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GENERALIZATION OF THE NUALART–PECCATI CRITERION
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The celebrated Nualart–Peccati criterion [Ann. Probab. 33 (2005) 177–
193] ensures the convergence in distribution toward a standard Gaussian ran-
dom variable N of a given sequence {Xn}n≥1 of multiple Wiener–Itô inte-

grals of fixed order, if E[X2
n] → 1 and E[X4

n] → E[N4] = 3. Since its ap-
pearance in 2005, the natural question of ascertaining which other moments
can replace the fourth moment in the above criterion has remained entirely
open. Based on the technique recently introduced in [J. Funct. Anal. 266
(2014) 2341–2359], we settle this problem and establish that the convergence
of any even moment, greater than four, to the corresponding moment of the
standard Gaussian distribution, guarantees the central convergence. As a by-
product, we provide many new moment inequalities for multiple Wiener–Itô
integrals. For instance, if X is a normalized multiple Wiener–Itô integral of
order greater than one,

∀k ≥ 2, E
[
X2k]> E

[
N2k]= (2k − 1)!!.

1. Introduction and summary of the main results. Let {Bt }t≥0 be a stan-
dard Brownian motion and p be an integer greater than 1. For any deterministic
and symmetric function f ∈ L2(R

p
+, λp) (λp stands for p-dimensional Lebesgue

measure), let Ip(f ) be the pth multiple Wiener–Itô integral of f with respect to
{Bt }t≥0 (see [24] for a precise definition). The vector space spanned by all the
multiple integrals of order p is called the pth Wiener chaos. A fundamental result
of stochastic calculus, customarily called the Wiener–Itô decomposition, asserts
that any square integrable functional of {Bt }t≥0 can be uniquely expanded as an
orthogonal sum of multiple Wiener–Itô integrals. As such, the study of the proper-
ties of multiple Wiener–Itô integrals becomes a central topic of research in modern
stochastic analysis and a great part of the so-called Malliavin calculus (see, e.g.,
[19, 24]) relies on it.
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The following result, nowadays known as the fourth moment theorem, yields an
effective criterion of central convergence for a given sequence of multiple Wiener–
Itô integrals of a fixed order.

THEOREM 1.1 (Nualart–Peccati [26]). Let p ≥ 2 and fn be a sequence of
symmetric elements of L2(R

p
+, λp). Assume Xn = Ip(fn) verifies E[X2

n] → 1.
Then, as n → ∞,

Xn
law→ N ∼ N (0,1) if and only if E

[
X4

n

]→ E
[
N4]= 3.

The main goal of this article is to show that the above theorem is a particular
case of a more general phenomenon. This is the content of the next theorem.

THEOREM 1.2. Under the assumptions of Theorem 1.1, for any integer k ≥ 2,
as n → ∞,

Xn
law→ N ∼ N (0,1) if and only if E

[
X2k

n

]→ E
[
N2k]= (2k − 1)!!,

where the double factorial is defined by (2k − 1)!! =∏k
i=1(2i − 1).

The discovery of the fourth moment theorem by Nualart and Peccati (see [26])
is arguably a major breakthrough in the field of Gaussian approximation in the
Wiener space. It resulted in a drastic simplification of the so-called method of mo-
ments (consisting in checking the convergence of all the moments) which was so
far the only alternative to establish a central limit theorem. We refer to Breuer and
Major [8], Chambers and Slud [10], Surgailis [31] and [13, 16] for a nonexhaustive
exposition of some results provided by the method of moments. The first proof of
Theorem 1.1 relies on tools from stochastic analysis (namely the Dambis, Dubins
and Schwartz’s theorem; see, e.g., [29], Chapter V). Later on, in the seminal paper
[25], Nualart and Ortiz-Latorre discovered a fundamental link between the central
convergence of a sequence of elements of a fixed Wiener chaos and the conver-
gence to a constant of the norms of their Malliavin derivatives. The role played
by the Malliavin derivative in the fourth moment theorem was later on confirmed
in the landmark paper [18]. There, Nourdin and Peccati combined Stein’s method
and Malliavin calculus to provide a new proof of Theorem 1.1 culminating in sharp
estimates for various distances. As an illustrative example of such estimates, they
could prove the following quantitative version of Theorem 1.1.

THEOREM 1.3 (Nourdin–Peccati [18]). Let p ≥ 2. Assume that X = Ip(f )

where f is a symmetric element of L2(R
p
+, λp) such that E[X2] = 1. Then,

dTV
(
X,N (0,1)

)≤ 2√
3

√
E
[
X4
]− 3,(1.1)

where dTV stands for the total variation distance.
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This innovative approach, combining Malliavin calculus and Stein’s method,
gave a new impetus to the well studied field of normal approximation within
Gaussian spaces. Indeed, it resulted in spectacular improvements of many clas-
sical results previously obtained by the method of moments. For an exposi-
tion of this fertile line of research, one can consult the book [19], the sur-
veys [11, 27] and the following frequently updated webpage which aims at
referencing all the articles dealing with the so-called Malliavin–Stein method:
https://sites.google.com/site/malliavinstein/home. Finally, we mention that Theo-
rem 1.3 has been generalized in various directions such as the optimality of the
rate of convergence [20], multivariate settings [22, 28], free probability settings
[14] and general homogeneous sums [21].

Unfortunately, if the quantitative aspects of the latter approach are now quite
well understood, the heavily combinatorial nature of the proofs remains a major
stumbling block in tackling the following central questions:

(A) What are the target distributions for which a moment criterion similar
to (1.1) is available?

(B) What are the moment conditions ensuring the central convergence?
(C) What are the special properties of Wiener chaos playing a role in the fourth

moment phenomenon?

Indeed, most of the aforementioned proofs of the fourth moment theorem make
crucial use of the product formula for multiple Wiener–Itô integrals together with
some properties of the underlying Fock space. Such an approach becomes already
inextricable when one tries to make explicit the Wiener–Itô decomposition of the
6th power of a multiple integral. As such, writing explicitly the Wiener–Itô decom-
positions of the successive powers of a given multiple Wiener–Itô integral, which
is the core of the previous strategies, seems totally hopeless for our purpose. In-
spired by the remarkable intuition that the fourth moment phenomenon could also
be explained by the spectral properties of Markov operators, Ledoux produced a
new proof of Theorem 1.1 (see [15]). His approach, exclusively based on the study
of some differential operators such as the Ornstein–Uhlenbeck generator and the it-
erated gradients, and avoids completely the product formula for multiple integrals.
Unfortunately, due to an inappropriate definition of the chaos of a Markov operator,
this attempt became rather involved and could not produce any of the expected gen-
eralizations of the fourth moment criterion. Later on, in the same spirit as [15] (i.e.,
exploiting spectral theory of Markov operators and Gamma-calculus), the authors
of [3] could produce a very simple and fully transparent proof of the fourth mo-
ment theorem, henceforth bringing both, a complete answer to question (C), and
some generalizations of the criterion for other Markov operators than Ornstein–
Uhlenbeck. Roughly speaking, the technique used in [3] consists in exploiting the
stability of chaoses under the product operation to provide some suitable spectral
inequalities, which, after elementary computations, become moment inequalities.

https://sites.google.com/site/malliavinstein/home
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In particular, the latter approach does not need any of the combinatorics compu-
tations required by the product formula. The present article fully generalizes this
idea and builds a complete methodology enabling to provide a wide range of in-
equalities for polynomial functionals of a Gaussian field, hence for Wiener chaoses
as well. In particular, it leads to a partial answer to question (B). Combining the
formalism and the ideas of [3] together with some fine deterministic properties of
Hermite polynomials, we could prove Theorem 1.2, which is our main achieve-
ment. Interestingly, we could also prove the following quantitative version which
extends the celebrated estimate (1.1) to all even moments. Indeed, taking k = 2 in
the theorem below gives back the bound in (1.1).

THEOREM 1.4. Under the assumptions of Theorem 1.3, for all k ≥ 2, we have
the following general quantitative bound:

dTV
(
X,N (0,1)

)≤ Ck

√
E[X2k]

(2k − 1)!! − 1,(1.2)

where the constant Ck = 4√
2k(k−1)

∫ 1
0 ((1+t2)/2)k−2 dt

.

For the sake of clarity, we stated so far our main results in the more familiar
context of the Wiener space. Nevertheless, throughout the whole article, instead
of the Wiener–Itô multiple integrals, we shall consider a more general concept of
eigenfunctions of a diffusive Markov operator. We refer the reader to Section 2.1
for a precise exposition of our assumptions. We also stress that this gain of gener-
ality enables us to give central limit criteria in situations far beyond the scope of
the usual criteria holding in the Wiener chaoses.

2. The setup.

2.1. The general setup and assumptions (a)–(b)–(c). One possible way to
study the properties of the elements of the Wiener space can be through the ex-
ploration of the spectral properties of the so-called Ornstein–Uhlenbeck operator.
In order to situate more precisely our purpose, we will restate below its main prop-
erties.

The Wiener space is the space L2(E,μ) where E = R
N and μ is the standard

Gaussian measure on R
N. The Ornstein–Uhlenbeck operator is the unbounded,

symmetric, negative operator L acting on some dense domain of L2(E,μ) and
defined (on the set of smooth enough cylindric functionals �) by

L[�] = �� − �x · �∇�

(where � is the usual Laplacian and �∇ is the gradient vector). We shall denote its
domain by D(L) and for a general X ∈D(L), L[X] is defined via standard closure
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operations. The associated carré-du-champ operator is the symmetric, positive,
bilinear form defined by

�[�,�] = �∇� · �∇�.

Below, we summarize the fundamental properties of the Ornstein–Uhlenbeck
operator L.

(a) Diffusion: For any C2
b function φ :R → R, any X ∈ D(L), it holds that

φ(X) ∈ D(L) and

L
[
φ(X)

]= φ′(X)L[X] + φ′′(X)�[X,X].(2.1)

Note that, by taking φ = 1 ∈ C2
b , we get L[1] = 0 which is the Markov property.

Equivalently, � is a derivation in the sense that

�
[
φ(X),X

]= φ′(X)�[X,X].
(b) Spectral decomposition: The operator −L is diagonalizable on L2(E,μ)

with sp(−L) = N, that is to say

L2(E,μ) =
∞⊕
i=0

Ker(L + iId).

(c) Spectral stability: For any pair of eigenfunctions (X,Y ) of the operator −L
associated with eigenvalues (p1,p2),

XY ∈ ⊕
i≤p1+p2

Ker(L + iId).(2.2)

We refer to [7] for a precise exposition as well as all the domain and integrability
assumptions. Actually, these three properties are the only one we will use. Thus,
we naturally define the following class of structures for which our results will hold.

DEFINITION 2.1. A (a)–(b)–(c) structure is a triplet (E,μ,L), with an asso-
ciated “carré-du-champ” operator �, where:

• (E,μ) is a probability space,
• L is a symmetric unbounded operator defined on some dense domain of

L2(E,μ),
• � is defined by

2�[X,Y ] = L[XY ] − XL[Y ] − YL[X],(2.3)

such that the aforementioned properties (a), (b) and (c) hold. In this context, we
will sometimes write �[X] to denote �[X,X] and E for the integration against μ.
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Property (a) is important regarding functional calculus. For instance, we will
use several times the following integration by parts formula: for any X,Y in D(L)

and φ ∈ C2
b :

E
[
φ′(X)�[X,Y ]]= −E

[
φ(X)L[Y ]]= −E

[
YL
[
φ(X)

]]
.(2.4)

Property (b) allows to use spectral theory. Actually, we stress that our results ex-
tend under the weaker assumption that sp(−L) ⊂ R+ is simply discrete. However,
we stick to the assumption sp(−L) = N since it encompasses the most common
cases (Wiener space and Laguerre space). The reader interested in relaxing this
spectral assumption can consult [3] where the spectrum is only assumed to be dis-
crete.

Property (c) is our main assumption, which will allow us to obtain fundamental
spectral inequalities. A simple induction on (2.2) shows that, for any X ∈ Ker(L+
pId) and any polynomial P of degree m, we have

P(X) ∈ ⊕
i≤mp

Ker(L + iId).(2.5)

For further details on our setup, we refer to [5, 6]. We also refer to Section 2.2 for
many other examples.

REMARK 2.1. We remark that under the assumptions (a)–(b)–(c), the
eigenspaces are hypercontractive (see [5] for sufficient conditions), that is, for
any integer M , we have that⊕

i≤M

Ker(L + iId) ⊆ ⋂
p≥1

Lp(E,μ).(2.6)

Next, by using the open mapping theorem, we see that the embedding (2.6)
is continuous, that is, there exists a constant C(M,k) such that for any X ∈⊕

i≤M Ker(L + iId):

E
(
X2k)≤ C(M,k)E

(
X2)k.(2.7)

We close this subsection with an useful lemma which will be used several times
in the sequel. This lemma is proved in [23], Lemma 2.4, in the Wiener structure
but can be easily adapted to our framework by taking into account the Remark 2.1.

LEMMA 2.1. Let {Xn}n≥1 be a sequence of random variables living in a finite
sum of eigenspaces (Xn ∈⊕i≤M Ker(L + iId),∀n ≥ 1) of a Markov generator L
such that our assumptions (a), (b) and (c) hold. Assume that the sequence {Xn}n≥1
converges in distribution as n tends to infinity. Then

sup
n≥1

E
(|Xn|r)< ∞ ∀r ≥ 1.
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2.2. Examples of structures fulfilling assumptions (a)–(b)–(c). We refer to the
article [3] for a proof of the validity of the assumptions (a)–(b)–(c) in the cases
of the Wiener and Laguerre structures. We now show how the validity of the as-
sumptions (a)–(b)–(c) is preserved by the elementary operations of tensorization
and superposition of structures. This simple fact will allow us to produce many
structures in which our results hold.

Tensorization. Let (E1,μ1,L1) and (E2,μ2,L2) be two Markov triplets ful-
filling assumptions (a)–(b)–(c). On the product space E1 × E2 with measure
μ1 ⊗ μ2, we define the following operator L3. For � :E1 × E2 → R, we set
�x(y) = �y(x) = �(x, y), and we define

L3[�](x, y) = L1[�y](x) + L2[�x](y).(2.8)

In (2.8), L3 is defined on the set of maps � such that:

(1) μ2-a.s., �y ∈ Dom(L1) and μ1-a.s., �x ∈ Dom(L2),
(2) ∫

E1×E2

(
L3[�](x, y)

)2
dμ1 dμ2 < ∞.

We claim that the triplet (E1 × E2,μ1 ⊗ μ2,L3) verifies assumptions
(a)–(b)–(c). First, it is well known that this procedure preserves assumption (a);
see, for instance, [7]. Assumption (b) is also preserved by tensorization taking into
account that

Ker(L3 + kId) = Vect
{
φ(x)ψ(y)|φ ∈ Ker(L1 + k1Id),

(2.9)
ψ ∈ Ker(L2 + k2Id), k1 + k2 = k

}
.

Finally, we check assumption (c) for L3. Let �1 = φ1(x)ψ1(y) with φ1 ∈ Ker(L+
k1Id) and ψ1 ∈ Ker(L + k2Id), and let �2 = φ2(x)ψ2(y) where φ2 ∈ Ker(L +
k3Id) and ψ2 ∈ Ker(L + k4Id). By applying (c) to φ1φ2 and ψ1ψ2 together with
equation (2.9), we infer that

φ1(x)φ2(x)ψ1(y)ψ2(y) ∈ ⊕
i≤k1+k2+k3+k4

Ker(L3 + iId).

Hence, using bilinearity, we see that assumption (c) also holds for operator L3.

Superposition. As before, we are given a Markov triplet (E,L,μ) satisfying
assumptions (a)–(b)–(c). The superposition procedure consists in adding an in-
dependent noise to (E,L,μ). To do so, we consider a generic probability space
(	,F,P), which will induce the noise on (E,L,μ). We define on the set E × 	

equipped with the product probability measure μ ⊗ P:

Dom(L	) =
{
�(x,ω)

∣∣∣�ω ∈ Dom(L),

∫
	
Eμ

[
(L�ω)2]dP < ∞

}
,(2.10)

L	[�](x,ω) := L[�ω](x) ∀� ∈ Dom(L	).(2.11)
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Preservation of assumption (a) is a well-known consequence of the superposi-
tion procedure. We refer to [7] where superposition/product/semidirect product of
Markov triplets (i.e., Dirichlet forms) are studied to provide ways of constructing
Dirichlet forms. To check assumption (b), we are given �(x,ω) ∈ L2(μ ⊗ P). By
assumption (b) on the space L2(E,μ), we get

�ω(x) =
∞∑

k=1

fk,ω(x), fk,ω ∈ Ker(L + kId).(2.12)

Besides, ∫
	
Eμ

[
�(x,ω)2]dP =

∞∑
k=1

∫
	
Eμ

[
fk(x,ω)2]dP < ∞.

This ensures that P-a.s., fk,ω ∈ Ker(L + kId) and that fk ∈ Dom(L	). Finally,
one can see that

Ker(L	 + kId) = {�(x,ω) ∈ Dom(L	)|P-a.s. �ω ∈ Ker(L + kId)
}
.(2.13)

We infer that fk ∈ Ker(L	 + kId) which achieves the proof of (b). Strictly speak-
ing, assumption (c) is not necessarily preserved because we need integrability on
the product of two eigenfunctions of L	. This integrability, unlike in the tensoriza-
tion procedure is not automatically fulfilled in the superposition procedure. Fortu-
nately, under some slight additional assumption, (c) holds for L	. More precisely,
we have for all X(x,ω) ∈ Ker(L	 + k1Id) and Y(x,ω) ∈ Ker(L	 + k2Id) such
that XY ∈ L2(μ ⊗ P):

XY ∈ ⊕
i≤k1+k2

Ker(L	 + iId).(2.14)

REMARK 2.2. One can consult the reference [6], page 515, to see that the two
aforementioned operations are a particular case of the so-called wrapped product
of symmetric diffusive operators.

2.3. Some auxiliary results. To be self-contained, we restate here two well-
known facts about Stein’s method applied to eigenfunctions of a diffusive Markov
operator. For more details, the reader can consult, for instance, [15] or the sur-
vey [12].

THEOREM 2.1 ([15]). Let L be a Markov diffusive operator satisfying the as-
sumptions (a)–(b) of Section 2.1, and X be in Ker(L + pId) such that E[X2] = 1.
Then

dTV
(
X,N (0,1)

)≤ 2

p

√
Var
(
�[X]).



932 AZMOODEH, MALICET, MIJOULE AND POLY

As a matter of fact, for a given sequence {Xn}n≥1 in Ker(L + pId) such that
E[X2

n] → 1:

�[Xn] L2→ p ⇒ Xn
law→ N (0,1).

REMARK 2.3. In [15], Proposition 2, given a sequence {Xn}n≥1 in Ker(L +
pId) with E[X2

n] → θ , it is shown that

Var
(
�[Xn] − pXn

)→ 0 ⇒ Xn + θ
law→ γ (θ),

where γ (θ) stands for the gamma distribution of parameter θ . This fact will be
used only in the proof of Theorem 3.2.

Furthermore, we restate below the fourth moment theorem under the assump-
tions (a)–(b)–(c). Actually, it can be proved under the weaker assumption that, for
any eigenfunction X ∈ Ker(L + pId), we have

X2 ∈ ⊕
k≤2p

Ker(L + kId),

which in fact is a very particular case of the assumption (c). The stronger assump-
tion (c) will allow us to establish analogous statements for higher moments.

THEOREM 2.2 ([12, 15]). Let L be a Markov diffusive operator satisfying the
assumptions (a)–(b)–(c) and X ∈ Ker(L + pId) with E[X2] = 1. Then

dTV
(
X,N (0,1)

)≤ 2

p

√
Var
(
�[X])≤ 2√

3

√
E
[
X4
]− 3.(2.15)

Thus, for a given sequence {Xn}n≥1 in Ker(L + pId) such that E[X2
n] → 1 and

E[X4
n] → 3, we have

Xn
law→N (0,1).

3. Algebraic framework. The aforementioned assumptions (a)–(b)–(c) on
the Markov generator L can be suitably used to build an algebraic framework in
order to study properties of eigenfunctions of the generator L. Throughout this sec-
tion, we shall use these assumptions in a natural way in order to introduce a family
of bilinear, symmetric and positive forms Mk . The fundamental assumption (2.5)
is the crucial element yielding the positivity of the bilinear forms Mk .

Let Rk[T ] stand for the ring of all polynomials of T of degree at most k over R.
Let X be an eigenfunction of the generator L with eigenvalue −p, that is, −LX =
pX. We consider the following map:

Mk :

{
Rk[T ] ×Rk[T ] −→R,

(P,Q) �−→ E
[
Q(X)(L + kpId)P (X)

]
.
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REMARK 3.1. Notice that the mapping Mk strongly depends on the eigen-
function X. We also remark that thanks to Remark 2.1, Mk is well defined.

The following theorem is the cornerstone of our approach.

THEOREM 3.1. The mapping Mk is bilinear, symmetric and nonnegative.
Moreover, its matrix representation over the canonical basis {1, T , T 2, . . . , T k}
is given by pMk where

Mk =
((

k − ij

i + j − 1

)
E
[
Xi+j ])

0≤i,j≤k

(3.1)

with the convention that ij
i+j−1 = 0 for (i, j) = (0,1) or (1,0).

PROOF. Expectation is a linear operator, so the bilinearity property follows.
Symmetry proceeds from the symmetry of the diffusive generator L. To prove
positivity of the matrix Mk , using the fundamental assumption (2.5) we obtain that
for any polynomial P of degree ≤ k,

P(X) ∈ ⊕
i≤kp

Ker(L + iId).

Therefore, denoting by Ji :L2(E,μ) → Ker(L + iId) the orthogonal projections,

E
[(

(L + kpId)P (X)
)2]= E

[
LP(X)(L + kpId)P (X)

]
+ kpE

[
P(X)(L + kpId)P (X)

]
=

kp∑
i=0

(−i)(kp − i)E
[
J 2

i

(
P(X)

)]
(3.2)

+ kpE
[
P(X)(L + kpId)P (X)

]
≤ kpMk(P,P ).

Hence, Mk is a positive form. To complete the proof, notice that the (i, j)-
component of the matrix Mk is given by E[Xj(L + kpId)Xi]. So, using the diffu-
sive property of the generator L, we obtain

Xj(L + kpId)Xi = i(i − 1)Xi+j−2�(X) + p(k − i)Xi+j

= i(i − 1)

i + j − 1
�
(
Xi+j−1,X

)+ p(k − i)Xi+j .

Therefore,

Mk

(
Xi,Xj )= i(i − 1)

i + j − 1
E
[
�
(
Xi+j−1,X

)]+ p(k − i)E
[
Xi+j ]

= p
i(i − 1)

i + j − 1
E
[
Xi+j ]+ p(k − i)E

[
Xi+j ]
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= p

(
i(i − 1) + (k − i)(i + j − 1)

i + j − 1

)
E
[
Xi+j ]

= p

(
k − ij

i + j − 1

)
E
[
Xi+j ]. �

REMARK 3.2. In Theorem 3.1, we only stated the positivity of the family of
quadratic forms Mk . However, it is worth mentioning that, thanks to the inequal-
ity (3.2), each quadratic form Mk dominates the nonnegative quadratic form

P �−→ E
[{

(L + kpId)P (X)
}2]

.

COROLLARY 3.1. For any eigenfunction X of the generator L with eigenvalue
−p, that is, −L(X) = pX:

(i) All the eigenvalues of matrix Mk are nonnegative.
(ii) All the lth leading principal minor of the matrix Mk are nonnegative for

l ≤ k.

PROOF. The proof follows directly from standard linear algebra (see, e.g.,
[30]). �

The moments matrix Mk can help one to give nontrivial moment inequalities,
sometimes sharper than the existing estimates so far, involving the moments of
the eigenfunctions of a generator L. Here is an application where we sharpen the
standard fourth moment inequality E[X4] ≥ 3E[X2]2. We mention that the next
theorem unifies the two well-known criteria of convergence in law (i.e., Gaussian
and Gamma approximation) for a sequence of random variables inside a fixed
Wiener chaos; see [17, 26].

THEOREM 3.2. If X is a nonzero eigenfunction of generator L, then

E[X4]
3

−E
[
X2]2 ≥ E[X3]2

2E[X2] .(3.3)

Moreover, assume that Xn ∈ Ker(L + pId) for each n ≥ 1 and

E[X4
n]

3
−E
[
X2

n

]2 − E[X3]2

2E[X2] → 0.(3.4)

Then all the adherence values in distribution of the sequence {Xn}n≥1 is either a
Gaussian or a scaling of a centered Gamma random variable.

PROOF. The moments matrix M2 associated to X is given by

M2(X) =
⎛
⎜⎝

2 0 2E
[
X2]

0 E
[
X2]

E
[
X3]

2E
[
X2]

E
[
X3] 2

3E
[
X4]
⎞
⎟⎠ .(3.5)
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Using Corollary 3.1, we infer that

det(M2) = 4E
[
X2]{E[X4]

3
−E
[
X2]2}− 2E

[
X3]2 ≥ 0,

which immediately implies (3.3). Up to extracting a subsequence, we may assume
that Xn → X∞ in distribution. We further assume that X∞ �= 0. Assumption (3.4)
entails that

det M2(Xn) → 0.

Let Vn = (2
3E[X4

n]E[X2
n] − E[X3

n]2,2E[X2
n]E[X3

n],−2E[X2
n]2) be the first line of

the adjugate matrix of M2(Xn). Since Xn converges in distribution, we have Vn →
V∞ = (a, b, c). We set P(X) = cX2 + bX + a. As a result, we have:

M2(Xn)(P,P ) → 0.(3.6)

Using Remark 3.2, we see that

E
[{

(L + 2pId)P (Xn)
}2]→ 0.

Next,

(L + 2pId)P (Xn) = c(L + 2pId)X2
n + bpXn + 2ap

= 2c�(Xn) + bpXn + 2ap.

We notice that c �= 0 since X∞ �= 0. Now two possible cases can happen.

Case (1): If E[X3
n] → 0, then b = 0. Hence, we have E[�(Xn)+ ap

c
]2 → 0 and

therefore the sequence {Xn}n≥1 converges toward a Gaussian random variable. See
Theorem 2.1.

Case (2): If E[X3
n] �→ 0, then b �= 0. Hence, we have E[�(Xn) + bp

2c
Xn +

ap
c

]2 → 0. We set Xn = λYn and we may choose λ in such way that

Var
(
�(Yn) − pYn

)→ 0.

This enables us to use the content of the Remark 2.3 and assert that Yn + E[Y 2
n ]

converges in distribution toward a gamma random variable. Hence, Xn converges
in distribution toward a scaling of a centered gamma law. �

It is clear that Theorem 3.2 also gives back the fourth moment theorem in (a)–
(b)–(c) structures from the fact that a random variable G satisfying E[G2] = 1,
E[G3] = 0 and E[G4] = 3 cannot have a gamma distribution.

The following proposition states a nontrivial inequality between the second,
fourth and sixth moments of eigenfunctions of L.

PROPOSITION 3.1. If X is an eigenfunction of L, then

E
[
X4]2 ≤ 3

5E
[
X6]

E
[
X2].(3.7)
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REMARK 3.3. Notice that this inequality is an equality when the distribution
of X is Gaussian.

PROOF OF PROPOSITION 3.1. The moments matrix M3 associated to X has
the form

M3 =

⎛
⎜⎜⎜⎝

3  3E
[
X2] 

 2E
[
X2]  2E

[
X4]

3E
[
X2]  5

3E
[
X4] 

 2E
[
X4]  6

5E
[
X6]

⎞
⎟⎟⎟⎠ .(3.8)

Since this matrix is positive, we have in particular∣∣∣∣2E
[
X2] 2E

[
X4]

2E
[
X4] 6

5E
[
X6]
∣∣∣∣≥ 0,

which gives the claimed inequality. �

Using Proposition 3.1, we can already prove the following sixth moment theo-
rem, that is, Theorem 1.2 in the case k = 3. Note that we will get back this result
when we will prove our main result (Section 4.1).

COROLLARY 3.2. A sequence {Xn}n≥1 such that Xn ∈ Ker(L+pId) for each
n ≥ 1, converges in distribution toward the standard Gaussian law if and only if
E[X2

n] → 1 and E[X6
n] → 15.

PROOF. By Proposition (3.1), for X ∈ Ker(L + pId), we have

E
[
X6]≥ 5

3

E[X4]2

E[X2] ≥ 5

3

(3E[X2]2)2

E[X2] = 15E
[
X2]3.

Therefore, for the sequence {Xn}n≥1 in Ker(L+pId), if E[X2
n] → 1 and E[X6

n] →
15, then from the previous chain of inequalities, we deduce that E[X4

n] → 3.
Hence, the sequence {Xn}n≥1 converges in distribution toward N (0,1) according
to Theorem 2.2. �

4. New central limit theorems. In this section, we will establish our main
criteria for central convergence. In a first subsection, we will first focus on the main
theorem of the paper, the so-called even moment criterion. In a second subsection,
we will give additional criteria of central convergence. As before, we work under
assumptions (a)–(b)–(c) stated in Section 2.

4.1. The even moment criterion. We state below our main result. Note that
Theorem 1.2 is a particular case of Theorem 4.1, by simply choosing L to be the
Ornstein–Uhlenbeck generator.
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THEOREM 4.1. Let L be a Markov operator satisfying (a)–(b)–(c), p ≥ 1 be
an eigenvalue of −L, and {Xn}n≥1 a sequence of elements in Ker(L +pId) for all
n ≥ 1, such that limn→∞E[X2

n] = 1. Then, for any integer k ≥ 2, as n → ∞, we
have

Xn
law→ N (0,1) if and only if E

[
X2k

n

]→ E
[
N2k]= (2k − 1)!!.(4.1)

The proof of Theorem 4.1 is rather lengthy; it is thus divided in three steps
which are detailed below.

SKETCH OF THE PROOF. Step (1): We find a family P = {Wk|k ≥ 2} of real
polynomials which satisfies the two following properties:

(i) E
[
Wk(Xn)

]≥ 0,∀k ≥ 2,∀n ≥ 1,

(ii) Xn
law→ N (0,1) if and only if E

[
W2(Xn)

]→ 0, as n → ∞.

Step (2): In the second step, we construct a polynomial Tk such that, under the
assumptions of Theorem 4.1, we have

Tk =
k∑

i=2

αi,kWi such that for all i, αi,k > 0,

and

E
[
Tk(Xn)

]→ 0 as n → ∞.

Step (3): In the last step, using the fact that αi,k > 0 and property (i) of step (1),
we obtain that E[W2(Xn)] → 0. Finally, using property (ii) of step (1), we com-
plete the proof. �

PROOF OF THEOREM 4.1. The “if” part is a simple consequence of
Lemma 2.1. For the “only if” part, we go into the details of the three aforemen-
tioned steps.

Step (1): First, we introduce the suitable family P of polynomials. To this end,
we denote by {Hk}k≥0 the family of Hermite polynomials defined by the recursive
relation

H0(x) = 1, H1(x) = x, Hk+1(x) = xHk(x) − kHk−1(x).(4.2)

For any k ≥ 2, we define the polynomial Wk as

Wk(x) = (2k − 1)

(
x

∫ x

0
Hk(t)Hk−2(t) dt − Hk(x)Hk−2(x)

)
,(4.3)

and the family P as

P =
{
P
∣∣∣P(x) =

m∑
k=2

αkWk(x);m ≥ 2, αk ≥ 0,2 ≤ k ≤ m

}
.(4.4)
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The family P encodes interesting properties of central convergence which are
the content of the two next lemmas. Below, Lemma 4.1 will provide the answer to
property (i) of step (1).

LEMMA 4.1. Let L be a general Markov generator satisfying assumptions
(a)–(b)–(c) in Section 2, and let P be a polynomial belonging to P . Then:

(1) If N ∼ N (0,1), E[P(N)] = 0.
(2) If X is an eigenvalue of L, E[P(X)] ≥ 0.

PROOF. It is enough to prove that E[Wk(X)] ≥ 0 and E[Wk(N)] = 0. Using
the diffusive property (2.1), the fact that −LX = pX and the recursive property of
Hermite polynomials, we obtain that

(L + kpId)Hk(X) = H ′′
k (X)�(X) + H ′

k(X)L(X) + kpHk(X)

= H ′′
k (X)�(X) − pXH ′

k(X) + kpHk(X)
(4.5)

= H ′′
k (X)

(
�(X) − p

)
= k(k − 1)Hk−2(X)

(
�(X) − p

)
.

Therefore,

Mk(Hk) = E
[
Hk(X)(L + kpId)Hk(X)

]
(4.6)

= k(k − 1)E
[
Hk(X)Hk−2(X)

(
�(X) − p

)]
.

Next, by the integration by parts formula (2.4), we have

E
[
Hk(X)Hk−2(X)

(
�(X) − p

)]
= E

[
�

(∫ X

0
Hk(t)Hk−2(t) dt,X

)]
− pE

[
Hk(X)Hk−2(X)

]
(4.7)

= pE

[
X

∫ X

0
Hk(t)Hk−2(t) dt − Hk(X)Hk−2(X)

]

= p

2k − 1
E
[
Wk(X)

]
.

Hence,

Mk(Hk) = pk(k − 1)

2k − 1
E
[
Wk(X)

]
,

and the inequality E[Wk(X)] ≥ 0 follows from the positivity of the bilinear
form Mk . Finally, choosing L to be the Ornstein–Uhlenbeck generator and
X = N a standard Gaussian random variable living in the first Wiener chaos (i.e.,
p = 1) with variance 1, then �(N) = p = 1 and computation (4.7) shows that
E[Wk(N)] = 0 for every k ≥ 2. Hence, E[P(N)] = 0 for every P ∈ P . �
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The next lemma is central in the proof of the even moment Theorem 4.1. In fact,
the next lemma will provide answer to property (ii) of step (1).

LEMMA 4.2. Assume that L be a general Markov generator satisfying as-
sumptions (a)–(b)–(c) of Section 2. Let p ≥ 1 and {Xn}n≥1 a sequence of elements
in Ker(L + pId) for all n ≥ 1. Let P =∑m

k=2 αkWk ∈ P such that α2 �= 0. Then,
as n → ∞, we have

Xn
law→ N (0,1) if and only if E

[
P(Xn)

]→ E
[
P(N)

]= 0.

PROOF. In virtue of Lemma 4.1,

E
[
P(Xn)

]= m∑
k=2

αkE
[
Wk(Xn)

]

≥ α2E
[
W2(Xn)

]
= α2

(
E
[
X4

n

]− 6E
[
X2

n

]+ 3
)
.

This leads to

0 ≤ E
[
X4

n

]− 6E
[
X2

n

]+ 3 ≤ 1

α2
E
[
P(Xn)

]
.

By assumption, E[P(Xn)] → 0, so E[X4
n] − 6E[X2

n] + 3 → 0. On the other hand,

E
[
X4

n

]− 6E
[
X2

n

]+ 3 = E
[
X4

n

]− 3E
[
X2

n

]2 + 3
(
E
[
X2

n

]− 1
)2

.

Thus, we obtain that E[X2
n] → 1 and E[X4

n] → 3, and we can use Theorem 2.2 to
conclude. �

Step (2): This step consists in finding a suitable polynomial Tk ∈ P of the form

Tk(x) = x2k − αkx
2 + βk, αk,βk ∈ R.(4.8)

To find such a polynomial, notice that according to step (1), the function
φk :x �→ E[Tk(xN)] must be positive and vanish at x = 1. Hence, we must have
φk(1) = φ′

k(1) = 0. This leads us to the following system of equations:{
(2k − 1)!! − αk + βk = 0,

2k(2k − 1)!! − 2αk = 0.

Therefore, the coefficients αk and βk are necessarily given by

αk = k(2k − 1)!! and βk = (k − 1)(2k − 1)!!.
It remains to check that the corresponding polynomial Tk(x) = x2k − k(2k −
1)!!x2 + (k − 1)(2k − 1)!! ∈ P . To this end, one needs to show that Tk can be
expanded over the basis {Wk}k≥2 with positive coefficients. We answer to this by
the affirmative with the next proposition, which also provides an explicit formula
for the coefficients.



940 AZMOODEH, MALICET, MIJOULE AND POLY

PROPOSITION 4.1. Let k ≥ 2, and Tk(x) = x2k −k(2k−1)!!x2 +(k−1)(2k−
1)!!. Then

Tk(x) =
k∑

i=2

αi,kWi(x),(4.9)

where

αi,k = (2k − 1)!!
2i−1(2i − 1)(i − 2)!

(
k

i

)∫ 1

0
(1 − u)−1/2ui−2

(
1 − u

2

)k−i

du.

In particular, Tk ∈ P and α2,k > 0 for all k ≥ 1.

The proof of this proposition is rather involved and can be found in the Ap-
pendix.

Step (3): Let p ≥ 1. Assume that {Xn}n≥1 is a sequence of elements of Ker(L+
pId) for all n ≥ 1 such that limn→∞E[X2

n] = 1. We further assume that E[X2k
n ] →

(2k − 1)!!. Using step (2), we have

E
[
Tk(Xn)

] = E
[
X2k

n

]− k(2k − 1)!!E[X2
n

]+ (k − 1)(2k − 1)!!
→ 0.

To finish the proof, by step (2), we know that Tk ∈ P and c2,k > 0. Thus,
Lemma 4.2 applies and one gets the desired conclusion. �

We end this section with the following result containing a quantitative version
of the Theorem 4.1. We remark that item (1) of Theorem 4.2 contains Theorem 1.2
in the Introduction by assuming L to be Ornstein–Uhlenbeck operator.

THEOREM 4.2. Let L be a Markov operator satisfying assumptions (a)–(b)–
(c) of Section 2. Let p ≥ 1 and X be an eigenfunction of L with eigenvalue p such
that E[X2] = 1. Assume that k ≥ 2. Then

(1) We have the following general quantitative bound:

dTV
(
X,N (0,1)

)≤ Ck

√
E[X2k]

(2k − 1)!! − 1,(4.10)

where the constant Ck = 4√
2k(k−1)

∫ 1
0 ((1+t2)/2)k−2 dt

.

(2) The moment estimate E[X2k] ≥ E[N2k] = (2k − 1)!! holds.

PROOF. Taking into account Remark 3.2, for any polynomial P =∑m
k=2 αkWk

in family P , we obtain that

E
[
P(X)

]≥ 1

p2

m∑
k=2

(2k − 1)(k − 1)αkE
[
Hk−2(X)2(�(X) − p

)2]
.
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By applying the latter bound to P = Tk and using Proposition 4.1, we infer that

E
[
Tk(X)

]≥ 1

p2

m∑
i=2

(2i − 1)(i − 1)αi,kE
[
Hi−2(X)2(�(X) − p

)2]

≥ 3α2,k

p2 E
[(

�(X) − p
)2]

.

On the other hand, Proposition 4.1 shows that

α2,k = (2k − 1)!!
6

(
k

2

)∫ 1

0
(1 − u)−1/2

(
1 − u

2

)k−2

du.

This leads us to

E
[
X2k

n

]− (2k − 1)!! ≥
(

(2k − 1)!!
4

k(k − 1)

∫ 1

0

1√
1 − u

(
1 − u

2

)k−2

du

)
(4.11)

×E

[(
�(Xn)

p
− 1
)2]

.

Now, the desired inequality follows from Theorem 2.2 and identity
∫ 1

0
1√
1−u

(1 −
u
2 )k−2 du = 2

∫ 1
0 (1+t2

2 )k−2 dt . We stress that with taking k = 2 in (4.10), we re-
cover the well-known bound (see, e.g., [18, 20]):

dTV
(
Xn,N (0,1)

)≤ 2√
3

√
E
[
X4

n

]− 3.

The second item (2) easily follows from the fact that E[Tk(X)] ≥ 0. When
E[X2] �= 1, using the normalized random variable X̃ = X√

E[X2] , we obtain the

inequality E[X2k] ≥ E
k[X2]E[N2k] for all k ≥ 1. �

REMARK 4.1. The statement (2) of Theorem 4.2 does not hold for any kind
of Markov operators. Below, we present a simple counterexample. Let U denote
a uniform random variable on the interval (−1,1). Set X = U2 − 1

3 . Then X be-
longs to the second Wiener chaos of the Jacobi structure (see [3], Section 4) with
parameters α = β = 1. Besides, E[X2] = 4

45 . Then it is straightforward to check
that the inequality E[X2k] ≥ E[N2k]Ek[X2] in the item (2) of Theorem 4.2 does
not hold even for k = 2. This is mainly because the assumption (c) fails in this
setup. Roughly speaking, the spectrum of Jacobi operators has a quadratic growth
whereas our assumption suggests a linear growth.

REMARK 4.2. Here, we give a concrete application of Theorem 4.2 in some
situation where the usual criteria in the Wiener space fail. Let ν ≥ 1 be an integer
number. Assume that {Qn}n≥1 is a sequence of i.i.d. random variables having chi-
squared distribution with ν degrees of freedom. We are also given {Nn}n≥1 an
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independent sequence of i.i.d. standard Gaussian random variables. As a result,
{Sn}n≥1 = {Nn ×

√
ν

Qn
}n≥1 is a sequence of i.i.d. Student random variables with ν

degrees of freedom. Now, set

X =
∞∑

1=i1<i2<···<ip

α(i1, . . . , ip)Si1 · · ·Sip ,

such that E[X2] = 1. Relying on the superposition procedure (see Section 2.2) and
Theorem 4.2, if ν > 2k, it can be shown that

dTV
(
X,N (0,1)

)≤ Ck

√
E[X2k]

(2k − 1)!! − 1.(4.12)

In addition, since X does not have moments of all orders, X does not belong
to any Wiener chaos and therefore the estimate (4.12) is strictly beyond existing
moments-based total-variation estimates on Wiener space.

4.2. Other polynomial criteria for central convergence. In the previous sec-
tion, in order to prove the even moment theorem, we use heavily the fourth mo-
ment Theorem 2.2. The reason is that in the decomposition of Tk over the basis
{Wk}k≥2, the coefficient α2 in front of W2 is strictly positive. It is then natural to
consider the cases where α2 = 0, which turns out to be more delicate. The main
result of this section is the following.

THEOREM 4.3. Let L be a general Markov generator satisfying assumptions
(a)–(b)–(c) in Section 2. Assume that {Xn}n≥1 is a sequence of eigenfunctions
of L with eigenvalue −p, that is, −LXn = pXn for each n. We suppose that
P =∑m

k=2 αkWk is a nonzero polynomial belonging to the family P , such that
as n → ∞, we have

E
[
P(Xn)

]→ E
[
P(N)

]= 0.(4.13)

Then, as n → ∞, the two following statements hold:

(1) If there exist at least two indices 2 < i < j such that αiαj > 0 and i or j is
even, then

Xn
law→N (0,1).

(2) If there exist at least two indices 2 < i < j such that αiαj > 0 and both
i and j are odd integers, then each accumulation point of sequence {Xn}n≥1 in
distribution is in the form

αN (0,1) + (1 − α)δ0

for some α ∈ [0,1].
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PROOF. We will consider each case separately.

Case (1): Let us notice that there exist A > 0 and B ∈ R such that ∀x ∈
R,P (x) ≥ Ax2 + B . Then Ax2 < P(x) − B . By assumption, E[P(Xn)] → 0, so
E[P(Xn) − B] is bounded and E[X2

n] is bounded as well. Hence, by Lemma 2.1,
the sequence {Xn}n≥1 is bounded in Lp(E,μ) for each p ≥ 1. Since �(Xn) =
1
2(L + 2pId)[X2

n], and because of the fact that L is a continuous operator when
its domain is restricted to a finite sum of eigenspaces of L, �(Xn) is also bounded
in any Lp(E,μ). Finally, up to extracting a subsequence, we may assume that the
sequence of random vectors {(Xn,�(Xn))}n≥1 converges in distribution toward a
random vector (U,V ). As a consequence of Remark 3.2, we have

E
[
Hi−2(Xn)

2(�[Xn] − p
)2]→ 0,

E
[
Hj−2(Xn)

2(�[Xn] − p
)2]→ 0.

Recalling that {(Xn,�(Xn))}n≥1 converges in distribution toward (U,V ), we
infer that almost surely

Hi−2(U)(V − p) = Hj−2(U)(V − p) = 0.(4.14)

Thus, on the set {V �= p}, we have Hi−2(U) = Hj−2(U) = 0. But the roots of two
Hermite polynomials of different orders are distinct if at least one of the orders is
even. By assumption, either i − 2 or j − 2 is even, and we conclude that P(V �=
p) = 0. This proves that any accumulation point (in distribution) of the sequence
{�(Xn)}n≥1 is p, and, as a consequence, the sequence �(Xn) converges to p in L2.
Now, we can conclude by using Theorem 2.1.

Case (2): Following the same line of reasoning as in case (1), we obtain:

Hi−2(U)(V − p) = Hj−2(U)(V − p) = 0, a.s.

On the set {V �= p}, we have Hi−2(U) = Hj−2(U) = 0. But the roots of two Her-
mite polynomials with odd orders only coincide at 0. This implies U(V − p) = 0
almost surely. Now, let φ be any test function. Using the integration by parts for-
mula (2.4) with Y = Xn and X = φ(Xn) and letting n → +∞, one leads to

E
[
φ′(U)V

]= pE
(
Uφ(U)

]
.(4.15)

Splitting the expectations in (4.15) into the disjoint sets {V = p} and {V �= p}, we
obtain

pE
[(

φ′(U) − Uφ(U)
)
1{V =p}

]+ φ′(0)E[V 1{V �=p}] = 0.(4.16)

Take φ(x) = eiξx . Then (4.16) reads

piξE
[
eiξU1{V =p}

]− pE
[
UeiξU1{V =p}

]+ iξE[V 1{V �=p}] = 0.



944 AZMOODEH, MALICET, MIJOULE AND POLY

Setting f (ξ) = E[eiξU1{V =p}], we obtain that

pξf (ξ) + pf ′(ξ) + ξE[V 1{V �=p}] = 0,

f (ξ) =
(
P(V = p) − 1

p
E[V ]

)
+ 1

p
E[V ]e−ξ2/2.

It is straightforward to deduce from above equations that the characteristic function
of random variable U is given by

E
[
eiξU ]= P(V �= p) + f (ξ)

=
(

1 − 1

p
E[V ]

)
+ 1

p
E[V ]e−ξ2/2. �

Although case (2) in Theorem 4.3 seems less interesting than case (1), we point
out that a Dirac mass at zero may appear naturally under assumptions (a)–(b)–(c).
Here is a simple example of this phenomenon.

EXAMPLE 4.1. Set E = R
2 and μ = N (0,1) ⊗ (1

2δ0 + 1
2δ1). Define

L[φ](x, y) = y

(
∂2φ

∂x2 − x
∂φ

∂x

)
.(4.17)

One can check that L fulfills assumptions (a)–(b)–(c) in Section 2. Consider the
sequence

Xn(x, y) = xy ∈ Ker(L + Id), n ≥ 1.

Then Xn ∼ 1
2N (0,1)+ 1

2δ0 for each n ≥ 1. Moreover, E[W3(Xn)] = E[W5(Xn)] =
0. As a matter of fact, the conclusions of Theorem 4.3 are sharp when applied to
P = W3 + W5 ∈ P .

However, we show that in the particular setting of the Wiener space, that is,
when L is the Ornstein–Uhlenbeck operator, the case (2) of Theorem 4.3 cannot
take place. Furthermore, condition (4.13) will be a necessary and sufficient condi-
tion for central convergence. To this end, we need the following lemma, which has
an interest on its own.

LEMMA 4.3. Let {Un}n≥1 and {Vn}n≥1 be two bounded sequences such that
for some integer M > 0, we have

Un,Vn ∈
M⊕
i=0

Ker(L + iId) ∀n ∈ N.

If E[U2
nV 2

n ] → 0 as n tends to infinity, then E[U2
n ]E[V 2

n ] → 0 as n tends to infinity.
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We will make use of the next theorem, due to Carbery–Wright, restated here for
convenience. More precisely, we will apply it to Gaussian distribution, which is
log-concave.

THEOREM 4.4 ([9], Carbery–Wright). Assume that μ is a log-concave prob-
ability measure on R

m. Then there exists an absolute constant c > 0 (independent
of m and μ) such that for any polynomial Q :Rm →R of degree at most k and any
α > 0, the following estimate holds:(∫

Q2 dμ

)1/(2k)

× μ
{
x ∈R

m :
∣∣Q(x)

∣∣≤ α
}≤ ckα1/k.(4.18)

PROOF OF LEMMA 4.3. Let us denote E = R
N,μ = N (0,1)⊗N and let L

be the Ornstein–Uhlenbeck generator. We assume that E[U2
n ] does not converge

to zero. Up to extracting a subsequence, we can suppose that E[U2
n ] > θ > 0 for

each n ≥ 1. Following the method of [23], page 659, inequality (3.21), we can
approximate in L2(E,μ) the random variable Un by polynomials of degree M .
Hence, applying the Carbery–Wright inequality for the approximating sequence,
and taking the limit, we obtain

μ
{
x ∈ E :

∣∣Un(x)
∣∣≤ α

}≤ cMα1/M

θ1/2M
≤ Kα1/M,(4.19)

with K = cM
θ1/2M . Next, we have the following inequalities:

E
[
V 2

n

]= E

[
V 2

n

U2
n

U2
n

1{|Un|>α
}]+E

[
V 2

n 1{|Un|≤α
}]

≤ 1

α2E
[
U2

nV 2
n

]+√E[V 4
n

]√
μ
{
x ∈ E :

∣∣Un(x)
∣∣≤ α

}

≤ 1

α2E
[
U2

nV 2
n

]+ CKα1/2M,

where K is the constant from the Carbery–Wright inequality and C is such that
supn≥1 E[V 4

n ] ≤ C2. Note that constant C exists by hypercontractivity (see Re-
mark 2.1). We immediately deduce that

lim sup
n→∞

E
[
V 2

n

]≤ CKα1/2M,

which is valid for any α > 0. Let α → 0 to achieve the proof. �

THEOREM 4.5. Let L stand for the Ornstein–Uhlenbeck operator and let
{Xn}n≥1 be a sequence of elements of Ker(L + pId) with variance bounded from
below by some positive constant. Then, for any nonzero polynomial P ∈ P , as
n → ∞, we have

Xn
law→ N (0,1) if and only if E

[
P(Xn)

]→ 0.
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PROOF. Although in Theorem 4.5 we assume that L is the Ornstein–
Uhlenbeck generator, we stress that the proof works in the Laguerre structure
or any tensor products of Laguerre and Wiener structures. The “if” part is straight-
forward by using the continuous mapping theorem. To show the “only if” part, we
take a nonzero polynomial P ∈ P of the form

P(x) =
m∑

k=2

αkWk(x),

with αm > 0. Thanks to Remark 3.2, as n → ∞, we know that

E
[
Hm−2(Xn)

2(�(Xn) − p
)2]→ 0.(4.20)

Let Zm−2 = {t1, t2, . . . , tm−2} be the set of the (real) roots of the Hermite polyno-
mial Hm−2. Then, as n → ∞, we have

E

[(
m−2∏
k=1

(Xn − tk)
2

)(
�(Xn) − p

)2]→ 0.

From the fact that �(Xn) = 1
2(L + pId)(X2

n) together with fundamental as-
sumption (2.5) (which holds in the Wiener structure), we deduce that Hm−2(Xn)

and �(Xn)−p are both finitely expanded over the eigenspaces of the generator L.
Besides, repeating the same argument as in the proof of Theorem 4.3, we can show
that the sequence {Xn}n≥1 is bounded in L2(E,μ), as well as {�(Xn) − p}n≥1.
Thus, from Lemma 4.3, as n → ∞, we obtain(

m−2∏
k=1

E
[
(Xn − tk)

2])
E
[(

�(Xn) − p
)2]→ 0.

Since E[(Xn − tk)
2] ≥ Var(Xn) is bounded from below by assumption, we con-

clude that �(Xn) → p in L2(E). Hence, using Theorem 2.1, we obtain that the
sequence {Xn}n≥1 converges in distribution toward N (0,1). �

5. Conjectures. The main motivation of this article is to provide an answer
to the question (B) stated in the Introduction. We have shown that the convergence
of any even moment guarantees the central convergence of a normalized sequence
(i.e., E[X2

n] → 1) living inside Ker(L +pId). In the latter criterion, we have dealt
with normalized sequences because it seems more natural from the probabilistic
point of view. However, one could also try to replace this assumption by the con-
vergence of another even moment. Indeed, our framework could provide a wider
class of polynomial conditions ensuring central convergence, namely through the
family P . Then it is natural to check whether the family P is rich enough to pro-
duce other pair of even moments ensuring a criterion for central convergence. To
be more precise, assume that for some pair (k, l) (k < l) of positive integers, we
have E[X2k

n ] → E[N2k] and E[X2l
n ] → E[N2l], we want to know if this implies
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a central convergence. Our method would consist in deducing the existence of a
nontrivial polynomial Tk,l ∈ P such that E[Tk,l(Xn)] → 0. Natural candidates are
polynomials of the form

Tk,l(x) = x2l + αx2k + β,

where α,β ∈ R. Using the same arguments as in the step (2) of the proof of
Theorem 4.1, one can show that the condition P ∈ P entails necessarily that
α = l(2l−1)!!

k(2k−1)!! and β = ( l
k

− 1)(2k − 1)!!. Then the question becomes: does the
polynomial Tk,l belong to family P?

We exhibit the decomposition of Tk,l for each pair of integers in the set � =
{(2,3); (2,4); (2,5); (3,4); (3,5)}:

T2,3(x) = x6 − 15

2
x4 + 15

2
= W3(x) + 5

2
W2(x),

T2,4(x) = x8 − 70x4 + 105 = W4(x) + 84
5

W3(x) + 28W2(x),

T2,5(x) = x10 − 1575

2
x4 + 2835

2

= W5(x) + 180
7

W4(x) + 234W3(x) + 585
2

W2(x),

T3,4(x) = x8 − 28

3
x6 + 35 = W4(x) + 112

5
W3(x) + 14

3
W2(x),

T3,5(x) = x10 − 105x6 + 630 = W5(x) + 180
7

W4(x) + 129W3(x) + 30W2(x).

The coefficients of each decomposition are positive, thus, for each pair (k, l) ∈ �,
the convergence of the 2kth and 2lth moments entails the central convergence.
Naturally, we are tempted to formulate the following conjecture.

CONJECTURE 1. Let k, l ≥ 2 be two different positive integers. For any se-
quence {Xn}n≥1 of eigenfunctions in the same eigenspace of a Markov genera-
tor L satisfying assumptions (a)–(b)–(c), as n → ∞, the following statements are
equivalent:

(i) Xn
law−→ N ∼N (0,1).

(ii) E[X2k
n ] → E[N2k] and E[X2l

n ] → E[N2l].

Unfortunately, we could not prove it since T4,5 does not belong to family P :

T4,5(x) = x10 − 45

4
x8 + 945

4
= W5(x) + 405

28
W4(x) + W3(x)− 45

2
W2(x).

We insist on the fact that the above conjecture might be true nonetheless.
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Another perspective of our algebraic framework is to provide nontrivial mo-
ments inequalities for the eigenfunctions of the Markov operator L satisfying suit-
able assumptions. The special role of the fourth cumulant κ4 in normal approx-
imation for a sequence living inside a fixed eigenspace is now well understood
and it is known that κ4(X) ≥ 0. In a recent preprint, the authors of [4] observed
the prominent role of κ6 for studying convergence in distribution toward N1 × N2,
where N1 and N2 are two independent N (0,1) random variables, of a given se-
quence in a fixed Wiener chaos. The computations suggest that κ6 could be greater
than the variance of some differential operator (analogous to Var(�[X,X]) in the
case of normal approximation). However, the techniques presented in [4] could not
provide the positivity of the sixth cumulant. We recall that

κ6(X) = E
[
X6]− 15E

[
X2]

E
[
X4]− 10E

[
X3]2 + 30E

[
X2]3.

Computations show that the least eigenvalue of the moment matrix M3(X) is
always bigger than κ6(X). Therefore, our method does not give results precise
enough, to insure the positivity of the sixth cumulant. However, we know that
κ6(X) ≥ 0 in the two first Wiener chaoses. Moreover, using Proposition 3.1, we
could prove the following partial criterion.

PROPOSITION 5.1. Let X be a multiple Wiener–Itô integral of odd order such
that E[X2] = 1. If κ4(X) ≥ 3, then κ6(X) ≥ 0.

These two facts lead us to formulate the following conjecture.

CONJECTURE 2. For any multiple Wiener–Itô integral X of order p ≥ 2, we
have κ6(X) > 0.

APPENDIX

We give here a proof of Proposition 4.1. In the following, w stands for the den-
sity of the standard Gaussian distribution over R. Let us begin by stating a lemma
on elementary computations on Hermite polynomials.

LEMMA A.1. Let l,m,n ∈ N. Then∫
R

x2mH2n(x)w(x) dx = (2m)!
2m−n(m − n)!(A.1)

and ∫
R

Hl(x)Hm(x)Hn(x)w(x) dx

(A.2)

= l!m!n!
((−l + m + n)/2)!((l − m + n)/2)!((l + m − n)/2)! ,

with the convention that 1
p! = 0 if p /∈ N.
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PROOF. We first focus on (A.1). Recall that e−x2/2Hn(x) = (−1)n ×
dn

dxn (e−x2/2). Performing 2n integrations by parts (with n ≤ m), we obtain

∫
R

x2mH2n(x)w(x) dx =
∫
R

d2n

dx2n

(
x2m)w(x)dx

= (2m)!
(2(m − n))!

∫
R

x2(m−n)w(x) dx

= (2m)!(2(m − n) − 1)!!
(2(m − n))!

= (2m)!
2m−n(m − n)! .

If m > n, the formula follows from our convention. Now, (A.2) is a mere conse-
quence of the product formula for Hermite polynomials, which states that (see,
e.g., Theorem 6.8.1 in [2])

Hn(x)Hm(x) =
min(n,m)∑

k=0

(
n

k

)(
m

k

)
k!Hn+m−2k(x),

for all positive integers n,m. Indeed, integrating last equation against Hlw, and
using the orthogonality of Hermite polynomials with respect to w, we obtain the
desired result. �

Now, let us prove Proposition 4.1.

PROOF OF PROPOSITION 4.1. To make the notation less cluttered, we set
βk = (k − 1)(2k − 1)!! and αk = k(2k − 1)!!. Since Wp is an even polynomial
and deg(Wp) = 2p, there exists a unique expansion of the form

x2k − αkx
2 + βk =

k∑
p=2

cp,kWp(x) + ax2 + b.(A.3)

Recall that the coefficients αk and βk are chosen in such a way that φ(t) =
E[t2kN2k −αkt

2N2 +βk] satisfies φ(1) = φ′(1) = 0. Coming back to Lemma 4.1,
for each p ≥ 2 the two following conditions hold:{

E
[
Wp(N)

]= 0,

∀x ∈R, ψp(x) = E
[
Wp(xN)

]≥ 0.

Thus, ψp reaches its minimum at x = 1 and we have ψp(1) = ψ ′
p(1) = 0. Setting

ψ(x) = E

[
k∑

p=2

cp,kWp(xN)

]
=

k∑
p=2

cp,kψp(x),
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we must also have ψ(1) = ψ ′(1) = 0. Plugging the above conditions on φ and ψ

into (A.3) implies that, if δ(x) = E[ax2N2 + b] = ax2 + b, then δ(1) = δ′(1) = 0.
Hence, a +b = 0 and 2a = 0 so a = b = 0. Define the (even) polynomial Qk(x) =∑k

p=2 cp,k(2p − 1)Hp(x)Hp−2(x). Using the definition of Wp and (A.3), we see
that Qk is solution of the polynomial equation

x

∫ x

0
Qk(t) dt − Qk(x) = x2k − αkx

2 + βk.(A.4)

In the following lemma, we solve the above equation.

LEMMA A.2. Equation (A.4) has a unique even polynomial solution of degree
2k − 2, which is

Qk(x) =
k∑

p=2

cp,k(2p − 1)Hp(x)Hp−2(x) = −βk +
k−1∑
p=1

(2k − 1)!!
(2p − 1)!!x

2p.(A.5)

PROOF. Let � be the linear operator from R[X] to R[X] defined by
�(P )(X) = X

∫ X
0 P(t) dt − P(X). Assume that �(P ) = �(Q), then �(X) =∫ X

0 (P (t) − Q(t)) dt satisfies the differential equation xy(x) − y′(x) = 0. Thus,

there exists C > 0 such that �(X) = CeX2/2. But � is a polynomial function so
C = 0. This implies that P − Q is a constant polynomial. By setting x = 0 in
equation (A.4), we get that Qk(0) = −βk . Now, set

Rk(X) = −βk +
k−1∑
p=1

(2k − 1)!!
(2p − 1)!!X

2p,

we also have Rk(0) = −βk . As a result, one is left to show that �(Rk) = �(Qk).
Indeed,

�(Rk) = −βk

(
X2 − 1

)+ k−1∑
p=1

(2k − 1)!!
(2p − 1)!!

(
1

2p + 1
X2p+2 − X2p

)

= −βk

(
X2 − 1

)+ (2k − 1)!!
k−1∑
p=1

1

(2p + 1)!!X
2p+2

− (2k − 1)!!
k−1∑
p=1

1

(2p − 1)!!X
2p

= −βk

(
X2 − 1

)+ X2k − (2k − 1)!!X2

= X2k − αkX
2 + βk

= �(Qk). �
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Integrating (A.5) against H2nw over R for each 1 ≤ n ≤ k − 1 and using
Lemma A.1 shows that {cp,k}2≤p≤k is the solution of the following triangular ar-
ray:

k∑
p=n+1

cp,k(2p − 1)
(p − 2)!p!(2n)!

(n + 1)!(n − 1)!(p − n − 1)!

=
k∑

p=n+1

(2k − 1)!!(2p − 2)!
(2p − 3)!!2p−n−1(p − n − 1)! ∀n ∈ [1, k − 1],

which can be equivalently stated as

∀n ∈ [1, k − 1],
k−1∑
p=n

ap,k

(p − n)! = 2n(n + 1)!(n − 1)!
(2n)!

k−1∑
p=n

p!
(p − n)! ,(A.6)

by denoting, for all 1 ≤ p ≤ k − 1,

ap,k = (2p + 1)(p − 1)!(p + 1)!
(2k − 1)!! cp+1,k.(A.7)

In order to solve (A.6), we introduce the polynomial functions

f (x) = −k +
k−1∑
p=0

xp, g(x) =
k−1∑
p=1

ap,k

p! xp.

Remark that, in terms of the functions f and g, (A.6) reads

∀n ∈ [1, k − 1], g(n)(1) = 2n(n + 1)!(n − 1)!
(2n)! f (n)(1).

The multiplication formula for the Gamma function and a classic property of the
beta function (see, e.g., [1], formulas (6.1.20) and (6.2.2)) imply

2n(n + 1)!(n − 1)!
(2n)! = 2n �(n + 2)�(n)

�(2n + 1)

= �(n + 2)

2n�(n + 1)
· �(1/2)�(n)

�(n + 1/2)

= n + 1

2n

∫ 1

0
un−1(1 − u)−1/2 du.

Thus, ∀x ∈ (1/4,3/4),

g(1 − 2x) − g(1) =
k−1∑
n=1

g(n)(1)

n! (−1)n2nxn

=
k−1∑
n=1

f (n)(1)

n! (n + 1)

∫ 1

0
un−1(1 − u)−1/2 du(−1)nxn
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=
∫ 1

0
(1 − u)−1/2

k−1∑
n=1

f (n)(1)

n! (n + 1)(−1)nun−1xn du

=
∫ 1

0
(1 − u)−1/2u−1 d

du

(
uf (1 − ux)

)
du.

Since f (x) = −k + 1−xk

1−x
,

d

du

[
uf (1 − ux)

]= d

du

[
−ku + 1 − (1 − ux)k

x

]
= k
(
(1 − ux)k−1 − 1

)
,

so that, ∀x ∈ (1/4,3/4),

g(1 − 2x) − g(1) = k

∫ 1

0
(1 − u)−1/2u−1((1 − ux)k−1 − 1

)
du.

Derive last equation to obtain that ∀p ∈ [1, k − 1], ∀x ∈ (1/4,3/4),

2pg(p)(1 − 2x) = k!
(k − 1 − p)!

∫ 1

0
(1 − u)−1/2up−1(1 − ux)k−1−p du.

Note that we used Lebesgue’s derivation theorem, which applies since

sup
x∈(1/4,3/4)

∣∣(1 − u)−1/2up−1(1 − ux)k−p−1∣∣≤ (1 − u)−1/2up−1
(

1 − u

4

)k−p−1

,

and the upper bound in the last equation is in L1((0,1)) as a function of u. Finally,
for all 1 ≤ p ≤ k − 1,

ap,k = g(p)(0) = 2−p k!
(k − p − 1)!

∫ 1

0
(1 − u)−1/2up−1

(
1 − u

2

)k−p−1

du,

and we can use (A.7) to conclude. �
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