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LEAST QUANTILE REGRESSION VIA MODERN OPTIMIZATION

BY DIMITRIS BERTSIMAS AND RAHUL MAZUMDER

Massachusetts Institute of Technology and Columbia University

We address the Least Quantile of Squares (LQS) (and in particular the
Least Median of Squares) regression problem using modern optimization
methods. We propose a Mixed Integer Optimization (MIO) formulation of
the LQS problem which allows us to find a provably global optimal solution
for the LQS problem. Our MIO framework has the appealing characteristic
that if we terminate the algorithm early, we obtain a solution with a guaran-
tee on its sub-optimality. We also propose continuous optimization methods
based on first-order subdifferential methods, sequential linear optimization
and hybrid combinations of them to obtain near optimal solutions to the LQS
problem. The MIO algorithm is found to benefit significantly from high qual-
ity solutions delivered by our continuous optimization based methods. We
further show that the MIO approach leads to (a) an optimal solution for any
dataset, where the data-points (yi ,xi )’s are not necessarily in general posi-
tion, (b) a simple proof of the breakdown point of the LQS objective value
that holds for any dataset and (c) an extension to situations where there are
polyhedral constraints on the regression coefficient vector. We report compu-
tational results with both synthetic and real-world datasets showing that the
MIO algorithm with warm starts from the continuous optimization methods
solve small (n = 100) and medium (n = 500) size problems to provable opti-
mality in under two hours, and outperform all publicly available methods for
large-scale (n = 10,000) LQS problems.

1. Introduction. Consider a linear model with response y ∈ �n, model matrix
Xn×p, regression coefficients β ∈ �p and error ε ∈ �n:

y = Xβ + ε.

We will assume that X contains a column of ones to account for the intercept in
the model. Given data for the ith sample (yi,xi), i = 1, . . . , n (where, xi ∈ �p×1)
and regression coefficients β , the ith residual is given by the usual notation ri =
yi − x′

iβ for i = 1, . . . , n. The traditional Least Squares (LS) estimator given by

β̂(LS) ∈ arg min
β

n∑
i=1

r2
i(1.1)

is a popular and effective method for estimating the regression coefficients when
the error vector ε has small �2-norm. However, in the presence of outliers, the LS
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estimators do not work favorably—a single outlier can have an arbitrarily large
effect on the estimate. The robustness of an estimator vis-a-vis outliers is often
quantified by the notion of its finite sample breakdown point [Donoho and Huber
(1983), Hampel (1971)]. The LS estimate (1.1) has a limiting (in the limit n → ∞
with p fixed) breakdown point [Hampel (1971)] of zero.

The Least Absolute Deviation (LAD) estimator given by

β̂(LAD) ∈ arg min
β

n∑
i=1

|ri |(1.2)

considers the �1-norm on the residuals, thereby implicitly assuming that the error
vector ε has small �1-norm. The LAD estimator is not resistant to large deviations
in the covariates and, like the optimal LS solutions, has a breakdown point of zero
(in the limit n → ∞ with p fixed).

M-estimators [Huber (1973)] are obtained by minimizing a loss function of the
residuals of the form

∑n
i=1 ρ(ri), where ρ(r) is a symmetric function with a unique

minimum at zero. Examples include the Huber function and the Tukey func-
tion [Huber (2011), Rousseeuw and Leroy (1987)], among others. M-estimators
often simultaneously estimate the scale parameter along with the regression coef-
ficient. M-estimators too are severely affected by the presence of outliers in the
covariate space. A generalization of M-estimators are Generalized M-estimators
[Huber (2011), Rousseeuw and Leroy (1987)], which bound the influence of out-
liers in the covariate space by the choice of a weight function dampening the effect
of outlying covariates. In some cases, they have an improved finite-sample break-
down point of 1/(p + 1).

The repeated median estimator [Siegel (1982)] with breakdown point of approx-
imately 50%, was one of the earliest estimators to achieve a very high breakdown
point. The estimator however, is not equivariant under linear transformations of
the covariates.

Rousseeuw (1984) introduced Least Median of Squares (LMS) [see also
Hampel (1975)] which minimizes the median of the absolute residuals1

β̂(LMS) ∈ arg min
β

(
median
i=1,...,n

|ri |
)
.(1.3)

The LMS problem is equivariant and has a limiting breakdown point of 50%—
making it the first equivariant estimator to achieve the maximal possible break-
down point in the limit n → ∞ with p fixed.

Instead of considering the median, one may consider more generally, the qth
order statistic, which leads to the Least Quantile of Squares (LQS) estimator:

β̂(LQS) ∈ arg min
β

|r(q)|,(1.4)

1Note that the original definition of LMS [Rousseeuw (1984)] considers the squared residuals
instead of the absolute values. However, we will work with the absolute values, since the problems
are equivalent.
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where r(q) denotes the residual, corresponding to the qth ordered absolute residual:

|r(1)| ≤ |r(2)| ≤ · · · ≤ |r(n)|.(1.5)

Rousseeuw (1984) showed that if the sample points (yi,xi), i = 1, . . . , n are in
general position, that is, for any subset of I ⊂ {1, . . . , n} with |I| = p, the p × p

submatrix XI has rank p; an optimal LMS solution (1.3) exists and has a finite
sample breakdown point of (	n/2
 − p + 2)/n, where 	s
 denotes the largest in-
teger smaller than or equal to s. Rousseeuw (1984) showed that the finite sample
breakdown point of the estimator (1.3) can be further improved to achieve the max-
imum possible finite sample breakdown point if one considers the estimator (1.4)
with q = 	n/2
+	(p+1)/2
. The LMS estimator has low efficiency [Rousseeuw
(1984)]. This can, however, be improved by using certain post-processing methods
on the LMS estimator—the one step M-estimator of Bickel (1975) or a reweighted
least-squares estimator, where points with large values of LMS residuals are given
small weight are popular methods that are used in this vein.

Related work. It is a well recognized fact that the LMS problem is compu-
tationally demanding due to the combinatorial nature of the problem. Bernholt
(2005a) showed that computing an optimal LMS solution is NP-hard.

Many algorithms based on different approaches have been proposed for the
LMS problem over the past thirty years. State of the art algorithms, however, fail
to obtain a global minimum of the LMS problem for problem sizes larger than
n = 50,p = 5. This severely limits the use of LMS for important real world mul-
tivariate applications, where n can easily range in the order of a few thousands.
It goes without saying that a poor local minimum for the LMS problem may be
misleading from a statistical inference point of view [see also Stromberg (1993)
and references therein for related discussions on this matter]. The various algo-
rithms presented in the literature for the LMS can be placed into two very broad
categories. One approach computes an optimal solution to the LMS problem using
geometric characterizations of the fit—they typically rely on complete enumera-
tion and have complexity O(np). The other approach gives up on obtaining an
optimal solution and resorts to heuristics and/or randomized algorithms to obtain
approximate solutions to the LMS problem. These methods, to the best of our
knowledge, do not provide certificates about the quality of the solution obtained.
We describe below a brief overview of existing algorithms for LMS.

Among the various algorithms proposed in the literature for the LMS prob-
lem, the most popular seems to be PROGRESS (Program for Robust Re-
gression) [Rousseeuw and Hubert (1997), Rousseeuw and Leroy (1987)]. The
algorithm does a complete enumeration of all p-subsets of the n sample points,
computes the hyperplane passing through them and finds the configuration leading
to the smallest value of the objective. The algorithm has a run-time complexity
of O(np) and assumes that the data points are in general position. For compu-
tational scalability, heuristics that randomly sample subsets are often used. See
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also Barreto and Maharry (2006) for a recent work on algorithms for the bivariate
regression problem.

Steele and Steiger (1986) proposed exact algorithms for LMS for p = 2 with
complexity O(n3) and some probabilistic speed-up methods with complexity
O((n log(n))2).

Stromberg (1993) proposed an exact algorithm for LMS with run-time
O(n(p+2) log(n)) using some insightful geometric properties of the LMS fit. This
method does a brute force search among

( n
p+1

)
different regression coefficient val-

ues and scales up to problem sizes n = 50 and p = 5.
Agullo (1997) proposed a finite branch and bound technique with run-time com-

plexity O(np+2) to obtain an optimal solution to the LMS problem motivated by
the work of Stromberg (1993). The algorithm showed superior performance com-
pared to methods preceding it and can scale up to problem sizes n ≈ 70,p ≈ 4.

Erickson, Har-Peled and Mount (2006) give an exact algorithm with run-time
O(np log(n)) for LMS and also show that computing an optimal LMS solution
requires O(np) time. For the two-dimensional case p = 2, Souvaine and Steele
(1987) proposed an exact algorithm for LMS with complexity O(n2) using the
topological sweep-line technique.

Giloni and Padberg (2002) propose integer optimization formulations for the
LMS problem, however, no computational experiments are reported—the practical
performance of the proposed method thus remains unclear.

Mount et al. (2007) present an algorithm based on branch and bound for p = 2
for computing approximate solutions to the LMS problem. Mount et al. (2000)
present a quantile approximation algorithm with approximation factor ε with com-
plexity O(n log(n)+ (1/ε)O(p)). Chakraborty and Chaudhuri (2008) present prob-
abilistic search algorithms for a class of problems in robust statistics. Nunkesser
and Morell (2010) describe computational procedures based on heuristic search
strategies using evolutionary algorithms for some robust statistical estimation
problems including LMS. Hawkins (1993) proposes a probabilistic algorithm for
LMS known as the “Feasible Set Algorithm” capable of solving problems up to
sizes n = 100,p = 3.

Bernholt (2005b) describes a randomized algorithm for computing the LMS
running in O(np) time and O(n) space, for fixed p. Olson (1997) describes an
approximation algorithm to compute an optimal LMS solution within an approx-
imation factor of two using randomized sampling methods—the method has (ex-
pected) run-time complexity of O(np−1 log(n)).

Related approaches in robust regression. Other estimation procedures that
achieve a high breakdown point and good statistical efficiency include the least
trimmed squares estimator [Rousseeuw (1984), Rousseeuw and Leroy (1987)],
which minimizes the sum of squares of the q smallest squared residuals. Another
popular approach is based on S-estimators [Rousseeuw (1984), Rousseeuw and
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Leroy (1987)], which are a type of M-estimators of scale on the residuals. These
estimation procedures like the LMS estimator are NP-hard [Bernholt (2005a)].

We refer the interested reader to Hubert, Rousseeuw and Van Aelst (2008) for a
nice review of various robust statistical methods and their applications [Meer et al.
(1991), Rousseeuw et al. (2006), Stewart (1999)].

What this paper is about. In this paper, we propose a computationally tractable
framework to compute a globally optimal solution to the LQS problem (1.4),
and in particular the LMS problem via modern optimization methods: first-order
methods from continuous optimization and mixed integer optimization (MIO),
see Bertsimas and Weismantel (2005). Our view of computational tractability is
not polynomial time solution times as these do not exist for the LQS problem un-
less P = NP. Rather it is the ability of a method to solve problems of practical
interest in times that are appropriate for the application addressed. An important
advantage of our framework is that it easily adapts to obtain solutions to more
general variants of (1.4) under polyhedral constraints, that is,

minimize
β

|r(q)|, subject to Aβ ≤ b,(1.6)

where Am×p,bm×1 are given parameters in the problem representing side con-
straints on the variable β and “≤” denotes component wise inequality. This is
useful if one would like to incorporate some form of regularization on the β co-
efficients, for example, �1 regularization [Tibshirani (1996)] or generalizations
thereof.

Contributions. Our contributions in this paper may be summarized as fol-
lows:

(1) We use MIO to find a provably optimal solution to the LQS problem. Our
framework has the appealing characteristic that if we terminate the algorithm early,
we obtain a solution with a guarantee on its suboptimality. We further show that
the MIO approach leads to an optimal solution for any dataset where the data-
points (yi,xi)’s are not necessarily in general position. Our framework enables
us to provide a simple proof of the breakdown point of the LQS objective value,
generalizing the existing results for the problem. Furthermore, our approach is
readily generalizable to problems of the type (1.6).

(2) We introduce a variety of solution methods based on modern continuous
optimization—first-order subdifferential based minimization, sequential linear op-
timization and a hybrid version of these two methods that provide near optimal
solutions for the LQS problem. The MIO algorithm is found to significantly bene-
fit from solutions obtained by the continuous optimization methods.

(3) We report computational results with both synthetic and real-world datasets
that show that the MIO algorithm with warm starts from the continuous optimiza-
tion methods solve small (n = 100) and medium (n = 500) size LQS problems
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to provable optimality in under two hours, and outperform all publicly available
methods for large-scale (n = 10,000) LQS problems, but without showing prov-
able optimality in under two hours of computation time.

Structure of the paper. The paper is organized as follows. Section 2 describes
MIO approaches for the LQS problem. Section 3 describes continuous optimiza-
tion based methods for obtaining local minimizers of the LQS problem. Section 4
describes properties of an optimal LQS solution. Section 5 describes computa-
tional results and experiments. The last section contains our key conclusions.

2. Mixed integer optimization formulation. In this section, we present an
exact MIO formulation for the LQS problem. For the sake of completeness, we will
first introduce the definition of a linear MIO problem. The generic MIO framework
concerns the following optimization problem:

minimize c′α + d′θ ,

Aα + Bθ ≥ b,
(2.1)

α ∈ �n+,

θ ∈ {0,1}m,

where c ∈ �n,d ∈ �m,A ∈ �k×n,B ∈ �k×m,b ∈ �k are the given parameters of
the problem; �n+ denotes the nonnegative n-dimensional orthant, the symbol ≥
denotes element-wise inequalities and we optimize over both continuous (α) and
discrete (θ ) variables. For background on MIO, see Bertsimas and Weismantel
(2005).

Consider a list of n numbers |r1|, . . . , |rn|, with the ordering described in (1.5).
To model the sorted qth residual, that is, |r(q)|, we need to express the fact that
ri ≤ |r(q)| for q many residuals |ri |’s from |r1|, . . . , |rn|. To do so, we introduce
the binary variables zi , i = 1, . . . , n with the interpretation

zi =
{

1, if |ri | ≤ |r(q)|,
0, otherwise.

(2.2)

We further introduce auxiliary continuous variables μi, μ̄i ≥ 0, such that

|ri | − μi ≤ |r(q)| ≤ |ri | + μ̄i, i = 1, . . . , n,(2.3)

with the conditions

if |ri | ≥ |r(q)|, then μ̄i = 0,μi ≥ 0 and
(2.4)

if |ri | ≤ |r(q)|, then μi = 0, μ̄i ≥ 0.



2500 D. BERTSIMAS AND R. MAZUMDER

We thus propose the following MIO formulation:

minimize γ,

subject to |ri | + μ̄i ≥ γ, i = 1, . . . , n,

γ ≥ |ri | − μi, i = 1, . . . , n,

Muzi ≥ μ̄i, i = 1, . . . , n,

M�(1 − zi) ≥ μi, i = 1, . . . , n,(2.5)
n∑

i=1

zi = q,

μi ≥ 0, i = 1, . . . , n,

μ̄i ≥ 0, i = 1, . . . , n,

zi ∈ {0,1}, i = 1, . . . , n,

where, γ, zi,μi, μ̄i , i = 1, . . . , n are the optimization variables, Mu,M� are the
so-called Big-M constants. Let us denote the optimal solution of problem (2.5),
which depends on M�,Mu, by γ ∗. Suppose we consider Mu,M� ≥ maxi |r(i)|—it
follows from formulation (2.5) that q of the μi ’s are zero. Thus, γ ∗ has to be larger
than at least q of the |ri | values. By arguments similar to the above, we see that,
since (n − q) of the zi ’s are zero, at least (n − q) many μ̄i’s are zero. Thus, γ ∗
is less than or equal to at least (n − q) many of the |ri |, i = 1, . . . , n values. This
shows that γ ∗ is indeed equal to |r(q)|, for Mu,M� sufficiently large.

We found in our experiments that, in formulation (2.5), if zi = 1, then μ̄i = Mu

and if zi = 0 then μi = M�. Though this does not interfere with the definition
of |r(q)|, it creates a difference in the strength of the MIO formulation. We describe
below how to circumvent this shortcoming.

From (2.4), it is clear that μ̄iμi = 0, ∀i = 1, . . . , n. The constraint μ̄iμi = 0
can be modeled via integer optimization using Specially Ordered Sets of type 1
[Bertsimas and Weismantel (2005)], that is, SOS-1 constraints as follows:

μiμ̄i = 0 ⇐⇒ (μi, μ̄i) : SOS-1,(2.6)

for every i = 1, . . . , n. In addition, observe that, for M� sufficiently large and every
i ∈ {1, . . . , n} the constraint M�(1 − zi) ≥ μi ≥ 0 can be modeled2 by a SOS-1
constraint—(μi, zi) : SOS-1. In light of this discussion, we see that

|ri | − |r(q)| = μi − μ̄i, (μi, μ̄i) : SOS-1.(2.7)

2To see why this is true, observe that (μi, zi) : SOS-1 is equivalent to μizi = 0. Now, since
zi ∈ {0,1}, we have the following possibilities: zi = 0, in which case μi is free; if zi = 1, then
μi = 0.



LEAST QUANTILE REGRESSION 2501

We next show that |r(q)| ≥ μ̄i and μi ≤ |ri | for all i = 1, . . . , p. When |ri | ≤ |r(q)|,
it follows from the above representation that

μi = 0 and μ̄i = |r(q)| − |ri | ≤ |r(q)|.
When |ri | > |r(q)|, it follows that μ̄i = 0. Thus, it follows that 0 ≤ μ̄i ≤ |r(q)| for
all i = 1, . . . , n. It also follows by a similar argument that 0 ≤ μi ≤ |ri | for all i.

Thus, by using SOS-1 type of constraints, we can avoid the use of Big-M’s
appearing in formulation (2.5), as follows:

minimize γ,

subject to |ri | − γ = μi − μ̄i, i = 1, . . . , n,

n∑
i=1

zi = q,

γ ≥ μ̄i, i = 1, . . . , n,

μ̄i ≥ 0, i = 1, . . . , n,(2.8)

μi ≥ 0, i = 1, . . . , n,

(μ̄i,μi) : SOS-1, i = 1, . . . , n,

(zi,μi) : SOS-1, i = 1, . . . , n,

zi ∈ {0,1}, i = 1, . . . , n.

Note, however, that the constraints

|ri | − γ = μi − μ̄i, i = 1, . . . , n(2.9)

are not convex in r1, . . . , rn. We thus introduce the following variables r+
i , r−

i ,
i = 1, . . . , n such that

r+
i + r−

i = |ri |, yi − x′
iβ = r+

i − r−
i ,

(2.10)
r+
i ≥ 0, r−

i ≥ 0, r+
i r−

i = 0, i = 1, . . . , n.

The constraint r+
i r−

i = 0 can be modeled via SOS-1 constraints(
r+
i , r−

i

)
: SOS-1 for every i = 1, . . . , n.

This leads to the following MIO for the LQS problem that we use in this paper:

minimize γ,

subject to r+
i + r−

i − γ = μ̄i − μi, i = 1, . . . , n,

r+
i − r−

i = yi − x′
iβ, i = 1, . . . , n,

n∑
i=1

zi = q,(2.11)
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FIG. 1. Figure showing the typical evolution of the MIO formulation (2.11) for the “Alcohol”
dataset with n = 44, q = 31 with p = 5 (left panel) and p = 7 (right panel). Global solutions for
both the problems are found quite quickly in both examples, but it takes longer to certify global
optimality via the lower bounds. As expected, the time taken for the MIO to certify convergence to
the global optimum increases with increasing p.

γ ≥ μi ≥ 0, i = 1, . . . , n,

μi ≥ 0, i = 1, . . . , n,

μ̄i ≥ 0, i = 1, . . . , n,

r+
i ≥ 0, r−

i ≥ 0, i = 1, . . . , n,

(μ̄i,μi) : SOS-1, i = 1, . . . , n,(
r+
i , r−

i

)
: SOS-1, i = 1, . . . , n,

(zi,μi) : SOS-1, i = 1, . . . , n,

zi ∈ {0,1}, i = 1, . . . , n.

To motivate the reader, we show in Figure 1 an example that illustrates that the
MIO formulation (2.11) leads to a provably optimal solution for the LQS problem.
We give more details in Section 5.

3. Continuous optimization based methods. We describe two main ap-
proaches based on continuous optimization for the LQS problem. Section 3.1
presents a method based on sequential linear optimization and Section 3.2 de-
scribes a first-order subdifferential based method for the LQS problem. Section 3.3
describes hybrid combinations of the aforementioned approaches, which we have
found, empirically, to provide high quality solutions. Section 3.4 describes initial-
ization strategies for the algorithms.
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3.1. Sequential linear optimization. We describe a sequential linear optimiza-
tion approach to obtain a local minimum of problem (1.4). We first describe the
algorithm, present its convergence analysis and describe its iteration complexity.

Main description of the algorithm. We decompose the qth ordered absolute
residual as follows:

|r(q)| =
∣∣y(q) − x′

(q)β
∣∣ =

n∑
i=q

∣∣y(i) − x′
(i)β

∣∣
︸ ︷︷ ︸

Hq(β)

−
n∑

i=q+1

∣∣y(i) − x′
(i)β

∣∣
︸ ︷︷ ︸

Hq+1(β)

,(3.1)

where, we use the notation Hm(β) = ∑n
i=m |y(i) − x′

(i)β| to denote the sum of the
largest m ordered residuals |r(i)| := |y(i) − x′

(i)β|, i = 1, . . . , n in absolute value.
The function Hm(β) can be written as

Hm(β) := max
w

n∑
i=1

wi

∣∣yi − x′
iβ

∣∣

subject to
n∑

i=1

wi = n − m + 1,(3.2)

0 ≤ wi ≤ 1, i = 1, . . . , n.

Let us denote the feasible set in problem (3.2) by

Wm :=
{

w :
n∑

i=1

wi = n − m + 1,wi ∈ [0,1], i = 1, . . . , n

}
.

Observe that for every w ∈Wm the function
∑n

i=1 wi |yi −x′
iβ| is convex in β . Fur-

thermore, since Hm(β) is the point-wise supremum with respect to w over Wm,
the function Hm(β) is convex in β [see Boyd and Vandenberghe (2004)]. Equa-
tion (3.1) thus shows that |r(q)| can be written as the difference of two convex
functions, namely, Hq(β) and Hq+1(β). By taking the dual of problem (3.2) and
invoking strong duality, we have

Hm(β) = min
θ,ν

θ(n − m + 1) +
n∑

i=1

νi

subject to θ + νi ≥ ∣∣yi − x′
iβ

∣∣, i = 1, . . . , n,(3.3)

νi ≥ 0, i = 1, . . . , n.

Representation (3.2) also provides a characterization of the set of subgradients
of Hm(β):

∂Hm(β) = conv

{
n∑

i=1

−w∗
i sgn

(
yi − x′

iβ
)
xi : w∗ ∈ arg max

w∈Wm

L(β,w)

}
,(3.4)
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where L(β,w) = ∑n
i=1 wi |yi − x′

iβ| and “conv(S)” denotes the convex hull of
set S. An element of the set of subgradients (3.4) will be denoted by ∂Hm(β).

Recall that (3.1) expresses the qth ordered absolute residual as a difference
of two convex functions. Now, having expressed Hq(β) as the value of a Linear
Optimization (LO) problem (3.3) (with m = q) we linearize the function Hq+1(β).
If βk denotes the value of the estimate at iteration k, we linearize Hq+1(β) at βk

as follows:

Hq+1(β) ≈ Hq+1(βk) + 〈
∂Hq+1(βk),β − βk

〉
,(3.5)

where ∂Hq+1(βk) is a subgradient of Hq+1(βk) as defined in (3.4), with
m = (q + 1).

Combining (3.3) and (3.5), we obtain that, the minimum of problem (3.1) with
respect to β can be approximated by solving the following LO problem:

min
ν,θ,β

θ(n − q + 1) +
n∑

i=1

νi − 〈
∂Hq+1(βk),β

〉
subject to θ + νi ≥ ∣∣yi − x′

iβ
∣∣, i = 1, . . . , n,(3.6)

νi ≥ 0, i = 1, . . . , n.

Let βk+1 denote a minimizer of problem (3.6). This leads to an iterative optimiza-
tion procedure as described in Algorithm 1.

We next study the convergence properties of Algorithm 1.

Convergence analysis of Algorithm 1. In representation (3.1), we replace
Hq(β) by its dual representation (3.3) to obtain

fq(β) := min
ν,θ

F (ν, θ,β) := θ(n − q + 1) +
n∑

i=1

νi − Hq+1(β)

subject to θ + νi ≥ ∣∣yi − x′
iβ

∣∣, i = 1, . . . , n,(3.7)

νi ≥ 0, i = 1, . . . , n.

Algorithm 1 Sequential linear optimization algorithm for the LQS problem
1. Initialize with β1, and for k ≥ 1 perform the following steps 2–3 for a pre-

defined tolerance parameter “Tol.”
2. Solve the linear optimization problem (3.6) and let (νk+1, θk+1,βk+1) de-

note a minimizer.
3. If (|y(q) − x′

(q)βk| − |y(q) − x′
(q)βk+1|) ≤ Tol · |y(q) − x′

(q)βk| exit; else go to
step 2.
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Note that the minimum of problem (3.7)

min
ν,θ,β

F(ν, θ,β)

subject to θ + νi ≥ ∣∣yi − x′
iβ

∣∣, i = 1, . . . , n,(3.8)

νi ≥ 0, i = 1, . . . , n

equals to minβ fq(β), which is also the minimum of (1.4), that is, minβ fq(β) =
minβ |r(q)|. The objective function F(ν, θ,β) appearing in (3.7) is the sum of a
linear function in (ν, θ) and a concave function in β and the constraints are convex.

Note that the function

Q
(
(ν, θ,β); β̄)

(3.9)

= θ(n − q + 1) +
n∑

i=1

νi − 〈
∂Hq+1(β̄),β − β̄

〉 − Hq+1(β̄),

which is linear in the variables (ν, θ,β) is a linearization of F(ν, θ,β) at the
point β̄ . Since Hq+1(β) is convex in β , the function Q((ν, θ,β); β̄) is a majorizer
of F(ν, θ,β) for any fixed β̄ with equality holding at β̄ = β , that is,

Q
(
(ν, θ,β); β̄) ≥ F(ν, θ,β) ∀β and Q

(
(ν, θ, β̄); β̄) = F(ν, θ, β̄).

Observe that problem (3.6) minimizes the function Q((ν, θ,β);βk).
It follows that for every fixed β̄ , an optimal solution of the following linear

optimization problem:

min
ν,θ,β

Q
(
(ν, θ,β); β̄)

subject to θ + νi ≥ ∣∣yi − x′
iβ

∣∣, i = 1, . . . , n,(3.10)

νi ≥ 0, i = 1, . . . , n,

provides an upper bound to the minimum of problem (3.8), and hence the global
minimum of the LQS objective function. We now define the first-order optimality
conditions of problem (3.7).

DEFINITION 1. A point (ν∗, θ∗,β∗) satisfies the first-order optimality condi-
tions for the minimization problem (3.8) if (a) (ν∗, θ∗,β∗) is feasible for prob-
lem (3.7) and (b) (ν∗, θ∗,β∗) is a minimizer of the following LO problem:

	∗ := min
ν,θ,β

〈
∇F(ν∗, θ∗,β∗),

(
ν − ν∗
θ − θ∗
β − β∗

)〉

subject to θ + νi ≥ ∣∣yi − x′
iβ

∣∣, i = 1, . . . , n,(3.11)

νi ≥ 0, i = 1, . . . , n,

where, ∇F(ν∗, θ∗,β∗) is a subgradient of the function F(ν∗, θ∗,β∗).
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It is easy to see that, if (ν∗, θ∗,β∗) satisfies the first-order optimality conditions
as in Definition 1, then 	∗ = 0.

REMARK 1. Note that if (ν∗, θ∗,β∗) satisfies the first-order optimality condi-
tions for the minimization problem (3.8), then β∗ satisfies the first-order stationar-
ity conditions for the LQS minimization problem (1.4).

Let us define 	k as a measure of suboptimality of the tuple (νk, θk,βk) from
first-order stationary conditions, given in Definition 1

	k :=
〈
∇F(νk, θk,βk),

(
νk+1 − νk

θk+1 − θk

βk+1 − βk

)〉
,(3.12)

where {(νk, θk,βk)}k≥1 are as defined in Algorithm 1.
Note that 	k ≤ 0. If 	k = 0, then the point (νk, θk,βk) satisfies the first-order

stationary conditions. If 	k < 0, then we can improve the solution further. The
following theorem presents the rate at which 	k → 0.

THEOREM 3.1. (a) The sequence (νk, θk,βk) generated by Algorithm 1
leads to a decreasing sequence of objective values F(νk+1, θk+1,βk+1) ≤
F(νk, θk,βk), k ≥ 1 that converge to a value F∗.

(b) The measure of suboptimality {	k}K≥k≥1 admits a O(1/K) convergence
rate, that is,

F(ν1, θ1,β1) − F∗
K

≥ min
k=1,...,K

(−	k),

where F(νk, θk,βk) ↓ F∗.
(c) As K → ∞ the sequence satisfies the first-order stationary conditions as in

Definition 1 for problem (3.8).

PROOF. Part (a). Since the objective function in (3.10) is a linearization of the
concave function (3.7), Algorithm 1 leads to a decreasing sequence of objective
values:

fq(βk+1) = F(νk+1, θk+1,βk+1) ≤ F(νk, θk,βk) = fq(βk).

Thus, the sequence F(νk, θk,βk) is decreasing and bounded below, hence it
converges—we denote the limit as F∗.

Part (b). We make use of the concavity of F(ν, θ,β) which follows since it can
be written as the sum of a linear function in (ν, θ) and −Hq+1(β), which is a
concave function in β . This gives rise to the following inequality:

F(νk+1, θk+1,βk+1) − F(νk, θk,βk)
(3.13)

≤
〈
∇F(νk, θk,βk),

(
νk+1 − νk

θk+1 − θk

βk+1 − βk

)〉
.
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Considering inequality (3.13) for k = 1, . . . ,K , the notation (3.12) and adding
up the terms we have

K∑
k=1

(
F(νk, θk,βk) − F(νk+1, θk+1,βk+1)

) ≥
K∑

k=1

(−	k),(3.14)

that is,

F(ν1, θ1,β1) − F(νK+1, θK+1,βK+1) ≥ K
(

min
k=1,...,K

(−	k)
)
,(3.15)

that is,

F(ν1, θ1,β1) − F∗
K

≥
(

min
k=1,...,K

(−	k)
)
.(3.16)

In the above, while moving from line (3.15) to (3.16) we made use of the fact
that F(νK+1, θK+1,βK+1) ≥ F∗, where the decreasing sequence F(νk, θk,βk)

converges to F∗. Equation (3.16) provides a convergence rate for the algorithm.
Part (c). As K → ∞, we see that 	k → 0—corresponding to the first-order

stationarity condition (3.11). This also corresponds to a local minimum of (1.4).
This completes the proof of the theorem. �

3.2. A first-order subdifferential based algorithm for the LQS problem. Sub-
gradient descent methods have a long history in nonsmooth convex optimiza-
tion [Nesterov (2004), Shor (1985)]. If computation of the subgradients turns out to
be inexpensive, then subgradient based methods are quite effective in obtaining a
moderate accuracy solution with relatively low computational cost. For nonconvex
and nonsmooth functions, a subgradient need not exist, so the notion of a subgra-
dient needs to be generalized. For nonconvex, nonsmooth functions having certain
regularity properties (e.g., Lipschitz functions) subdifferentials exist and form a
natural generalization of subgradients [Clarke (1990)]. Algorithms based on sub-
differential information oracles [see, e.g., Shor (1985)] are thus used as natural
generalizations of subgradient methods for nonsmooth, nonconvex optimization
problems. While general subdifferential-based methods can become quite compli-
cated based on appropriate choices of the subdifferential and step-size sequences,
we propose a simple subdifferential based method for approximately minimizing
fq(β) as we describe below. Recall that fq(β) admits a representation as the dif-
ference of two simple convex functions of the form (3.1). It follows that fq(β) is
Lipschitz [Rockafellar (1996)], almost everywhere differentiable and any element
belonging to the set difference

∂fq(β) ∈ ∂Hq(β) − ∂Hq+1(β),

where, ∂Hm(β) (for m = q, q + 1) is the set of subgradients defined in (3.4); is a
subdifferential [Shor (1985)] of fq(β).
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Algorithm 2 Subdifferential based algorithm for the LQS problem
1. Initialize β1, for MaxIter ≥ k ≥ 1 do the following:
2. βk+1 = βk − αk∂fq(βk) where αk is a step-size.
3. Return min1≤k≤MaxIter fq(βk) and βk∗ at which the minimum is attained,

where k∗ = arg min1≤k≤MaxIter fq(βk).

In particular, the quantity

∂fq(β) = − sgn
(
y(q) − x′

(q)β
)
x(q)

is a subdifferential of the function fq(β) at β .
Using the definitions above, we propose a first-order subdifferential based

method for the LQS problem as described in Algorithm 2, below.
While various step-size choices are possible, we found the following simple

fixed step-size sequence to be quite useful in our experiments:

αk = 1

maxi=1,...,n ‖xi‖2
,

where, the quantity maxi=1,...,n ‖xi‖2 may be interpreted as an upper bound to the
subdifferentials of fq(β). Similar constant step-size based rules are often used in
subgradient descent methods for convex optimization.

3.3. A hybrid algorithm. Let β̂GD denote the estimate produced by Algo-
rithm 2. Since Algorithm 2 runs with a fixed step-size, the estimate β̂GD need not
be a local minimum of the LQS problem. Algorithm 1, on the other hand, delivers
an estimate β̂LO, say, which is a local minimum of the LQS objective function. We

found that if β̂GD obtained from the subdifferential method is used as a warm-start
for the sequential linear optimization algorithm, the estimator obtained improves
upon β̂GD in terms of the LQS objective value. This leads to the proposal of a
hybrid version of Algorithms 1 and 2, as presented in Algorithm 3 below.

3.4. Initialization strategies for the algorithms. Both Algorithms 1 and 2 are
sensitive to initializations β1. We run each algorithm for a prescribed number of

Algorithm 3 A hybrid algorithm for the LQS problem

1. Run Algorithm 2 initialized with β1 for MaxIter iterations. Let β̂GD be the
solution.

2. Run Algorithm 1 with β̂GD as the initial solution and Tolerance parameter
“Tol” to obtain β̂LO.

3. Return β̂LO as the solution to Algorithm 3.
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runs “RUNS” (say), and consider the solution that gives the best objective value
among them. For the initializations, we found two strategies to be quite useful.

Initialization around LAD solutions. One method is based on the LAD solu-
tion, that is, β̂(LAD) and random initializations around β̂(LAD) given by [β̂(LAD)

i −
η|β̂(LAD)

i |, β̂(LAD)
i + η|β̂(LAD)

i |], for i = 1, . . . , p, where η is a predefined number
say η ∈ {2,4}. This initialization strategy leads to β1, which we denote by the
“LAD” initialization.

Initialization around Chebyshev fits. Another initialization strategy is inspired
by a geometric characterization of the LQS solution [see Stromberg (1993) and
also Section 4]. Consider a subsample J ⊂ {1, . . . , n} of size of size (p + 1) and
the associated �∞ regression fit (also known as the Chebyshev fit) on the subsam-
ple (yi,xi ), i ∈ J given by

β̂J ∈ arg min
β

(
max
i∈J

∣∣yi − x′
iβ

∣∣).
Consider a number of random subsamples J and the associated coefficient-vector
β̂J for every J . The estimate β̂J ∗ that produces the minimum value of the LQS
objective function is taken as β1. We denote β1 chosen in this fashion as the best
Chebyshev fit or “Cheb” in short.

Algorithm 3, in our experience, was found to be less sensitive to initializations.
Experiments demonstrating the different strategies described above are discussed
in Section 5.

4. Properties of the LQS solutions for arbitrary datasets. In this sec-
tion, we prove that key properties of optimal LQS solutions hold without assum-
ing that the data (y,X) are in general position as it is done in the literature to
date [Rousseeuw (1984), Rousseeuw and Leroy (1987), Stromberg (1993)]. For
this purpose, we utilize the MIO characterization of the LQS problem. Specifi-
cally:

(1) We show in Theorem 4.1 that an optimal solution to the LQS problem (and
in particular the LMS problem) always exists, for any (y,X) and q . The theorem
also shows that an optimal LQS solution is given by the �∞ or Chebyshev regres-
sion fit to a subsample of size q from the sample (yi,xi ), i = 1, . . . , n, thereby
generalizing the results of Stromberg (1993), which require (y,X) to be in general
position.

(2) We show in Theorem 4.2 that the absolute values of some of the residuals
are equal to the optimal solution value of the LQS problem, without assuming that
the data is in general position.

(3) We show in Theorem 4.3 a new result that the breakdown point of the op-
timal value of the LQS objective is (n − q + 1)/n without assuming that the data
is in general position. For the LMS problem q = n − 	n/2
, which leads to the
sample breakdown point of LQS objective of (	n/2
 + 1)/n, independent of the
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number of covariates p. In contrast, it is known that LMS solutions have a sample
breakdown point of (	n/2
 − p + 2)/n (when the data is in general position).

THEOREM 4.1. The LQS problem is equivalent to the following:

min
β

|r(q)| = min
I∈
q

(
min

β
‖yI − XIβ‖∞

)
,(4.1)

where, 
q := {I :I ⊂ {1, . . . , n}, |I| = q} and (yI ,XI ) denotes the subsample
(yi,xi ), i ∈ I .

PROOF. Consider the MIO formulation (2.11) for the LQS problem. Let us
take a vector of binary variables z̄i ∈ {0,1}, i = 1, . . . , n with

∑
i z̄i = q , feasible

for problem (2.11). This vector z̄ := (z̄1, . . . , z̄n) gives rise to a subset I ∈ 
q

given by

I = {
i|z̄i = 1, i ∈ {1, . . . , n}}.

Corresponding to this subset I consider the subsample (yI,XI) and the associated
optimization problem

TI = min
β

‖yI − XIβ‖∞,(4.2)

and let βI be a minimizer of (4.2). Observe that z̄,βI and r̄i = yi − x′
iβI , i =

1, . . . , n is feasible for problem (2.11). Furthermore, it is easy to see that, if z is
taken to be equal to z̄, then the minimum value of problem (2.11) with respect to
the variables β and r+

i , r−
i ,μi, μ̄i for i = 1, . . . , n is given by |r̄(q)| = TI . Since

every choice of z ∈ {0,1}n with
∑

i zi = q corresponds to a subset I ∈ 
q , it
follows that the minimum value of problem (2.11) is given by the minimum value
of TI as I varies over 
q .

Note that the minimum in problem (4.1) is attained since it is a minimum over
finitely many subsets I ∈ 
q . This shows that an optimal solution to the LQS
problem always exists, without any assumption on the geometry or orientation of
the sample points (y,X). This completes the proof of the equivalence (4.1). �

COROLLARY 1. Theorem 4.1 shows that an optimal LQS solution for any
sample (y,X) is given by the Chebyshev or �∞ regression fit to a subsample of size
q from the n sample points. In particular, for every optimal LQS solution there is
a I∗ ∈ 
q such that

β̂(LQS) ∈ arg min
β

‖yI∗ − XI∗β‖∞.(4.3)

We next show that, at an optimal solution of the LQS problem, some of the abso-
lute values of the residuals are all equal to the minimum objective value of the LQS



LEAST QUANTILE REGRESSION 2511

problem, generalizing earlier work by Stromberg (1993). Note that problem (4.2)
can be written as the following linear optimization problem:

minimize
t,β

t,

(4.4)
subject to − t ≤ yi − x′

iβ ≤ t, i ∈ I∗.
The Karush Kuhn Tucker (KKT) [Boyd and Vandenberghe (2004)] optimality con-
ditions of problem (4.4) are given by∑

i∈I∗

(
ν−
i + ν+

i

) = 1,

∑
i∈I∗

(
ν−
i − ν+

i

)
xi = 0,

ν+
i

(
yi − x′

i β̂ − t∗
) = 0 ∀i ∈ I∗,(4.5)

ν−
i

(
yi − x′

i β̂ + t∗
) = 0 ∀i ∈ I∗,

ν+
i , ν−

i ≥ 0 ∀i ∈ I∗,

where β̂, t∗ are optimal solutions3 to (4.4).
Let us denote

I+ := {
i|i ∈ I∗,

∣∣ν+
i − ν−

i

∣∣ > 0
}
,(4.6)

clearly, on this set of indices at least one of ν+
i or ν−

i is nonzero, which implies
|yi − x′

i β̂| = t∗. This gives the following bound:∣∣I+∣∣ ≤ ∣∣{i ∈ I∗ :
∣∣yi − x′

i β̂
∣∣ = t∗

}∣∣.
It follows from (4.5) that |I+| > rank([xi , i ∈ I+]). We thus have∣∣{i ∈ I∗ :

∣∣yi − x′
i β̂

∣∣ = t∗
}∣∣ ≥ ∣∣I+∣∣ > rank

([
xi , i ∈ I+])

.

In particular, if the xi ’s come from a continuous distribution then with probability
one:

rank
([

xi , i ∈ I+]) = p and
∣∣{i ∈ I∗ :

∣∣yi − x′
i β̂

∣∣ = t∗
}∣∣ ≥ (p + 1).

This leads to the following theorem.

THEOREM 4.2. Let I∗ ∈ 
q denote a subset of size q which corresponds to an
optimal LQS solution (see Corollary 1). Consider the KKT optimality conditions
of the Chebyshev fit to this subsample (yI∗,XI∗) as given by (4.5). Then∣∣{i ∈ I∗ :

∣∣yi − x′
i β̂

∣∣ = t∗
}∣∣ ≥ ∣∣I+∣∣ > rank

([
xi , i ∈ I+])

,

where β̂,I+ are as defined in (4.5) and (4.6).

3We use the shorthand β̂ in place of β̂(LQS).
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4.1. Breakdown point and stability of solutions. In this section, we revisit the
notion of a breakdown point of estimators and derive sharper results for the prob-
lem without the assumption that the data is in general position. Let �(y,X) denote
an estimator based on a sample (y,X). Suppose the original sample is (y,X) and m

of the sample points have been replaced arbitrarily—let (y + 	y,X + 	X) denote
the perturbed sample. Let

α
(
m;�; (y,X)

) = sup
(	y,	X)

∥∥�(y,X) − �(y + 	y,X + 	X)
∥∥,(4.7)

denote the maximal change in the estimator under this perturbation, where ‖ · ‖
denotes the standard Euclidean norm. The finite sample breakdown point of the
estimator � is defined as follows:

η
(
�; (y,X)

) := min
m

{
m

n

∣∣∣∣α(
m;�; (y,X)

) = ∞
}
.(4.8)

We will derive the breakdown point of the minimum value of the LQS objective
function, that is, |r(q)| = |y(q) − x′

(q)β̂
(LQS)|, as defined in (3.1).

THEOREM 4.3. Let β̂(LQS) denote an optimal solution and � := �(y,X) de-
note the optimum objective value to the LQS problem for a given dataset (y,X),
where the (yi,xi)’s are not necessarily in general position. Then the finite sample
breakdown point of � is (n − q + 1)/n.

PROOF. We will first show that the breakdown point of � is strictly greater
than (n − q)/n. Suppose we have a corrupted sample (y + 	y,X + 	X), with
m = n − q replacements in the original sample. Consider the equivalent LQS for-
mulation (4.1) and let I0 denote the unchanged sample indices. Consider the inner
convex optimization problem appearing in (4.1), corresponding to the index set I0:

TI0(y + 	y,X + 	X) = min
β

‖yI0 − XI0β‖∞,(4.9)

with βI0
(y +	y,X +	X) denoting a minimizer of the convex optimization prob-

lem (4.9). Clearly, both a minimizer and the minimum objective value are finite
and neither depends upon (	y,	X). Suppose

TI∗(y + 	y,X + 	X) = min
I∈
q

TI(y + 	y,X + 	X)

denotes the minimum value of the LQS objective function corresponding to the
perturbed sample, for some I∗ ∈ 
q , then it follows that: TI∗(y + 	y,X + 	X) ≤
TI0(y + 	y,X + 	X)—which clearly implies that the quantity ‖TI0(y + 	y,X +
	X) − �‖ is bounded above and the bound does not depend upon (	y,	X). This
shows that the breakdown point of � is strictly larger than (n−q)

n
.
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We will now show that the breakdown point of the estimator is less than or equal
to (n−q +1)/n. If the number of replacements is given by m = n−q +1, then it is
easy to see that every I ∈ 
q includes a sample i0 (say) from the replaced sample
units. If (δyi0

, δ′
xi0

) denotes the perturbation corresponding to the i0th sample, then

it is easy to see that

TI(y + 	y,X + 	X) ≥ ∣∣(yi − xi0βI) + (
δyi0

− δ′
xi0

βI
)∣∣,

where βI is a minimizer for the corresponding problem (4.9) (with I0 = I). It is
possible to choose δyi0

such that the r.h.s. of the above inequality becomes arbitrar-

ily large. Thus, the finite-sample breakdown point of the estimator � is (n−q)+1
n

.
�

For the LMS problem q = n − 	n/2
, which leads to the sample breakdown
point of � of (	n/2
 + 1)/n, independent of the number of covariates p. In con-
trast, LMS solutions have a sample breakdown point of (	n/2
 − p + 2)/n. In
other words, the optimal solution value is more robust than optimal solutions to
the LMS problem.

5. Computational experiments. In this section, we perform computational
experiments demonstrating the effectiveness of our algorithms in terms of quality
of solutions obtained, scalability and speed.

All computations were done in MATLAB version R2011a on a 64-bit linux ma-
chine, with 8 cores and 32 GB RAM. For the MIO formulations we used GUROBI

[Gurobi Optimization (2013)] via its MATLAB interface.
We consider a series of examples including synthetic and real-world datasets

showing that our proposed methodology consistently finds high quality solutions
of problems of sizes up to n = 10,000 and p = 20. For moderate-large sized ex-
amples, we observed that global optimum solutions are obtained usually within a
few minutes (or even faster), but it takes longer to deliver a certificate of global
optimality. Our continuous optimization based methods enhance the performance
of the MIO formulation, the margin of improvement becomes more significant
with increasing problem sizes. In all the examples, there is an appealing common
theme—if the MIO algorithm is terminated early, the procedure provides a bound
on its suboptimality.

In Section 5.1, we describe the synthetic datasets used in our experiments. Sec-
tion 5.2 presents a deeper understanding of Algorithms 1, 2 and 3. Section 5.3
presents comparisons of Algorithms 1, 2 and 3 as well as the MIO algorithm with
state of the art algorithms for the LQS. In Section 5.4, we illustrate the performance
of our algorithms on real-world data sets. Section 5.5 discusses the evolution of
lower bounds and global convergence certificates for the problem. Section 5.6 de-
scribes scalability considerations for larger problems.
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5.1. Synthetic examples. We considered a set of synthetic examples, follow-
ing Rousseeuw and Driessen (2006). We generated the model matrix Xn×p with
i.i.d. Gaussian entries N(0,100) and took β ∈ �p to be a vector of all ones.
Subsequently, the response is generated as y = Xβ + ε, where εi ∼ N(0,10),
i = 1, . . . , n. Once (y,X) have been generated, we corrupt a certain proportion
π of the sample in two different ways:

(A) 	πn
 of the samples are chosen at random and the first coordinate of the
data matrix X, that is, x1j ’s are replaced by x1j ← x1j + 1000.

(B) 	πn
 of the samples are chosen at random out of which the covariates of
half of the points are changed as in item (A); for the remaining half of the points
the responses are corrupted as yj ← yj + 1000. In this set-up, outliers are added
in both the covariate and response spaces.

We considered seven different examples for different values of (n,p,π):

Moderate-scale: We consider four moderate-scale examples Ex-1–Ex-4:

Ex-1: Data is generated as per (B) with (n,p,π) = (201,5,0.4).
Ex-2: Data is generated as per (B) with (n,p,π) = (201,10,0.5).
Ex-3: Data is generated as per (A) with (n,p,π) = (501,5,0.4).
Ex-4: Data is generated as per (A) with (n,p,π) = (501,10,0.4).

Large-scale: We consider three large-scale examples, Ex-5–Ex-7:

Ex-5: Data is generated as per (B) with (n,p,π) = (2001,10,0.4).
Ex-6: Data is generated as per (B) with (n,p,π) = (5001,10,0.4).
Ex-7: Data is generated as per (B) with (n,p,π) = (10,001,20,0.4).

5.2. A deeper understanding of Algorithms 1, 2 and 3. For each of the syn-
thetic examples Ex-1–Ex-4, we compared the performances of the different con-
tinuous optimization based algorithms proposed in this paper—Algorithms 1, 2
and 3. For each of the Algorithms 1, 2, we considered two different initializations,
following the strategy described in Section 3.4:

(LAD) This is the initialization from the LAD solution, with η = 2 and number
of random initializations taken to be 100. This is denoted in Table 1 by the moniker
“LAD.”

(Cheb) This is the initialization from the Chebyshev fit. For every initialization,
forty different subsamples were taken to estimate β1, 100 different initializations
were considered. This method is denoted by the moniker “Cheb” in Table 1.

Algorithm 1, initialized at the “LAD” method (described above) is denoted by
Algorithm 1 (LAD), the same notation carries over to the other remaining com-
binations of Algorithms 1 and 2 with initializations “LAD” and “Cheb.” Each of
the methods Algorithms 2 (LAD) and 2 (Cheb), lead to an initialization for Algo-
rithm 3—denoted by Algorithms 3 (LAD) and 3 (Cheb), respectively.
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TABLE 1
Table showing performances of different continuous optimization based methods proposed in this paper, for examples, Ex-1–Ex-4. For every example, the
top row “Accuracy” is Relative Accuracy [see (5.1)] and the numbers inside parenthesis denotes standard errors (across the random runs); the lower row

denotes the time taken (in cpu seconds). Results are averaged over 20 different random instances of the problem. Algorithm 3 seems to be the clear
winner among the different examples, in terms of the quality of solutions obtained. Among all the algorithms considered, Algorithm 3 seems to be least

sensitive to initializations

Example (n,p,π)

q

Algorithm used

Algorithm 1 Algorithm 2 Algorithm 3

(LAD) (Cheb) (LAD) (Cheb) (LAD) (Cheb)

Ex-1 (201, 5, 0.4) Accuracy 49.399 (2.43) 0.0 (0.0) 0.233 (0.03) 0.240 (0.02) 0.0 (0.0) 0.0 (0.0)
q = 121 Time (s) 24.05 83.44 3.29 83.06 36.13 118.43

Ex-2 (201, 10, 0.5) Accuracy 43.705 (2.39) 5.236 (1.73) 1.438 (0.07) 1.481 (0.10) 0.0 (0.0) 0.0 (0.0)
q = 101 Time (s) 54.39 133.79 3.22 73.14 51.89 125.55

Ex-3 (501, 5, 0.4) Accuracy 2.897 (0.77) 0.0 (0.0) 0.249 (0.05) 0.274 (0.06) 0.0 (0.0) 0.0 (0.0)
q = 301 Time (s) 83.01 158.41 3.75 62.36 120.90 179.34

Ex-4 (501, 10, 0.4) Accuracy 8.353 (2.22) 11.926 (2.31) 1.158 (0.06) 1.083 (0.06) 0.0 0.0
q = 301 Time (s) 192.02 240.99 3.76 71.45 155.36 225.09
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In all the examples, we set the MaxIter counter for Algorithm 2 at 500 and took
the step-size sequence as described in Section 3.2. The tolerance criterion “Tol”
used in Algorithm 1 (and consequently Algorithm 3), was set to 10−4.

Results comparing these methods are summarized in Table 1. To compare the
different algorithms in terms of the quality of solutions obtained, we do the fol-
lowing. For every instance, we run all the algorithms and obtain the best solution
among them, say, f∗. If falg denotes the value of the LQS objective function for
algorithm “alg,” then we define the relative accuracy of the solution obtained by
“alg” as

Relative Accuracy = (falg − f∗)/f∗ × 100.(5.1)

To obtain the entries in Table 1, the relative accuracy is computed for every
algorithm (six in all: Algorithms 1—3, two types for each “LAD” and “Cheb”)
for every random problem instance corresponding to a particular example type;
and the results are averaged (over 20 runs). The times reported for Algorithms 1
(LAD) and 1 (Cheb) includes the times taken to perform the LAD and Chebyshev
fits, respectively. The same thing applies to Algorithms 2 (LAD) and 2 (Cheb). For
Algorithm 3 (Cheb) [resp., Algorithm 3 (LAD)], the time taken equals the time
taken by Algorithm 2 (Cheb) [resp., Algorithm 2 (LAD)] and the time taken to
perform the Chebyshev (resp., LAD) fits.

In Table 1, we see that Algorithm 2 (LAD) converges quite quickly in all the ex-
amples. The quality of the solution, however, depends upon the choice of p—for
p = 10 the algorithm converges to a lower quality solution when compared to
p = 5. The time till convergence for Algorithm 2 is less sensitive to the problem
dimensions—this is in contrast to the other algorithms, where computation times
show a monotone trend depending upon the sizes of (n,p). Algorithm 2 (Cheb)
takes more time than Algorithm 2 (LAD), since it spends a considerable amount of
time in performing multiple Chebyshev fits (to obtain a good initialization). Algo-
rithm 1 (LAD) seems to be sensitive to the type of initialization used; Algorithm 1
(Cheb) is more stable and it appears that the multiple Chebyshev initialization
guides Algorithm 1 (Cheb) to higher quality solutions. Algorithm 3 (both variants)
seem to be the clear winner among the various algorithms—this does not come as
a surprise since, intuitively it aims at combining the best features of its constituent
algorithms. Based on computation times, Algorithm 3 (LAD) outperforms Algo-
rithm 3 (Cheb), since it avoids the computational overhead of computing several
Chebyshev fits.

5.3. Comparisons: Quality of the solutions obtained. In this section, we shift
our focus from studying the detailed dynamics of Algorithms 1—3; and compare
the performances of Algorithm 3 (which seems to be the best among the algo-
rithms we propose in the paper), the MIO formulation (2.11) and state-of-the art
implementations of the LQS problem as implemented in the popular R-package
MASS (available from CRAN). For the MIO formulation (2.11), we considered two
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TABLE 2
Table showing performances of various algorithms for the LQS problem for different

moderate-scale examples as described in the text. For each example, “Accuracy” is Relative
Accuracy [see (5.1)], the numbers within brackets denote the standard errors; the lower row denotes

the averaged cpu time (in secs) taken by the algorithm. All results are averaged over 20 random
examples. The MIO formulation (2.11) warm-started with Algorithm 3 seems to be the best

performer in terms of obtaining the best solution. The combined time taken by MIO
formulation (2.11) (warm-start) and Algorithm 3 (which is used as a warm-start) equals the

run-time of MIO formulation (2.11) (cold-start)

Example (n,p,π)

q

Algorithm used

LQS
(MASS)

MIO formulation (2.11)

Algorithm 3 (Cold-start) (Warm-start)

Ex-1 (201, 5, 0.4) Accuracy 24.163 (1.31) 0.0 (0.0) 60.880 (5.60) 0.0 (0.0)
q = 121 Time (s) 0.02 36.13 71.46 35.32

Ex-2 (201, 10, 0.5) Accuracy 105.387 (5.26) 0.263 (0.26) 56.0141 (3.99) 0.0 (0.0)
q = 101 Time (s) 0.05 51.89 193.00 141.10

Ex-3 (501, 5, 0.4) Accuracy 9.677 (0.99) 0.618 (0.27) 11.325 (1.97) 0.127 (0.11)
q = 301 Time (s) 0.05 120.90 280.66 159.76

Ex-4 (501, 5, 0.4) Accuracy 29.756 (1.99) 0.341 (0.33) 27.239 (2.66) 0.0 (0.0)
q = 301 Time (s) 0.08 155.36 330.88 175.52

variations: MIO formulation (2.11) (cold-start), where the MIO algorithm is not
provided with any advanced warm-start and MIO formulation (2.11) (warm-start),
where the MIO algorithm is provided with an advanced warm-start obtained by
Algorithm 3. The times taken by MIO formulation (2.11) (warm-start) do not in-
clude the times taken by Algorithm 3, the combined times are similar to the times
taken by MIO formulation (2.11) (cold-start).

The focus here is on comparing the quality of upper bounds to the LQS problem.
We consider the same datasets used in Section 5.2 for our experiments. The results
are shown in Table 2. We see that MIO formulation (2.11) (warm-start) is the clear
winner among all the examples, Algorithm 3 comes a close second. MIO formu-
lation (2.11) (cold-start) in the absence of advanced warm-starts as provided by
Algorithm 3 requires more time to obtain high quality upper bounds. The state-of-
the art algorithm for LQS (obtained from the R-package MASS) delivers a solution
very quickly, but the solutions obtained are quite far from the global minimum.

5.4. Performance on some real-world datasets. We considered a few real-
world datasets popularly used in the context of robust statistical estimation, as
available from the R-package robustbase [Rousseeuw et al. (2013), Todorov
and Filzmoser (2009)]. We used the “Alcohol” dataset (available from the same
package), which is aimed at studying the solubility of alcohols in water to under-
stand alcohol transport in living organisms. This dataset contains physicochemical
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characteristics of n = 44 aliphatic alcohols and measurements on seven numeric
variables: SAG solvent accessible surface-bounded molecular volume (x1), log-
arithm of the octanol-water partitions coefficient (x2), polarizability (x3), molar
refractivity (x4), mass (x5), volume (x6) and the response (y) is taken to be the log-
arithm of the solubility. We consider two cases from the Alcohol dataset—the first
one has n = 44, p = 5 where the five covariates were x1, x2, x4, x5, x6; the second
example has all the six covariates and an intercept term, which leads to p = 7. We
used the MIO formulation (2.11) (cold-start) for both the cases. The evolution of
the MIO (with upper and lower bounds) for the two cases are shown in Figure 1.
As expected, the time taken for the algorithm to converge is larger for p = 7 than
for p = 5.

We considered a second dataset created by Hawkins, Bradu and Kass (1984) and
available from the R-package robustbase. The dataset consists of 75 observa-
tions in four dimensions (one response and three explanatory variables), that is,
n = 75,p = 3. We computed the LQS estimate for this example for q ∈ {60,45}.
We used both the MIO formulation (2.11) (cold-start) and MIO formulation (2.11)
(warm-start) and observed that the latter showed superior convergence speed to
global optimality (see Figure 2). As expected, the time taken for convergence was
found to increase with decreasing q-values. The results are shown in Figure 2.

5.5. Certificate of lower bounds and global optimality. The MIO formula-
tion (2.11) for the LQS problem converges to the global solution. With the aid
of advanced MIO warm-starts as provided by Algorithm 3 the MIO obtains a very
high quality solution very quickly—in most of the examples the solution thus ob-
tained, indeed turns out to be the global minimum. However, the certificate of
global optimality comes later as the lower bounds of the problem “evolve” slowly;
see, for example, Figures 1 and 2. We will now describe a regularized version of
the MIO formulation, which we found to be quite useful in speeding up the con-
vergence of the MIO algorithm without any loss in the accuracy of the solution.
The LQS problem formulation does not contain any explicit regularization on β ,
it is rather implicit (since β̂(LQS) will be generally bounded). We thus consider the
following modified version of the LQS problem (1.4):

minimize
β

|r(q)|,
(5.2)

subject to ‖β − β0‖∞ ≤ M

for some predefined β0 and M ≥ 0. If β̂M solves problem (5.2), then it is the
global minimum of the LQS problem in the �∞-ball {β :−M1 ≤ β − β0 ≤ M1}.
In particular, if β̂LQS is the solution to problem (1.4), then by choosing β0 = 0 and
M ≥ ‖β̂LQS‖∞ in (5.2); both problems (1.4) and (5.2) will have the same solution.
The MIO formulation of problem (5.2) is a very simple modification of (2.11)
with additional box-constraints on β of the form {β :−M1 ≤ β − β0 ≤ M1}. Our
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FIG. 2. Figure showing the evolution of the MIO formulation (2.11) for the HBK dataset with
different values of q with and without warm-starts. (Top row) MIO formulation warm-started with
the least squares solution (which we denote by “cold-start”), for q = 60 (left panel) and q = 45
(right panel). (Bottom row) MIO formulation warm-started with Algorithm 3 for q = 60 (left panel)
and q = 45 (right panel).

empirical investigation suggests that the MIO formulation (2.11) in presence of
box-constraints4 produces tighter lower bounds than the unconstrained MIO for-
mulation (2.11), for a given time limit. As an illustration of formulation (5.2),
see Figure 3, where we use the MIO formulation (2.11) with box constraints.
We consider two cases corresponding to M ∈ {3,40}; in both the cases we took

4Of course, a very large value of M will render the box-constraints to be ineffective.
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FIG. 3. Figure showing the effect of the bounding box for the evolution of the MIO formula-
tion (2.11) for the HBK dataset, with (n,p, q) = (75,3,45). The left panel considers a bounding
box of diameter 6 and the right panel considers a bounding box of diameter 80 centered around the
least squares solution.

β0 = β̂(LS) = (0.08,−0.36,0.43). Both these boxes (which are in fact, quite large,
given that ‖β̂(LS)‖∞ = 0.43) contains the (unconstrained) global solution for the
problem. As the figure shows, the evolution of the lower bounds of the MIO algo-
rithm toward the global optimum depends upon the radius of the box.

We argue that formulation (5.2) is a more desirable formulation—the constraint
may behave as a regularizer to shrink coefficients or if one seeks an unconstrained
LQS solution, there are effective ways to choose to β0 and M . For example, if β0
denotes the solution obtained by Algorithm 3, then for M = η‖β0‖∞, for η ∈ [1,2]
(say), the solution to (5.2) corresponds to a global optimum of the LQS problem
inside a box of diameter 2M centered at β0. For moderate sized problems with
n ∈ {201,501}, we found this strategy to be useful in certifying global optimality
within a reasonable amount of time. Figure 4 shows some examples.

5.6. Scalability to large problems. We present our findings for large-scale ex-
periments performed on synthetic and real data-set, below.

Synthetic large scale examples. For large-scale problems with n ≥ 5000 with
p ≥ 10, we found that Algorithm 1 becomes computationally demanding due to
the associated LO problems (3.6) appearing in step 2 of Algorithm 1. On the other
hand, Algorithm 2 remains computationally inexpensive. So for larger problems,
we propose using a modification of Algorithm 1—we run Algorithm 2 for sev-
eral random initializations around the β̂(LAD) solution and find the best solution
among them. The regression coefficient thus obtained is used as an initialization
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FIG. 4. Figure showing evolution of MIO in terms of upper/lower bounds (left panel) and
Optimality gaps (in %) (right panel). Top and middle rows display an instance of Ex-1 with
(n,p, q) = (201,5,121) with different initializations, that is, MIO (2.11) (cold-start) and MIO (2.11)
(warm-start), respectively. Bottom row considers an instance of Ex-3 with (n,p, q) = (501,5,301).
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TABLE 3
Table showing performances of various Algorithms for the LQS problem for different

moderate/large-scale examples as described in the text. For each example, “Accuracy” is Relative
Accuracy [see (5.1)] the numbers within brackets denote the standard errors; the lower row denotes

the averaged cpu time (in secs) taken for the algorithm. All results are averaged over 20 random
examples

Example (n,p,π)

q

Algorithm used

LQS
(MASS)

Algorithm 3
(large-scale)

MIO formulation (2.11)

(Cold-start) (Warm-start)

Ex-5 (2001, 10, 0.4) Accuracy 65.125 (2.77) 0.0 (0.0) 273.543 (16.16) 0.0 (0.0)
q = 1201 Time (s) 0.30 13.75 200 100

Ex-6 (5001, 10, 0.4) Accuracy 52.092 (1.33) 0.0 232.531 (17.62) 0.0 (0.0)
q = 3001 Time (s) 0.69 205.76 902 450.35

Ex-7 (10,001, 20, 0.4) Accuracy 146.581 (3.77) 0.0 (0.0) 417.591 (4.18) 0.0 (0.0)
q = 6001 Time (s) 1.80 545.88 1100 550

for Algorithm 1—we call this Algorithm 3 (large-scale). Note that this procedure
deviates from the vanilla Algorithm 3 (described in Section 3.3), where, we do
both steps 1 and 2 for every initialization β1. For each of the examples Ex-5–Ex-7,
Algorithm 2 was run for MaxIter = 500, for 100 different initializations around
the LAD solution, the best solution was used as an initialization for Algorithm 1.
Table 3 presents the results obtained with Algorithm 3 (large-scale). In addition,
the aforementioned algorithms, Table 3 also presents MIO (warm-start), that is,
MIO formulation (2.11) warm-started with Algorithm 3 (large-scale) and the LQS
algorithm from the R-package MASS.

Large scale examples with real datasets. In addition to the above, we con-
sidered a large environmental dataset from the R-package robustbase with
hourly measurements of NOx pollution content in the ambient air. The dataset
has n = 8088 samples with p = 4 covariates (including the intercept). The covari-
ates are square-root of the windspeed (x1), day number (x2), log of hourly sum of
NOx emission of cars (x3) and intercept, with response being log of hourly mean
of NOx concentration in ambient air (y). We considered three different values of
q ∈ {7279,6470,4852} corresponding to the 90th, 80th and 60th quantile, respec-
tively. We added a small amount of contamination by changing 	0.01n
 sample
points according to item (B) in Section 5.1. On the modified dataset, we ran three
different algorithms: Algorithm 3 (large-scale),5 MIO (warm-start), that is, MIO

5In this example, we initialized Algorithm 2 with the best Chebyshev fit from forty different sub-
samples. Algorithm 2 was run for MaxIter = 500, with five hundred random initializations. The best
solution was taken as the starting point of Algorithm 3.
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formulation (2.11) warm-started with Algorithm 3 (large-scale) and the LQS al-
gorithm from the R-package MASS. In all the following cases, the MIO algorithm
was run for a maximum of two hours. We summarize our key findings below:

(1) For q = 7279, the best solution was obtained by MIO (warm-start) in
about 1.6 hours. Algorithm 3 (large-scale) delivered a solution with relative ac-
curacy [see (5.1)] 0.39% in approximately six minutes. The LQS algorithm from
R-package MASS, delivered a solution with relative accuracy 2.8%.

(2) For q = 6470, the best solution was found by MIO (warm-start) in 1.8
hours. Algorithm 3 (large-scale) delivered a solution with relative accuracy
[see (5.1)] 0.19% in approximately six minutes. The LQS algorithm from R-
package MASS, delivered a solution with relative accuracy 2.5%.

(3) For q = 4852, the best solution was found by MIO (warm-start) in about
1.5 hours. Algorithm 3 (large-scale) delivered a solution with relative accu-
racy [see (5.1)] 0.14% in approximately seven minutes. The LQS algorithm from
R-package MASS, delivered a solution with relative accuracy 1.8%.

Thus, in all the examples above, MIO warm-started with Algorithm 3 (large-scale)
obtained the best upper bounds. Algorithm 3 (large-scale) obtained very high qual-
ity solutions, too, but the solutions were all improved by MIO.

6. Conclusions. In this paper, we proposed algorithms for LQS problems
based on a combination of first-order methods from continuous optimization and
mixed integer optimization. Our key conclusions are:

(1) The MIO algorithm with warm start from the continuous optimization al-
gorithms solves to provable optimality problems of small (n = 100) and medium
(n = 500) size problems in under two hours.

(2) The MIO algorithm with warm starts finds high quality solutions for large
(n = 10,000) scale problems in under two hours outperforming all state of the art
algorithms that are publicly available for the LQS problem. For problems of this
size, the MIO algorithm does not provide a certificate of optimality in a reasonable
amount of time.

(3) Our framework enables us to show the existence of an optimal solution for
the LQS problem for any dataset, where the data-points (yi,xi)’s are not necessar-
ily in general position. Our MIO formulation leads to a simple proof of the break-
down point of the LQS optimum objective value that holds for general datasets
and our framework can easily incorporate extensions of the LQS formulation with
polyhedral constraints on the regression coefficient vector.

REFERENCES

AGULLO, J. (1997). Exact algorithms for computing the least median of squares estimate in multiple
linear regression. In L1-Statistical Procedness and Related Topics. Lecture Notes Monogr. Ser. 31
133–146. IMS, Hayward, CA.



2524 D. BERTSIMAS AND R. MAZUMDER

BARRETO, H. and MAHARRY, D. (2006). Least median of squares and regression through the origin.
Comput. Statist. Data Anal. 50 1391–1397. MR2222048

BERNHOLT, T. (2005a). Robust estimators are hard to compute. Technical Report 52/2005, Univ.
Dortmund.

BERNHOLT, T. (2005b). Computing the least median of squares estimator in time O(nd). In Com-
putational Science and Its Applications, ICCSA 2005. Lecture Notes in Computer Science 3480
697–706. Springer, Berlin.

BERTSIMAS, D. and WEISMANTEL, R. (2005). Optimization over Integers. Dynamic Ideas, Bel-
mont, MA.

BICKEL, P. J. (1975). One-step Huber estimates in the linear model. J. Amer. Statist. Assoc. 70
428–434. MR0386168

BOYD, S. and VANDENBERGHE, L. (2004). Convex Optimization. Cambridge Univ. Press, Cam-
bridge. MR2061575

CHAKRABORTY, B. and CHAUDHURI, P. (2008). On an optimization problem in robust statistics.
J. Comput. Graph. Statist. 17 683–702. MR2451342

CLARKE, F. H. (1990). Optimization and Nonsmooth Analysis, 2nd ed. SIAM, Philadelphia, PA.
MR1058436

DONOHO, D. and HUBER, P. J. (1983). The notion of breakdown point. In A Festschrift for Erich
L. Lehmann 157–184. Wadsworth, Belmont, CA. MR0689745

ERICKSON, J., HAR-PELED, S. and MOUNT, D. M. (2006). On the least median square problem.
Discrete Comput. Geom. 36 593–607. MR2267548

GILONI, A. and PADBERG, M. (2002). Least trimmed squares regression, least median squares re-
gression, and mathematical programming. Math. Comput. Modelling 35 1043–1060. MR1910678

GUROBI OPTIMIZATION, INC. (2013). Gurobi Optimizer Reference Manual.
HAMPEL, F. R. (1971). A general qualitative definition of robustness. Ann. Math. Statist. 42 1887–

1896. MR0301858
HAMPEL, F. R. (1975). Beyond location parameters: Robust concepts and methods. Bull. Int. Stat.

Inst. 46 375–382.
HAWKINS, D. M. (1993). The feasible set algorithm for least median of squares regression. Comput.

Statist. Data Anal. 16 81–101.
HAWKINS, D. M., BRADU, D. and KASS, G. V. (1984). Location of several outliers in multiple-

regression data using elemental sets. Technometrics 26 197–208. MR0770368
HUBER, P. J. (1973). Robust regression: Asymptotics, conjectures and Monte Carlo. Ann. Statist. 1

799–821. MR0356373
HUBER, P. J. (2011). Robust Statistics. Springer, Berlin.
HUBERT, M., ROUSSEEUW, P. J. and VAN AELST, S. (2008). High-breakdown robust multivariate

methods. Statist. Sci. 23 92–119. MR2431867
MEER, P., MINTZ, D., ROSENFELD, A. and KIM, D. Y. (1991). Robust regression methods for

computer vision: A review. Int. J. Comput. Vis. 6 59–70.
MOUNT, D. M., NETANYAHU, N. S., PIATKO, C. D., SILVERMAN, R. and WU, A. Y. (2000).

Quantile approximation for robust statistical estimation and k-enclosing problems. Internat. J.
Comput. Geom. Appl. 10 593–608. MR1808213

MOUNT, D. M., NETANYAHU, N. S., ROMANIK, K., SILVERMAN, R. and WU, A. Y. (2007).
A practical approximation algorithm for the LMS line estimator. Comput. Statist. Data Anal. 51
2461–2486. MR2338982

NESTEROV, Y. (2004). Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Aca-
demic, Boston, MA. MR2142598

NUNKESSER, R. and MORELL, O. (2010). An evolutionary algorithm for robust regression. Comput.
Statist. Data Anal. 54 3242–3248. MR2727749

OLSON, C. F. (1997). An approximation algorithm for least median of squares regression. Inform.
Process. Lett. 63 237–241. MR1475335

http://www.ams.org/mathscinet-getitem?mr=2222048
http://www.ams.org/mathscinet-getitem?mr=0386168
http://www.ams.org/mathscinet-getitem?mr=2061575
http://www.ams.org/mathscinet-getitem?mr=2451342
http://www.ams.org/mathscinet-getitem?mr=1058436
http://www.ams.org/mathscinet-getitem?mr=0689745
http://www.ams.org/mathscinet-getitem?mr=2267548
http://www.ams.org/mathscinet-getitem?mr=1910678
http://www.ams.org/mathscinet-getitem?mr=0301858
http://www.ams.org/mathscinet-getitem?mr=0770368
http://www.ams.org/mathscinet-getitem?mr=0356373
http://www.ams.org/mathscinet-getitem?mr=2431867
http://www.ams.org/mathscinet-getitem?mr=1808213
http://www.ams.org/mathscinet-getitem?mr=2338982
http://www.ams.org/mathscinet-getitem?mr=2142598
http://www.ams.org/mathscinet-getitem?mr=2727749
http://www.ams.org/mathscinet-getitem?mr=1475335


LEAST QUANTILE REGRESSION 2525

ROCKAFELLAR, R. T. (1996). Convex Analysis. Princeton Univ. Press, Princeton, NJ.
ROUSSEEUW, P. J. (1984). Least median of squares regression. J. Amer. Statist. Assoc. 79 871–880.

MR0770281
ROUSSEEUW, P. J. and DRIESSEN, K. V. (2006). Computing LTS regression for large data sets.

Data Min. Knowl. Discov. 12 29–45. MR2225526
ROUSSEEUW, P. and HUBERT, M. (1997). Recent developments in PROGRESS. In L1-Statistical

Procedures and Related Topics 201–214. IMS, Hayward, CA.
ROUSSEEUW, P. J. and LEROY, A. M. (1987). Robust Regression and Outlier Detection. Wiley, New

York. MR0914792
ROUSSEEUW, P. J., DEBRUYNE, M., ENGELEN, S. and HUBERT, M. (2006). Robustness and outlier

detection in chemometrics. Crit. Rev. Anal. Chem. 36 221–242.
ROUSSEEUW, P., CROUX, C., TODOROV, V., RUCKSTUHL, A., SALIBIAN-BARRERA, M., VER-

BEKE, T., KOLLER, M. and MAECHLER, M. (2013). robustbase: Basic Robust Statistics. R pack-
age version 0.9-10.

SHOR, N. Z. (1985). Minimization Methods for Nondifferentiable Functions. Springer, Berlin. Trans-
lated from the Russian by K. C. Kiwiel and A. Ruszczyński. MR0775136
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