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Algorithms for binary classification based on adaptive tree partitioning
are formulated and analyzed for both their risk performance and their friend-
liness to numerical implementation. The algorithms can be viewed as gen-
erating a set approximation to the Bayes set and thus fall into the general
category of set estimators. In contrast with the most studied tree-based al-
gorithms, which utilize piecewise constant approximation on the generated
partition [IEEE Trans. Inform. Theory 52 (2006) 1335–1353; Mach. Learn.
66 (2007) 209–242], we consider decorated trees, which allow us to derive
higher order methods. Convergence rates for these methods are derived in
terms the parameter α of margin conditions and a rate s of best approximation
of the Bayes set by decorated adaptive partitions. They can also be expressed
in terms of the Besov smoothness β of the regression function that governs
its approximability by piecewise polynomials on adaptive partition. The ex-
ecution of the algorithms does not require knowledge of the smoothness or
margin conditions. Besov smoothness conditions are weaker than the com-
monly used Hölder conditions, which govern approximation by nonadaptive
partitions, and therefore for a given regression function can result in a higher
rate of convergence. This in turn mitigates the compatibility conflict between
smoothness and margin parameters.

1. Introduction. A large variety of methods has been developed for classifi-
cation of randomly drawn data. Most of these fall into one of two basic categories:
set estimators or plug-in estimators. Both of these families are based on some
underlying form of approximation. In the case of set estimators, one directly ap-
proximates the Bayes set, using elements from a given family of sets. For plug-in
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estimators, one approximates the underlying regression function and builds the
classifier as a level set of this approximation.

The purpose of this paper is to introduce a family of classification algorithms
using tree-based adaptive partitioning and to analyze their risk performance as
well as their friendliness to numerical implementation. These algorithms fall into
the category of set estimators. Tree-based classification algorithms have been well
studied since their introduction in [8], and their convergence properties have been
discussed both in terms of oracle inequalities and minimax convergence estimates;
see, for example, [14] and [6]. Among the specific features of the approach fol-
lowed in our paper are (i) the use of decorated trees which allow us to derive faster
rates for certain classes of distributions than obtained when using standard trees
and (ii) a convergence analysis based on nonlinear approximation theory which
allows us to significantly weaken the usual assumptions that are made to establish
a given convergence rate. More detailed comparisons with existing methods and
results are decribed later.

We place ourselves in the following setting of binary classification. Let X ⊂ R
d ,

Y = {−1,1} and Z = X × Y . We assume that ρ = ρX(x) · ρ(y|x) is a probability
measure defined on Z. We denote by p(x) the probability that y = 1 given x and
by η(x) the regression function

η(x) := E(y|x) = p(x) − (
1 − p(x)

) = 2p(x) − 1,(1.1)

where E denotes expectation. For any set S, we use the notation

ρS := ρX(S) =
∫
S
dρX and ηS :=

∫
S
η dρX.(1.2)

A classifier returns the value y = 1 if x is in some set � ⊂ X and y = −1 oth-
erwise. Therefore, the classifier is given by a function T� = χ� − χ�c where
� is some ρX measurable set, and �c is its complement. With a slight abuse of
notation, we sometimes refer to the set � itself as the classifier. We denote by
R(�) := P{T�(x) �= y} the risk (probability of misclassification) of this classifier,
and by �∗ := {x :η(x) ≥ 0} the Bayes classifier which minimizes this risk R(�),
or equivalently, maximizes the quantity η� among all possible sets �.

We measure the performance of a classifier � by the excess risk

R(�) − R
(
�∗) =

∫
���∗

|η|dρX,(1.3)

with A�B := (A − B) ∪ (B − A) the symmetric difference between A and B .
Given the data z = (zi)

n
i=1, zi = (xi, yi), i = 1, . . . , n, drawn independently ac-

cording to ρ, a classification algorithm uses the draw to find a set �̂ = �̂(z) to
be used as a classifier. Obtaining a concrete estimate of the decay of the excess
risk for a given classification algorithm as n grows requires assumptions on the
underlying measure ρ. These conditions are usually spelled out by assuming that
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ρ is in a model class M. Model classes are traditionally formed by two ingredi-
ents: (i) assumptions on the behavior of ρ near the boundary of the Bayes set �∗
and (ii) assumptions on the smoothness of the regression function η.

Conditions that clarify (i) are called margin conditions and are an item of many
recent papers; see, for example, [13, 15]. One formulation (sometimes referred to
as the Tsybakov condition) requires that

ρX

{
x ∈ X :

∣∣η(x)
∣∣ ≤ t

} ≤ Cαtα, 0 < t ≤ 1,(1.4)

for some constant Cα > 0 and α ≥ 0. This condition becomes more stringent as α

tends to +∞. The limiting case α = ∞, known as Massart condition, means that
for some A > 0, we have |η| > A almost everywhere. A common choice for (ii) in
the classification literature (see, e.g., [2]) is that η belongs to the Hölder space Cβ .
This space can be defined for any β > 0 as the set of functions f such that∥∥�m

h f
∥∥
L∞ ≤ C|h|β, h ∈ R

d,(1.5)

where �m
h is the mth power of the finite difference operator defined by �hf =

f (·+h)−f , with m being the smallest integer such that m ≥ β . The Hölder class
may be viewed intuitively as the set of functions whose derivatives of fractional
order β belong to L∞.

An important observation is that there is a conflict between margin and smooth-
ness assumptions, in the sense that raising the smoothness β limits the range of α

in the margin condition. For example, when ρX is the Lebesgue measure on X, it is
easily checked that the constraint αβ ≤ 1 must hold as soon as the Bayes boundary
∂�∗ has nonzero (d − 1)-dimensional Hausdorff measure.

An instance of a convergence result exploiting (i) and (ii), Theorem 4.3 in [2],
is that under the assumption that the density of ρX with respect to the Lebesgue
measure is uniformly bounded, certain classifiers based on plug-in rules achieve in
expectation the rate

E
(
R(�̂) − R

(
�∗)) ≤ Cn−((1+α)β)/((2+α)β+d)(1.6)

if the margin assumption holds with parameter α, and if η belongs to the Hölder
class Cβ .

The classification algorithms that we study in this paper have natural links with
the process of approximating the regression function using piecewise constant or
piecewise polynomials on adaptive partitions, which is an instance of nonlinear
approximation. It is well known in approximation theory that, when using non-
linear methods, the smoothness condition needed to attain a specified rate can be
dramatically weakened. This state of affairs is reflected in the convergence results
for our algorithms that are given in Theorems 6.1 and 6.3. These results say that
with high probability (larger than 1 − Cn−r where r > 0 can be chosen arbitrarily
large), our classifiers achieve the rate

R(�̂) − R
(
�∗) ≤ C

(
n

logn

)−((1+α)β)/((2+α)β+d)

(1.7)
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if the margin assumption holds with parameter α and if η belongs to the Besov
space B

β∞(Lp) with p > 0 such that βp > d . This Besov space is defined by the
condition ∥∥�m

h f
∥∥
Lp

≤ C|h|β, h ∈ R
d,(1.8)

with m being an integer such that m > β and may be viewed as the set of function
whose derivatives of fractional order β belong to Lp . Notice that the constraint

βp > d ensures that B
β∞(Lp) is compactly embedded in L∞. Therefore our al-

gorithm achieves the same rate as (1.6), save for the logarithm, however, with
a significant weakening on the smoothness condition imposed on the regression
function because of the use of adaptive partitioning. In particular, an individual
regression function may have significantly higher smoothness β in this scale of
Besov spaces than in the scale of Hölder spaces, resulting in a better rate when
using our classifier.

In addition, the weaker smoothness requirement for a given convergence rate
allows us to alleviate the conflict between smoothness and margin conditions in
the sense that the constraint αβ ≤ 1 can be relaxed when using the space B

β∞(Lp);
see (6.12). Let us also observe that our risk bound in (1.7) holds in the stronger
sense of high probability, rather than expectation, and that no particular assumption
(such as equivalence with Lebesgue measure) is made on the density of ρX . Finally,
let us stress that our algorithms are numerically implementable and do not require
the a priori knowledge of the parameters α and β .

The distinction between Theorems 6.1 and 6.3 is the range of β for which they
apply. Theorem 6.1 only applies to the range β ≤ 1 and can be seen as the analog
of using piecewise constant approximation on adaptive partition for plug-in esti-
mators. On the other hand, Theorem 6.3 applies for any β ≤ 2. The gain in the
range of β results from the fact that the algorithm uses decorated trees. This cor-
responds to piecewise affine approximation for plug-in methods. In principle, one
can extend the values of β arbitrarily by using higher polynomial order decorated
trees. However, the numerical implementation of such techniques becomes more
problematic and is therefore not considered in this paper. In the regression con-
text, piecewise polynomial estimators on adaptive partitions have been considered
in [1, 3].

Set estimators aim at approximating the Bayes set �∗ by elements S from a
family of sets S in the sense of the distance defined by the excess risk. Our ap-
proach to deriving the risk bounds in Theorems 6.1 and 6.3 is by splitting this risk
into

R(�̂) − R
(
�∗) = (

R(�̂) − R(�S)
) + (

R(�S) − R
(
�∗))

,(1.9)

where �S := argminS∈S R(S) = argmaxS∈S ηS . The two terms are positive, and
are, respectively, referred to as the estimation error and approximation error. We
bound in Section 2 the estimation error by introducing a certain modulus, which
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is defined utilizing any available uniform estimate between the quantity ηS − η�S

and its empirical counterpart computed from the draw. For set estimators based on
empirical risk minimization, we show in Section 3 how margin conditions can be
used to bound this modulus, and therefore the estimation error term.

In Section 4, we turn to estimates for the approximation term. This analysis is
based on the smoothness of η and the margin condition. A typical setting when
building set classifiers is a nested sequence (Sm)m≥1 of families of sets, that is,
Sm ⊂ Sm+1, where m describes the complexity of Sm in the sense of VC dimen-
sion. The value of m achieving between the optimal balance between the esti-
mation and approximation terms depends on the parameters α and β , which are
unknown. A standard model selection procedure is discussed in Section 5 that
reaches this balance for a variety of model classes M = M(α,β) over a range of
α and β .

Many ingredients of our analysis of general classification methods appear in
earlier works; see, for example, [7, 11]. However, in our view, the organization of
the material in these sections helps clarify various issues concerning the roles of
approximation and estimation error bounds.

In Section 6, we turn to our proposed classification methods based on adaptive
partitioning. We analyze their performance using the results from the previous
sections and obtain the aforementioned Theorems 6.1 and 6.3. The implementation
and complexity of these algorithms are discussed in Section 7.

2. A general bound for the estimation error in set estimators. In view of
�∗ = argmax�⊂X η�, if η̂S is any empirical estimator for ηS , a natural way to
select a classifier within S is by

�̂ := �̂S := argmax
S∈S

η̂S.(2.1)

One of the most common strategies for building η̂S is by introducing the empirical
counterparts to (1.2),

ρ̄S := 1

n

n∑
i=1

χS(xi) and η̄S = 1

n

n∑
i=1

yiχS(xi).(2.2)

The choice η̂S = η̄S is equivalent to minimizing the empirical risk over the fam-
ily S , namely choosing

�̂S = ��S := argmin
S∈S

�R(S), �R(S) := 1

n
#
{
i :TS(xi) �= yi

}
.(2.3)

However, other choices of η̂S are conceivable, leading to other classifiers.
We give in this section a general method for bounding the estimation error,

whenever we have an empirical estimator η̂S for ηS , with a bound of the form∣∣ηS − η�S − (η̂S − η̂�S )
∣∣ ≤ en(S),(2.4)
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for each set S ∈ S . In the case where we use for η̂S the set estimators η̄S defined
in (2.2), we have the following bound.

THEOREM 2.1. For any sufficiently large constant A > 0, the following holds.
If S is a collection of ρX measurable sets S ⊂ X with finite VC dimension V := VS ,
and if

en(S) := √
ρS ��S εn + εn, εn := Amax{r + 1,V } logn

n
,(2.5)

where r > 0 is arbitrary, then there is an absolute constant C0 such that for any
n ≥ 2, with probability at least 1 − C0n

−r on the draw z ∈ Zn, we have∣∣ηS − η�S − (η̄S − η̄�S )
∣∣ ≤ en(S), S ∈ S.(2.6)

The techniques for proving this result are well known in classification, but we
cannot find any reference that give the bounds in this theorem in the above form,
and therefore we give its proof in the supplementary material [4].

REMARK 2.2. The above theorem covers, in particular, the case where S is
a finite collection of sets, since then trivially VS ≤ #S . Alternatively, in this case,
a straightforward argument using Bernstein’s inequality yields the same result with

the explicit expression εn := 10(log(#S)+r logn)
3n

and probability at least 1 − 2n−r .

To analyze the estimation error in classifiers, we define the following modulus:

ω(ρ, en) := sup
{∫

S ��S
|η| :S ∈ S and

∫
S ��S

|η| ≤ 3en(S)

}
.(2.7)

Notice that the second argument en is not a number but rather a set function. In the
next section, we discuss this modulus in some detail and bring out its relation to
other ideas used in classification, such as margin conditions. For now, we use it to
prove the following theorem.

THEOREM 2.3. Suppose that for each S ∈ S , we have that (2.4) holds with
probability 1 − δ. Then with this same probability, we have

R(�̂S) − R(�S) ≤ max
{
ω(ρ, en), a

(
�∗,S

)}
(2.8)

with a(�∗,S) := R(�S) − R(�∗) being the approximation error from (1.9).

PROOF. We consider any data z such that (2.4) holds and prove that (2.8) holds
for such z. Let S0 := �S \ �̂S and S1 := �̂S \ �S so that S0 ∪ S1 = �̂S ��S .
Notice that, in contrast to �S and �̂S , the sets S0, S1 are generally not in S . We
start from the equality

R(�̂S) − R(�S) = η�S − η�̂S = ηS0 − ηS1 .(2.9)
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We can assume that ηS0 − ηS1 > 0, since otherwise we have nothing to prove.
From the definition of �̂S , we know that η̂�S − η̂�̂S ≤ 0. Using this in conjunction
with (2.4), we obtain

ηS0 − ηS1 = η�S − η�̂S ≤ en(�̂S).(2.10)

In going further, we introduce the following notation. Given a set S ⊂ X, we denote
by S+ := S ∩ �∗ and S− := S ∩ (�∗)c. Thus η ≥ 0 on S+ and η < 0 on S−. Also
S = S+ ∪ S− and S+ ∩ S− = ∅. Hence we can write ηS0 − ηS1 = A − B , where
A := ηS+

0
− ηS−

1
≥ 0 and B := ηS+

1
− ηS−

0
≥ 0. Note that A,B ≥ 0. We consider

two cases.

Case 1. If A ≤ 2B , then

R(�̂S) − R(�S) = A − B ≤ B ≤ a
(
�∗,S

)
,(2.11)

where we have used the fact that S+
1 ⊂ �∗ \ �S and S−

0 ⊂ �S \ �∗.

Case 2. If A > 2B , then, by (2.10),∫
�̂S ��S

|η| = A + B ≤ 3A/2 ≤ 3(A − B) = 3(ηS0 − ηS1) ≤ 3en(�̂S).(2.12)

This means that �̂S is one of the sets appearing in the definition of ω(ρ, en),
and (2.8) follows in this case from the fact that

ηS0 − ηS1 = A − B ≤
∫
�̂S ��S

|η| ≤ ω(ρ, en). �

From Theorem 2.3, we immediately obtain the following corollary.

COROLLARY 2.4. Suppose that for each S ∈ S , (2.4) holds with probability
1 − δ. Then with this same probability we have

R(�̂S) − R
(
�∗) ≤ ω(ρ, en) + 2a

(
�∗,S

)
.(2.13)

REMARK 2.5. The corollary does not impose any particular assumption on
ρ and S , apart from finite VC dimension. For later comparisons with existing
results, we briefly mention how en(S) can be sharpened under additional assump-
tions on ρX . Assume that ρX is (or is equivalent to) the Lebesgue measure, and
for any arbitrary integer l ≥ 1, consider a uniform partition Q of X = [0,1]d into
m = ld cubes of side length l−1, providing the collection S of all sets S that are
unions of cubes from Q. Then, defining

en(S) := ρS ��S
√

εn where εn := 8(r + 1)m(1 + logn)

3n
,(2.14)

application of a union bound on Bernstein’s inequality to the random variable
yχ�S (x) − yχS(x) gives

P
{∣∣ηS − η̄S − (η�S − η̄�S )

∣∣ ≤ en(S) :S ∈ S
} ≥ 1 − Cn−r ,(2.15)

where C is an absolute constant depending on r .
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REMARK 2.6. Theorem 2.3 can be applied to any classification method that
is based on an estimation η̂S of ηS , once the bounds for |ηS − η�S − (η̂S − η̂�S )|
in terms of en(S) have been established for all S ∈ S . This determines ω(ρ, en)

and thereby gives a bound for the estimation error.

REMARK 2.7. The usual approach to obtaining bounds on the performance
of classifiers is to assume at the outset that the underlying measure ρ satisfies a
margin condition. Our approach is motivated by the desire to obtain bounds with
no assumptions on ρ. This is accomplished by introducing the modulus ω. As
we discuss in the following section, a margin assumption allows one to obtain
an improved bound on ω and thereby recover existing results in the literature.
Another point about our result is that we do not assume that the Bayes classifier
�∗ lies in S . In some approaches, as discussed in the survey [7], one first bounds
the estimation error under this assumption, and then later removes this assumption
with additional arguments that employ margin conditions.

3. Margin conditions. The modulus ω introduced in the previous section is
not transparent and, of course, depends on the set function en(S). However, as
we now show, for the types of en that naturally occur, the modulus is intimately
connected with margin conditions. Margin assumptions are one of the primary
ingredients in obtaining estimates on the performance of empirical classifiers. The
margin condition (1.4) recalled in the Introduction has the following equivalent
formulation: for any measurable set S, we have

ρS ≤ Cγ

(∫
S
|η|

)γ

, γ := α

1 + α
∈ [0,1](3.1)

for some constant Cγ > 0 and γ ∈ [0,1]. This condition is void when γ = 0 and
becomes more stringent as γ tends to 1. The case γ = 1 gives Massart’s condition.

In going further, we define Mα as the set of all measures ρ such that ρX satis-
fies (1.4) or equivalently (3.1), and we define

|ρ|Mα := sup
0<t≤1

t−αρX

{
x ∈ X :

∣∣η(x)
∣∣ ≤ t

}
.(3.2)

We want to bring out the connection between the modulus ω and the condi-
tion (3.1). In the definition of ω and its application to bounds on the estimation
error, we assume that we have an empirical estimator for which (2.4) holds with
probability 1 − δ. Notice that this is only assumed to hold for sets S ∈ S which is
a distinction with (3.1). We shall make our comparison first when en is of the form
en(S) = √

εnρS + εn as appears for set estimators in Theorem 2.1.
We introduce the function

φ(ρ, t) := sup∫
S |η|≤3(t+√

tρS)

∫
S
|η|, 0 < t ≤ 1,(3.3)
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where now in this definition, we allow arbitrary measurable sets S (not necessarily
from S). Under our assumption on the form of en, we have ω(ρ, en) ≤ φ(ρ, εn),
and so the decay of φ gives us a bound on the decay of ω. We say that ρ satsifies
the φ-condition of order s > 0 if

φ(ρ, t) ≤ C0t
s, 0 < t ≤ 1(3.4)

for some constants C0 and s > 0.

LEMMA 3.1. Suppose that ρ is a measure that satisfies (1.4) for a given value
of 0 ≤ α ≤ ∞. Then ρ satisfies the φ-condition (3.4) for s = 1+α

2+α
with C0 de-

pending only on Cα and α. Conversely, if ρ satisfies the φ-condition with s = 1+α
2+α

and a constant C0 > 0, then it satisfies (1.4) for the value α with the constant Cα

depending only on s and C0.

PROOF. Suppose that ρ satisfies (1.4) for α and constant Cα , which equiva-
lently means that it satisfies (3.1) for γ := α

1+α
and a constant Cγ . To check that

the φ-condition is satisfied for s = 1+α
2+α

= 1
2−γ

, we let t ∈ (0,1] be fixed and let S

be such that
∫
S |η| ≤ 3(

√
tρS + t). From (3.1),

ρS ≤ Cγ

(∫
S
|η|

)γ

≤ Cγ 3γ (
√

tρS + t)γ .(3.5)

From this, one easily derives

ρS ≤ Mtγ/(2−γ ),(3.6)

with a constant M depending only on Cγ and γ . To see this, suppose to the con-
trary that for some (arbitrarily large) constant M

ρS > Mtγ/(2−γ ).(3.7)

Rewriting (3.5) as

ρ
(2−γ )/(2γ )
S ≤ C1/γ

γ 3
(
t1/2 + tρ

−1/2
S

)
,

and using (3.7) to estimate ρS on both sides from below, we obtain

M(2−γ )/(2γ )t1/2 ≤ C1/γ
γ 3

(
t1/2 + M−1/2t (4−3γ )/(4−2γ )).

Since 0 < γ ≤ 1, we have 4−3γ
4−2γ

≥ 1
2 , which yields

t1/2 ≤ M−(2−γ )/(2γ )C1/γ
γ 3

(
1 + M−1/2)

t1/2.

When M is chosen large enough, we have M−(2−γ )/(2γ )C
1/γ
γ 3(1 + M−1/2) < 1

which is a contradiction thereby proving (3.6).
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It follows from (3.5) and (3.6) that∫
S
|η| ≤ 3(t + √

tρS) ≤ 3
(
t + Mt1/(2−γ )) ≤ C0t

1/(2−γ ),(3.8)

where C0 depends on Cγ and γ . Taking now a supremum over all such sets S gives

φ(ρ, t) ≤ C0t
s, s = 1

2 − γ
,(3.9)

which is the desired inequality.
We now prove the converse. Suppose that ρ satisfies the φ-condition of order

s = 1+α
2+α

with constant C0. We want to show that

ρX

{
x :

∣∣η(x)
∣∣ ≤ h

} ≤ Cαhα, 0 ≤ h ≤ 1,(3.10)

with Cα depending only on s and C0. As we noted before, this is equivalent to
condition (3.1) of order γ = α

α+1 . To prove (3.10), it is enough to prove

ρX

{
x :h/2 ≤ ∣∣η(x)

∣∣ ≤ h
} ≤ C′

αhα, 0 < h ≤ 1,(3.11)

since then (3.10) follows easily by a summation argument. We fix h and define
S := {x :h/2 ≤ |η(x)| ≤ h} and t := h2ρS ∈ (0,1]. Then we have∫

S
|η| ≤ hρS = √

tρS.(3.12)

This means that S is an admissible set in the definition of φ(ρ, t) in (3.3). Hence
from the φ-condition (3.4), we know

hρS/2 ≤
∫
S
|η| ≤ φ(ρ, t) ≤ C0t

s = C0
(
h2ρS

)s
.(3.13)

In other words, we have

ρS ≤ (2C0)
1/(1−s)h(2s−1)/(1−s) = (2C0)

1/(1−s)hα,(3.14)

which completes the proof. �

REMARK 3.2. The purpose of this section is to show the connection of the
modulus ω(ρ, en) with the existing and well-studied margin conditions. However,
the estimates for performance given in (2.13) can be applied without any specific
assumption such as a margin condition, which corresponds to the case γ = 0. One
could also examine other types of bounds for φ(ρ, t) than the power bound (3.4)
and obtain similar results.
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4. Bounds for the approximation error a(�∗,F). The approximation error
a(�∗,S) depends on ρ and the richness of the collection S . A typical setting starts
with a nested sequence (Sm)m≥1 of families of sets, that is such that Sm ⊂ Sm+1 for
all m ≥ 1. The particular value of m and the collection Sm that is used for a given
draw of the data depends on n and properties of ρ (such as the smoothness of η and
margin conditions) and is usually chosen through some form of model selection
as discussed further. In order to analyze the performance of such classification
algorithms, we would like to know conditions on ρ that govern the behavior of the
approximation error as m → ∞. We study results of this type in this section.

The error

am(ρ) := a
(
�∗,Sm

)
, m ≥ 1,(4.1)

is monotonically decreasing. We define the approximation class As =
As((Sm)m≥1) as the set of all ρ for which

|ρ|As := sup
m≥1

msam(ρ)(4.2)

is finite. Our goal is to understand what properties of ρ guarantee membership
in As . In this section, we give sufficient conditions for ρ to be in an approximation
classes As for both set estimators and plug-in estimators. These conditions involve
the smoothness (or approximability) of η and margin conditions.

Given a measure ρ, it determines the regression function η and the Bayes set
�∗ := {x :η(x) > 0}. We fix such a ρ, and for each t ∈ R, we define the level set
�(t) := {x :η(x) ≥ t}. Notice that �(t) ⊂ �(t ′) if t ≥ t ′. Also,{

x :
∣∣η(x)

∣∣ < t
} ⊂ �(−t) \ �(t) ⊂ {

x :
∣∣η(x)

∣∣ ≤ t
}
.(4.3)

For each m = 1,2, . . . , we define

tm := tm(ρ,Sm) := inf
{
t > 0 :∃S ∈ Sm s.t. �(t) ⊂ S ⊂ �(−t)

}
.(4.4)

For convenience, we assume that there is always an S∗
m ∈ Sm such that �(tm) ⊂

S∗
m ⊂ �(−tm). [If no such set exists then one replaces tm by tm + ε with ε > 0

arbitrarily small and arrives at the same conclusion (4.6) given below.] It follows
that

�∗ �S∗
m ⊂ �(−tm) \ �(tm).(4.5)

If ρ satisfies the margin condition (1.4), then

am(ρ) ≤
∫
�∗�S∗

m

|η|dρX ≤ Cαtm · tαm = Cαtα+1
m .(4.6)

Thus a sufficient condition for ρ to be in As is that tα+1
m ≤ Cm−s .

The following example illustrates how the margin condition (1.4) combined
with Hölder smoothness of the regression function implies that ρ belongs to the
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approximation class As where s depends on the margin and smoothness param-
eters. To be specific, let X = [0,1]d . Let D be the collection of dyadic cubes
Q contained in X, that is, cubes Q ⊂ X of the form Q = 2−j (k + [0,1]d) with
k ∈ Z

d and j ∈ Z. Let Dj , j = 0,1, . . . , be the collection of dyadic cubes of side-
length 2−j . Let S2dj be the collection of all sets of the form S� = ⋃

Q∈� Q, where
� ⊂ Dj . This corresponds to the family S considered in Remark 2.5 for m = 2jd .

In fact, #(Dj ) = 2jd and #(S2dj ) = 22jd
. We complete the family (Sm)m≥1 by set-

ting Sm = S2dj when 2dj ≤ m < 2d(j+1).

PROPOSITION 4.1. We assume that ρ has the two following properties:

(i) the regression function η is in the Lipschitz (or Hölder) space Cβ for some
0 < β ≤ 1, that is,

|η|Cβ := sup
{∣∣η(x) − η(x̃)

∣∣|x − x̃|−β :x, x̃ ∈ X
}
< ∞;

(ii) ρ satisfies the margin condition (1.4).
Then one has

ρ ∈ As = As((Sm)m≥1
)

with s := β(α + 1)

d
.(4.7)

PROOF. We claim that

a2dj (ρ) ≤ (
M2−jβ)α+1

, j ≥ 0,(4.8)

with M := 2−βdβ/2|η|Cβ . To this end, we first note that when Q ∈ Dj , and ξQ is
the center of Q, then ∣∣η(x) − η(ξQ)

∣∣ ≤ M2−jβ.(4.9)

We define Sj ∈ S2dj as the union of all Q ∈ Dj for which η(ξQ) ≥ 0. If t :=
M2−jβ , then we claim that

�(t) ⊂ Sj ⊂ �(−t), j ≥ 0.(4.10)

For example, if x ∈ �(t), then η(x) ≥ t . So, if x ∈ Q, then η(ξQ) ≥ 0 and hence
Q ⊂ Sj . Similarly, if x ∈ Q ⊂ Sj , then η(ξQ) ≥ 0 and hence η(x) ≥ −t for all
x ∈ Q, and this implies the right containment in (4.10). �

It is well known that margin and smoothness conditions are coupled, in the sense
that higher values of α force the regression function to have a sharper transition
near the Bayes boundary, therefore putting restrictions on its smoothness. As an
example, assume that ρX is bounded from below by the Lebesgue measure, that is,
there exists a constant c > 0 such that for any S ∈ S ,

ρX(S) ≥ c|S| = c

∫
S
dx.
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In the most typical setting, the Bayes boundary ∂�∗ is a (d − 1)-dimensional sur-
face of nonzero Hd−1 Hausdorff measure. If η ∈ Cβ with 0 ≤ β ≤ 1, then |η(x)|
is smaller than t at any point x which is at distance less than |η|1/β

Cβ t1/β from this
boundary. It follows that

ρX

{
x ∈ X :

∣∣η(x)
∣∣ ≤ t

} ≥ c0t
1/β,

where c0 depends on Hd−1(∂�∗) and |η|Cβ , showing that αβ ≤ 1. In such a case

the approximation rate is therefore limited by s ≤ 1+β
d

.
As observed in [2] one can break this constraint either by considering patho-

logical examples, such as regression functions that satisfy Hd−1(∂�∗) = 0, or by
considering marginal measures ρX that vanish in the vicinity of the Bayes bound-
ary. We show in Section 6 that this constraint can also be broken when the Hölder
spaces Cβ are replaced by the Besov spaces B

β∞(Lp), defined by (1.8), that govern
the approximation rate when S2dj is replaced by a collection of adaptive partitions.

5. Risk performance and model selection. In this section, we combine our
previous bounds for approximation and estimation errors in order to obtain an
estimate for risk performance of classification schemes.

Let us assume that we have a sequence (Sm)m≥1 of families Sm of sets that
are used to develop a binary classification algorithm. We suppose that for some
constant C0,

V C(Sm) ≤ C0m, m ≥ 1,(5.1)

and we denote by ��m the empirical risk minimization classifier picked in Sm ac-
cording to (2.1) with η̂S = η̄S . Theorem 2.1 gives that such an estimator provides
a bound (2.6) with

en(S) = √
ρS ��S εn + εn, εn = C

m logn

n

and C depending only on r and C0. If ρ ∈ As((Sm)m≥1), for some s > 0, then
according to Corollary 2.4, for any m ≥ 1, we have with probability 1 − n−r ,

R(��m) − R
(
�∗) ≤ ω(ρ, en) + 2|ρ|Asm−s .(5.2)

If in addition ρ satisfies the margin condition (1.4) of order α > 0, then using

Lemma 3.1 and the fact that ω(ρ, en) ≤ Cφ(ρ, εn) ≤ Cε
(1+α)/(2+α)
n , we obtain

R(��m) − R
(
�∗) ≤ C

(
m logn

n

)(1+α)/(2+α)

+ 2|ρ|Asm−s,(5.3)

where C depends on |ρ|Mα . If we balance the two terms appearing on the right
in (5.3) by taking m = ( n

logn
)(1+α)/((2+α)s+1+α), we obtain that, with probability

at least 1 − n−r ,

R(��m) − R
(
�∗) ≤ C

(
logn

n

)((1+α)s)/((2+α)s+1+α)

,(5.4)
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where C depends on |ρ|Mα and |ρ|As . The best rates that one can obtain from
the above estimate correspond to α = ∞ (Massart’s condition) and s → ∞ (the
regression function η has arbitrarily high smoothness), and are limited by the so-
called fast rate O(

logn
n

).
To obtain the bound (5.4), we need to know both s and α in order to make the

optimal choice of m and Sm. Of course, these values are not known to us, and
to circumvent this we employ a standard model selection technique based on an
independant validation sample.

Model selection. Let (Sm)m≥1 be any collection of set estimators. For nota-
tional convenience, we assume that n is even, that is, n = 2n̄. Given the draw z, we
divide z into two independent sets z′ and z′′ of equal size n̄.

Step 1. For each 1 ≤ m ≤ n̄, we let ��m be defined by (2.1) with S = Sm and z
replaced by z′.

Step 2. We now let �S := {��1, . . . ,��n̄} and let �̂ := ��m∗ be the set chosen
from �S by (2.1) when using z′′.

The set �̂ is our empirical approximation of �∗ obtained by this model selection
procedure. To see how well it performs, let us now assume that ρ ∈ As and that
ρ also satisfies the margin condition (1.4) for α. In step 1, we know that for each
m, ��m satisfies (5.3) with n replaced by n̄ with probability at least 1 − n̄−r . Thus,
with probability 1 − cn−r+1, we have

R(��m) − R
(
�∗) ≤ C

(
m−s +

(
m logn

n

)(1+α)/(2+α))
,

(5.5)
m = 1, . . . , n̄.

It follows that for �S of step 2, we have

a
(
�∗, �S) = min

1≤m≤n̄

∫
��m ��∗

|η|dρX ≤ C min
1≤m≤n̄

{
m−s +

(
m logn

n

)(1+α)/(2+α)}
.

Since #(�S) = n̄ = n/2, we can take εn ≤ C
logn

n
in Remark 2.2 and a suitable

constant C when bounding performance on �S . Hence, from Corollary 2.4, we have
for the set �̂ given by step 2,

R(�̂) − R
(
�∗) ≤ 2a

(
�∗, �S) + C

(
logn

n

)(1+α)/(2+α)

≤ C min
1≤m≤n̄

{
m−s +

(
m logn

n

)(1+α)/(2+α)}

+ C

(
logn

n

)(1+α)/(2+α)

.
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In estimating the minimum, we choose m that balances the two terms and obtain

R(�̂) − R
(
�∗) ≤ C

(
logn

n

)((1+α)s)/((2+α)s+1+α)

.(5.6)

Thus, the set �̂, while not knowing α and s gives the same estimate we obtained
earlier when assuming we knew α and s.

REMARK 5.1. Note that we have done our model selection without using a
penalty term. The use of a penalty term would have forced us to know the value
of α in (3.1). A discussion of why penalty approaches may still be of interest in
practice can be found in [5].

A simple application of (5.6) and Proposition 4.1 gives an estimate in the
general case. In the case of Remark 2.5 one has ω(ρ, en) ≤ Cε

(α+1)/2
n and

can balance the terms in the estimate corresponding to (5.6) by taking m :=
( n
(logn)1/(2+d) )

d/(2β+d). These give the following result.

COROLLARY 5.2. Let (Sm)m≥1 be the sequence of family of sets built from
uniform partitions as are used in Proposition 4.1.

(i) Assume that ρ satisfies the margin condition (1.4) of order α and that η is
Hölder continuous of order β . Then the classifier resulting from the above model
selection satisfies

Prob
{
R(��m∗) − R

(
�∗) ≤ C

(
logn

n

)((1+α)β)/((2+α)β+d)}
≥ 1 − Cn−r ,(5.7)

where C depends on r, |ρ|Mα , |η|Cβ .
(ii) If one assumes in addition that ρX is equivalent to the Lebesgue measure,

one obtains

Prob
{
R(��m∗) − R

(
�∗) ≤ C

(
(logn)1/(2+d)

n

)((1+α)β)/((2+α)β)}
(5.8)

≥ 1 − Cn−r .

Case (ii) illustrates the improvement of the rates that results from constraining
the marginal ρX . In view of our earlier comments on the conflict between mar-
gin and Hölder smoothness conditions of high order, the main deficiency of both
results is the underlying strong assumption of Hölder smoothness. The sequence
(Sm)m≥1 is based on uniform partitions and does not allow us to exploit weaker
Besov-smoothness conditions. In what follows, we remedy this defect by turning
to classification algorithms based on adaptive partitioning. In doing so, we avoid
any a priori constraints on ρX and hence use the set function en given by (2.5).
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6. Classification using tree based adaptive partitioning. One of the most
natural ways to try to capture �∗ is through adaptive partitioning. Indeed, such
partitioning methods have the flexibility to give fine scale approximation near the
boundary of �∗ but remain coarse away from the boundary. We now give two
examples. The first is based on simple dyadic tree partitioning, while the second
adds wedge ornation on the leaves of the tree to enhance risk performance. For
simplicity of presentation, we only consider dyadic partitioning on the specific
domain X = [0,1]d , even though our analysis covers far greater generality.

Algorithm I: Dyadic tree partitioning. We recall the dyadic cubes D intro-
duced in Section 4. These cubes organize themselves into a tree with root X. Each
Q ∈ Dj has 2d children which are its dyadic subcubes from Dj+1. A finite subtree
T of D is a finite collection of cubes with the property that the root X is in T , and
whenever Q ∈ T its parent is also in T . We say a tree is complete if, whenever Q

is in T , then all of its siblings are also in T . The set L(T ) of leaves of such a tree
T consists of all the cubes Q ∈ T such that no child of Q is in T . The set of all
such leaves of a complete tree forms a partition of X.

Any finite complete tree is the result of a finite number of successive cube re-
finements. We denote by Tm the collection of all complete trees T that can be ob-
tained using m refinements. Any such tree T ∈ Tm has (2d − 1)m + 1 leaves. We
can bound the number of trees in T ∈ Tm by assigning a bitstream that encodes,
that is, precisely determines, T as follows. Let T ∈ Tm. We order the children
of X lexicographically and assign a one to every child which is refined in T and a
zero otherwise. We now consider the next generation of cubes (i.e., the grandchil-
dren of X) in T . We know these grandchildren from the bits already assigned. We
arrange the grandchildren lexicographically and again assign them a one if they
are refined in T and a zero otherwise. We continue in this way and receive a bit-
stream which exactly determines T . Since T has exactly 2dm + 1 cubes, every
such bitstream has length 2dm and has a one in exactly m− 1 positions. Hence we
have

#(Tm) ≤
(

2dm

m − 1

)
≤ (2dm)m

(m − 1)! ≤ em2dm.(6.1)

For each T ∈ Tm and any � ⊂ L(T ), we define S = S� := ⋃
Q∈� Q. We denote

by Sm the collection of all such sets S that can be obtained from a T ∈ Tm and
some choice of �. Once T is chosen, there are 2#(L(T )) ≤ 22dm choices for �.
Hence

#(Sm) ≤ am(6.2)

with a := e2d+2d
.

Given our draw z, we use the set estimator and model selection over (Sm)m≥1
as described in the previous section. We discuss the numerical implementation of
this algorithm in Section 7. This results in a set ��(z), and we have the following
theorem for its performance.
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THEOREM 6.1. (i) For any r > 0, there is a constant c > 0 such that the
following holds. If ρ ∈ As , s > 0 and ρ satisfy the margin condition (1.4), then
with probability greater than 1 − cn−r+1, we have

R
(��(z)

) − R
(
�∗) ≤ C

(
logn

n

)((1+α)s)/((2+α)s+1+α)

(6.3)

with C depending only on d, r , |ρ|As and the constant in (1.4).
(ii) If η ∈ B

β∞(Lp(X)) with 0 < β ≤ 1 and p > d/β and if ρ satisfies the margin
condition (1.4), then with probability greater than 1 − cn−r+1, we have

R
(��(z)

) − R
(
�∗) ≤ C

(
logn

n

)((1+α)β)/((2+α)β+d)

,(6.4)

with C depending only on d, r , |η|
B

β∞(Lp(X))
and the constant in (1.4).

PROOF. Since log(#(Sm)) ≤ C0m where C0 depends only on d , we have that
R(�(z)) − R(�∗) is bounded by the right-hand side of (5.6) which proves (i).
We can derive (ii) from (i) if we prove that the assumptions on ρ in (ii) imply
that ρ ∈As , s = (α+1)β

d
. To see that this is the case, we consider the approx-

imation of η by piecewise constants subordinate to partitions L(T ), T ∈ Tm.
It is known (see [10]) that the Besov space assumption on η implies that there
is a tree Tm and piecewise constant ηm on L(Tm) that satisfies ‖η − ηm‖L∞ ≤
δm = C1|η|

B
β∞(Lp)

m−β/d with C1 depending on p,β and d . Let � := {Q ∈
L(Tm) :ηm(x) > 0, x ∈ Q} and �m := ⋃

Q∈�m
Q. Then �m ∈ Sm and �m ��∗ ⊂

{x : |η(x)| ≤ δm}, and so

am(ρ) ≤
∫
�m ��∗

|η|dρX ≤ Cαδα+1
m ≤ Cα

(
C1|η|

B
β∞(Lp)

)α+1
m−s,(6.5)

as desired. �

Algorithm II: Higher order methods via decorated trees. We want to remove
the restriction β ≤ 1 that appears in Theorem 6.1 by enhancing the family of sets
Sm of the previous section. This enhancement can be accomplished by choosing,
for each Q ∈ L(T ), a subcell of Q obtained by a hyperplane cut (henceforth called
an H-cell) and then taking a union of such subcells. To describe this, we note that,
given a dyadic cube Q, any (d − 1)-dimensional hyperplane H partitions Q into
at most two disjoint sets QH

0 and QH
1 which are the intersections of Q with the

two open half spaces generated by the hyperplane cut. By convention we include
Q ∩ H in QH

0 . Given a tree T ∈ Tm, we denote by ζT any mapping that assigns
to each Q ∈ L(T ) an H-cell ζT (Q). Given such a collection {ζT (Q)}Q∈L(T ), we
define

S := S(T , ζ ) := ⋃
Q∈L(T )

ζT (Q).
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For any given tree T , we let ST be the collection of all such sets that result from
arbitrary choices of ζ . For any m ≥ 1, we define

Sm := ⋃
T ∈Tm

ST .(6.6)

Thus any such S ∈ Sm is the union of H-cells of the Q ∈ L(T ), with one H-cell
chosen for each Q ∈ L(T ). Clearly Sm is infinite, however, the following lemma
shows that Sm has finite VC dimension.

LEMMA 6.2. If �1, . . . ,�N are each collections of sets from X with VC di-
mension ≤ k, then the collection � := ⋃N

i=1 �i has VC dimension not greater than
max{8 logN,4k}.

PROOF. We follow the notation of Section 9.4 in [12]. Let us consider any
set of points p1, . . . , pL from X. Then from Theorem 9.2 in [12], the shattering
number of � for this set of point satisfies

s
(
�j , {p1, . . . , pL}) ≤

k∑
i=0

(
L

i

)
=: �(k,L)

and therefore

s
(
�, {p1, . . . , pL}) ≤ N�(k,L).

By Hoeffding’s inequality, if k ≤ L/2, we have 2−L�(k,L) ≤ exp(−2Lδ2) with
δ := 1

2 − k
L

. It follows that if L > max{8 logN,4k}, we have

s
(
�, {p1, . . . , pL}) < 2LN exp(−L/8) < 2L,

which shows that VC(�) ≤ max{8 logN,4k}. �

We apply Lemma 6.2 with the role of the �j being played by the collection ST ,
T ∈ Tm. As shown in (6.1), we have N = #(Tm) ≤ em2dm. We note next that the
VC dimension of each ST is given by

VC(ST ) = (d + 1)#
(
L(T )

) ≤ (d + 1)2dm.(6.7)

In fact, given T placing d +1 points in every Q ∈ L(T ) shows that (d +1)#(L(T ))

points can be shattered since d + 1 points can be shattered by hyperplanes in R
d .

No matter how one distributes more than (d + 1)#(L(T )) points in X, at least
one Q ∈ L(T ) contains more than d + 1 points. These points can no longer be
shattered by a hyperplane which confirms (6.7). Lemma 6.2 now says that

VC(Sm) ≤ max
{
8(d + 2)m,4(d + 1)2dm

} = Cdm,(6.8)

where Cd := max{8(d + 2),4(d + 1)2d}.
Given our draw z, we use the set estimator and model selection as described in

Section 5 with Sm now given by (6.6). This results in a set ��(z), and we have the
following theorem for the performance of this estimator.
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THEOREM 6.3. (i) For any r > 0, there is a constant c > 0 such that the
following holds. If ρ ∈ As , s > 0 and ρ satisfy margin condition (1.4), then with
probability greater than 1 − cn−r+1, we have

R
(��(z)

) − R
(
�∗) ≤ C

(
logn

n

)((1+α)s)/((2+α)s+1+α)

(6.9)

with C depending only on d, r , |ρ|As and the constant in (1.4).
(ii) If η ∈ B

β∞(Lp(X)) with 0 < β ≤ 2 and p > d/β and if ρ satisfies the margin
condition (3.1), then with probability greater than 1 − cn−r+1, we have

R
(��(z)

) − R
(
�∗) ≤ C

(
logn

n

)((1+α)β)/((2+α)β+d)

,(6.10)

with C depending only on d, r , |η|
B

β∞(Lp(X))
and the constant in (1.4).

PROOF. In view of (6.8) we can invoke Theorem 2.1 with εn = Cm logn/n,
where C depends on d and r , to conclude that en(S) = √

ρS ��Sm
εn + εn satis-

fies (2.6) and hence is an admissible set function for the modulus (2.7). Now (i)
follows from (5.6).

To derive (ii) from (i), we prove that the assumptions on ρ in (ii) imply that
ρ ∈ As , s = (α+1)β

d
, for β ∈ (0,2]. To see that this is the case, we consider the

approximation of η by piecewise linear functions subordinate to partitions L(T ),
T ∈ Tm. It is known (see [9]) that the Besov space assumption on η implies that
there is a tree Tm and a piecewise linear function ηm on L(Tm) that satisfies ‖η −
ηm‖L∞ ≤ δm = C1|η|

B
β∞(Lp(X))

m−β/d . Now for any cube Q consider the H-cell

mapping ζT (Q) := {x ∈ Q :ηm(x) ≥ 0}. Then

�m := ⋃
Q∈L(T )

ζT (Q)

is in Sm and �m ��∗ ⊂ {x : |η(x)| ≤ δm} so that

am(ρ) ≤
∫
�m ��∗

|η|dρX ≤ Cαδα+1
m ≤ Cα

(
C1|η|

B
β∞(Lp)

)α+1
m−s,(6.11)

as desired. �

REMARK 6.4. It is, in theory, possible to further extend the range of β by con-
sidering more general decorated trees, where for each considered cube Q, we use
an algebraic surface A of degree k > 1 instead of a hyperplane H that corresponds
to the case k = 1. The resulting families Sm consist of level sets of piecewise poly-
nomials of degree k on adaptive partitions obtained by m splits. From this one
easily shows that the corresponding VC dimension is again controlled by m (with
multiplicative constants now depending both on d and k) and that (6.10) now holds
for all 0 < β ≤ k + 1. However, the practical implementation of such higher order
classifiers appears to be difficult.
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We have seen in Section 5 that the approximation rate for nonadaptive partition-
ing is also given by s = β(α+1)

d
, but with β denoting the smoothness of η in the

sense of the Hölder space Cβ . The results established in this section show that the
same approximation rate is obtained under the weaker constraint that η ∈ B

β∞(Lp)

with p > d/β if we use adaptive partitioning.
We also observed in Section 5 that the Hölder smoothness β and the parameter

α in the margin condition are coupled, for example, by the restriction αβ ≤ 1 when
ρX is bounded from below by the Lebesgue measure. Replacing the Hölder space
Cβ by a Besov space B

β∞(Lp) with p > d/β allows us to relax the above con-
straint. As a simple example consider the case where ρX is the Lebesgue measure
and

η(x) = η(x1, . . . , xd) = sign(x1 − 1/2)|x1 − 1/2|δ,
for some 0 < δ ≤ 1, so that �∗ = {x ∈ X :x1 > 1/2}, and margin condition (1.4)
holds with α up to 1/δ. Then one checks that η ∈ B

β∞(Lp) for β and p such that
β ≤ δ + 1/p. The constraint 1/p < β/d may then be rewritten as β(1 − 1/d) < δ

or equivalently

αβ(1 − 1/d) < 1,(6.12)

which is an improvement over αβ ≤ 1.

7. Numerical implementation. The results we have presented thus far on
adaptive partitioning do not constitute a numerical algorithm since we have not
discussed how one would find the sets ��m ∈ Sm required by (2.1) and used in the
model selection. We discuss this issue next.

Given the draw z, we consider the collection of all dyadic cubes in
D0 ∪ · · · ∪Dn̄ with n̄ = n/2 which contain an xi , i = 1, . . . , n̄. These cubes form
a tree T ′(z) which we call the occupancy tree. Adding to all such cubes their
siblings, we obtain a complete tree T (z) whose leaves form a partition of X.

Let us first discuss the implementation of Algorithm I. For each complete sub-
tree T ⊂ T (z) we define

γT := ∑
Q∈L(T )

max(η̄Q,0),(7.1)

which we call the energy in T . The set estimator ��m corresponds to a complete
tree �Tm ∈ Tm which maximizes the above energy. Note that several different trees
may attain the maximum. Since only the values m = 1, . . . , n̄ are considered in the
model selection procedure, and since there is no gain in subdividing a nonoccupied
cube, a maximizing tree is always a subtree of T (z).

Further, for each cube Q ∈ T (z), we denote by Tm(Q) the collection of all
complete trees T with root Q obtained using at most m subdivisions and being
contained in T (z). We then define

γQ,m = max
T ∈Tm(Q)

γT .(7.2)
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Again, this maximum may be attained by several trees in Tm(Q). In fact, if, for
instance, for a maximizer T ∈ Tm(Q), η̄R > 0 holds for all R ∈ C(R′) ⊂ L(T ),
the children of some parent node R′ ∈ T , then the subtree T̃ of T obtained by
removing C(R′) from T , has the same energy. We denote by T (Q,m) any tree in
Tm(Q) that attains the maximum γQ,m. By convention, we set

T (Q,m) =∅,(7.3)

when Q is not occupied. With this notation, we define

�Tm := T (X,m) and ��m := ⋃
Q∈L(�Tm)

{Q : η̄Q > 0}(7.4)

to be used in the model selection discussed earlier.
We now describe how to implement the maximization that gives �Tm and there-

fore ��m. Notice that η̄Q = γQ,m = 0 and T (Q,m) is empty when Q is not occu-
pied, and therefore these values are available to us for free. Thus the computational
work in this implementation is solely determined by the occupied cubes that form
T ′(z). For l = 0, . . . , n̄, we define

Ul := T ′(z) ∩Dn̄−l ,(7.5)

the set of occupied cubes of resolution level n̄ − l. Notice that U0 = L(T ′(z)).
We work from the leaves of T ′(z) toward the root, in a manner similar to CART
optimal pruning (see [8]), according to the following steps:

• l = 0: we compute for each Q ∈ U0 the quantities η̄Q and define γQ,0 :=
max{0, η̄Q}, T (Q,0) := {Q}. This requires at most n̄ arithmetic operations.

• For l = 1, . . . , n̄: suppose we have already determined the quantities γQ,j and
η̄Q, as well as the trees T (Q, j), for all Q ∈ Ul−1 and 0 ≤ j ≤ l − 1. Recall that
T (Q, j) is a complete subtree. Now for all 0 ≤ j ≤ l and all cubes Q ∈ Ul , we
compute

(
�∗
j (R)

)
R∈C′(Q) := argmax

{ ∑
R∈C′(Q)

γR,�′(R) :
∑

R∈C′(Q)

�′(R) = j

}
,(7.6)

where C′(Q) := C(Q) ∩ T ′(z) denotes the set of occupied children of Q. No-
tice that the above argmax may not be unique, in which case we can pick any
maximizer. We obviously have for each Q ∈ Ul and any 1 ≤ j ≤ l,

γQ,j = ∑
R∈C′(Q)

γR,�∗
j−1(R),(7.7)

with

T (Q, j) = {Q} ∪
( ⋃

R∈C′(Q)

T
(
R,�∗

j−1(R)
)) ∪ (

C(Q) \ C′(Q)
)
.

For j = 0, we compute the η̄Q for all Q ∈ Ul by summing the η̄R for R ∈ C′(Q)

and define γQ,0 = max{0, η̄Q} and T (Q,0) = {Q}.
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• At the final step l = n̄, the set Un̄ consists only of the root X, and we have
computed T (X,m) for m = 0, . . . , n̄. This provides the estimators ��m for m =
0, . . . , n̄.

To estimate the complexity of the algorithm, we need to bound for each l ∈
{1, . . . , n̄} the number of computations required by (7.6) and (7.7). With proper
organization, the argmax in (7.6) can be found using at most O(#(C′(Q))l2) oper-
ations. We can execute (7.7) with the same order of computation. The total com-
plexity over all levels is therefore at most O(n4) [a finer analysis can reduce it
to O(n3)]. Also each optimal tree T (Q,m) can be recorded with at most dm bits.
It should be noted that the complexity with respect to the data size n is indepen-
dent of the spatial dimension d which only enters when encoding the optimal trees
T (X,m).

We turn now to the implementation of Algorithm II. We denote by H the set of
all (d − 1)-dimensional hyperplanes. Using the notation therein, for any subtree T
of T (z) and any Q ∈ L(T ), the energy is now defined as

γT := ∑
Q∈L(T )

max
H∈H,i=0,1

max{0, η̄QH
i
}.(7.8)

The set estimator ��m corresponds to a tree �Tm ∈ Tm which maximizes the above
energy. Similarly to the previous discussion, we define

γQ,0 := max
H∈H,i=0,1

max{0, η̄QH
i
}(7.9)

and define as before γQ,m and T (Q,m) by (7.2) and (7.4).
The procedure of determining the trees T (X,m) for m = 0, . . . , k is then, in

principle, the same as above, however with a significant distinction due to the
search for a “best” hyperplane H = HQ that attains the maximum in (7.9). Since a
cube Q contains a finite number nQ of data, the search can be reduced to

(nQ

d

)
hy-

perplanes and the cost of computing γQ,0 is therefore bounded by nd
Q. In addition,

the search of HQ needs to be performed on every cube Q ∈ T (z), so that a crude
global bound for this cost is given by nd+2. This additional cost is affordable for
small d but becomes prohibitive in high dimension. An alternate strategy is to rely
on more affordable classifiers to produce an affine (or even higher order algebraic)
decision boundary on each Q. Examples are plug-in classifiers that are based on
least-square estimation of η on Q by a polynomial.

Acknowledgments. The authors wish to thank Stephane Gaiffas and László
Györfi for various valuable suggestions and references, as well as the anonymous
referees for their constructive comments.

SUPPLEMENTARY MATERIAL

Proof of Theorem 2.1 (DOI: 10.1214/14-AOS1234SUPP; .pdf). This supple-
ment contains the detailed proof of Theorem 2.1 [4].

http://dx.doi.org/10.1214/14-AOS1234SUPP
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