(k+1)

2 and
the extremal polynomial in Theorem 2.1 can be chosen as

d(x, ε) = 1

k2 + 2k + 2

{
1 − 2(k + 1)

k
‖x‖2

2
(
1 − ‖x‖2

2
)}

.(4.10)

We conclude this section with a brief discussion of rotatable designs, which
are defined as designs for which the dispersion function U :B2(1) → R;x →
U(x, ξ) = f T (x)M−1(ξ)f (x) is invariant with respect to orthogonal transforma-
tions, that is,

U(x, ξ) = U(Ox, ξ) ∀x ∈ R
k,(4.11)

whenever O is an orthogonal k × k matrix. Note that this property is equivalent
to the fact that the function U(x, ξ) depends only of the radius ‖x‖2. The fol-
lowing result characterizes the rotatability of a symmetric design with information
matrix of the form (2.10) and will be used to investigate if E-optimal designs in
the class of all rotatable designs are also E-optimal in the class of all symmetric
designs.

LEMMA 4.1. Let ξ denote a symmetric design on the ball B2(r) of radius
r > 0 with information matrix of the form (2.10). Then the design ξ is rotatable for
the second-order response surface model, if and only if the condition

c = 3b(4.12)

is satisfied. Moreover, the uniform distribution on sphere ∂B2(r) denoted by
U(∂B2(r)) defines a rotatable design.

PROOF. Let ξ denote a design with information matrix (2.10). A simple cal-
culation shows that the inverse of the k × k upper block (3.1) of the matrix M(ξ)

is given by

M−1
11 (ξ) =

(
κ q1T

k

q1k G

)
,

where κ = (c + b(k − 1))/Q0, q = −a/Q0, Q0 = c − b + (b − a2)k, and G =
(d − e)Ik + e1k1T

k is a circulant matrix with diagonal elements d and off-diagonal
elements e defined by

e = a2 − b

(c − b)Q0
, d = Q−1

0 − e(k − 1),
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respectively. As a consequence, we obtain for the function U the representation

U(x, ξ) = f T (x)M−1(ξ)f (x)

= κ + (
a−1 + 2q

)‖x‖2
2 + (

b−1 + 2e
) k∑
i<j

(xixj )
2 + d

k∑
i=1

x4
i

= κ + (
a−1 + 2q

)‖x‖2
2 +

(
1

2b
+ e

)
‖x‖4

2 +
(
d − e − 1

2b

) k∑
i=1

x4
i .

Now the design is rotatable if and only if the function U(x, ξ) depends only on the
radius ‖x‖2, that is,

0 = d − e − (2b)−1 = (3b − c)/2b(c − b),

which proves the first part of the assertion. The second part follows by a straightfor-
ward calculation of the moments of the uniform distribution on the sphere ∂B2(r).

�

Galil and Kiefer (1977b) have determined the E-optimal rotatable designs on
the ball B2(r) for the second-order response surface model (2.7), which are given
by

ξ∗(α) = (1 − α)ξ
({0}) + αU

(
∂B2(r)

)
,

where the parameter α is defined by

α =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k(k + 1)(k + 2)

(k + 1)r4 + k(k + 2)2 , r2 ≤ k + 2,

k(r2 − 1)

r2(r2 + k − 1)
, r2 ≥ k + 2.

(4.13)

If the design space is given by the unit ball B2(1) this design is not E-optimal in
the class of all designs. In fact, the symmetric E-optimal design ξ∗ determined in
Theorem 4.1 does not satisfy condition (4.12) and is therefore not rotatable. The
minimum eigenvalue of the matrix M(ξ∗) is given by (4.7), while the minimum
eigenvalue of the E-optimal design in the class of all rotatable designs is given by

λmin
(
M

(
ξ(α)

)) = k + 1

k3 + 4k2 + 5k + 1
<

1

k2 + 2k + 2
= λmin

(
M

(
ξ∗))

.

We finally note that there exists a difference between the E- and D-optimality
criterion with respect to the property of rotatability. In contrast to the E-optimal
design, the D-optimal design for the second-order response surface model on the
ball B2(1) is also rotatable [see Kiefer (1961a)].
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APPENDIX: PROOFS OF THEOREMS 3.1 AND 4.1

A.1. Proof of Theorem 3.1. Throughout the proof, we assume k ≥ 2, the
case k = 1 has been treated in Pukelsheim and Studden (1993), for example. Re-
call the definition of the vector of regression functions (2.8) in model (2.1) and
note that for the optimal design ξ∗ under consideration we have a = 2

5 and b = 1
5

in the matrix (2.10) with minimum eigenvalue given by λmin(M(ξ∗)) = 1
5 (see

the discussion at the beginning of Section 3). Consequently, a possible candidate
q0, . . . , qs−1 for the basis of the eigenspace corresponding to λmin(M(ξ∗)) is given
by

Q = (q0, . . . , qs−1)

(A.1)
=

(
Gk×(k+1) 0k×k 0k×((k(k−1))/2)

0((k(k−1))/2)×(k+1) 0((k(k−1))/2)×k I(k(k−1))/2

)T

,

with an appropriate matrix Gk×(k+1) ∈ R
k×k+1 (here and throughout this sec-

tion 0r×s denotes the matrix with all entries given by 0). This means that the
unit vectors ei = (0, . . . ,0,1,0, . . . ,0)T are eigenvectors of the matrix M(ξ∗) for
i = 2k + 2, . . . ,m = (k+1)(k+2)

2 . It turns out that it is reasonable to use a vector of
weights, which is of the form

w = (w0,w1, . . . ,wk−1,0, . . . ,0)T ∈ R
s(A.2)

in Theorem 2.1. Observing (A.1), it then follows that for vectors of this type only
the k + 1 functions {

1, x2
1 , . . . , x2

k

}
will appear in the corresponding extremal polynomial. We now construct the re-
maining part of the orthogonal basis in (A.1) by choosing the block matrix

Gk×(k+1) =
(

k −2 −21T
k−1

0k−1 −1k−1 L

)
∈ R

k×k+1,(A.3)

where the matrix L = (Lij )
k−1
i,j=1 ∈ R

(k−1)×(k−1) is defined by

Lij =
⎧⎪⎨
⎪⎩

−1, i + j < k,
k − i, i + j = k,
0, i + j > k.

This gives for the eigenvectors q0, . . . , qk−1 [defined by the first k rows of the
matrix Q in (A.1)]

‖q0‖2 = k2 + 4k, ‖qr‖2 = (k − r)(k − r + 1), r = 1, . . . , k − 1.

With the notation bi(x) = (qT
i f (x))2, the extremal polynomial in Theorem 2.1

has the representation

d(x, ε) =
k−1∑
i=0

wibi(x),(A.4)
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where we have used (A.2) and the function b0, . . . , bk−1 are given by

b0(x) =
(
k − 2

k∑
i=1

x2
i

)2

· 1

‖q0‖2 ,

(A.5)

br(x) =
(

k−r∑
i=1

x2
i − (k − r)x2

k−r+1

)2

· 1

‖qr‖2 , r = 1, . . . , k − 1.

The coefficients wi in the polynomial (A.4) are now determined by the con-
dition d(x, ξ) = λmin(M(ξ)) = 1

5 at the points x(r) = (0, . . . ,0,1, . . . ,1)T with

‖x(r)‖1 = r and the fact that
∑k−1

i=0 wi = 1. This leads to the matrix equation

B(w0, . . . ,wk−1)
T = J0,(A.6)

where J0 = (1
5 , . . . , 1

5 ,1)T ∈ R
k and the matrix B = (Bir)

k−1,k−1
i,r=0 is a lower trian-

gular matrix with nonvanishing elements

Bir =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k

k + 4
, i = 0, r = 0,

(k − 2i)2

k2 + 4k
, i = 1, . . . , k − 2, r = 0,

(k − i)2

(k − r)(k − r + 1)
, i = 1, . . . , k − 2, r = 1, . . . , i,

1, i = k − 1, r = 0, . . . , k − 1.

A simple calculation shows (w0, . . . ,wk−1)
T = B−1J0 = 1

5k
(k + 4,4,4, . . . ,4) ∈

R
k and w = (k+4

5k
, 4

5k
, . . . , 4

5k
,0, . . . ,0)T is the vector which will be used for the

calculation of a candidate for the extremal polynomial. For this purpose, we intro-
duce the notation

αr = wr

‖qr‖2 =

⎧⎪⎪⎨
⎪⎪⎩

1

5k2 , r = 0,

4

5k(k − r + 1)(k − r)
, r = 1, . . . , k − 1,

(A.7)

and a tedious but straightforward algebra yields for the polynomial (A.4) the rep-
resentation

d(x, ε) = α0

(
k − 2

k∑
i=1

x2
i

)2

+
k−1∑
r=1

αr

(
k−r∑
i=1

x2
i − (k − r)x2

k−r+1

)2

= 1

5

(
1 − 4

k

k∑
i=1

x2
i

(
1 − x2

i

))
,
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which coincides with (3.6). As a consequence, we obtain for all x ∈ [−1,1]k
d
(
x, ξ∗) ≤ λmin

(
M

(
ξ∗)) = 1

5 ,

and by Theorem 2.1 the matrix M(ξ∗) is an E-optimal information matrix.

A.2. Proof of Theorem 4.1. The proof proceeds in a similar way as the proof
of Theorem 3.1 but differs in some essential details from it. To be precise, re-
call that for the design ξ∗ under consideration the minimal eigenvalue of its in-
formation matrix M(ξ∗) is given by λmin(M(ξ∗)) = 1

k2+2k+2
and has multiplicity

s = k(k+1)
2 . As in the proof of Theorem 3.1 we consider the matrix defined by (A.1)

as a candidate for an orthonormal basis of the corresponding eigenspace. For the
matrix Gk×(k+1) ∈ R

k×k+1, we now use

Gk×(k+1) =
(

k −(k + 1) −(k + 1)1T
k−1

0k−1 1k−1 L

)
,(A.8)

where L = (Lij )
k−1
i,j=1 ∈ R

(k−1)×(k−1) is a lower triangular matrix with nonvanish-
ing elements

Lij =
{−i, i = j ,

1, i > j .
(A.9)

Consequently, we have

‖q0‖2 = k2 + k(k + 1)2,

‖qr‖2 = r(r + 1), r = 1, . . . , k − 1,

‖qr‖2 = 1, r = k, . . . , s − 1,

and with the notation bi(x) := (f T (x)qi)
2 the candidate for the extremal polyno-

mial in (2.5) has the representation

d
(
x, ξ∗) =

s−1∑
i=0

wibi(x),(A.10)

where [recall the definition of the vector f in (2.8)]

b0(x) =
(
k − (k + 1)

k∑
i=1

x2
i

)2

· 1

‖q0‖2 ,

br(x) =
(

r∑
i=1

x2
i − rx2

r+1

)2

· 1

‖qr‖2 , r = 1, . . . , k − 1,

bk−2+i+j (x) = (xixj )
2, i = 1, . . . , k − 1; j = i + 1, . . . , k

(note that the eigenvectors corresponding to bk−2+i+j satisfy ‖qr‖ = 1).
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For determination of coordinates of the vector w, we use again the fact that
there must be equality in condition (2.5) of Theorem 2.1 for the support points
of an E-optimal design. For the point x(0) = 0 ∈ R

k , the condition d(x(0), ε) =
λmin(M(ξ∗)) and (A.10) then yields

w0 = k2 + 3k + 1

k(k2 + 2k + 2)
.(A.11)

We now try to find a candidate for the remaining weights under the additional
assumption that p1 := w1 = · · · = wk−1 and p2 := wk = · · · = ws−1. Because the
sum of all weights is 1, this gives the equality

w0 + (k − 1)p1 + k(k − 1)

2
p2 = 1.(A.12)

Finally, we use one more point x(1) = (1,0, . . . ,0)T ∈ Fk−1 in the condition
d(x(1), ξ

∗) = λmin(M(ξ∗)) to obtain the equation

w0 + p1

k−1∑
r=1

‖qr‖−2 = λmin
(
M

(
ξ∗)) = 1

k2 + 2k + 2
.(A.13)

Since
∑k−1

r=1 ‖qr‖−2 = 1 − k−1, we finally obtain from (A.11)–(A.13) for the
weights

w0 = k2 + 3k + 1

k(k2 + 2k + 2)
,

w1 = · · · = wk−1 = k + 1

k(k2 + 2k + 2)
,(A.14)

wk = · · · = ws−1 = 2(k + 1)

k(k2 + 2k + 2)
.

Substituting these expressions in (A.10) yields by a straightforward calculation

d
(
x, ξ∗) = 1

k2 + 2k + 2

(
1 − 2(k + 1)

k
‖x‖2

2
(
1 − ‖x‖2

2
))

(A.15)

as a candidate for the extremal polynomial. Obviously, we have

d
(
x, ξ∗) ≤ 1

k2 + 2k + 2
= λmin

(
M

(
ξ∗))

for all x ∈ B2(1), and by Theorem 2.1 the information matrix M(ξ∗) defined
in (2.10) with moments (4.6) is E-optimal for the second-order response surface
model on the ball.
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