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PATHWISE NONUNIQUENESS FOR THE SPDES OF SOME
SUPER-BROWNIAN MOTIONS WITH IMMIGRATION1

BY YU-TING CHEN

Harvard University

We prove pathwise nonuniqueness in the stochastic partial differential
equations (SPDEs) for some one-dimensional super-Brownian motions with
immigration. In contrast to a closely related case investigated by Mueller,
Mytnik and Perkins [Ann. Probab. (2014) To appear], the solutions of the
present SPDEs are assumed to be nonnegative and have very different proper-
ties including uniqueness in law. In proving possible separation of solutions,
we derive delicate properties of certain correlated approximating solutions,
which is based on a novel coupling method called continuous decomposition.
In general, this method may be of independent interest in furnishing solutions
of SPDEs with intrinsic adapted structure.

1. Introduction. In this work, we consider some one-dimensional super-
Brownian motions with (continuous) immigration, and construct pairs of distinct
nonnegative solutions to the associated stochastic partial differential equations
(SPDEs). Hence, we resolve in the negative the long-standing open problem
concerning the pathwise uniqueness in the SPDEs for one-dimensional super-
Brownian motions, when additional immigration is present (cf. page 217 in
Perkins [21]).

We start with some informal descriptions for the class of super-Brownian mo-
tions with immigration which are considered throughout this work. See Daw-
son [7], Dynkin [8], Le Gall [16], Perkins [21] and several others for super-
Brownian motions as well as their connections with branching processes. Imagine
that, in the barren territory R, clouds of independent immigrants with infinitesimal
initial mass land randomly in space and throughout time. The underlying immi-
gration mechanism is time-homogeneous and gives a high intensity of arrivals of
immigrants so that the inter-landing times are infinitesimal. After landing, each of
the immigrant processes evolves independently of each other as a super-Brownian
motion, obeying the SPDE

∂X

∂t
(x, t)= �X

2
(x, t)+X(x, t)1/2Ẇ (x, t), X ≥ 0,(1.1)
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subject to infinitesimal initial mass, where W is (two-parameter) space–time white
noise on R×R+. Superposition of their masses defines a super-Brownian motion
with immigration and zero initial value. See Section 1.2 of Dawson [7], Konno
and Shiga [15], Section III.4 of Perkins [21] and Reimers [22] for the connec-
tion between solutions to the SPDE (1.1) and super-Brownian motions. See Sec-
tions 1.2 and 3.2 in Chen [3] for some heuristic interpretations of the terms of
the SPDE (1.1). Note that super-Brownian motions with immigration can also be
constructed by Poisson point processes (see [4]).

We study the particular super-Brownian motions with immigration which have
densities, and the density processes obey the SPDEs:

∂X

∂t
(x, t)= �X

2
(x, t)+ψ(x)+X(x, t)1/2Ẇ (x, t), X ≥ 0,

(1.2)
X(x,0)= 0.

Here, C+c (R) being the function space of nonnegative continuous functions on R
with compact support, the immigration functions ψ satisfy

ψ ∈ C+c (R) with ψ �= 0(1.3)

and can be thought informally as the density of immigrants landing within an in-
finitesimal amount of time.

To fix ideas, we give the precise definition of the pair (X,W) in the SPDE (1.2)
before further discussions. We need a filtration (Gt ) which satisfies the usual con-
ditions, and it facilitates the following definitions of W and X. We require that W

be a (Gt )-space–time white noise in the sense that it is a family of (Gt )-Brownian
motions indexed by L2(R), and the Brownian motions satisfy the following prop-
erties: for any d ∈N, φ1, . . . , φd ∈ L2(R) and a1, . . . , ad ∈R,

W

(
d∑

j=1

ajφj

)
=

d∑
j=1

ajW(φj ) a.s.(1.4)

and (W(φ1), . . . ,W(φd)) is a d-dimensional (Gt )-Brownian motion starting at
zero with zero initial value and covariance matrix [〈φi,φj 〉L2(R)]1≤i,j≤d (cf. Sec-
tion 3 of Khoshnevisan [13] or Chapter 1 of Walsh [26] for the standard definition
of space–time white noise). Since the immigration function under consideration
has compact support, it can be shown that the density process of the corresponding
super-Brownian motion with immigration takes values in C+c (R) (cf. Section III.4
of Perkins [21]). Let Crap(R) denote the function space of rapidly decreasing func-
tions f :

|f |λ � sup
x∈R
∣∣f (x)

∣∣eλ|x| <∞ ∀λ ∈ (0,∞).(1.5)

Equip Crap(R) with the complete separable metric

‖f ‖rap �
∞∑

λ=1

|f |λ ∧ 1

2λ
.(1.6)
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For convenience, we follow the convention in Shiga [25] and use Crap(R) as the un-
derlying state space. Then by saying that X = (Xt) is a solution to the SPDE (1.2),
we require that X be a nonnegative (Gt )-adapted continuous process with state
space Crap(R) and satisfy the following weak formulation of (1.2):

Xt(φ)=
∫ t

0
Xs

(
�φ

2

)
ds + t〈ψ,φ〉 +

∫ t

0

∫
R

X(x, s)1/2φ(x) dW(x, s)(1.7)

for any test function φ ∈ C∞c (R). Here, we identify any locally integrable function
f on R as a signed measure on B(R) in the natural way and write

f (φ)= 〈f,φ〉 ≡
∫
R

f (x)φ(x) dx,(1.8)

whenever there is no risk of confusion. For the last term in (1.7) and other two-
parameter stochastic integrals in the sequel, see Section 5 of Khoshnevisan [13] or
Chapter 2 of Walsh [26] for the construction.

A fundamental question for the SPDE (1.2) concerns its uniqueness theory, and
the major difficulty arises from the presence of a non-Lipschitz diffusion coeffi-
cient. Uniqueness in law for the SPDE (1.2) holds and can be proved by the dual-
ity method via Laplace transforms (cf. Section 1.6 of Etheridge [9] or the proof of
Lemma 2.10). In fact, it holds even if we impose general nonnegative initial con-
ditions for the SPDE (1.1) for super-Brownian motion and the SPDEs (1.2) under
consideration. Nonetheless, duality methods for more general SPDEs of the form

∂X

∂t
(x, t)= �X

2
(x, t)+ b

(
X(x, t)

)+ σ
(
X(x, t)

)
Ẇ (x, t)(1.9)

up to now seem only available when b and σ are of rather special forms, and
hence are nonrobust. (See Mytnik [18] for the duality method for the case b = 0
and σ(x) = xp , where p ∈ (1

2 ,1) and nonnegative solutions are assumed.) After
all, duality is based on exactness and may become difficult to obtain by even slight
changes of coefficients in the context of SPDEs.

Under the classical theory of stochastic differential equations (SDEs), unique-
ness in law in an SDE is a consequence of pathwise uniqueness of its solutions
(cf. Theorem IX.1.7 of Revuz and Yor [23]). The strength of this point of view
is that it has emphasis on the values of the Hölder exponents of coefficients, in-
stead of on the particular forms of coefficients. Then a natural question is whether
the duality method can be circumvented by proving pathwise uniqueness in the
SPDEs (1.9) instead. Here, pathwise uniqueness in an SPDE ensures that any two
solutions subject to the same space–time white noise and initial value always co-
incide almost surely. Our objective in the present work is to settle the question of
pathwise uniqueness in the particular SPDEs (1.2).

Let us discuss some results on pathwise uniqueness in various SDEs and SPDEs
which are closely related to the SPDEs (1.2). We focus on the role of non-Lipschitz
diffusion coefficients in determining pathwise uniqueness.



3362 Y.-T. CHEN

For one-dimensional SDEs with Hölder-p diffusion coefficients, the famous
Girsanov example (see Section V.26 of Rogers and Williams [24]) shows the ne-
cessity of the condition p ≥ 1

2 for pathwise uniqueness of solutions. The suffi-
ciency was later confirmed in the seminal work Yamada and Watanabe [27] as far
as the cases with sufficiently regular drift coefficients are concerned. In fact, the
work [27] showed that a finite-dimensional SDE defined by

dXi
t = bi(Xt) dt + σi

(
Xi

t

)
dBi

t , 1≤ i ≤ d,(1.10)

enjoys pathwise uniqueness as long as all bi’s are Lipschitz continuous and each
σi is Hölder p-continuous, for any p ≥ 1

2 .
In view of the complete results for SDEs and the strong parallels between (1.9)

and (1.10), it had been hoped for decades that pathwise uniqueness would also hold
in (1.9) if the diffusion coefficient σ is Hölder-p continuous whenever p ≥ 1

2 . It
was shown in Mytnik and Perkins [19] that this is the case if σ is Hölder-p for
p > 3

4 , but in Burdzy, Mueller and Perkins [2] and Mueller, Mytnik and Perkins
[17] that pathwise uniqueness in

∂X

∂t
(x, t)= �X

2
(x, t)+ ∣∣X(x, t)

∣∣pẆ (x, t),

(1.11)
X(x,0)= 0

fails for any p ∈ (0, 3
4). Here, a nonzero solution to (1.11) exists and, as 0 is ob-

viously another solution, both pathwise uniqueness and uniqueness in law fail. All
these results point to the general conclusion that pathwise uniqueness of solutions
holds for Hölder-p diffusion coefficients σ for p > 3

4 but can fail for p ∈ (0, 3
4).

See also Mytnik, Perkins and Sturm [20] for the case of colored noises.
In this work, we confirm pathwise nonuniqueness in the SPDEs (1.2). We stress

that by definition, only nonnegative solutions are considered in this regard and
hence are unique in law by the duality argument mentioned above. Our main result
is given by the following theorem.

THEOREM 1 (Pathwise nonuniqueness). For any nonzero immigration func-
tion ψ ∈ C+c (R), there exists a filtered probability space (�,F , (Gt ),P) which
carries a (Gt )-space–time white noise W and two solutions X and Y of the
SPDE (1.2) with respect to (Gt ) such that P(X �= Y) > 0. Hence, there is path-
wise nonuniqueness in the SPDE (1.2) for ψ as above.

A comparison of diffusion coefficients may suggest that the construction in
Mueller, Mytnik and Perkins [17] of a nonzero signed solution to the particular
case

∂X

∂t
(x, t)= �X

2
(x, t)+ ∣∣X(x, t)

∣∣1/2
Ẇ (x, t),

(1.12)
X(x,0)= 0
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for (1.11) should be closely related to our case (1.2). Nonetheless, solutions to (1.2)
are subject to the assumed nonnegativity, and uniqueness in law in the SPDEs (1.2)
does hold. These facts mean that the goal will be to find two nonzero solutions
which have the same law and are nontrivially correlated through the shared white
noise. Although many features of our arguments will follow their counterparts
in [17], a number of new problems, including the choice of solutions to work with,
arise in dealing with these distinct properties.

For a fixed nonzero immigration function ψ ∈ C+c (R), we construct the pair of
distinct solutions to the corresponding SPDE (1.2) by approximation. Basic prop-
erties of the approximating solutions are as follows. An ε-approximating pair, still
denoted by (X,Y ) but under Pε , consists of super-Brownian motions with intermit-
tent immigration and subject to the same space–time white noise. Here, a super-
Brownian motion with intermittent immigration is defined as a discrete sum of
certain immigrant processes. The immigrants land after intervals of deterministic
and equal length and at i.i.d. targets, and then, along with their offspring, evolve
independently as true super-Brownian motions. In more detail, the pairs (X,Y )

satisfy the following properties. The initial masses of the immigrant processes are
of the form ψ(1)J a

ε (·) with a denoting the target, where

J a
ε (x)≡ ε1/2J

(
(a − x)ε−1/2), x ∈R,(1.13)

for a fixed even C+c (R)-function J which is bounded by 1, has topological support
contained in [−1,1], and satisfies

∫
R J (x) dx = 1. In addition, the landing times

of the immigrants are interlaced as

si = (i − 1
2

)
ε and ti = iε for i ∈N,(1.14)

and the targets associated with the immigrants of X and Y are given by i.i.d. spatial
variables xi and yi at si and ti , respectively, where

Pε(xi ∈ dx)= Pε(yi ∈ dx)≡ ψ(x)dx

ψ(1)
.(1.15)

Details of these approximating solutions and their convergence to true solutions of
the SPDE (1.2) can be found in Sections 2.1 and 5.

At this point, we only describe two ε-approximating solutions which share the
same space–time white noise, and what can be deduced from this relation in under-
standing their interactions seems limited. The perspective of the present work is to
emphasize the role of immigrant processes, and the readers will see that they lead
to a detailed comparison of local masses for the approximating pairs in particular.
On the other hand, by adopting this point of view, we are faced with an issue of
defining approximating solutions by appropriate immigrant processes, as will be
discussed in more detail later on.

We notice that similar ε-approximating solutions appear in Mueller, Mytnik
and Perkins [17] for the construction of a nonzero solution to the SPDE (1.12). In
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this case, each approximating solution is obtained by specifying its “positive part”
and “negative part” as two super-Brownian motions with intermittent immigration,
but now subject to pairwise annihilation upon collision. Both parts are in turn
defined by sums of their own immigrant processes undergoing annihilation, and
all of the summands can be seen as i.i.d. super-Brownian immigrant processes
taken off annihilated individuals and their possible offspring (cf. equations (2.1),
(2.4) and (2.6) of [17] and Lemma 2.10). The latter property implies fairly explicit
stochastic calculus for the immigrant processes, and is the key to make further
analysis possible in [17].

For our case, while a super-Brownian motion with intermittent immigration can
be defined as a sum of independent immigrant processes, the question for the
same construction of two, with interlacing immigrating times and subject to the
same space–time white noise, lies in the interactions between immigrants through
space–time white noises. The major difficulty here is in specifying a family of
correlated immigrants so that the corresponding approximating solutions not only
conform to the same space–time white noise but also generate two distinct solu-
tions to the SPDE (1.2). After all, in contrast to the counterexample in Mueller,
Mytnik and Perkins [17] which stems from annihilation of colliding individuals
in two independent population processes, it is still not known whether a similar
interpretation applies to the SPDE (1.2) under consideration, since in our case the
existence of two different solutions means a special kind of coexistence of two
population processes. We need a different point of view to choose approximating
solutions.

The correlated immigrant processes which meet our needs are chosen through
a reverse analysis for the ε-approximating solutions. The aim is to find immi-
grant processes subject a “tractable” correlation structure for every coupled pair
of approximating solutions (readers interested in more details about the motiva-
tion may see Section 3.2 of [3] for a nonrigorous proof of our main result). Our
main machinery is a novel coupling method called continuous decomposition. By
this method, essentially we can elicit certain immigrant processes from any pair of
ε-approximating solutions so that the integrals of C∞c (R)-functions against them
define continuous semimartingales starting at the respective landing times, all with
respect to the same filtration (see Theorem 2.6). Here, C∞c (R) denotes the space
of infinitely differentiable functions on R with compact support. We remark that
this semimartingale property of immigrant processes does not follow directly from
the general theory of coupling (see Section 2.2 for a discussion).

The immigrant processes from continuous decomposition satisfy natural dis-
tributional properties including the one that both families of immigrants, say
{Xi} and {Y i} for X and Y , respectively, consist of independent processes.
Moreover, they can be chosen such that for all φ,ϕ ∈ C∞c (R), the “coarse”
(predictable) covariations 〈Xi(φ),Y (ϕ)〉 and 〈X(φ),Y j (ϕ)〉, rather than the co-
variations 〈Xi(φ),Y j (ϕ)〉 between immigrants, admit explicit expressions (see
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Proposition 2.8). The expressions are simple enough for one to conjecture that
the immigrant processes should satisfy the coexistence condition:

〈
Xi(φ),Y j (ϕ)

〉
t =
∫ t

0

∫
R

Xi(x, s)Y j (x, s)

X(x, s)1/2Y(x, s)1/2 φ(x)ϕ(x) dx ds,

(1.16)
i, j ≥ 1,

where 0/0 is read as 0. Note that the covariations in (1.16) are given by two-fold
integrals. See Section 2.3 for other possibilities of covariations for stochastic in-
tegrals with respect to space–time white noises, and also Remark 2.7 on related
issues. By classical arguments, it can be verified that immigrant processes subject
to the coexistence condition (1.16) do exist. See Theorem 2.12 for the precise re-
sult. We will restrict our attention to the corresponding ε-approximating solutions
in the remaining of Section 1.

Let us explain why the ε-approximating solutions remain separated if we pass
ε to zero. We switch to the conditional probability measure under which the total
mass process of a generic immigrant, say Xi , hits 1. Let us call such a conditional
probability measure Qi

ε from now on. The motivation to invoke these conditional
probabilities is that with high Pε-probability, there is at least one immigrant from
X whose total mass will hit 1 by the independence of the immigrants for X, so
whenever X and Y are separated with sufficiently high probability under every Qi

ε ,
we should be able to integrate these immigrant-wise phenomena of conditional
separation of X and Y into a kind of separation under Pε .

The readers may notice that the above argument to obtain separation under Pε

is reminiscent of the use of excursion theory in studying pathwise uniqueness in
SDEs and SPDEs (cf. Bass, Burdzy and Chen [1] and Burdzy, Mueller and Perkins
[2]). The major difference, however, is that in the present case, the immigrant pro-
cesses can overlap in time without waiting until the earlier ones die out. In order to
use conditional separation of the approximating pairs, we resort to an inclusion–
exclusion argument as in Mueller, Mytnik and Perkins [17]. The result is uniform
separation of the approximating pairs under Pε . It states that for some constants
T ,� ∈ (0,∞) independent of ε, sup0≤s≤T ‖Xs − Ys‖rap under Pε are uniformly
bounded below by � with uniformly positive probability for all small ε ∈ (0,1),
or more precisely

lim inf
ε↘0

Pε

(
sup

0≤s≤T

‖Xs − Ys‖rap ≥�
)

> 0.

Then it is not difficult to argue that any two true solutions to (1.2) as a limit of our
approximation pairs separate with strictly positive probability. See Section 4 for
the details.

The conditional separation under Qi
ε of the two approximating solutions con-

cerns a comparison of their local masses over a growing space–time region. We
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envelop the support processes of Xi and Y j by approximating parabolas of the
form

P(a,s)
β (t)= {(x, r) ∈R× [s, t]; |a − x| ≤ ε1/2 + (r − s)β

}
(1.17)

for β near 1/2 and consider the propagation of these parabolas instead of that of
the support processes. The known modulus of continuity for the support of super-
Brownian motion implies that, for example, the support of Xi satisfies

supp
(
Xi)∩ (R× [si, t])⊆P(xi ,si )

β (t) for t − si small,(1.18)

where supp(Xi) is the space–time support of the random function (x, s) �−→
Xi(x, s), and xi and si denote the landing target and landing time of Xi , respec-
tively (see Section 3.2 and Proposition 7.1). As in Mueller, Mytnik and Perkins
[17], the total mass process Xi(1) under Qi

ε can be shown to be a constant mul-
tiple of a 4-dimensional Bessel squared process near its landing time and hence
has a known growth rate. Thanks to (1.18), this growth rate of the total mass is the
same as the growth rate of the local mass of Xi over its support envelope, and then
a lower bound of the associated local mass of X follows from the nonnegativity of
the immigrant processes.

We prove that the local mass of Y over the envelope for Xi grows at a smaller
rate. This involves a subcollection of immigrants from Y which we choose now.
The Qi

ε-probability that one of the Y j clusters preceding Xi ever invades the “terri-
tory” of Xi by time t ∈ (si,∞) can be made relatively small as long as t− si small,
which follows from an argument similar to the proof of Lemma 8.4 of Mueller,
Mytnik and Perkins [17] (see Proposition 7.2). These Y j clusters can henceforth
be excluded from our consideration. Then the simple geometry of the approximat-
ing parabolas (1.17) yields the space–time rectangles

Ri (t)= [xi − 2
(
ε1/2 + (t − si)

β), xi + 2
(
ε1/2 + (t − si)

β)]× [si, t]
so that the immigrant processes Y j landing inside Ri(t) are the only possible
invaders of the support envelope for Xi by time t . This results in a family of clus-
ters, say, {Y j ; j ∈ J i (t)} to the effect that the local mass of Y over the growing
envelope for Xi is dominated by the sum of total masses of these clusters. We fur-
ther classify them into critical clusters and lateral clusters. In essence, the critical
clusters land near the territory of Xi so the interactions between these clusters and
Xi are significant. In contrast, the lateral clusters must evolve for relatively larger
amounts of time before they start to interfere with Xi .

Up to this point, the framework we set for investigating conditional separation of
approximating solutions is very similar to that in Mueller, Mytnik and Perkins [17].
The interactions between the approximating solutions considered in both cases are,
however, very different in nature. For example, bounding the finite variation pro-
cess of the semimartingale Y j (1) under Qi

ε is the main source of difficulty in our
case, but this creates no difficulty in [17]. Hence, our case calls for a new analysis
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again. Our result for the conditional separation can be captured quantitatively by
saying that for arbitrarily small δ > 0,

with high Qi
ε-probability, Xi

t (1)≥ constant · (t − si)
1+δ and

(1.19) ∑
j∈J i (t) Y

j
t (1)≤ constant · (t − si)

3/2−δ, for t close to si+.

Here, the initial behavior of Xi(1) under Qi
ε as a constant multiple of a

4-dimensional Bessel squared process readily gives the first part of (1.19) (see
Section 6). On the other hand, the extra order, which is roughly (t − si)

1/2, for the
sum of the (potential) invaders Y j can be seen as the result of spatial structure.

In fact, the above framework needs to be further modified in a critical way due
to a technical difficulty which arises in our setting (but not in Mueller, Mytnik and
Perkins [17]). We must consider a slightly looser definition for critical clusters,
and a slightly more stringent definition for lateral clusters. It will be convenient to
consider this modified classification for the Y j clusters, still indexed by j ∈ J i (t),
landing inside a slightly larger rectangle in place of Ri (t). Write

J i (t)= Ci (t)∪Li (t),

where Ci (t) and Li (t) are the random index sets associated with critical clusters
and lateral clusters, respectively. See Section 3.2 for the precise classification.

Let us discuss the method to bound the sum of the total masses Y
j
t (1), j ∈

J i (t), under Qi
ε [recall (1.19)]. As in Mueller, Mytnik and Perkins [17], this part

plays a major role in the present work besides the selection of approximating solu-
tions. The treatment of the sum is through an analysis of its first moment, or more
precisely an analysis of the expected finite variation process of Y j (1) under Qi

ε for
j ∈ J i (t).

For the critical clusters Y j , the finite variation processes of their total masses
under Qi

ε have bounds given by ∫ t

tj

[Y j
s (1)]1/2

[Xi
s(1)]1/2 ds(1.20)

for t sufficiently close to tj+ (cf. Lemma 3.2 below), so only the total masses of
the clusters need to be handled. In this direction, we use an improved modulus of
continuity of the total mass processes Y j (1) and the lower bound of Xi(1) in (1.19)
to give deterministic bounds for the integrands in (1.20). The overall effect is a
bound for the expected sum of the total masses Y

j
t (1), j ∈ Ci (t), and this can be

used to show that the corresponding random sum has growth similar to that in the
second part of (1.19). See Section 3.4.

The lateral clusters pose an additional difficulty here which is not present in
Mueller, Mytnik and Perkins [17] due to the possibly nontrivial covariations be-
tween these clusters and Xi . The question is whether or not conditioning on Xi

being significant can pull along the nearby Y j ’s at a greater rate, even though any
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of these Y j does not interfere with Xi upon their landing. In order to help bound
the contributions of these clusters, we argue that a lateral cluster Y j is independent
of Xi until they collide (cf. Lemma 3.15 and Proposition 3.16). This allows us to
adapt the arguments for the critical clusters and furthermore bound the growth rate
of the sums of the total masses Y

j
t (1), j ∈ Li (t), by the desired order. See the

discussion in Section 3.5 for more on this issue.
We close our discussion in this section with an immediate corollary for the

SPDE (1.2) in which the immigration function has small total mass ψ(1) and the
initial value is replaced by a nonzero nonnegative Crap(R)-function. In this case,
pathwise nonuniqueness remains true. This follows from the Markov property of
super-Brownian motions with immigration and the recurrence of Bessel squared
processes with small dimensions (cf. page 442 in Revuz and Yor [23]). In detail,
we can run a copy of such a super-Brownian motion with immigration until its
total mass first hits zero, and then the required distinct solutions can be obtained
by concatenating this piece with the separating solutions in Theorem 1.

This paper is organized as follows. In Section 2.1, we give the precise definition
of the pairs of approximating solutions from which we choose particular ones for
the proof of our main result, and discuss their basic properties. In Section 2.2, we
explain the idea of continuous decomposition of a super-Brownian motion with
intermittent immigration and then give the rigorous proof for the continuous de-
compositions of the approximation solutions specified in Section 2.1. Covariations
of the resulting immigrant processes are studied in Section 2.3. By the results in
Sections 2.1–2.3, we identify a system of SPDEs for immigrant processes and
prove the existence of its solutions in Section 2.4. Except in Section 5, we restrict
our attention to the corresponding approximating solutions from Section 3 on.

In Section 3, we proceed to conditional separation of the approximating solu-
tions. Some basic results are stated in Section 3.1, and the setup is given in Sec-
tion 3.2. Due to the complexity, the main two lemmas of Section 3 are proved in
Sections 3.4 and 3.5, respectively, with some preliminaries set in Section 3.3. In
Section 4, we show the uniform separation of approximating solutions under Pε ,
which completes the proof of our main result.

In Sections 5 and 6, we prove Propositions 2.3 and 3.3, respectively, which
are two technical results. In Section 7, we discuss some properties of the support
processes for immigrants. Finally, in Section 8, we study the improved modulus of
continuity for functions satisfying certain Gronwall-type integral inequalities.

2. Approximating solutions.

2.1. Interlacing pairs of approximating solutions. In this section, we give de-
tails for the approximating solutions of the SPDE (1.2) which are discussed in
Section 1, and state their basic properties. Recall that we identify every locally
integrable function f on R as a signed measure by (1.8). We will further write
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f () = f (1) for Borel sets  ∈ B(R), whenever the right-hand side makes
sense.

For ε ∈ (0,1], the ε-approximating solutions X and Y in Section 1 obey the
equations given as follows. The first solution X is a nonnegative càdlàg Crap(R)-
valued process and is continuous within each time interval [si, si+1) for s0 = 0 and
s1, s2, . . . defined by (1.14). Its time evolution is given by

Xt(φ)=
∫ t

0
Xs

(
�

2
φ

)
ds +

∫
(0,t]

∫
R

φ(x) dAX(x, s)

(2.1)

+
∫ t

0

∫
R

X(x, s)1/2φ(x) dW(x, s)

for φ ∈ C∞c (R). In (2.1), the nonnegative measure AX on R×R+ is defined by

AX(× [0, t])� ∑
i : 0<si≤t

ψ(1)J xi
ε (),(2.2)

and W is a space–time white noise. Here, in (2.2), recall our notation J a
ε in (1.13)

and the i.i.d. spatial random points {xi} with law (1.15). In terms of the interpreta-
tion in Section 1, AX can be thought of as being contributed by the initial masses
of the underlying immigrant processes for X.

A similar characterization applies to the other approximating solution Y . It is a
nonnegative càdlàg Crap(R)-valued process satisfying

Yt (φ)=
∫ t

0
Ys

(
�

2
φ

)
ds +

∫
(0,t]

∫
R

φ(x) dAY (x, s)

(2.3)

+
∫ t

0

∫
R

Y(x, s)1/2φ(x) dW(x, s),

for φ ∈ C∞c (R), and is continuous over each [ti , ti+1) for t0 = 0 and t1, t2, . . .

defined by (1.14). The nonnegative measure AY on R×R+ is now defined by

AY (× [0, t])� ∑
j : 0<ti≤t

ψ(1)J yi
ε ().

We observe that the equations (2.1) and (2.3) for X and Y can be described
completely in terms of the processes themselves. For X, each random point xi in
the definition (2.2) of AX is a measurable function of the corresponding jump size
�Xsi and conversely, where we write �Zs = Zs −Zs− with Z0− = 0 for a càdlàg
process Z taking values in a Polish space. Indeed, we have

xi = inf
{
x ∈R;�Xsi

(
(−∞, x])> ψ(1)ε

2

}
and �Xsi =ψ(1)J xi

ε ,(2.4)

where the first equality follows since �Xsi has total mass ψ(1)ε and defines
a measure symmetric about the center xi of its topological support [cf. (1.13)].
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For Y , similar relations between the random points {yi} and the jump sizes {�Yti }
hold.

As a summary of the above discussions, we give in Definition 2.1 below a min-
imal description of the approximating solutions considered throughout this paper.
From Section 3.1 on, we will work with ε-approximating pairs subject to particular
correlations. Here and in the sequel, we use the notation “G ⊥⊥ ξ” to mean that the
σ -field G and the random element ξ are independent, and analogous notation ap-
plies to other pairs of objects which allow probabilistic independence in the usual
sense.

DEFINITION 2.1. Fix an immigration function ψ ∈ C+c (R) \ {0}. For any ε ∈
(0,1], an interlacing pair of ε-approximating solutions is a pair (X,Y ) defined
on a filtered probability space (�,F , (Ft ),Pε), with (Ft ) satisfying the usual
conditions, which carries an (Ft )-space–time white noise W , and such that:

(i) X and Y are two nonnegative (Ft )-adapted Crap(R)-valued processes sat-
isfying (2.1) and (2.3) with respect to W for xi defined by the first equation in (2.4)
and yi by the same equation with �Xsi replaced by �Yti , and have paths which
are càdlàg on R+ and continuous within each [si, si+1) and [ti , ti+1), respectively,

(ii) the jumps {�Xsi ,�Yti ; i ∈ N} are i.i.d. Crap(R)-valued random elements
with law given by (1.15) through the second equation in (2.4), and

(iii) the random variables xi and yi take values in the topological support of ψ

with

∀i ∈N σ(Xt , Yt ; t < si)⊥⊥ xi and σ(Xt , Yt ; t < ti)⊥⊥ yi.(2.5)

The existence of these pairs of approximation solutions can be obtained by con-
sidering the so-called mild forms of solutions of SPDEs and then resorting to the
classical Peano’s existence argument as in Theorem 2.6 of [25]. We omit the de-
tails.

NOTATION 2.2. The following convention will be in force throughout this
paper unless otherwise mentioned. As before, we suppress the dependence on ε

for quantities related to an interlacing pair of ε-approximating solutions except
the underlying probability measure Pε . The subscript ε of Pε is further omitted
in cases where there is no ambiguity, although in this context we will remind the
readers of this practice.

The processes described in Definition 2.1 are genuine approximating solutions
to the SPDE (1.2) with respect to the same white noise, as the following proposi-
tion states.

PROPOSITION 2.3. Equip Crap(R) with the norm ‖ · ‖rap defined by (1.6)
and D(R+,Crap(R)) with Skorokhod’s J1-topology. Let (εn)⊆ (0,1] be such that
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εn↘ 0, and ((X,Y ),Pεn) be a sequence of interlacing pairs of εn-approximating
solutions. Then the sequence of laws of ((X,Y ),Pεn) is relatively compact in
the space of probability measures on the product space D(R+,Crap(R)) ×
D(R+,Crap(R)) and every subsequential limit defines the law of a pair of so-
lutions to the SPDE (1.2) subject to the same space–time white noise.

The proof of Proposition 2.3 is given in Section 5. At this point, the readers
should be convinced of the result upon observing the limiting behavior of the ran-
dom measures AX: for any t ∈ (0,∞),

P- lim
ε↘0

∫
(0,t]

∫
R

φ(x) dAX(x, s)= P- lim
ε↘0

ψ(1)ε

�tε−1�∑
i=1

φ(xi)= t〈ψ,φ〉(2.6)

for any φ ∈ C∞c (R), by the law of large numbers. Here, P- lim denotes conver-
gence in probability, and �t� is the greatest integer less than or equal to t .

We close this section with a property of the above approximating solutions.
Here and in the sequel, we use the following notation. For any real-valued random
function Z : (x, s) �−→Z(x, s), we write

(Z ∈ ) �
{
(x, s) ∈R×R+;Z(x, s) ∈ 

}
,  ∈B(R).(2.7)

In addition, for a space–time white noise W ′, we write L2
loc(W

′) for the set of
functions Z = Z(ω,x, s), product measurable in (ω, s) and x with respect to the
underlying predictable σ -field and B(R), so that∫ t

0

∫
R

Z(x, s)2 dx ds <∞ ∀t ∈ (0,∞) a.s.,(2.8)

and define processes of stochastic integrals as

Z •W ′(φ)≡
∫ ·

0

∫
R

Z(x, s)φ(x) dW(x, s)(2.9)

for Z ∈ L2
loc(W

′) and φ ∈L2(R).

PROPOSITION 2.4 (Cherny’s substitution). For ε ∈ (0,1], let (X,Y ) be an
interlacing pair of ε-approximating solutions. By enlarging the underlying filtered
probability space (�,F , (Ft ),Pε) if necessary, we can find random elements

V X,i = {(V X,i
t (φ)

)
t∈[si ,∞);φ ∈ L2(R)

}
and

V Y,i = {(V Y,i
t (φ)

)
t∈[ti ,∞);φ ∈ L2(R)

}
,

for i ∈N, which satisfy the following properties:
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(i) Every V X,i is an (Ft )t∈[si ,∞)-space–time white noise and satisfies

V X,i ⊥⊥ {Fsi , (Xt)t∈[si ,si+1)

}
.(2.10)

Here, an (Ft )t∈[si ,∞)-space–time white noise is defined as an (Ft )-space–time
white noise except that its components are (Ft )t∈[si ,∞)-Brownian motions started
at si with zero initial value.

(ii) Every V Y,i satisfies the same properties in (i) with (X, si) replaced by
(Y, ti).

(iii) The following substitution identities of space–time white noises hold: for
all i ∈N,

1[si ,si+1)1(X=0) •W = 1[si ,si+1)1(X=0) • V X,i,(2.11)

1[ti ,ti+1)1(Y=0) •W = 1[ti ,ti+1)1(Y=0) • V Y,i .(2.12)

Proposition 2.4 will be used in Section 2.2 to reinforce immigrant processes
from continuous decomposition with analogous properties [condition (vi) of The-
orem 2.6]. From these properties, we will deduce some key equations for covaria-
tions of the immigrant processes (see Proposition 2.8).

SKETCH OF PROOF OF PROPOSITION 2.4. The proof is a generalization of
the proof of Theorem 3.1 in Cherny [6] to the context of the SPDE (1.1), and so
we only give a sketch. Below we consider the assertions for V X,i for i ∈ N. The
assertions for V Y,i follow similarly.

We define V X,i as a mixture of the original noise W and another space–time
white noise, say UX,i , which is independent of (X,Y,W) and adapted to the same
filtration, by

V X,i � 1[si ,∞)1(X=0) •W + 1[si ,∞)1(X>0) •UX,i.(2.13)

Then V X,i is an (Ft )t∈[si ,∞)-space–time white noise by Lévy’s theorem (cf. The-
orem IV.3.6 of [23]) and gives the required substitution (2.11). We have proved the
first assertion in (i) and the assertion in (iii) for V X,i .

It remains to prove the independence (2.10). Consider the counterpart of V X,i

(2.13):

Ṽ X,i � 1[si ,∞)1(X>0) •W + 1[si ,∞)1(X=0) •UX,i.

By Lévy’s theorem again, Ṽ X,i is an (Ft )t∈[si ,∞)-space–time white noise and
V X,i ⊥⊥ Ṽ X,i . The latter property implies that (X, Ṽ X,i) over [si, si+1) solves the
SPDE (1.1) of super-Brownian motion with respect to (Ft ∨ σ(V X,i))t∈[si ,si+1).
Recall that the martingale problem for super-Brownian motion is well-posed (cf.
Lemma 2.10), and note that V X,i ⊥⊥Fsi by a standard property of Brownian mo-
tion. We deduce that for any 0 ∈ σ(V X,i) and 1 ∈Fsi with Pε(0 ∩ 1) > 0,

Pε(0 ∩ 1 ∩ {(Xt)t∈[si ,si+1) ∈ ·})
Pε(0 ∩ 1)

= Pε(1 ∩ {(Xt)t∈[si ,si+1) ∈ ·})
Pε(1)

.(2.14)
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Indeed, under the conditional probabilities Pε(·|0 ∩ 1) and Pε(·|1), the laws
of Xsi are the same and ((Ft ∨ σ(V X,i))t∈[si ,si+1),Pε)-martingales remain mar-
tingales. See the proof of Theorem 4.4.2 of [10]. Using V X,i ⊥⊥ Fsi again, we
can substitute Pε(0 ∩1) on the left-hand side of (2.14) with Pε(0)Pε(1). The
required property (2.10) follows. �

2.2. Continuous decomposition. For every ε ∈ (0,1], consider an interlacing
pair (X,Y ) of ε-approximating solutions to the SPDE (1.2) (recall Definition 2.1).
From their informal descriptions in Section 1, it is reasonable to expect that they
can be decomposed into

X =
∞∑
i=1

Xi and Y =
∞∑
i=1

Y i,(2.15)

where the summands Xi and Y i are super-Brownian motions started at si and ti
and with starting measures �Xsi = ψ(1)J xi

ε and �Yti = ψ(1)J
yi
ε , respectively,

for each i, and each of the families {Xi} and {Y i} consists of independent random
elements.

Let us give an elementary discussion on obtaining the decompositions in (2.15).
Later on, we will require additional properties of the decompositions. It follows
from the uniqueness in law of super-Brownian motions and the defining equa-
tion (2.1) that X is a (time-inhomogeneous) Markov process and, for each i ∈ N,
(Xt)t∈[si ,si+1) defines a super-Brownian motion with initial distribution Xsi (cf. the
proof of Theorem 4.4.2 in [10] and the martingale problem characterization of
super-Brownian motion in [21]). Hence, each of the equalities in (2.15) holds in
the sense of being identical in distribution. Then we recall the following general
theorem (see Theorem 6.10 in [12]).

THEOREM 2.5. Fix any measurable space E1 and Polish space E2, and let

ξ
(d)= ξ̃ and η be random elements taking values in E1 and E2, respectively. Here,

we only assume that ξ and η are defined on the same probability space. Then
there exists a measurable function F :E1×[0,1] −→E2 such that for any random
variable Ũ uniformly distributed over [0,1] with Ũ ⊥⊥ ξ̃ , the random element

η̃= F (̃ξ, Ũ) solves (ξ, η)
(d)= (̃ξ , η̃).

By the preceding discussions and Theorem 2.5, we can immediately construct
the summands Xi and Y i by introducing additional independent uniform variables
and validate the equalities (2.15) as almost-sure equalities. Such decompositions,
however, are too crude because, for example, we are unable to say that all the
resulting random processes perform their defining properties with respect to the
same filtration. This difficulty implies in particular that we cannot do semimartin-
gale calculations for them. A finer decomposition method, however, does yield a
solution to this problem. The result is stated in Theorem 2.6 below. See also Fig-
ure 1 for a sketch of the decomposition of X along a particular value x.
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FIG. 1. Decomposition of X along x.

THEOREM 2.6 (Continuous decomposition). Fix ε ∈ (0,1]. Let (X,Y,W) be
an interlacing pair of ε-approximating solutions, and {V X,i}, {V Y,i} be two fami-
lies of space–time white noises chosen in Theorem 2.4. By changing the underlying
probability space if necessary, we can find a filtration (Gt ) satisfying the usual con-
ditions and two families {Xi} and {Y i} of nonnegative Crap(R)-valued processes,
such that the following conditions are satisfied:

(i) The processes Xi , i ∈N, are independent.
(ii) The equality in (2.15) for X and Xi holds almost surely.

(iii) Each (Xi
t )t∈[si ,∞) has sample paths in C([si,∞),Crap(R)) and is a

(Gt )t≥si -super-Brownian motion started at time si with starting measure ψ(1)J xi
ε .

Also, Xi
t ≡ 0 for every t ∈ [0, si).

(iv) The processes Y i , i ∈ N, satisfy the same properties as (i)–(iii) with the
roles of X and {(Xi, xi, si)} replaced by Y and {(Y i, yi, ti)}, respectively.

(v) Conditions (i)–(iii) of Definition 2.1 hold with (Ft ) replaced by (Gt ),
and (2.5) in the same definition is replaced by the stronger independent landing
property:

σ
(
X

j
t , Y

j
t ; t < si, j ∈N

)⊥⊥ xi and σ
(
X

j
t , Y

j
t ; t < ti, j ∈N

)⊥⊥ yi
(2.16)

∀i ∈N.

(vi) Condition (iii) of Proposition 2.4 holds. In addition,{(
X

j
t

)
t∈[0,si+1)

; j ∈N satisfying sj < si+1
}⊥⊥ V X,i and

(2.17) {(
Y

j
t

)
t∈[0,ti+1)

; j ∈N satisfying tj < ti+1
}⊥⊥ V Y,i ∀i ∈N.

Due to the length of the proof of Theorem 2.6, we first outline its informal
idea for the convenience of readers. Recall that the first immigration event for X

and Y occurs at s1 = ε
2 . Take a grid of [ ε2 ,∞) containing all the points si and

ti for i ∈ N and with “infinitesimal” mesh size. Here, the mesh size of a grid is
the supremum of the distances between consecutive grid points. The key observa-
tion in this construction is that, over any subinterval [t, t +�t] ⊆ [si, si+1) from
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this grid, (Xr; r ∈ [t, t +�t]) has the same distribution as the sum of i indepen-
dent super-Brownian motions started at t over [t, t + �t], whenever the sum of
the initial conditions of these independent super-Brownian motions has the same
distribution as Xt .

This fact allows us to inductively decompose X over the intervals of infinites-
imal lengths from this grid, such that the resulting infinitesimal pieces of super-
Brownian motions can be concatenated in the natural way to obtain the desired
immigrating super-Brownian motions. More precisely, we apply Theorem 2.5 by
bringing in independent uniform variables as “allocators” to obtain these infinitesi-
mal pieces. A similar method applies to continuously decompose Y into the desired
independent super-Brownian motions by another family of independent allocators.

Finally, because the path regularity of these concatenated processes and W al-
lows us to characterize their laws over the entire time horizon R+ by their laws over
[0, ε/2] and their probabilistic transitions on this grid with infinitesimal mesh size,
the filtration obtained by sequentially adding the σ -fields of the independent allo-
cators will be the desired one. In particular, the time evolutions of these stochastic
processes are now consistent with the “progression” of the enlarged filtration.

PROOF OF THEOREM 2.6. Fix ε ∈ (0,1] and we shall drop the subscript ε

of Pε . Throughout the proof, we take, for each m ∈ N, a countable subset Dm of
[ ε2 ,∞) which contains si and ti for any i ∈ N and satisfies #(Dm ∩K) <∞ for
any compact subset K of R+. We further assume that (1) Dm+1 ⊆Dm for each m,
(2) between any two points si and ti there is another point belonging to D1, and
hence to each Dm, and (3) the mesh size of Dm goes to zero as m−→∞. In addi-
tion, we will write {SBMt (μ, dν); t ∈ R+} for the semigroup of super-Brownian
motion on R. When the density of the super-Brownian motion on R started at time
s and with starting measure f (x) dx for a nonnegative Crap(R)-function f is con-
cerned, we write SBMf,[s,t] for the law of its C([s,∞),Crap(R))-valued density
restricted to the time interval [s, t].

Step 1. Fix m ∈ N and write ε
2 = τ0 < τ1 < · · · as the consecutive points

of Dm. Assume, by an enlargement of the underlying probability space where
(X,Y,W, {V X,i}, {V Y,i}) lives if necessary, the existence of i.i.d. variables
{UX

j ,UY
j ; j ∈N} with

UX
1 is uniformly distributed over [0,1] and

{
UX

j ,UY
j ; j ∈N

}⊥⊥F .(2.18)

In this step, we will decompose X and Y into the random elements

Xm = (Xm,1,Xm,2, . . .
)

and Ym = (Ym,1, Ym,2, . . .
)
,

respectively, according to the grid Dm. Here,

Xm,i ∈ C
([si,∞),Crap(R)

)
and Ym,i ∈ C

([ti ,∞),Crap(R)
)

(2.19)
with Xm,i ≡ 0 on [0, si) and Ym,i ≡ 0 on [0, ti),
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so we need to specify Xm,i over [si,∞) and Ym,i over [ti ,∞).
Consider the construction of Xm. The decomposition of X over [s1, s2] should

be evident. Over this interval, set Xm,1 ≡X on [s1, s2) with Xm,1
s2
=Xs2− and

Xm,2
s2
=ψ(1)J x2

ε =�Xs2 .

We define Xm over [s2, τj ] by an induction on integers j ≥ jX∗ , where jX∗ ∈ N
satisfies s2 = τjX∗ , such that:

(1) the following measurability condition holds:(
Xm,i

s ; s ∈ [0, τk], i ∈N
) ∈ σ

(
Xs; s ∈ [0, τk])∨ σ

(
UX

i ,1≤ i ≤ k
)

(2.20)
∀k ∈ {0, . . . , j},

with σ(UX
i ,1≤ i ≤ 0) understood to be the trivial σ -field {�,∅},

(2) the laws of Xm,i obey{
(a) L

(
Xm,i

s ; s ∈ [si, τj ])∼ SBM
ψ(1)J

xi
ε ,[si ,τj ] if si ≤ τj and

(b)
(
Xm,i

s ; s ∈ [si, τj ]) for i satisfying si ≤ τj , are independent,
(2.21)

and
(3) a preliminary decomposition of X up to time τj holds:

Xs =
∞∑
i=1

Xm,i
s ∀s ∈ [0, τj ] a.s.(2.22)

By the foregoing definition of Xm over [s1, s2] and (2.5), we have handled the case
that j = jX∗ , that is, the first step of our inductive construction.

Assume that Xm has been defined up to time τj for some integer j ≥ jX∗ such
that (2.20)–(2.22) are all satisfied. Then our goal is to extend Xm over [τj , τj+1]
so that all of (2.20)–(2.22) hold with j replaced by j + 1. First, consider the case
that

[τj , τj+1] ⊆ [sk, sk+1)(2.23)

for some k ≥ 2. In this case, we need to extend Xm,1, . . . ,Xm,k up to time τj+1.
Take an auxiliary nonnegative random element

ξ = (ξ1, . . . , ξ k) ∈ C

(
[τj ,∞),

k∏
i=1

Crap(R)

)

such that the coordinates (ξ i
s ; s ∈ [τj ,∞)) are independent processes and each of

them defines a super-Brownian motion started at time τj with initial law

L
(
ξ i
τj

)=L
(
Xm,i

τj

) ∀i ∈ {1, . . . , k}.(2.24)
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We claim that it is possible to extend Xm,1, . . . ,Xm,k continuously over
[τj , τj+1] so that(

Xm,1
τj

, . . . ,Xm,k
τj

, (Xr)r∈[τj ,τj+1],
(
Xm,1

r

)
r∈[τj ,τj+1], . . . ,

(
Xm,k

r

)
r∈[τj ,τj+1]

)
(2.25)

(d)=
(
ξ1
τj

, . . . , ξ k
τj

,

(
k∑

i=1

ξ i
r

)
r∈[τj ,τj+1]

,
(
ξ1
r

)
r∈[τj ,τj+1], . . . ,

(
ξk
r

)
r∈[τj ,τj+1]

)
.

To prove our claim that (2.25) can be done, first we consider

P
(
(Xr)r∈[τj ,τj+1] ∈ ,Xm,1

τj
∈A1, . . . ,X

m,k
τj
∈Ak

)
= E
[
P
(
(Xr)r∈[τj ,τj+1] ∈ |Xτj

);Xm,1
τj
∈A1, . . . ,X

m,k
τj
∈Ak

]
(2.26)

= E
[
SBMXτj

,[τj ,τj+1]();Xm,1
τj
∈A1, . . . ,X

m,k
τj
∈Ak

]
= E
[
SBM∑k

i=1 X
m,i
τj

,[τj ,τj+1]();Xm,1
τj
∈A1, . . . ,X

m,k
τj
∈Ak

]
,

where the first and the second equalities use the (time-inhomogeneous) Markov
property of X and (2.20), and the last equality follows from the equality (2.22) by
induction. Second, by (2.21) from induction and (2.24), we have(

Xm,1
τj

, . . . ,Xm,k
τj

) (d)= (ξ1
τj

, . . . , ξ k
τj

)
.

Hence, from (2.26), we get

P
(
(Xr)r∈[τj ,τj+1] ∈ ,Xm,1

τj
∈A1, . . . ,X

m,k
τj
∈Ak

)
= E
[
SBM∑k

i=1 ξ i
τj

,[τj ,τj+1](); ξ1
τj
∈A1, . . . , ξ

k
τj
∈Ak

]
(2.27)

= E

[
P

((
k∑

i=1

ξ i
r

)
r∈[τj ,τj+1]

∈ 

∣∣∣∣ξ1
τj

, . . . , ξ k
τj

)
; ξ1

τj
∈A1, . . . , ξ

k
τj
∈Ak

]

= P

((
k∑

i=1

ξ i
r

)
r∈[τj ,τj+1]

∈ , ξ1
τj
∈A1, . . . , ξ

k
τj
∈Ak

)
.

Here, the second equality follows from the convolution property of the laws of
super-Brownian motions:

SBMf1,[s,t] � · · · � SBMfk,[s,t] = SBM∑k
i=1 fi,[s,t].

Then (2.27) implies that

(
Xm,1

τj
, . . . ,Xm,k

τj
, (Xr)r∈[τj ,τj+1]

) (d)=
(
ξ1
τj

, . . . , ξ k
τj

,

(
k∑

i=1

ξ i
r

)
r∈[τj ,τj+1]

)
.(2.28)
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Using the “boundary condition” (2.28) and Theorem 2.5, we can solve the stochas-
tic equation on the left-hand side of (2.25) by a Borel measurable function

Fm
j :

k∏
i=1

Crap(R)×C
([τj , τj+1],Crap(R)

)× [0,1]

−→
k∏

i=1

C
([τj , τj+1],Crap(R)

)
such that the desired extension of Xm over [τj , τj+1] can be defined by((

Xm,1
r

)
r∈[τj ,τj+1], . . . ,

(
Xm,k

r

)
r∈[τj ,τj+1]

)
(2.29)

= Fm
j

(
Xm,1

τj
, . . . ,Xm,k

τj
, (Xr)r∈[τj ,τj+1],UX

j+1
)
,

where the independent uniform variable UX
j+1 now plays its role to decom-

pose (Xr)r∈[τj ,τj+1]. This proves our claim on the continuous extension of
Xm,1, . . . ,Xm,k over [τj , τj+1] satisfying (2.25). As a consequence of the equal-
ity (2.25) in distribution, the following equalities hold almost surely:

Xm,1
r + · · · +Xm,k

r =Xr ∀r ∈ [τj , τj+1](2.30)

and

L
((

Xm,1
r

)
r∈[τj ,τj+1], . . . ,

(
Xm,k

r

)
r∈[τj ,τj+1]|Xm,1

τj
, . . . ,Xm,k

τj
,Xτj

)
=L

((
Xm,1

r

)
r∈[τj ,τj+1], . . . ,

(
Xm,k

r

)
r∈[τj ,τj+1]|Xm,1

τj
, . . . ,Xm,k

τj

)
(2.31)

= SBM
X

m,1
τj

,[τj ,τj+1] ⊗ · · · ⊗ SBM
X

m,k
τj

,[τj ,τj+1],

where the first equality of (2.31) follows from (2.30), and the second from the
definition of ξ . By induction and (2.29), the extension of Xm over [τj , τj+1] sat-
isfies (2.20) with j replaced by j + 1; by induction and (2.30), it satisfies (2.22)
with j replaced by j + 1.

Let us verify that (2.21) is satisfied with j replaced by j + 1. By (2.20), we can
write

P
((

Xm,i
r

)
r∈[τj ,τj+1] ∈Ai,

(
Xm,i

r

)
r∈[si ,τj ] ∈ Bi,∀i ∈ {1, . . . , k})

= E
[
P
((

Xm,i
r

)
r∈[τj ,τj+1] ∈Ai,∀i ∈ {1, . . . , k}|Fτj

∨ σ
(
UX

1 , . . . ,UX
j

));(2.32) (
Xm,i

r

)
r∈[si ,τj ] ∈ Bi,∀i ∈ {1, . . . , k}].

To reduce the conditional probability on the right-hand side of (2.32) to a probabil-
ity conditioned on Xm,1

τj
, . . . ,Xm,k

τj
, we review the defining equation (2.29) of Xm
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over [τj , τj+1] and consider the calculation:

E
[
g1
(
Xm,1

τj
, . . . ,Xm,k

τj

)
g2
(
(Xr)r∈[τj ,τj+1]

)
g3
(
UX

j+1
)|Fτj

∨ σ
(
UX

1 , . . . ,UX
j

)]
= g1

(
Xm,1

τj
, . . . ,Xm,k

τj

)
E
[
g2
(
(Xr)r∈[τj ,τj+1]

)|Fτj
∨ σ
(
UX

1 , . . . ,UX
j

)]
×E
[
g3
(
UX

j+1
)]

(2.33)
= g1

(
Xm,1

τj
, . . . ,Xm,k

τj

)
E
[
g2
(
(Xr)r∈[τj ,τj+1]

)|Xm,1
τj

, . . . ,Xm,k
τj

]
×E
[
g3
(
UX

j+1
)]

= E
[
g1
(
Xm,1

τj
, . . . ,Xm,k

τj

)
g2
(
(Xr)r∈[τj ,τj+1]

)
g3
(
UX

j+1
)|Xm,1

τj
, . . . ,Xm,k

τj

]
,

where the first equality follows again from (2.20) and the second equality fol-
lows by using the (Ft )-Markov property of X and considering the “sandwich” of
σ -fields:

σ(Xτj
)⊆ σ

(
Xm,1

τj
, . . . ,Xm,k

τj

)∨N ⊆Fτj
∨ σ
(
UX

1 , . . . ,UX
j

)
with N being the collection of P-null sets, and the last equality (2.33) follows
since UX

j+1 is not yet used in the construction of Xm up to time τj . Hence, by
(2.29) and (2.33), we can continue our calculation in (2.32) as follows:

P
((

Xm,i
r

)
r∈[τj ,τj+1] ∈Ai,

(
Xm,i

r

)
r∈[si ,τj ] ∈ Bi,∀i ∈ {1, . . . , k})

= E
[
P
((

Xm,i
r

)
r∈[τj ,τj+1] ∈Ai,∀i ∈ {1, . . . , k}|Xm,1

τj
, . . . ,Xm,k

τj

);(
Xm,i

r

)
r∈[si ,τj ] ∈ Bi,∀i ∈ {1, . . . , k}]

= E

[
k∏

i=1

SBM
X

m,i
τj

,[τj ,τj+1](Ai); (Xm,i
r

)
r∈[si ,τj ] ∈ Bi,∀i ∈ {1, . . . , k}

]
,

where the second equality follows from (2.31). By (2.21) and induction, the fore-
going equality implies that (2.21) with j replaced by j + 1 still holds. This com-
pletes our inductive construction for the case (2.23).

We also need to handle the case complementary to (2.23) that [τj , τj+1] ⊆
(sk, sk+1] and τj+1 = sk+1 for some k ≥ 2. In this case, the construction of
Xm,1, . . . ,Xm,k over the time interval [τj , τj+1] is the same as before, but the extra
coordinate Xm,k+1 is defined to be ψ(1)J

xk+1
ε at time τj+1 = sk+1. The properties

(2.20) and (2.22) with j replaced by j + 1 remain true, by the argument for the
previous case. The property (2.21) with j replaced by j + 1 follows too, if we no-
tice that the coordinate Xm,k+1 is independent of the others by time τj+1 by (iii)
of Definition 2.1. This completes our inductive construction of Xm.

The construction of Ym is similar to that of Xm. We use {UY
j } to validate de-

compositions, and the immigration times {tj ; j ∈ N} are taken into consideration
for the construction instead. We omit other details.
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We observe that Xm and Ym satisfy properties analogous to (2.16) and (2.17).
First, from the constructions of Xm and Ym, (2.18), and the property (iii) in Def-
inition 2.1, we see that the following independent landing property is satisfied by
Xm and Ym:

σ
(
Xm,j

s , Ym,j
s ; s < si, j ∈N)⊥⊥ xi and

(2.34)
σ
(
Xm,j

s , Ym,j
s ; s < ti, j ∈N)⊥⊥ yi ∀i ∈N.

Second, since for all j ∈ N satisfying sj < si+1 and i ∈ N, (X
m,j
r )r∈[0,si+1) is

given by a measurable function of the random elements (Xr)r∈[0,si+1) and {UX
k }

[cf. (2.29) for the case (2.23) and use the path regularity of X in the complemen-
tary case], we deduce from Theorem 2.4(i) and (2.18) that{(

Xm,j
r

)
r∈[0,si+1)

; j ∈N satisfying sj < si+1
}⊥⊥ V X,i and

(2.35) {(
Ym,j

r

)
r∈[0,ti+1)

; j ∈N satisfying tj < ti+1
}⊥⊥ V Y,i ∀i ∈N.

Step 2. Let us define a filtration (G (m)
t ) with respect to which the processes

Xm,i , Ym,i , and W perform their defining properties on the grid Dm. The filtration
(G (m)

t ) is larger than (Ft ) and is defined by{
G (m)

t =Ft , t ∈ [0, τ0],
G (m)

t =Fτj+1 ∨ σ
(
UX

k ,UY
k ;1≤ k ≤ j + 1

)
, t ∈ (τj , τj+1], j ∈ Z+.

In particular, it follows from (2.20) and the analogue for Ym that the processes
Xm,i and Ym,i are all (G (m)

t )-adapted. Also, it is obvious that X, Y and W(φ) for

any φ ∈ L2(R) are (G (m)
t )-adapted.

We observe a key feature of Xm:

P
(
X

m,i
t ∈ |G (m)

τj

)= SBMt−τj

(
Xm,i

τj
,
)

(2.36)
∀t ∈ (τj , τj+1] for si ≤ τj and i ∈N,

for any Borel measurable subset  of the space of finite measures on R. To
see (2.36), we consider a slight generalization of the proof of (2.33) by adding
σ(UY

1 , . . . ,UY
j ) to the σ -field Fτj

∨ σ(UX
1 , . . . ,UX

j ) in the first line therein and
then apply (2.21) to obtain

P
(
X

m,i
t ∈ |G (m)

τj

)= P
(
X

m,i
t ∈ |Xm,1

τj
,Xm,2

τj
, . . .
)

= P
(
X

m,i
t ∈ |Xm,i

τj

)= SBMt−τj

(
Xm,i

τj
,
)

∀t ∈ (τj , τj+1].
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In particular, we deduce from iteration and the semigroup property of {SBMt } that
the following grid Markov property is satisfied:

P
(
X

m,i
t ∈ |G (m)

τj

)= SBMt−τj

(
Xm,i

τj
,
)

(2.37)
∀t ∈ (τk, τk+1] when si ≤ τj ≤ τk.

We note that the foregoing display does not say that Xm,i is a (G (m)
s )s≥si -

super-Brownian motion because the σ -fields which we can use in verifying the
(G (m)

s )s≥si -Markov property are only G (m)
τj , rather than any σ -field G (m)

s . With a
similar argument, we also have the grid Markov property of Ym,i stated as

P
(
Y

m,i
t ∈ |G (m)

τj

)= SBMt−τj

(
Ym,i

τj
,
)

(2.38)
∀t ∈ (τk, τk+1] when ti ≤ τj ≤ τk.

With a much simpler argument, the space–time white noise W has the same grid
Markov property:

L
(
Wt(φ)|G (m)

τj

)=N
(
Wτj

(φ), (t − τj )‖φ‖2
L2(R)

)
(2.39)

∀t ∈ (τk, τk+1] for τj ≤ τk and φ ∈ L2(R),

where N (μ,σ 2) denotes the normal distribution with mean μ and variance σ 2.
Similar results hold for the substituting space–time white noises V X,i and V Y,i .

Step 3. To facilitate our argument in the next step, we digress to a general prop-
erty of space–time white noises.

Let W 1 denote a space–time white noise, and suppose that {W 2(φn)} is a family
of Brownian motions indexed by a countable dense subset {φn} of L2(R) such that
{W 1(φn)} and {W 2(φn)} have the same law as random elements taking values in∏∞

n=1 C(R+,R). Then, whenever (φnk
) is a subsequence converging to some φ in

L2(R), the linearity of W 1 gives

E
[

sup
0≤s≤T

∣∣W 2
s (φnk

)−W 2
s (φn�

)
∣∣2]= E

[
sup

0≤s≤T

∣∣W 1
s (φnk

− φn�
)
∣∣2]

≤ 4T ‖φnk
− φn�

‖2
L2(R)

−−−−→
k,�→∞

0(2.40)

∀T ∈ (0,∞),

where the inequality follows from Doob’s L2-inequality and the fact that, for any
φ ∈L2(R), W 1(φ) is a Brownian motion with L (W 1

1 (φ))=N (0,‖φ‖2
L2(R)

). The

convergence in (2.40) implies that, for some continuous process, say W 2(φ), we
have

W 2(φnk
)−→W 2(φ) uniformly on [0, T ] a.s., ∀T ∈ (0,∞).
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The same holds with W 2 replaced by W 1. Hence, making comparisons with the
reference space–time white noise W 1, we obtain an extension of the map φ �−→
W 2(φ) to the entire space L2(R) such that {W 2(φ);φ ∈ L2(R)} is a space–time
white noise and, in fact, is uniquely defined by {W 2(φn)}.

Step 4. In this step, we formalize the infinitesimal description outlined before
by shrinking the mesh size of Dm, that is, by passing m −→∞, and then work
with the limiting objects. To use our observation in step 3, we work with a fixed
countable dense subset {φn} of L2(R).

We have constructed in step 1 random elements Xm and Ym, and hence deter-
mined the laws

L
(
X,Y,W,

{
V X,i}, {V Y,i},Xm,Ym, {xi}, {yi}), m ∈N,(2.41)

as probability measures on a countably infinite product of Polish spaces. More
precisely, our choice of the Polish spaces is through the following identifications
of state spaces. We identify X as a random element taking values in the closed
subset of D(R+,Crap(R)) consisting of paths having continuity over each interval
[si, si+1) for i ∈ Z+ (recall s0 = 0), with a similar identification applied to Y (cf.
Proposition 5.3 and Remark 5.4 of [10]). By step 3, we identify W as the infinite-
dimensional vectors (W(φ1),W(φ2), . . .) whose coordinates are C(R+,R)-valued
random elements. Similarly, V X,i and V Y,i are infinite-dimensional vectors of
C([si,∞),R) and C([ti ,∞),R)-valued random elements. We identify each co-
ordinate Xm,i of Xm as a random element taking values in C([si,∞),Crap(R)),
with a similar identification applied to Ym. Finally, the Polish spaces for the infi-
nite sequences {xi} and {yi} are obvious.

We make an observation for the sequence of laws in (2.41). Note that L (Xm)

does not depend on m, because, by (2.21), any of its ith coordinate Xm,i is a
super-Brownian motion with initial measure ψ(1)J xi

ε and started at si , and the co-
ordinates are independent. Similarly, L (Ym) does not depend on m. This implies
that the sequence of laws in (2.41) is tight in the space of probability measures
on the above infinite product of Polish spaces. Hence, by taking a subsequence if
necessary, we may assume that this sequence converges in distribution. By Sko-
rokhod’s representation, we may assume the existence of the vectors of random
elements in the following display as well as the almost-sure convergence therein:(

X̃(m), Ỹ (m), W̃m,
{
Ṽ X,i,m}, {Ṽ Y,i,m}, X̃m, Ỹm,

{
x̃m
i

}
,
{
ỹm
i

})
(2.42)

a.s.−−−−→
m→∞

(
X̃, Ỹ , W̃ ,

{
Ṽ X,i}, {Ṽ Y,i}, X̃ , Ỹ, {x̃i}, {ỹi}).

Here, x̃i and ỹi take values in the topological support of ψ and

L
(
X̃(m), Ỹ (m), W̃m,

{
Ṽ X,i,m}, {Ṽ Y,i,m}, X̃m, Ỹm,

{
x̃m
i

}
,
{
ỹm
i

})
=L

(
X,Y,W,

{
V X,i}, {V Y,i},Xm,Ym, {xi}, {yi}) ∀m ∈N.
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Step 5. We define (G̃t ) to be the minimal filtration satisfying the usual condi-
tions to which the limiting objects X̃, Ỹ , W̃ , {Ṽ X,i}, {Ṽ Y,i}, X̃ , Ỹ on the right-hand
side of (2.42) are adapted. We will complete the proof in this step by verifying that,
with an obvious adaptation of notation, all the limiting objects on the right-hand
side of (2.42) along with the filtration (G̃t ) are the required objects satisfying con-
ditions (i)–(vi) of Theorem 2.6.

First, let us verify the easier properties (i) and (ii) for {X̃i} and the analogues
for {Ỹ i}. The statement (i) and its analogue for {Ỹ i} obviously hold, by the analo-
gous properties of X̃m and Ỹm [see (b) of (2.21)]. To verify the statement (ii), we
use the property (2.22) possessed by (X̃(m), X̃m) and then pass limit, as is legiti-
mate because the infinite series in (2.22) are always finite sums on compact time
intervals. Similarly, the analogue of (ii) holds for (Ỹ , Ỹ).

Condition (iii) holds by the property (a) in (2.21) of X̃m, except that we still
need to verify that each X̃i defines a (G̃t )t≥si -super Brownian motion, not just a
super-Brownian motion in itself. From this point on, we will use the continuity of
the underlying objects and the fact that

⋃
m Dm is dense in [ ε2 ,∞). Let ε

2 ≤ s <

t <∞ with s, t ∈⋃m Dm. Then s, t ∈ Dm from some large m on by the nesting
property of the sequence {Dm}. For any bounded continuous function g on the path
space of (

X̃(m), Ỹ (m), W̃m,
{
Ṽ X,i,m}, {Ṽ Y,i,m}, X̃m, Ỹm)

restricted to the time interval [0, s], φ ∈ C+c (R), and index i such that si ≤ s, the
grid Markov property (2.37) entails that

E
[
g
(
X̃(m), Ỹ (m), W̃m,

{
Ṽ X,i,m}, {Ṽ Y,i,m}, X̃m, Ỹm)e−〈X̃(m),i

t ,φ〉]
= E
[
g
(
X̃(m), Ỹ (m), W̃m,

{
Ṽ X,i,m}, {Ṽ Y,i,m}, X̃m, Ỹm)(2.43)

×
∫

SBMt−s

(
X̃(m),i

s , dν
)
e−〈ν,φ〉

]
.

The formula of Laplace transforms of super-Brownian motion shows that the map

f �−→
∫

SBMt−s(f, dν)e−〈ν,φ〉

has a natural extension to Crap(R) which is continuous (cf. Proposition II.5.10
of [21]). Hence, passing m−→∞ for both sides of (2.43) leads to

E
[
g
(
X̃, Ỹ , W̃ ,

{
Ṽ X,i}, {Ṽ Y,i}, X̃ , Ỹ

)
e−〈X̃i

t ,φ〉]
= E
[
g
(
X̃, Ỹ , W̃ ,

{
Ṽ X,i}, {Ṽ Y,i}, X̃ , Ỹ

)
(2.44)

×
∫

SBMt−s

(
X̃i

s, dν
)
e−〈ν,φ〉

]
.
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By the continuity of super-Brownian motion and the denseness of
⋃

m Dm in
[ ε2 ,∞), the foregoing display implies that each coordinate X̃i is truly a (G̃t )t≥si -
super-Brownian motion. A similar argument shows that each Ỹ i is a (G̃t )t≥ti -
super-Brownian motion. We have proved the statement (iii) and its analogue for Ỹ i

in (iv).
Next, we consider the assertions of (v) concerning conditions analogous to (i)

and (ii) of Definition 2.1. By definition,

L
(
X̃m, Ỹm, W̃m,

{
Ṽ X,i,m}, {Ṽ Y,i,m}, {x̃m

i

}
,
{
ỹm
i

})
(2.45)

=L
(
X,Y,W,

{
V X,i}, {V Y,i}, {xi}, {yi}) ∀m ∈N,

and this stationarity gives

L
(
X̃, Ỹ , W̃ ,

{
Ṽ X,i}, {Ṽ Y,i}, {x̃i}, {ỹi})

(2.46)
=L

(
X,Y,W,

{
V X,i}, {V Y,i}, {xi}, {yi}).

Arguing as in the proof of (2.43) and using the grid Markov property (2.39) of W̃m,
we see that each W̃ (φn) is a (G̃t )-Brownian motion with

L
(
W̃1(φn)

)=N
(
0,‖φn‖2

L2(R)

)
.

It follows from (2.46) and our discussion in step 3 that W̃ extends uniquely to a
(G̃t )-space–time white noise. In addition, one more application of (2.46) shows
that the defining equations (2.1) and (2.3) of X and Y by {(xi, yi)} and W carry
over to the analogous equations for X̃ and Ỹ by {(x̃i , ỹi)} and W̃ , respectively
[recall (2.4) as well]. This proves that (X̃, Ỹ , W̃ ) satisfies the analogous property
described in (i) and (ii) of Definition 2.1 with (Ft ) replaced by (G̃t ).

By construction, x̃i and ỹi take values in the topological support of ψ .
Hence, to complete the proof of (v), it remains to obtain the independent
landing property (2.16). We recall that an analogous property is satisfied by
(X̃m, Ỹm, {x̃m

i }, {ỹm
i }) in (2.34). Then arguing in the standard way as in the proof

of (2.43) with the use of bounded continuous functions shows that the required
independent landing property (2.16) is satisfied by (X̃ , Ỹ, {x̃i}, {ỹi}). The proof
of (v) is complete.

Finally, we explain the proof of the assertions in (vi). The proof of (iii) of Propo-
sition 2.4 uses again the stationarity (2.45). The assertion that (2.17) holds follows
from its discrete version (2.35) and a limiting argument as in the proof of (iii). We
have proved that all of the conditions (i)–(vi) of Theorem 2.6 hold. The proof is
complete. �

2.3. Covariations of immigrant processes. In this section, we study the covari-
ations 〈Xi(φ1), Y

j (φ2)〉 of the immigrant processes {Xi} and {Y i} in Theorem 2.6
for ε ∈ (0,1]. Here, the test functions φ1, φ2 belong to C∞c (R). Our goal is to
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understand how explicit 〈Xi(φ1), Y
j (φ2)〉 can be in terms of the immigrant pro-

cesses.
For convenience, we attach space–time white noises to the immigrant processes

{Xi} and {Y i}. Recall that by (iii) of Theorem 2.6, (Xi
t )t∈[si ,∞) is a (Gt )t≥si -super-

Brownian motion for any i ∈ N, and similarly, each (Y i
t )t∈[ti ,∞) is a (Gt )t≥ti -

super-Brownian motion. By a classical argument, we can find, by enlarging the
filtered probability space if necessary, two families of (Gt )-white noises {WXi }
and {WYi } such that (Xi,WXi

) and (Y i,WY i
) are solutions to the SPDE (1.1) of

super-Brownian motion (up to appropriate translations of starting time). See The-
orem III.4.2 of [21] for details. Moreover, by (i) and (vi) of Theorem 2.6, we can
assume that each of the families {WXi } and {WYi } consists of independent adapted
space–time white noises, and in addition, the following independence holds:{

Xi
t ,W

Xi

t (φ); t ∈ [0, sj+1),1≤ i ≤ j,φ ∈L2(R)
}⊥⊥ V X,j and

(2.47) {
Y i

t ,W
Y i

t (φ); t ∈ [0, tj+1),1≤ i ≤ j,φ ∈L2(R)
}⊥⊥ V Y,j ∀j ∈N,

where V X,j and V Y,j are the adapted space–time white noises which substitute W

and satisfy (2.11) and (2.12).

REMARK 2.7. Let us point out an issue for the covariations 〈Xi(φ1), Y
j (φ2)〉.

An implication of the classical Kunita–Watanabe inequality (cf. Proposi-
tion IV.1.15 of [23]) is that for any two (Gt )-Brownian motions B1,B2 and non-
negative locally bounded predictable processes H 1 and H 2, the covariation of the
(ordinary) stochastic integrals Hi •Bi of Hi with respect to Bi satisfies∣∣〈H 1 •B1,H 2 •B2〉

t

∣∣≤ ∫ t

0
H 1

s H 2
s ds(2.48)

(recall d〈Bi,Bi〉s ≡ ds). On the other hand, let W 1 and W 2 be two (Gt )-space–
time white noises, and J 1, J 2 ∈ L2

loc(W
1)= L2

loc(W
2) be nonnegative. [Recall the

notation (2.8) and (2.9).] In this case, the measure dx ds determines quadratic vari-
ations of stochastic integrals with respect to a space–time white noise in the sense
that 〈J i •Wi(1), J i •Wi(1)〉t = ∫ t

0
∫
R J i(x, s)2 dx ds. In bounding the covaria-

tions of J 1 •W 1(1) and J 2 •W 2(1), however, the following inequality, analogous
to (2.48), is not always true:∣∣〈J 1 •W 1(1), J 2 •W 2(1)

〉
t

∣∣≤ ∫ t

0

∫
R

J 1(x, s)J 2(x, s) dx ds.(2.49)

A counterexample is given by taking W 2 to be a nonidentity spatial translation
of W 1. Hence, the conclusion of Proposition 3.5 in [3] is incorrect in general,
as pointed by the anonymous referee, and there it is used to bound covaria-
tions of general adapted immigrant processes. Nevertheless, we will show in Sec-
tion 2.4 that there do exist some immigrant processes whose covariations satisfy
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the concluding inequality of Proposition 3.5 in [3] (see Theorem 2.12 and Propo-
sition 2.13), and so the arguments from Section 3.5 on in [3] remain valid if these
particular immigrant processes are in force.

To facilitate the forthcoming computation of covariations, we give some ter-
minology and notation. For a locally bounded signed measure μ on R× R+, we
define a measure-valued process J •μ by

J •μ(φ)�
∫
(0,·]

∫
R

J (x, s)φ(x) dμ(x, s), φ ∈ C∞c (R),

whenever J is a two-parameter random function satisfying
∫
(0,t]
∫
R |J (x, s)φ(x)| ×

|dμ(x, s)| <∞ a.s. for all t and φ ∈ C∞c (R), and we put μ(φ) ≡ 1 • μ(φ). Let
Ui,V i be (Gt )-space–time white noises and J i,Ki ∈ L2

loc(U
i) = L2

loc(V
i) for

1 ≤ i ≤ N and a natural number N . Then the pair (
∑

i J
i • Ui,

∑
i K

i • V i) of
finite sums of stochastic integrals is said to have a normal covariation if〈∑

i

J i •Ui(φ1),
∑
i

Ki • V i(φ2)

〉
=H • λ(φ1φ2)

(2.50)
a.s. ∀φ1, φ2 ∈ C∞c (R)

for some H ∈ L2
loc(U

i), where the measure λ in (2.50) is defined by

dλ(x, s)� dx ds.(2.51)

In this case, we write 〈〈∑i J
i • Ui,

∑
i K

i • V i〉〉 for H • λ. If Z = Z(x, t) and
Z′ = Z′(x, t) are solutions to SPDEs with stochastic integral terms characterized
by
∑

i J
i • Ui and

∑
i K

i • V i , respectively, then the pair (Z,Z′) is also said to
have a normal covariation and we write 〈〈Z,Z′〉〉 for 〈〈∑i J

i •Ui,
∑

i K
i • V i〉〉.

PROPOSITION 2.8. Fix ε ∈ (0,1] and an interlacing pair (X,Y ) of ε-approxi-
mating solutions. Let {Xi} and {Y i} be immigrant processes as in Theorem 2.6
and let {WXi } and {WYi } be the auxiliary space–time white noises chosen before
Remark 2.7. Then for all i, j ∈N, (Xi,X) and (X,Y i) have normal covariations,
and we have 〈〈

Xi,Y
〉〉= 1(X>0,Y>0)

(
Xi)1/2

(
Xi

X

)1/2

Y 1/2 • λ and

(2.52) 〈〈
X,Y j 〉〉= 1(X>0,Y>0)X

1/2(Y j )1/2
(

Y j

Y

)1/2
• λ,

where the measure λ is defined by (2.51).

PROOF. We only show that (Xi, Y ) has a normal covariation and compute
〈〈Xi,Y 〉〉, as the covariations of (X,Y j ) can be handled similarly. For φ1, φ2 ∈
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C∞c (R), write 〈(
Xi)1/2 •WXi

(φ1), Y
1/2 •W(φ2)

〉
= 〈(Xi)1/2 •WXi

(φ1),1(X>0)Y
1/2 •W(φ2)

〉
(2.53)

+ 〈(Xi)1/2 •WXi

(φ1),1(X=0)Y
1/2 •W(φ2)

〉
,

and consider the two terms on the right-hand side separately. For the first one, we
turn the space–time white noise W into functionals of {(Xi,WXi

); i ∈N} over the
space–time subset (X > 0) by writing

1(X>0) •W = 1(X>0)

X1/2

X1/2 •W =
∞∑

j=1

1(X>0)

(
Xj

X

)1/2

•WXj

,

where the last equality follows from the compatibility condition X1/2 • W =∑∞
j=1(X

j )1/2 •WXj
(compare the stochastic integral terms of the SPDEs for X

and
∑∞

j=1 Xj ). Note that the infinite series in the foregoing display is well defined
since there are only finite many immigration events in a bounded time interval.
The independence of the noises WXj

, j ∈N, and the foregoing equality imply that〈(
Xi)1/2 •WXi

(φ1),1(X>0)Y
1/2 •W(φ2)

〉
(2.54)

= 1(X>0)

Xi

X1/2 Y 1/2 • λ(φ1φ2).

Next, we consider the second term on the right-hand side of (2.53). A standard
property of one-parameter stochastic integrals implies that〈(

Xi)1/2 •WXi

(φ1),1[sj ,sj+1)1(X=0) •W(φ2)
〉≡ 0, 0≤ j < i,

since Xi does not arrive before time sj+1 for these pairs of indices (i, j). For
j ∈ N with j ≥ i, the corresponding substitution identity in (2.11) [recall (vi) of
Theorem 2.6] gives 1[sj ,sj+1)1(X=0) •W = 1[sj ,sj+1)1(X=0) •V X,j . Hence, for all t ,〈(

Xi)1/2 •WXi

(φ1),1(X=0)Y
1/2 •W(φ2)

〉
t

=
∞∑

j=i

〈(
Xi)1/2 •WXi

(φ1), Y
1/21[sj ,sj+1)1(X=0) • V X,j (φ2)

〉
t

(2.55)

=
∞∑

j=i

〈(
Xi)1/2 •WXi

(φ1), Y
1/21[sj ,sj+1)1(X=0) • V X,j (φ2)

〉
t∧(sj+1)

= 0,

where the last equality follows from the independence (2.47). Applying (2.54)
and (2.55) to the right-hand side of (2.53), we see that (Xi, Y ) has a normal co-
variation and get the first equality of (2.52). The proof is complete. �
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2.4. Immigrant processes obeying a system of SPDEs. Equations (2.52) in
Proposition 2.8 give partial information for the covariations between Xi and Y j .
The symmetry of these equations in X and Y suggests that if we consider the case
in which all of the pairs (Xi, Y j ) have normal covariations, then one possibility
for {〈〈Xi,Y j 〉〉; i, j ∈N} should be that the coexistence condition is satisfied:

〈〈
Xi,Y j 〉〉= 1(X>0,Y>0)

(
Xi)1/2(

Y j )1/2
(

Xi

X

)1/2(Y j

Y

)1/2

• λ

(2.56)

= 1(X>0,Y>0)

XiY j

X1/2Y 1/2 • λ, i, j ∈N.

Equations such as (2.56), if valid, would complement the fact that all (Xi,Xj ) and
(Y i, Y j ) have normal covariations and〈〈

Xi,Xj 〉〉= δijX
i • λ and

〈〈
Y i, Y j 〉〉= δijY

i • λ,(2.57)

where δij denote Kronecker’s deltas [recall that {Xi} and {Y i} are families of in-
dependent super-Brownian motions obeying the SPDE (1.1)]. In terms of stochas-
tic calculus, (2.56) and (2.57) would completely characterize the immigrant pro-
cesses.

We do not pursue the question whether every interlacing pair of ε-approximating
solutions admits immigrant processes subject to the coexistence condition (2.56).
For our purpose to study pathwise nonuniqueness in the SPDE (1.2), it is enough
to turn to the converse point of view and study whether there exist such immigrant
processes so that they define an interlacing pair of ε-approximating solutions (sub-
ject to the same white noise) as in (2.1) and (2.3). More precisely, our plan is to
construct, for every ε ∈ (0,1], immigrant processes {Xi} and {Y i} satisfying con-
ditions (i)–(v) of Theorem 2.6 [we do not require (vi)], and in addition, (2.56) so
that they are nonnegative solutions to a system of SPDEs of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xi
t (φ)=ψ(1)J xi

ε (φ)1t≥si +
∫ si∨t

si

Xi
s

(
�φ

2

)
ds

+
∞∑

j=1

∫ si∨t

si

∫
R

σ2i−1,j

(
X1, Y 1,X2, Y 2, . . . , s

)
φ(x) dWj(x, s),

Y i
t (φ)=ψ(1)J yi

ε (φ)1t≥ti +
∫ ti∨t

ti

Y i
s

(
�φ

2

)
ds

+
∞∑

j=1

∫ ti∨t

ti

∫
R

σ2i,j

(
X1, Y 1,X2, Y 2, . . . , s

)
φ(x) dWj(x, s),

(2.58)

for φ ∈ C∞c (R) and some infinite-dimensional deterministic diffusion coefficient
matrix σ(x1, y1, x2, y2, . . . , s) depending on space variables x1, y1, x2, y2, . . . (in
contrast, recall that xi and yi denote the landing targets of Xi and Y i , resp.) and
time variable s. In (2.58), (1) xi and yi are i.i.d. with distribution (1.15) as before,
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(2) (σi,j (·, ·, s))s∈[0,t] are zero for all but finitely many j for every fixed i and
finite t so that the infinite series in (2.58) reduce to finite sums, and (3) {Wj } is
a family of i.i.d. space–time white noises. We remark that the various restrictions
on t in the equations for Xi and Y i in (2.58) (namely, 1t≥si , si ∨ t , 1t≥ti and ti ∨ t)
imply that Xi and Y i are nonzero only in [si,∞) and [ti ,∞), respectively, and
in writing x1, y1, x2, y2, . . . for the arguments of σ , we keep track of the order
in which immigrants land. Finding an appropriate grand coefficient matrix σ is
the major task of this section. Below we make a series of observations, and the
conclusion will be stated in Theorem 2.12 by the end of this section.

PROPOSITION 2.9. Fix ε ∈ (0,1]. Let {Xi} and {Y i} be adapted super-
Brownian motions defined on a filtered probability space (�,F , (Gt ),P), so that
{Xi} is subject to (i) and (iii) of Theorem 2.6 and {Y i} is subject to the analogous
conditions. As before, the landing targets xi and yi here are i.i.d. with distribu-
tion (1.15) and satisfy (2.16). Suppose that all pairs (Xi, Y j ) have normal co-
variations and the coexistence condition (2.56) is satisfied. Then X =∑i X

i and
Y =∑i Y

i define an interlacing pair of ε-approximating solutions.

PROOF. As explained in Section 2.3, we may assume the existence of two fam-
ilies of independent space–time white noises {WXi } and {WYi } so that (Xi,WXi

)

and (Y i,WY i
) solve the SPDE (1.1) of super-Brownian motion.

We have to show that X and Y are subject to the SPDEs (2.1) and (2.3), re-
spectively, both with respect to the same (Gt )-space–time white noise W . We start
with the definition of W . Let V be a (Gt )-space–time white noise independent of
{(Xi,WXi

)} and {(Y i,WY i
)}. By our assumptions and Lévy’s theorem (cf. Theo-

rem IV.3.6 of [23]), we deduce that

W �
∞∑
i=1

1(Y>0)

(
Y i

Y

)1/2

•WYi +
∞∑
i=1

1(X>0,Y=0)

(
Xi

X

)1/2

•WXi

(2.59)
+ 1(X=0,Y=0) • V

defines a (Gt )-space–time white noise. Then Y is subject to the SPDE (2.3) with
respect to W since the compatibility condition Y 1/2 •W =∑∞i=1(Y

i)1/2 •WYi

holds. Indeed, we have

Y 1/2 •W = Y 1/21(Y>0) •W =
∞∑
i=1

1(Y>0)

(
Y i)1/2 •WYi

(2.60)

=
∞∑
i=1

(
Y i)1/2 •WYi

,

where the last equality follows from the nonnegativity of Y i ’s.
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To prove that X is also subject to W , one may wish that the roles of ({Xi},X)

and ({Y i}, Y ) on the right-hand side of (2.59) can be exchanged, that is W can also
be rewritten as

W =
∞∑
i=1

1(X>0)

(
Xi

X

)1/2

•WXi +
∞∑
i=1

1(Y>0,X=0)

(
Y i

Y

)1/2

•WYi

(2.61)
+ 1(X=0,Y=0) • V,

and so the argument in (2.60) applies to X. In this direction, it is enough to claim
that

∞∑
i=1

1(X>0,Y>0)

(
Xi

X

)1/2

•WXi −
∞∑
i=1

1(X>0,Y>0)

(
Y i

Y

)1/2

•WYi = 0.(2.62)

Recall the measure λ defined in (2.51). Since all of the pairs (Xi, Y j ) have nor-
mal covariations, the left-hand side of the foregoing equality also has a normal
covariation and we have〈〈 ∞∑

i=1

1(X>0,Y>0)

(
Xi

X

)1/2

•WXi −
∞∑
i=1

1(X>0,Y>0)

(
Y i

Y

)1/2

•WYi

,

∞∑
j=1

1(X>0,Y>0)

(
Xj

X

)1/2

•WXj −
∞∑

j=1

1(X>0,Y>0)

(
Y j

Y

)1/2

•WYj

〉〉

=
∞∑
i=1

1(X>0,Y>0)

Xi

X
• λ− 2

∞∑
i,j=1

1(X>0,Y>0)

1

X1/2Y 1/2

XiY j

X1/2Y 1/2 • λ

+
∞∑
i=1

1(X>0,Y>0)

Y i

Y
• λ

= 1(X>0,Y>0) • λ− 21(X>0,Y>0) • λ+ 1(X>0,Y>0) • λ= 0,

where the second equality follows from (2.56) and (2.57) [the stochastic inte-
gral terms of the SPDEs for Xi and Y j are characterized by (Xi)1/2 •WXi

and
(Y j )1/2 •WYj

]. We deduce our claim (2.62) from the last equality and the fact
that the action of the left-hand side of (2.62) on every function in C∞c (R) induces
a continuous martingale. We have proved the alternative expression (2.61) of W ,
and the proof is complete. �

LEMMA 2.10. Suppose that for N ∈ N, ξ1, . . . , ξN are continuous nonnega-
tive Crap(R)-valued solutions to the SPDE (1.1) with respect to the same filtration
and independent initial conditions, and all pairs (ξ i, ξ j ) have normal covariations
with 〈〈ξ i, ξ j 〉〉 = δij ξ

i • λ for λ given by (2.51). Then ξ1, . . . , ξN are independent
super-Brownian motions.
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SKETCH OF PROOF. The proof is to generalize the exponential duality argu-
ment for super-Brownian motion. For each i, let φi be a nonnegative C∞c (R)-
function and ui be the unique nonnegative solution of the PDE

∂ru
i
r =

�ui
r

2
− 1

2

(
ui

r

)2 in R× (0,∞) with ui
0 = φi

(cf. Lemma 4 in Section II.2 of [16] or pages 167–169 of [21]). Then for every fixed
t ∈ (0,∞), the continuous semimartingale exp{−∑N

i=1 ξ i
s (u

i
t−s)}, 0 ≤ s ≤ t , has

zero finite variation by Itô’s lemma and the assumption that 〈〈ξ i, ξ j 〉〉 = δij ξ
i • λ

(cf. Proposition II.5.7 of [21]), and hence has constant mean. It follows that one-
dimensional marginals of (ξ1, . . . , ξN) are uniquely determined as those of inde-
pendent super-Brownian motions. A standard argument for martingale problems
(cf. Section 4.4 in [10]) implies the desired result. �

Thanks to Lemma 2.10, the main assumptions of Proposition 2.9 are reduced
to the covariation equations (2.56) and (2.57) for {Xi} and {Y i}, as well as other
minor conditions. Then as in the standard construction of solutions to systems of
stochastic differential equations, the issue is whether these covariation equations
(2.56) and (2.57) are induced by the nonnegative definite matrix σσ� for some
diffusion coefficient matrix σ as in (2.58).

Below we write x= (x1, x2, . . .), y= (y1, y2, . . .), and 0= (0,0, . . .) for which
the dimensions may vary from line to line but will be clear from the context.

LEMMA 2.11. Fix n,m ∈N, and consider the matrix-valued function

(x,y) �−→ a(n,m)(x,y)= [a(n,m)
k,� (x,y)

]
1≤k,�≤m+n(2.63)

defined on (Rn \ {0})× (Rm \ {0}) as follows. For x = (x1, x2, . . . , xn) and y =
(y1, y2, . . . , ym) with xi, yj ≥ 0 and

∑
i′ x

i′,
∑

j ′ y
j ′ > 0, we set⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
(n,m)
i,j (x,y)= xiδij , 1≤ i, j ≤ n,

a
(n,m)
n+i,n+j (x,y)= yj δij , 1≤ i, j ≤m,

a
(n,m)
i,n+j (x,y)= a

(n,m)
n+j,i(x,y)

= (xi)1/2(
yj )1/2

(
xi∑
i′ xi′

)1/2( yj∑
j ′ yj ′

)1/2

,

1≤ i ≤ n,1≤ j ≤m.

For other (x,y) ∈ (Rn \ {0})× (Rm \ {0}), we set

a(n,m)(x,y)= a(n,m)(∣∣x1∣∣, ∣∣x2∣∣, . . . , ∣∣xn
∣∣, ∣∣y1∣∣, ∣∣y2∣∣, . . . , ∣∣ym

∣∣).(2.64)

Then a(n,m) extends continuously to the entire space Rn ×Rm, and the extension,
still denoted by a(n,m), takes values in (m + n)-by-(m + n) nonnegative definite
matrices.
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PROOF. Our assertion that a(n,m) extends continuously to Rn × Rm follows
plainly from the fact that

|xi |∑
i′ |xi′ | ,

|yj |∑
j ′ |yj ′ | ∈ [0,1] ∀x ∈Rn \ {0},y ∈Rm \ {0}.

We turn to the nonnegative definiteness of a(n,m). By continuity and (2.64), we
only need to show that a(n+m)(x,y) is nonnegative definite for x ∈Rn and y ∈Rm

satisfying xi, yj > 0 for all i, j . Write

a(n+m)(x,y)=
[
DX A

A� DY

]
for an n-by-n diagonal matrix DX and an m-by-m diagonal matrix DY . For any
(u, v) ∈Rn ×Rm, we regard u and v as column vectors and compute[

u� v�
]
a(n+m)(x,y)

[
u

v

]
= [u� v�

] [DX A

A� DY

][
u

v

]
= u�DXu+ 2u�Av + v�DY v(2.65)

=∑
i

(
ui)2xi + 2

∑
i,j

ui(xi)1/2
(

xi∑
i′ xi′

)1/2

vj (yj )1/2
(

yj∑
j ′ yj ′

)1/2

+∑
j

(
vj )2yj

by the definition of a(n,m). Notice that for all α1, . . . , αn,β1, . . . , βm ∈R,

2
∑
i,j

αiβj =
(∑

i

αi +∑
j

βj

)2

−∑
i

(
αi)2 − 2

∑
i1<i2

αi1αi2

−∑
j

(
βj )2 − 2

∑
j1<j2

βj1βj2 .

Applying the foregoing equality to the second term on the right-hand side of (2.65)
with the choice

αi = ui(xi)1/2
(

xi∑
i′ xi′

)1/2

and

βj = vj (yj )1/2
(

yj∑
j ′ yj ′

)1/2

,



SPDES OF SUPER-BROWNIAN MOTIONS WITH IMMIGRATION 3393

we obtain[
u� v�

]
a(n+m)(x,y)

[
u

v

]
=∑

i

(
ui)2xi

+
[∑

i

ui(xi)1/2
(

xi∑
i′ xi′

)1/2

+∑
j

vj (yj )1/2
(

yj∑
j ′ yj ′

)1/2]2

(2.66)

−∑
i

(
ui)2 (xi)2∑

i′ xi′ − 2
∑
i1<i2

ui1ui2
xi1

(
∑

i′ xi′)1/2

xi2

(
∑

i′ xi′)1/2

−∑
j

(
vj )2 (yj )2∑

j ′ yj ′ − 2
∑

j1<j2

vj1vj2
yj1

(
∑

j ′ yj ′)1/2

yj2

(
∑

j ′ yj ′)1/2

+∑
j

(
vj )2yj .

The first, third and fourth terms on the right-hand side of the above equality (with
their signs taken into account as well) sum to∑

i

(
ui)2xi −∑

i

(
ui)2 (xi)2∑

i′ xi′ − 2
∑
i1<i2

ui1ui2
xi1

(
∑

i′ xi′)1/2

xi2

(
∑

i′ xi′)1/2

(2.67)

=∑
i

(
ui)2xi −

[∑
i

ui xi

(
∑

i′ xi′)1/2

]2

≥ 0,

since the Cauchy–Schwarz inequality implies that[∑
i

ui xi

(
∑

i′ xi′)1/2

]2

=
[∑

i

ui(xi)1/2 ×
(

xi∑
i′ xi′

)1/2]2

≤
(∑

i

(
ui)2xi

)(∑
i

xi∑
i′ xi′

)

=∑
i

(
ui)2xi.

Similarly, the last three terms on the right-hand side of (2.66) sum to

−∑
j

(
vj )2 (yj )2∑

j ′ yj ′ − 2
∑

j1<j2

vj1vj2
yj

(
∑

j ′ yj ′)1/2

yj

(
∑

j ′ yj ′)1/2
+∑

j

(
vj )2yj

(2.68)

=∑
j

(
vj )2yj −

[∑
j

vj yj

(
∑

j ′ yj ′)1/2

]2

≥ 0.
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Apply (2.67) and (2.68) to the right-hand side of (2.66), and we obtain[
u� v�

]
a(n+m)(x,y)

[
u

v

]

≥
[∑

i

ui(xi)1/2
(

xi∑
i′ xi′

)1/2

+∑
j

vj (yj )1/2
(

yj∑
j ′ yj ′

)1/2]2

≥ 0

∀(u, v) ∈Rn ×Rm,

that is, a(n+m)(x,y) is nonnegative definite. The proof is complete. �

We are now ready to define the sought-after diffusion coefficient matrix σ . For
convenience, we reorder the arguments and entries of the matrix-valued function
a(n,m)(x,y) in Lemma 2.11 in accordance with the order in which immigrants land,
for (n,m) equal to (n,n) or (n,n− 1). This results in the matrix-valued functions
A(n,n) and A(n,n−1) defined by

A(n,n)(x1, y1, x2, y2, . . . , xn, yn)��n,na
(n,n)(x,y)��n,n, n≥ 1,

A(n,n−1)(x1, y1, x2, y2, . . . , xn−1, yn−1, xn)(2.69)

� �n,n−1a
(n,n−1)(x,y)��n,n−1, n≥ 2.

Here, �n,n and �n,n−1 are the permutation matrices defined by

�n,n

[
x1, x2, . . . , xn, y1, y2, . . . , yn]�
= [x1, y1, x2, y2, . . . , xn, yn]�,

(2.70)
�n,n−1

[
x1, x2, . . . , xn, y1, y2, . . . , yn−1]�

= [x1, y1, x2, y2, . . . , xn−1, yn−1, xn]�.

Then we choose a continuous square root, denoted by σ (n,m), of the square matrix
A(n,m) (cf. Theorem 1.1 of [5] or [11] for its existence) for (n,m) = (n,n) or
(n,n− 1), and so σ (n,m) satisfies

σ (n,m)[σ (n,m)]� ≡A(n,m).(2.71)

Let σ (1,0)(x1) be the 1-by-1 matrix [|x1|1/2]. Then we define σ as follows. We set
σ ≡ 0 on [0, s1), and for all n, i, j ∈N,

σi,j

(
x1, y1, x2, y2, . . . , s

)
(2.72)

≡

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

σ
(n,n−1)
i,j

(
x1, y1, x2, y2, . . . , xn−1, yn−1, xn),

if i, j ≤ 2n− 1 and s ∈ [sn, tn),
σ

(n,n)
i,j

(
x1, y1, x2, y2, . . . , xn, yn),
if i, j ≤ 2n and s ∈ [tn, sn+1),

0, otherwise.
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In other words, solutions to the system (2.58) of SPDE’s subject to the above
choice of diffusion coefficient matrix σ , if any, can be described as follows: over
[sn, tn) for n ∈N, (

X1, Y 1,X2, Y 2, . . . ,Xn−1, Y n−1,Xn)
is subject to the diffusion coefficient σ (n,n−1) and the independent noises
W 1, . . . ,W 2n−1, and over [tn, sn+1) for n ∈N,(

X1, Y 1,X2, Y 2, . . . ,Xn,Y n)
is subject to the diffusion coefficient σ (n,n) and the independent noises
W 1, . . . ,W 2n. Note that σ depends only on space variables between two con-
secutive immigration times.

THEOREM 2.12. Fix an immigration function ψ ∈ C+c (R) \ {0}. For any ε ∈
(0,1], we can construct a filtered probability space (�,F , (Gt ),Pε), with (Gt )

satisfying the usual conditions, on which there exist random elements {xi}, {yi},
{Xi}, {Y i}, {Wi} and W with the following properties:

(i) xi and yi are i.i.d. with law (1.15) and take values in the topological sup-
port of ψ .

(ii) Wi and W are (Gt )-space–time white noises, and the noises {Wi} are in-
dependent.

(iii) For each i ∈ N, (Xi
t )t∈[si ,∞) and (Y i

t )t∈[ti ,∞) are nonnegative processes
with sample paths in C([si,∞),Crap(R)) and C([ti ,∞),Crap(R)), respectively.

(iv) {Xi} and {Y i} obey the system of SPDE’s (2.58) with respect to {Wi} for σ

defined by (2.72).
(v) The independent landing property (2.16) for immigrants holds.

(vi) The sums X = ∑i X
i and Y = ∑i Y

i define an interlacing pair of
ε-approximating solutions with respect to W (see Definition 2.1).

In particular, {Xi} and {Y i} are two families of independent super-Brownian mo-
tions for which the covariation equations (2.56) hold.

The proof of Theorem 2.12 follows similarly as the existence of interlacing
pairs of ε-approximating solutions (see Definition 2.1). We introduce i.i.d. land-
ing targets xi and yi which are independent of a family of i.i.d. noises {Wi}, and
then solve (2.58) over [s1, t1), [t1, s2), [s2, t2), . . . sequentially (see [2] for a simi-
lar construction). More precisely, over any of these intervals, (2.58) reduces to a
finite-dimensional system of SPDEs to which the classical Peano approximation
argument as in the proof of Theorem 2.6 of [25] applies (cf. Section 6 of [17] as
well). Indeed, by comparing diagonal entries on both sides of (2.71), we deduce
that every entry σ

(n,m)
i,j is bouded by z �−→ |z|1/2, where z = xk if i = 2k − 1, or

z= yk if i = 2k. We omit other details.
As an immediate consequence of (2.56), we obtain the following (see Re-

mark 2.7).
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PROPOSITION 2.13. Let {Xi} and {Y i} be as in Theorem 2.12. Then for any
i, j1, . . . , jn ∈N for n ∈N with j1 < j2 < · · ·< jn, except outside a null event, the
inequality ∣∣∣∣∣

∫ t

0
Hs d

〈
Xi(1),

n∑
�=1

Y j�(1)

〉
s

∣∣∣∣∣
≤
∫ t

si∨tj1

|Hs |
∫
R

(
Xi(x, s) ·

n∑
�=1

Y j�(x, s)

)1/2

dx ds(2.73)

∀t ∈ [si ∨ tj1,∞),

holds for any locally bounded Borel measurable function H on R+.

CHOICE OF APPROXIMATING SOLUTIONS. From now on, we only work with
{Xi} and {Y i} as in Theorem 2.12, and the corresponding interlacing pairs of
ε-approximating solutions X =∑i X

i and Y =∑i Y
i , except in Section 5.

3. Conditional separation of approximating solutions.

3.1. Basic results. The theme of Section 3 is conditional separation of the
approximating solutions defined by the immigrant processes {Xi; i ∈ N} and
{Y i; i ∈ N} chosen in Theorem 2.12. For any ε ∈ (0, [8ψ(1)]−1 ∧ 1], we condi-
tion on the event that the total mass of a generic cluster Xi hits 1, and then the
conditional separation refers to the separation of the approximating solutions un-
der

Qi
ε(A)≡ Pε

(
A|T Xi

1 <∞).(3.1)

Here, the restriction [8ψ(1)]−1 for ε is just to make sure that Xi(1) stays in (0,1)

initially, and we set

T H
x � inf

{
t ≥ 0;Ht(1)= x

}
(3.2)

for any nonnegative two-parameter process H = (H(x, t); (x, t) ∈ R×R+). Our
specific goal is to study the differences in the growth rates of local masses of X

and Y over the “initial part” of the space–time support of Xi . In the following, we
prove a few basic results concerning Qi

ε .
First, let us represent the Radon–Nikodym derivative process of Qi

ε relative
to Pε (cf. Section VIII.1 of [23] for its role in Girsanov’s theorem).

LEMMA 3.1. For any i ∈N and ε ∈ (0, [8ψ(1)]−1 ∧ 1],
Pε

(
T Xi

1 < T Xi

0
)= ψ(1)ε,(3.3)



SPDES OF SUPER-BROWNIAN MOTIONS WITH IMMIGRATION 3397

and the Radon–Nikodym derivative process EPε [dQi
ε/dPε|Gt ], t ∈ [si,∞), of Qi

ε

relative to Pε is given by the stopped ((Gt )t≥si ,Pε)-martingale Xi(1)T
Xi

1 /ψ(1)ε,
that is,

Qi
ε(A)=

∫
A

Xi
t (1)T

Xi

1

ψ(1)ε
dPε ∀A ∈ Gt with t ∈ [si,∞).(3.4)

Here, Xi(1)T
Xi

1 denotes the total mass process Xi(1) stopped at T Xi

1 [see (3.2)

for T Xi

1 ].

PROOF. The proof is a standard application of Doob’s h-transforms (cf. Sec-
tion VII.3 of [23]). Recall that Xi(1) under Pε is a Feller diffusion with initial con-
dition ψ(1)ε and plainly the scale function of Feller diffusion is given by x �−→ x.
Hence, (3.3) follows from Proposition VII.3.2 of [23]. To see the second asser-
tion, we recall the definition (3.1) of Qi

ε , and then apply (3.3), Proposition VII.3.2
in [23] again and the Markov property of Xi(1). �

Some basic properties of the total mass processes Xi(1) and Y j (1) for tj > si
under Qi

ε are stated in the following lemma.

LEMMA 3.2. Fix i ∈N and ε ∈ (0, [8ψ(1)]−1 ∧ 1]. Then we have the follow-
ing.

(1) Xi(1)T
Xi

1 under Qi
ε is a copy of 1

4BESQ4(4ψ(1)ε) started at si and stopped
upon hitting 1.

(2) For any j ∈ N with tj > si , the process (Y j (1)t )t≥tj is a continuous
(Gt )t≥tj -semimartingale under Qi

ε with canonical decomposition

Y
j
t (1)=ψ(1)ε+ I

j
t +M

j
t , t ∈ [tj ,∞),(3.5)

where the finite variation process I j satisfies

I
j
t =

∫ t

tj

1

Xi
s(1)T

Xi

1

d
〈
Xi(1)T

Xi

1 , Y j (1)
〉
s,(3.6)

0 ≤ I
j
t ≤

∫ t

tj

1[0,T Xi

1 ](s)
1

Xi
s(1)

∫
R

Xi(x, s)1/2Y j (x, s)1/2 dx ds,(3.7)

for t ∈ [tj ,∞), and Mj is a true (Gt )t≥tj -martingale under Qi
ε .

(3) For any j ∈N with tj > si ,

xi,X
i(1) � [si, tj ], yj and Y j (1) � [tj ,∞) are Pε-independent.(3.8)
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(4) For any j ∈N,

Qi
ε

(|yj − xi | ∈ dx
)= Pε

(|yj − xi | ∈ dx
)
, x ∈R,

(3.9)

Pε(yj ∈ dx) ≤ ‖ψ‖∞
ψ(1)

dx, x ∈R.

PROOF. (1) The proof is omitted since it is a straightforward application of
Girsanov’s theorem and Lemma 3.1, and can be found in the proof of Lemma 4.1
of [17].

(2) Under Pε , the total mass process (Y
j
t (1))t≥tj for any j ∈ N with tj > si

is a (Gt )t≥tj -Feller diffusion and hence a (Gt )t≥tj -martingale. By Lemma 3.1 and

Girsanov’s theorem (cf. Theorem VIII.1.4 of [23]), (Y
j
t (1))t≥tj for any j ∈N with

tj > si is a continuous (Gt )t≥tj -semimartingale under Qi
ε with canonical decom-

position given by (3.5). Here, (M
j
t )t≥tj is a continuous (Gt )t≥tj -local martingale

under Qi
ε with quadratic variation〈

Mj 〉
t =
∫ t

tj

Y j
s (1) ds, t ∈ [tj ,∞),(3.10)

and by Lemma 3.1 the finite variation process (I
j
t )t≥tj is given by (3.6). Applying

(2.56) and (2.73) to (3.6), we obtain (3.7) at once.
For the martingale property of Mj under Qi

ε , we note that the one-dimensional
marginals of Y j (1) have pth moments which are locally bounded on compacts,
for any p ∈ (0,∞). [Y j (1) under Pε is a Feller diffusion.] Applying this to (3.10)
shows that EQi

ε [〈Mj 〉t ]<∞ for every t ∈ [tj ,∞), and hence Mj is a true martin-
gale under Qi

ε .
(3) The assertion (3.8) is an immediate consequence of the independent landing

property (2.16) and the Markov properties of Xi(1) and Y j (1) (cf. Theorem 2.12).
(4) We consider (3.9). Recall that xi ∈ Gsi and yj ∈ Gtj by (2.4). If tj > si , then

we obtain from (3.4) that

Qi
ε

(|yj − xi | ∈ dx
)= 1

ψ(1)ε
EPε
[
Xi

tj
(1)T

Xi

1 ; |yj − xi | ∈ dx
]

(3.11)
= Pε

(|yj − xi | ∈ dx
)
,

where the last equality follows from (3.8). If tj < si , then a similar argument
applies [without using (3.4)] since Xi

si
(1) = ψ(1)ε. Hence, the equality in (3.9)

holds. The inequality in (3.9) is obvious. The proof is complete. �

3.2. Setup. In order to state precisely our quantifications of the local growth
rates of X and Y , we need several preliminary results which have similar coun-
terparts in [17]. First, we choose in Proposition 3.3 below a (Gt )-stopping time τ i

satisfying τ i > si , so that within [si, τ i] we can explicitly bound from below the
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growth rate of Xi(1). Since X ≥ Xi , this gives a lower bound for the size of X

over the initial part of the space–time support of Xi . Our objective is to study the
local growth rate of Y within this part.

PROPOSITION 3.3. For any ε ∈ (0, [8ψ(1)]−1 ∧ 1], parameter vector
(η,α,L) ∈ (1,∞) × (0, 1

2) × (0,∞), and i ∈ N, we define four (Gt )-stopping
times by

τ i,(1) � inf
{
t ≥ si;Xi

t (1)T
Xi

1 <
(t − si)

η

4

}
∧ T Xi

1 ,

τ i,(2) � inf
{
t ≥ si;

∣∣Xi
t (1)T

Xi

1 −ψ(1)ε− (t − si)
∣∣> L

(∫ t

si

Xi
s(1)T

Xi

1 ds

)α}
∧ T Xi

1 ,

τ i,(3) � inf
{
t ≥ si;

∑
j : si<tj≤t

Y
j
t (1) > 1

}
,

τ i � τ i,(1) ∧ τ i,(2) ∧ τ i,(3) ∧ (si + 1).

Then

∀ρ > 0 ∃δ > 0 such that
(3.12)

sup
{
Qi

ε

(
τ i ≤ si + δ

); i ∈N, ε ∈
(

0,
1

8ψ(1)
∧ 1
]}
≤ ρ.

See Section 6 for the proof of Proposition 3.3.
Let us explain the meanings of the parameters η,α,L in this proposition.

Since Xi(1) is a Feller diffusion under Pε , a straightforward application of Gir-

sanov’s theorem (cf. Theorem VIII.1.4 of [23]) shows that Xi(1)T
Xi

1 under Qi
ε is a

1
4BESQ4(4ψ(1)ε) stopped upon hitting 1; see Lemma 4.1 of [17] for details. As
a result, by the lower escape rate of BESQ4 (cf. Theorem 5.4.6 of [14]), the time
τ i,(1) is strictly positive Qi

ε-a.s. for any η ∈ (1,∞). In particular, we may take the
parameter η close to 1.

The definition of τ i,(2) involves the notion of improved modulus of continuity.
We will take the parameter α in the definition of τ i,(2) close to 1

2 and consider the
local Hölder exponent of the martingale part of BESQ4 in terms of its quadratic
variation. The parameter L bounds the associated local Hölder coefficient. Hence,
we have the integral inequality∣∣Xi

t (1)T
Xi

1 −ψ(1)ε
∣∣≤ (t − si)+L

(∫ t

si

Xi
s(1)T

Xi

1 ds

)α

(3.13)
∀t ∈ [si, τ i

]
,Qi

ε-a.s., ∀i ∈N, ε ∈ (0,
[
8ψ(1)

]−1 ∧ 1
]
,
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by the choice of τ i,(2) in Proposition 3.3. The integral inequality (3.13) is remi-
niscent of the integral inequalities to which Gronwall’s lemma applies, and hence
suggests an iteration argument if we wish to bound more explicitly the difference

|Xi
t (1)T

Xi

1 −ψ(1)ε|. A general result for this is given by Corollary 8.2. Applying
Corollary 8.2 to the random function

t �−→Xi
t (1)T

Xi

1 :
[
si, τ

i]−→R,

we obtain from (3.13) that whenever ξ ∈ (0,1) and N0 ∈N satisfies
N0∑
j=1

αj ≤ ξ <

N0+1∑
j=1

αj ,(3.14)

the following inequality holds:∣∣Xi
t (1)T

Xi

1 −ψ(1)ε
∣∣≤KX

1
[
ψ(1)ε

]αN0
(t − si)

α +KX
2 (t − si)

ξ

(3.15)
∀t ∈ [si, τ i

]
,Qi

ε-a.s., ∀i ∈N, ε ∈ (0,
[
8ψ(1)

]−1 ∧ 1
]
,

where the constants KX
1 ,KX

2 ≥ 1 depend only on (α,L, ξ,N0). Moreover, since
α is close to 1

2 , we can choose N0 large in (3.14) to make ξ close to 1, as is our
intention in the sequel. Informally, we can interpret the foregoing inequality as the
statement:

t �−→Xi
t (1)T

Xi

1 is Hölder-1 continuous at si from the right.

A similar derivation of the improved modulus of continuity of Y j (1) will appear
in the proof of Lemma 3.12 below.

To use the support of Xi within which we study the local growth rate of Y , we
take a parameter β ∈ (0, 1

2), which is now close to 1
2 . We use this parameter to get

a better control of the supports of Xi and Y j , and this means we use the parabola

PXi

β (t) �
{
(x, s) ∈R× [si, t]; |x − xi | ≤ (ε1/2 + (s − si)

β)}(3.16)

to envelop the space–time support of Xi � [si, t], for t ∈ (si,∞), with a similar
practice applied to other clusters Y j . (See the speed of support propagation of
super-Brownian motions in Theorem III.1.3 of [21].) More precisely, we can use
the (Gt )-stopping time

σXi

β � inf
{
s ≥ si;

(3.17)
supp

(
Xi

s

)
�
[
xi − ε1/2 − (s − si)

β, xi + ε1/2 + (s − si)
β]}

as well as the analogous stopping times σYj

β for Y j to identify the duration of the
foregoing enveloping.

We now specify the clusters Y j selected for computing the local growth rate
of Y . Suppose that at time t with t > si , we can still envelop the support of Xi by
PXi

β (t) and the analogous enveloping for the support of Y j holds for any j ∈ N
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FIG. 2. Parabolas PXi

β (t),PYj

β (t),PYk
β (t) and rectangles RXi

β (t) and RXi

β ′ (t), for 0 < β ′ < β and
t ∈ [si , si + 1).

satisfying tj ∈ (si, t]. Informally, we can ignore the clusters Y j landing before Xi ,
because the probability that they can invade the initial part of the support of Xi

is small for small t (cf. Lemma 7.3). Under such circumstances, simple geometric
arguments show that only the Y j clusters landing inside the space–time rectangle

RXi

β (t) �
[
xi − 2

(
ε1/2 + (t − si)

β), xi + 2
(
ε1/2 + (t − si)

β)]× [si, t](3.18)

can invade the initial part of the support of Xi by time t (see Lemma 7.3). We
remark that this choice of clusters Y j for (yj , tj ) ∈RXi

β (t) is also used in [17].
For technical reasons (cf. Section 3.5 below), however, we will consider the

super-Brownian motions Y j landing inside the slightly larger rectangle RXi

β ′ (t) for

t ∈ (si, si + 1], where β ′ is another value close to 1
2 , has the same meaning as β ,

and satisfies β ′ < β . See Figure 2 for these rectangles as well as an example for
three parabolas PXi

β (t), PY j

β (t), and PY k

β (t) where (yj , tj ) ∈RXi

β (t) and (yk, tk) /∈
RXi

β (t). The labels j ∈ N of the clusters Y j landing inside RXi

β ′ (t) constitute the
random index set

J i
β ′(t)≡ J i

β ′(t, t),(3.19)

where

J i
β ′
(
t, t ′
)
�
{
j ∈N; |yj − xi | ≤ 2

(
ε1/2 + (t − si)

β ′), si < tj ≤ t ′
}

(3.20)
∀t, t ′ ∈ (si,∞).

ASSUMPTION 3.4 (Choice of auxiliary parameters). Throughout the remain-
der of this section and Section 4, we fix a parameter vector(

η,α,L,β,β ′, ξ,N0
)

(3.21)
∈ (1,∞)× (0, 1

2

)× (0,∞)× [1
3 , 1

2

)× [1
3 , 1

2

)× (0,1)×N
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satisfying ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a)
N0∑
j=1

αj ≤ ξ <

N0+1∑
j=1

αj ,

(b) α <
β ′

β
< 1,

(c) β ′ − η

2
+ 3

2
α > 0,

(d)
(
β ′ + 1

)∧ (β ′ − η

2
+ 3ξ

2

)
> η.

(3.22)

[Note that we restate (3.14) in (a).] We insist that the parameter vector in (3.21) is
chosen to be independent of i ∈N and ε ∈ (0, [8ψ(1)]−1∧1]. For example, we can
choose these parameters in the following order: first choose η,α,β ′, ξ according
to (c) and (d), choose β according to (b), and finally choose N0 according to (a)
by enlarging ξ if necessary; the parameter L, however, can be chosen arbitrarily.

The following theorem gives our quantification of the local growth rates of Y

under Qi
ε .

THEOREM 3.5. Under Assumption 3.4, set three strictly positive constants by

κ1 = (β ′ + 1
)∧ (β ′ − η

2
+ 3ξ

2

)
, κ2 = αN0

4
,

(3.23)

κ3 = β ′ − η

2
+ 3α

2
.

Then there exists a constant K∗ ∈ (0,∞), depending only on the parameter vector
in (3.21) and the immigration function ψ , such that for any δ ∈ (0, κ1 ∧ κ3), the
following uniform bound holds:

Qi
ε

(
∃s ∈ (si, t],

∑
j∈J i

β′ (s∧τ i∧σXi

β )

Y j
s (1)

τ i∧σXi

β ∧σYj

β

> K∗
[
(s − si)

κ1−δ + εκ2 · (s − si)
κ3−δ])

(3.24)

≤ 2 · 2κ1∨κ3

2(N+1)δ(1− 2−δ)

∀t ∈ [si + 2−(N+1), si + 2−N ],N ∈ Z+, i ∈N, ε ∈
(

0,
1

8ψ(1)
∧ 1
]
,

where the (Gt )-stopping times τ i are defined in Proposition 3.3.
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REMARK 3.6. If we follow the aforementioned interpretation of the parameter
vector in (3.21) that (η,β ′, ξ) is close to (1, 1

2 ,1), then κ1 in (3.23) is close to 3
2 .

Informally, if we regard the stopping times τ i , σXi

β , and σYj

β as being bounded

away from si , then by the above reason for choosing the random index sets J i
β ′(·)

in (3.19), we can regard Theorem 3.5 as a formalization of the statement in (1.19).

In fact, the proof of Theorem 3.5 is reduced to a study of some nonnegative
(Gt )t≥si -submartingale dominating the process∑

j∈J i
β′ (t∧τ i∧σXi

β )

Y
j
t (1)

τ i∧σXi

β ∧σYj

β , t ∈ [si,∞),(3.25)

in (3.24), and the main task will be to prove Theorem 3.8 below. We explain the
reductions as follows.

We observe that by Lemma 3.2(2), the process in (3.25) is dominated by the
nonnegative process∑

j∈J i
β′ (t,t∧τ i∧σXi

β )

(
ψ(1)ε

+
∫ t∧τ i∧σXi

β ∧σYj

β

tj

1

Xi
s(1)

∫
R

Xi(x, s)1/2Y j (x, s)1/2 dx ds

(3.26)

+M
j

t∧τ i∧σXi

β ∧σYj

β

)
,

t ∈ [si,∞),

under Qi
ε for any i ∈N and ε ∈ (0, [8ψ(1)]−1 ∧ 1]. The process in (3.26) is in fact

a nonnegative (Gt )t≥si -submartingale under Qi
ε , since for any j ∈ N with si < tj ,

j ∈ J i
β ′(t, t ∧ τ i ∧ σXi

β ) if and only if the following Gtj -event occurs:{|yj − xi | ≤ 2
(
ε1/2 + (t − si)

β ′) and tj ≤ t ∧ τ i ∧ σXi

β

}
.

(Recall that yj ∈ Gtj and xi ∈ Gsi by Theorem 2.12.) It suffices to prove the
bound (3.24) of Theorem 3.5 with the involved process in (3.25) replaced by the
nonnegative submartingale in (3.26). To further reduce the problem, we resort to
the following simple corollary of Doob’s maximal inequality.

LEMMA 3.7. Let F be a nonnegative function on [0,1] such that F � (0,1]>
0 and sups,t : 1≤t/s≤2

F(t)
F (s)

<∞. In addition, assume that

for some δ > 0, t �−→ F(t)

tδ
is increasing.(3.27)
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Suppose that Z is a nonnegative submartingale with càdlàg sample paths such that
E[Zt ] ≤ F(t) for any t ∈ [0,1]. Then for every N ∈ Z+,

sup
t∈[2−(N+1),2−N ]

P
(
∃s ∈ (0, t],Zs >

F(s)

sδ

)
(3.28)

≤
(

sup
s,t : 1≤t/s≤2

F(t)

F (s)

)
× 1

2(N+1)δ(1− 2−δ)
.

PROOF. For each m ∈ Z+,

P
(
∃s ∈ [2−(m+1),2−m],Zs ≥ F(s)

sδ

)
≤ P
(

sup
2−(m+1)≤s≤2−m

Zs ≥ F

(
1

2(m+1)

)/ 1

2(m+1)δ

)

≤ E[Z1/2m]
F(1/2(m+1))/(1/2(m+1)δ)

≤ F(1/2m)

F (1/2(m+1))/(1/2(m+1)δ)

= sup
s,t : 1≤t/s≤2

F(t)

F (s)
× 1

2(m+1)δ
,

where the first inequality follows from (3.27) and the second inequality follows
from Doob’s maximal inequality. Hence, whenever t ∈ [2−(N+1),2−N ] for N ∈
Z+, the last inequality gives

P
(
∃s ∈ (0, t],Zs >

F(s)

sδ

)

≤
∞∑

m=N

P
(
∃s ∈ [2−(m+1),2−m],Zs ≥ F(s)

sδ

)

≤
(

sup
s,t : 1≤t/s≤2

F(t)

F (s)

) ∞∑
m=N

1

2(m+1)δ

=
(

sup
s,t : 1≤t/s≤2

F(t)

F (s)

)
× 1

2(N+1)δ(1− 2−δ)
.

This completes the proof. �

THEOREM 3.8. Under Assumption 3.4, take the same constants κj as in The-
orem 3.5. Then we can choose a constant K∗ ∈ (0,∞) as stated in Theorem 3.5,
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such that the following uniform bound holds:

EQi
ε

[ ∑
j∈J i

β′ (t,t∧τ i∧σXi

β )

(
ψ(1)ε

+
∫ t∧τ i∧σXi

β ∧σYj

β

tj

1

Xi
s(1)

∫
R

Xi(x, s)1/2Y j (x, s)1/2 dx ds

)]
≤K∗

[
(t − si)

κ1 + εκ2 · (t − si)
κ3
]
∀t ∈ (si, si + 1], i ∈N, ε ∈

(
0,

1

8ψ(1)
∧ 1
]
.

Now, we prove the main result of this section, that is Theorem 3.5, assuming
Theorem 3.8.

PROOF OF THEOREM 3.5. In, and only in, this proof, we denote by Z(0) the
submartingale defined in (3.26).

Since [j ∈ J i
β ′(t, t ∧ τ i ∧ σXi

β )] ∈ Gtj , we obtain immediately from
Lemma 3.2(2) that the part∑

j∈J i
β′ (t,t∧τ i∧σXi

β )

M
j

t∧τ i∧σXi

β ∧σYj

β

, t ∈ [si,∞),

in the definition of Z(0) is a true Qi
ε-martingale with mean zero, for any i ∈N and

ε ∈ (0, [8ψ(1)]−1 ∧ 1]. Hence, setting

F (0)(s)=K∗
(
sκ1 + εκ2 · sκ3

)
, s ∈ [0,1],

we see from Theorem 3.8 that

Eε

[
Z

(0)
t

]≤ F (0)(t − si)

for any t ∈ (si, si + 1], i ∈N and ε ∈ (0, [8ψ(1)]−1 ∧ 1]. Note that

sup
s,t : 1≤t/s≤2

F (0)(t)

F (0)(s)
≤ sup

s,t : 1≤t/s≤2

(
tκ1

sκ1
+ tκ3

sκ3

)
≤ 2 · 2κ1∨κ3 .

Hence, applying Lemma 3.7 with (Z,F ) taken to be (Z(0),F (0)), we see that
(3.24) with the involved process in (3.25) replaced by Z(0) holds. The proof is
complete. �

The remainder of this section is to prove Theorem 3.8. For this purpose, we
need to classify the clusters Y j for j ∈ J i

β ′(t, t ∧ τ i ∧ σXi

β ). Set

Ci
β ′(t) �

{
j ∈N; |yj − xi |< 2

(
ε1/2 + (tj − si)

β ′), si < tj ≤ t
}
,

Li
β ′
(
t, t ′
)
�
{
j ∈N;2(ε1/2 + (tj − si)

β ′)≤ |yj − xi | ≤ 2
(
ε1/2 + (t − si)

β ′),
si < tj ≤ t ′

}
,
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FIG. 3. PXi

β (t), RXi

β (t), and RXi

β ′ (t) for 0 < β ′ < β and t ∈ [si , si + 1].

for t ′, t ∈ (si,∞) with t ≥ t ′. Hence, as far as the clusters Y j landing inside the
rectangle RXi

β ′ (t) are concerned, the clusters Y j , j ∈ Ci
β ′(t), are those landing in-

side the double parabola{
(x, s) ∈R× [si, t]; |x − xi |< 2

(
ε1/2 + (s − si)

β ′)}
(the light grey area in Figure 3), and the clusters Y j , j ∈ Li

β ′(t, t), are those landing

outside (the dark grey area in Figure 3). For any i ∈ N, we say a cluster Y j is a
critical cluster if j ∈ Ci

β ′(t) and a lateral cluster if j ∈ Li (t, t ′) for some t, t ′.
Since {Ci

β ′(t),Li
β ′(t, t

′)} is a cover of J i
β ′(t, t

′) by disjoint sets, Theorem 3.8
can be obtained by the following two lemmas.

LEMMA 3.9. Let κj be as in Theorem 3.5. We can choose a constant K∗ ∈
(0,∞) as in Theorem 3.5 such that the following uniform bound holds:

EQi
ε

[ ∑
j∈Ci

β′ (t∧τ i∧σXi

β )

(
ψ(1)ε

+
∫ t∧τ i∧σXi

β ∧σYj

β

tj

1

Xi
s(1)

∫
R

Xi(x, s)1/2Y j (x, s)1/2 dx ds

)]
(3.29)

≤ K∗

2

[
(t − si)

κ1 + εκ2 · (t − si)
κ3
]
∀t ∈ (si, si + 1], i ∈N, ε ∈

(
0,

1

8ψ(1)
∧ 1
]
.
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LEMMA 3.10. Let κj be as in Theorem 3.5. By enlarging the constant K∗ in
Lemma 3.9 if necessary, the following uniform bound holds:

EQi
ε

[ ∑
j∈Li

β′ (t,t∧τ i∧σXi

β )

(
ψ(1)ε

+
∫ t∧τ i∧σXi

β ∧σYj

β

tj

1

Xi
s(1)

∫
R

Xi(x, s)1/2

× Y j (x, s)1/2 dx ds

)]
(3.30)

≤ K∗

2

[
(t − si)

κ1 + εκ2 · (t − si)
κ3
]

∀t ∈ (si, si + 1], i ∈N, ε ∈
(

0,
1

8ψ(1)
∧ 1
]
.

Despite some technical details, the methods of proof for Lemmas 3.9 and 3.10
are very similar. For clarity, they are given in Sections 3.4 and 3.5 separately, with
some preliminaries set in Section 3.3 below.

3.3. Auxiliary results and notation. For each z, δ ∈ R+, let (Z,Pδ
z) denote a

copy of 1
4BESQ4δ(4z). We assume that (Z,Pδ

z) is defined by a (Ht )-Brownian
motion B , where (Ht ) satisfies the usual conditions. This means that

Zt = z+ δt +
∫ t

0

√
Zs dBs, Pδ

z-a.s.

(Cf. Section XI.1 of [23] for Bessel squared processes.) As we will often investi-
gate Z before it hits a constant level, we set the following notation similar to (3.2):
for any real-valued process H = (Ht)

T H
x = inf{t ≥ 0;Ht = x}, x ∈R.

For δ = 0, (Z,P0
z) gives a Feller diffusion and its marginals are characterized

by

EP0
z
[
exp(−λZt)

]= exp
( −2λz

2+ λt

)
, λ, t ∈R+.

In particular, the survival probability of (Z,P0
z) is given by

P0
z(Zt > 0)= lim

λ→∞
(
1−EP0

z
[
exp(−λZt)

])= 1− exp
(
−2z

t

)
,

(3.31)
z, t ∈ (0,∞).

Using the elementary inequality 1− e−x ≤ x for x ∈ R+, we obtain from the last
inequality that

P0
z(Zt > 0)≤ 2z

t
, z, t ∈ (0,∞).(3.32)
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To save notation in the following Sections 3.4 and 3.5, we write A <� B if A≤
CB for some constant C ∈ (0,∞) which may vary from line to line but depends
only on ψ and the parameter vector chosen in Assumption 3.4.

3.4. Proof of Lemma 3.9. Fix i ∈ N and ε ∈ (0, [8ψ(1)]−1 ∧ 1], and hence-
forth we drop the subscripts ε of Pε and Qi

ε . In addition, we may only consider
t ∈ [si + ε

2 , si + 1] as there are no immigrants for Y arriving in [si, si + ε
2). Our

analysis proceeds with the following steps.

Step 1. We start with the simplification:∑
j∈Ci

β′ (t∧τ i∧σXi

β )

(
ψ(1)ε

+
∫ t∧τ i∧σXi

β ∧σYj

β

tj

1

Xi
s(1)

∫
R

Xi(x, s)1/2Y j (x, s)1/2 dx ds

)
(3.33)

≤ ∑
j∈Ci

β′ (t∧τ i)

(
ψ(1)ε+

∫ t∧τ i

tj

1

[Xi
s(1)]1/2

[
Y j

s (1)
]1/2

ds

)

≤ ∑
j∈Ci

β′ (t∧τ i)

(
ψ(1)ε+

∫ t∧τ i

tj

2

(s − si)η/2

[
Y j

s (1)
]1/2

ds

)
,

where the first inequality follows from the Cauchy–Schwarz inequality and the
second one follows by using the component τ i,(1) of τ i in Proposition 3.3.

We claim that

EQi
[ ∑
j∈Ci

β′ (t∧τ i∧σXi

β )

(
ψ(1)ε

+
∫ t∧τ i∧σXi

β ∧σYj

β

tj

1

Xi
s(1)

∫
R

Xi(x, s)1/2

× Y j (x, s)1/2 dx ds

)]
(3.34)

<�
∑

j : si<tj≤t

(tj − si)
β ′ε

+ ∑
j : si<tj≤t

∫ t

tj

ds
1

(s − si)η/2E
Qi [[

Y j
s (1)

]1/2; s < τ i,

|yj − xi |< 2
(
ε1/2 + (tj − si)

β ′)].
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Note that

EQi [
ψ(1)ε#Ci

β ′
(
t ∧ τ i)]

<� εEQi [
#Ci

β ′(t)
]

= ε
∑

j : si<tj≤t

Qi(|yj − xi |< 2
(
ε1/2 + (tj − si)

β ′))(3.35)

<�
∑

j : si<tj≤t

4
(
ε1/2 + (tj − si)

β ′)ε
<�

∑
j : si<tj≤t

(tj − si)
β ′ε,

where the second <�-inequality follows from Lemma 3.2(4), and the last <�-
inequality follows since

ε1/2 ≤ εβ ′ ≤ 2β ′(tj − si)
β ′ ∀j ∈N with tj > si.(3.36)

Our claim (3.34) follows from (3.33) and (3.35).
From the display (3.34), we see the necessity to obtain the order of

EQi [[
Y j

s (1)
]1/2; s < τ i, |yj − xi |< 2

(
ε1/2 + (tj − si)

β ′)],
(3.37)

s ∈ (tj , t], si < tj < t,

in si, tj , s, t .
We subdivide our analysis of a generic term in (3.37) into the following

steps 2-1–2-4, with a summary given in step 2-5.

Step 2-1. We convert the Qi-expectations in (3.37) to P-expectations. Recalling
that xi, yj ∈ Gtj by (2.4), we can use Lemma 3.1 to get

EQi [[
Y j

s (1)
]1/2; s < τ i, |yj − xi |< 2

(
ε1/2 + (tj − si)

β ′)]
= 1

ψ(1)ε
EP[Xi

s(1)T
Xi

1
[
Y j

s (1)
]1/2; s < τ i,(3.38)

|yj − xi |< 2
(
ε1/2 + (tj − si)

β ′)].
We break the P-expectation in (3.38) into finer pieces by considering the fol-

lowing. For s > tj , Xi(1)
T Xi

1
s is nonzero on the union of the two disjoint events:{

Xi
s(1)T

Xi

1 > 0, T Xi

0 ≤ tj
}= {T Xi

1 < T Xi

0 ≤ tj
}

(3.39)

and {
Xi

s(1)T
Xi

1 > 0, tj < T Xi

0
}
.(3.40)
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Here, the equality in (3.39) holds P-a.s. since 0 is an absorbing state of Xi(1)

under P. In fact, Xi(1)
T Xi

1
s = 1 on the event in (3.39). To invoke the additional

order provided by the improved modulus of continuity of Xi(1) at its starting
point si , we use the trivial inequality

Xi
s(1)T

Xi

1 ≤ ∣∣Xi
s(1)T

Xi

1 −ψ(1)ε
∣∣+ψ(1)ε

on the event (3.40).
Putting things together, we see from (3.38) that

EQi [[
Y j

s (1)
]1/2; s < τ i, |yj − xi |< 2

(
ε1/2 + (tj − si)

β ′)]
≤ 1

ψ(1)ε
EP[[Y j

s (1)
]1/2; s ≤ T Yj

1 ,

|yj − xi |< 2
(
ε1/2 + (tj − si)

β ′), T Xi

1 < T Xi

0 ≤ tj
]

+ 1

ψ(1)ε
EP[∣∣Xi

s(1)T
Xi

1 −ψ(1)ε
∣∣[Y j

s (1)
]1/2; s < τ i,

(3.41)
|yj − xi |< 2

(
ε1/2 + (tj − si)

β ′),Xi
s(1)T

Xi

1 > 0, tj < T Xi

0
]

+ 1

ψ(1)ε
·ψ(1)εEP[[Y j

s (1)
]1/2; s ≤ T Yj

1 ,

|yj − xi |< 2
(
ε1/2 + (tj − si)

β ′), tj < T Xi

0
]

∀s ∈ (tj , t], si < tj < t,

where for the first and the third terms on the right-hand side, it is legitimate to
replace the event {s < τ i} by the larger one {s ≤ T Yj

1 } since, in Proposition 3.3,
τ i,(3) is a component of τ i , and for the third term we replace the event in (3.40) by
the larger one {tj < T Xi

0 }.
In steps 2-2–2-4 below, we derive a bound for each of the three terms in (3.41)

which involves only Feller’s diffusion. We use the notation in Section 3.3.

Step 2-2. Consider the first term on the right-hand side of (3.41), and recall the
notation in Section 3.3. It follows from (3.8) and (3.9) that

1

ψ(1)ε
EP[[Y j

s (1)
]1/2; s ≤ T Yj

1 ,

|yj − xi |< 2
(
ε1/2 + (tj − si)

β ′), T Xi

1 < T Xi

0 ≤ tj
]

<�
1

ε
P
(
T Xi

1 < T Xi

0 ≤ tj
)(

ε1/2 + (tj − si)
β ′)

×EP0
ψ(1)ε

[
(Zs−tj )

1/2; s − tj ≤ T Z
1
]

(3.42)
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≤ 1

ε
P
(
T Xi

1 < T Xi

0
)(

ε1/2 + (tj − si)
β ′)

×EP0
ψ(1)ε

[
(Zs−tj )

1/2; s − tj ≤ T Z
1
]

<� (tj − si)
β ′EP0

ψ(1)ε
[
(Zs−tj )

1/2; s − tj ≤ T Z
1
]
∀s ∈ (tj , t], si < tj < t,

where the last inequality follows from (3.36) and Lemma 3.1.

Step 2-3. Let us deal with the second term in (3.41). We claim that

1

ψ(1)ε
EP[∣∣Xi

s(1)T
Xi

1 −ψ(1)ε
∣∣[Y j

s (1)
]1/2; s < τ i,

|yj − xi |< 2
(
ε1/2 + (tj − si)

β ′),Xi
s(1)T

Xi

1 > 0, tj < T Xi

0
]

(3.43)
<�
(
εαN0

(s − si)
α + (s − si)

ξ )(tj − si)
β ′−1

×EP0
ψ(1)ε

[
(Zs−tj )

1/2; s − tj ≤ T Z
1
] ∀s ∈ (tj , t], si < tj < t.

Fix such s throughout step 2-3.
First, let us transfer the improved modulus of Xi(1) under Qi to one under P.

It follows from (3.15) that on {s < τ i,Xi(1)
T Xi

1
s > 0} ∈ Gs , we have∣∣Xi

s(1)T
Xi

1 −ψ(1)ε
∣∣≤KX

1
[
ψ(1)ε

]αN0
(s − si)

α +KX
2 (s − si)

ξ Qi-a.s.

and hence

0=Qi(∣∣Xi
s(1)T

Xi

1 −ψ(1)ε
∣∣> KX

1
[
ψ(1)ε

]αN0
(s − si)

α

+KX
2 (s − si)

ξ , s < τ i,Xi
s(1)T

Xi

1 > 0
)

(3.44)

= 1

ψ(1)ε
EP[Xi

s(1)T
Xi

1 ; ∣∣Xi
s(1)T

Xi

1 −ψ(1)ε
∣∣> KX

1
[
ψ(1)ε

]αN0
(s − si)

α

+KX
2 (s − si)

ξ , s < τ i,Xi
s(1)T

Xi

1 > 0
]
,

where the last equality follows from Lemma 3.1 since the event evaluated under Qi

is a Gs -event. Using the restriction Xi
s(1)T

Xi

1 > 0, we see that the equality (3.44)
implies ∣∣Xi

s(1)T
Xi

1 −ψ(1)ε
∣∣≤KX

1
[
ψ(1)ε

]αN0
(s − si)

α +KX
2 (s − si)

ξ

(3.45)
P-a.s. on

[
s < τ i,Xi

s(1)T
Xi

1 > 0
]
.
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Using (3.45), we obtain

1

ψ(1)ε
EP[∣∣Xi

s(1)T
Xi

1 −ψ(1)ε
∣∣[Y j

s (1)
]1/2; s < τ i,

|yj − xi |< 2
(
ε1/2 + (tj − si)

β ′),Xi
s(1)T

Xi

1 > 0, tj < T Xi

0
]

(3.46)

<�
εαN0

(s − si)
α + (s − si)

ξ

ε

×EP[[Y j
s (1)

]1/2; s ≤ T Yj

1 , |yj − xi |< 2
(
ε1/2 + (tj − si)

β ′), tj < T Xi

0
]
,

where in the last inequality we use the component τ i,(3) of τ i in Proposition 3.3

and discard the event {Xi
s(1)T

Xi

1 > 0}. Applying (3.8) and (3.9) to (3.46) gives

1

ψ(1)ε
EP[∣∣Xi

s(1)T
Xi

1 −ψ(1)ε
∣∣[Y j

s (1)
]1/2; s < τ i,

|yj − xi | ≤ 2
(
ε1/2 + (tj − si)

β ′),Xi
s(1)T

Xi

1 > 0, tj < T Xi

0
]

(3.47)

<�
εαN0

(s − si)
α + (s − si)

ξ

ε
· (ε1/2 + (tj − si)

β ′)P(tj < T Xi

0
)

×EP0
ψ(1)ε

[
(Zs−tj )

1/2; s − tj ≤ T Z
1
]
.

We have

P
(
tj < T Xi

0
)≤ 2ψ(1)ε

tj − si
(3.48)

by (3.32). Applying the last display and (3.36) to the right-hand side of (3.47) then
gives the desired inequality (3.43).

Step 2-4. For the third term in (3.41), the arguments step 2-3 [cf. (3.46)
and (3.47)] readily give

1

ψ(1)ε
·ψ(1)εEP[[Y j

s (1)
]1/2; s ≤ T

Yj

1 ,

|yj − xi | ≤ 2
(
ε1/2 + (tj − si)

β ′), tj < T Xi

0
]

(3.49)
<� (tj − si)

β ′−1εEP0
ψ(1)ε

[
(Zs−tj )

1/2; s − tj ≤ T Z
1
]

∀s ∈ (tj , t], si < tj < t.

Step 2-5. We note that in (3.42), (3.43) and (3.49), there is a common fractional
moment, or more precisely

EP0
ψ(1)ε

[
(Zs−tj )

1/2; s − tj ≤ T Z
1
]
,(3.50)
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left to be estimated, as will be done in this step.
Recall the filtration (Ht ) defined in Section 3.3.

LEMMA 3.11. Fix z, T ∈ (0,∞). Under the conditional probability measure
P(T )

z defined by

P(T )
z (A) � P0

z(A|ZT > 0), A ∈HT ,(3.51)

the process (Zt )0≤t≤T is a continuous (Ht )-semimartingale with canonical de-
composition

Zt = z+
∫ t

0
F

(
2Zs

T − s

)
ds +Mt, 0≤ t ≤ T .(3.52)

Here, F :R+ −→R+ defined by

F(x)�

⎧⎪⎨⎪⎩
e−xx

1− e−x
, x > 0,

1, x = 0,

(3.53)

is continuous and decreasing, and M is a continuous (Ht )-martingale under P(T )
z

with quadratic variation 〈M〉t ≡ ∫ t
0 Zs ds.

PROOF. The proof of this lemma is a standard application of Girsanov’s theo-
rem (cf. Theorem VIII.1.4 of [23]), and we proceed as follows.

First, let (Dt)0≤t≤T denote the (Ht ,P0
z)-martingale associated with the Radon–

Nikodym derivative of P(T )
z with respect to P0

z , that is,

Dt ≡ P0
z(ZT > 0|Ht )

P0
z(ZT > 0)

, 0≤ t ≤ T .(3.54)

To obtain the explicit form of D under P0
z , we first note that the (Ht ,P0

z)-Markov
property of Z and (3.31) imply

P0
z(ZT > 0|Ht )= P0

Zt
(ZT−t > 0)= 1− exp

(
− 2Zt

T − t

)
,

(3.55)
0≤ t < T .

Hence, it follows from Itô’s formula and the foregoing display that, under P0
z ,

Dt = 1

P0
z(ZT > 0)

[
1− exp

(
−2z

T

)]

+ 1

P0
z(ZT > 0)

∫ t

0
exp
(
− 2Zs

T − s

)
·
(

2

T − s

)√
Zs dBs,(3.56)

0≤ t < T .
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We now apply Girsanov’s theorem and verify that the components of the canon-
ical decomposition of (Zt )0≤t≤T under P(T )

z satisfy the asserted properties. Under
P(T )

z , we have

Zt = z+
∫ t

0
D−1

s d〈D,Z〉s +Mt, 0≤ t ≤ T .

Here,

Mt =
∫ t

0

√
Zs dBs −

∫ t

0
D−1

s d〈D,Z〉s, 0≤ t ≤ T

is a continuous (Ht ,P(T )
z )-local martingale with the asserted quadratic variation

〈Mt 〉 ≡ ∫ t
0 Zs ds, which implies that M is a true martingale under P(T )

z . In addition,

it follows from (3.55) and (3.56) that the finite variation process of Z under P(T )
z

is given by∫ t

0
D−1

s d〈D,Z〉s =
∫ t

0

1

P0
z(ZT > 0|Hs)

d
〈
P0

z(ZT > 0)D,Z
〉
s

=
∫ t

0

exp(−2Zs/(T − s))2Zs/(T − s)

1− exp(−2Zs/(T − s))
ds

=
∫ t

0
F

(
2Zs

T − s

)
ds, 0≤ t ≤ T ,

where F is given by (3.53). The proof is complete. �

LEMMA 3.12. For any p ∈ (0,∞), there exists a constant Kp ∈ (0,∞) de-
pending only on p and (α, ξ,N0) such that

EP0
z
[
(ZT )p;T ≤ T Z

1
]

(3.57)
≤Kp

[(
zpαN0

T pα + zp)P0
z(ZT > 0)+ zT pξ−1], ∀z, T ∈ (0,1].

PROOF. Recall the conditional probability measure P(T )
z defined in (3.51) and

write

EP0
z
[
(ZT )p;T ≤ T Z

1
] ≤ P0

z(ZT > 0)EP0
z
[
(ZT∧T Z

1
)p|ZT > 0

]
(3.58)

= P0
z(ZT > 0)EP(T )

z
[
(ZT∧T Z

1
)p
]
.

Henceforth, we work under the conditional probability measure P(T )
z .

We turn to the improved modulus of continuity of Z at its starting time 0 un-
der P(T )

z in order to bound the right-hand side of (3.58). We first claim that, by
enlarging the underlying probability space if necessary,

|Zt − z| ≤ t +CZ
α

(∫ t

0
Zs ds

)α

∀t ∈ [0, T ∧ T Z
1
]

under P(T )
z ,(3.59)
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where the random variable CZ
α under P(T )

z has distribution depending only on α

and finite P(T )
z -moment of any finite order. We show how to obtain (3.59) by

using the canonical decomposition of the continuous (Ht ,P(T )
z )-semimartingale

(Zt )0≤t≤T in (3.52). First, since its martingale part M has quadratic variation∫ ·
0 Zs ds, the Dambis–Dubins–Schwarz theorem (cf. Theorem V.1.6 of [23]) im-

plies that, by enlarging of the underlying probability space if necessary,

Mt = B̃

(∫ t

0
Zs ds

)
, t ∈ [0, T ∧ T Z

1
]
,

for some standard Brownian motion B̃ under P(T )
z . Here, the random clock∫ t

0 Zs ds, t ∈ [0, T ∧ T Z
1 ], for B̃ is bounded by 1 by the assumption that z, T ≤ 1.

On the other hand, recall that the chosen parameter α lies in (0, 1
2) and the uni-

form Hölder-α modulus of continuity of standard Brownian motion on compacts
has moments of any finite order. (See, e.g., the discussion preceding Theorem I.2.2
of [23] and its proof.) Hence,∣∣∣∣B̃(∫ t

0
Zs ds

)∣∣∣∣≤ CZ
α

(∫ t

0
Zs ds

)α

, t ∈ [0, T ∧ T Z
1
]
,

where the random variable CZ
α is as in (3.59). Second, Lemma 3.11 also states that

the finite variation process of Z under P(T )
z given by (3.52) is a time integral with

integrand uniformly bounded by 1. This and the last two displays are enough to
obtain our claim (3.59).

With the integral inequality (3.59) and the distributional properties of CZ
α , we

obtain the following improved modulus of continuity of Z (cf. Corollary 8.2):

|ZT∧T Z
1
− z| ≤KZ

1 zαN0
T α +KZ

2 T ξ(3.60)

for some random variables KZ
1 ,KZ

2 ∈
⋂

q∈(0,∞) L
q(P(T )

z ) obeying a joint law un-

der P(T )
z depending only on (α, ξ,N0) by the analogous property of CZ

α and Corol-
lary 8.2.

We return to the calculation in (3.58). Applying (3.60), we get

EP0
z
[
(ZT )p;T ≤ T Z

1
]

≤ P0
z(ZT > 0)EP(T )

z
[
(ZT∧T Z

1
)p
]

(3.61)
≤ P0

z(ZT > 0)
(
2p−1 ∨ 1

)
EP(T )

z
[|ZT∧T Z

1
− z|p + zp]

≤ P0
z(ZT > 0)K ′p

(
zpαN0

T pα + T pξ + zp)
for some constant K ′p depending only on p and (α, ξ,N0) by (3.60) and the distri-
butional properties of KZ

j , where the second inequality follows from the elemen-
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tary inequality

(x + y)p ≤ (2p−1 ∨ 1
) · (xp + yp) ∀x, y ∈R+.

The desired result follows by applying (3.32) to (3.61). The proof is complete. �

Step 2-6. At this step, we summarize our results in steps 2-1–2-4, using
Lemma 3.12. We apply (3.42), (3.43) and (3.49) to (3.41). This gives

EQi [[
Y j

s (1)
]1/2; s < τ i, |yj − xi |< 2

(
ε1/2 + (tj − si)

β ′)]
<�
[
(tj − si)

β ′ + (tj − si)
β ′−1(εαN0

(s − si)
α + (s − si)

ξ + ε
)]

×EP0
ψ(1)ε

[
(Zs−tj )

1/2; s − tj ≤ T Z
1
]

<�
[
(tj − si)

β ′ + (tj − si)
β ′−1(εαN0

(s − si)
α + (s − si)

ξ + ε
)]

× [(εαN0/2(s − tj )
α/2 + ε1/2)P0

ψ(1)ε(Zs−tj > 0)+ ε(s − tj )
ξ/2−1]

<� (tj − si)
β ′−1 × ((tj − si)+ εαN0

(s − si)
α + (s − si)

ξ + ε
)

× εαN0/2(s − tj )
α/2P0

ψ(1)ε(Zs−tj > 0)(3.62)

+ (tj − si)
β ′−1 × ((tj − si)+ εαN0

(s − si)
α + (s − si)

ξ + ε
)

× ε1/2P0
ψ(1)ε(Zs−tj > 0)

+ (tj − si)
β ′ × ε(s − tj )

ξ/2−1

+ (tj − si)
β ′−1 × (εαN0

(s − si)
α + ε

)× ε(s − tj )
ξ/2−1

+ (tj − si)
β ′−1 × (s − si)

ξ × ε(s − tj )
ξ/2−1

∀s ∈ (tj , t], si < tj < t,

where the last <�-inequality follows by some algebra.
We make some simplifications for the right-hand side of (3.62) before going

further. Some orders in ε and other variables will be discarded here. We bound the
survival probability in (3.62) by

P0
ψ(1)ε(Zs−tj > 0)≤

(
2ψ(1)ε

s − tj

)1−αN0/4

,(3.63)

as follows from the elementary inequalities x ≤ xγ for any x ∈ [0,1] and γ ∈
(0,1], and then (3.32). Assuming s ∈ (tj , t] for si < tj < t , we have the inequalities

1≥ s − si ≥ tj − si ≥ ε

2
, s − tj ≤ 1 and 0 < α + αN0 < ξ < 1
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[cf. (3.22)(a) for the third inequality]. These and (3.63) imply that the first term
of (3.62) satisfies

(tj − si)
β ′−1 × ((tj − si)+ εαN0

(s − si)
α + (s − si)

ξ + ε
)

× εαN0/2(s − tj )
α/2P0

ψ(1)ε(Zs−tj > 0)(3.64)

<� (tj − si)
β ′−1(s − si)

α(s − tj )
α/2+αN0/4−1ε1+αN0/4,

the second term of (3.62) satisfies

(tj − si)
β ′−1 × ((tj − si)+ εαN0

(s − si)
α + (s − si)

ξ + ε
)

× ε1/2P0
ψ(1)ε(Zs−tj > 0)

<� (tj − si)
β ′−1(s − si)

α(s − tj )
αN0/4−1ε3/2−αN0/4(3.65)

<� (tj − si)
β ′+(1/2−αN0/2)−1(s − si)

α(s − tj )
αN0/4−1ε1+αN0/4

<� (tj − si)
β ′+α/2−1(s − si)

α(s − tj )
αN0/4−1ε1+αN0/4,

and, finally, the fourth term of (3.62) satisfies

(tj − si)
β ′−1 × (εαN0

(s − si)
α + ε

)× ε(s − tj )
ξ/2−1

<� (tj − si)
β ′−1(s − si)

α(s − tj )
ξ/2−1ε1+αN0(3.66)

<� (tj − si)
β ′−1(s − si)

α(s − tj )
α/2+αN0/4−1ε1+αN0/4.

Note that the bounds in (3.64) and (3.66) coincide. Using (3.64)–(3.66) in (3.62),
we obtain

EQi [[
Y j

s (1)
]1/2; s < τ i, |yj − xi | ≤ 2

(
ε1/2 + (tj − si)

β ′)]
<� (tj − si)

β ′−1(s − si)
α(s − tj )

α/2+αN0/4−1ε1+αN0/4

+ (tj − si)
β ′+α/2−1(s − si)

α(s − tj )
αN0/4−1ε1+αN0/4(3.67)

+ (tj − si)
β ′(s − tj )

ξ/2−1ε

+ (tj − si)
β ′−1(s − si)

ξ (s − tj )
ξ/2−1ε ∀s ∈ (tj , t], si < tj < t.

Step 3. We digress to a conceptual discussion for some elementary integrals
which will play an important role in the forthcoming calculations in step 4. First,
for a, b, c ∈ R and T ∈ (0,∞), a straightforward application of Fubini’s theorem
and changes of variables shows that

I (a, b, c)T �
∫ T

0
dr ra

∫ T

r
ds sb(s − r)c <∞

(3.68)
⇐⇒ a, c ∈ (−1,∞) and a + b+ c >−2.
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Furthermore, when I (a, b, c)T is finite, it can be expressed as

I (a, b, c)T =
(∫ 1

0
dr ra(1− r)c

)
· T a+b+c+2

a + b+ c+ 2
.

Given a + b+ c >−2 with a, c ∈ (−1,∞), we consider alternative ways to show
that the integral I (a, b, c)T is finite while preserving the same order T a+b+c+2

in T , according to b ≥ 0 and b < 0. If b ≥ 0, then

I (a, b, c)T ≤
∫ T

0
dr ra × T b ×

∫ T

0
ds sc

(3.69)

= 1

a + 1

1

c+ 1
T a+b+c+2,

where the first inequality follows since sb ≤ T b for any s ∈ [r, T ]. For the case that
b < 0, we decompose the function s �−→ sb in the following way. For b1, b2 < 0
such that b1 + b2 = b, we have

I (a, b, c)T ≤
∫ T

0
dr ra+b1

∫ T

r
ds(s − r)b2+c

(3.70)

≤
∫ T

0
dr ra+b1 ×

∫ T

0
ds sb2+c,

where the first inequality follows since for s > r , sb1 ≤ rb1 and sb2 ≤ (s − r)b2 .
Using the following elementary lemma, we obtain from (3.70) that

I (a, b, c)T ≤ 1

a + b1 + 1

1

b2 + c+ 1
T a+b+c+2.

LEMMA 3.13. For any reals a, c > −1 and b < 0 such that a + b + c >

−2, there exists a pair (b1, b2) ∈ (−∞,0)× (−∞,0) such that b = b1 + b2 and
a + b1 >−1 and b2 + c >−1.

The two simple concepts for the inequalities (3.69) and (3.70) will be applied
later on in step 4 to bound Riemann sums by integrals of the type I (a, b, c)T .

Step 4. We complete the proof of Lemma 3.9 in this step. Apply the
bound (3.67) to the right-hand side of the inequality (3.34). We have

EQi
[ ∑
j∈Ci

β′ (t∧τ i∧σXi

β )

(
ψ(1)ε

+
∫ t∧τ i∧σXi

β ∧σYj

β

tj

1

Xi
s(1)

∫
R

Xi(x, s)1/2Y j (x, s)1/2 dx ds

)]
(3.71)
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<�
∑

j : si<tj≤t

(tj − si)
β ′ε

+ ∑
j : si<tj≤t

(tj − si)
β ′−1

∫ t

tj

(s − si)
−η/2+α(s − tj )

α/2+αN0/4−1 ds

× ε1+αN0/4

+ ∑
j : si<tj≤t

(tj − si)
β ′+α/2−1

∫ t

tj

(s − si)
−η/2+α(s − tj )

αN0/4−1 ds

× ε1+αN0/4

+ ∑
j : si<tj≤t

(tj − si)
β ′
∫ t

tj

(s − si)
−η/2(s − tj )

ξ/2−1 ds · ε

+ ∑
j : si<tj≤t

(tj − si)
β ′−1

∫ t

tj

(s − si)
−η/2+ξ (s − tj )

ξ/2−1 ds · ε.

Recall the notation I (a, b, c) in (3.68). It should be clear that, up to a translation
of time by si , the first, the fourth, and the fifth sums are Riemann sums of

I
(
β ′,0,0

)
t−si

, I

(
β ′,−η

2
,
ξ

2
− 1
)

t−si

, I

(
β ′ − 1,−η

2
+ ξ,

ξ

2
− 1
)

t−si

,

respectively, and so are the second and the third sums after a division by εαN0/4

with the corresponding integrals equal to

I

(
β ′ − 1,−η

2
+ α,

α

2
+ αN0

4
− 1
)

t−si

,

I

(
β ′ + α

2
− 1,−η

2
+ α,

αN0

4
− 1
)

t−si

,

respectively. It follows from (3.22)(c) and (d) and (3.68) that all of the integrals in
the last two displays are finite.

We now aim to bound each of the five sums in (3.71) by suitable powers of
ε and t , using integral comparisons. Observe that, whenever γ ∈ (−1,∞), the
monotonicity of r �−→ (r − si)

γ over (si,∞) implies∑
j : si<tj≤t

(tj − si)
γ · ε ≤ 2

∫ t+ε

si

(r − si)
γ dr

= 2

γ + 1
(t + ε− si)

γ+1(3.72)

≤ 2 · 3γ+1

γ + 1
(t − si)

γ+1
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since t ≥ si + ε
2 . (The constant 2 is used to accommodate the case that γ < 0.)

Hence, the first sum in (3.71) can be bounded as∑
j : si<tj≤t

(tj − si)
β ′ε <� (t − si)

β ′+1.(3.73)

Consider the other sums in (3.71). Recall our discussion of some alternative
ways to bound I (a, b, c) for given a + b+ c >−2 and a, c,∈ (−1,∞) according
to b ≥ 0 or b < 0; see (3.69) and (3.70). We use Lemma 3.13 in the following
whenever necessary. The second sum in (3.71) can be bounded as∑

j : si<tj≤t

(tj − si)
β ′−1

∫ t

tj

(s − si)
−η/2+α(s − tj )

α/2+αN0/4−1 ds · ε1+αN0/4

= ∑
j : si<tj≤t

(tj − si)
β ′−1

∫ t−si

tj−si

s−η/2+α[s − (tj − si)
]α/2+αN0/4−1

ds

× ε1+αN0/4(3.74)

<� (t − si)
β ′−η/2+(3α)/2+αN0/4 · εαN0/4

<� (t − si)
β ′−η/2+(3α)/2 · εαN0/4.

Here, in the foregoing <�-inequality, we use the integral comparison discussed in
step 3 (with Lemma 3.13 to algebraically allocate the exponent −η

2 + α
2 if neces-

sary) and the Riemman-sum bound (3.72). The other sums on the right-hand side
of (3.71) can be bounded similarly as follows. The third sum satisfies∑

j : si<tj≤t

(tj − si)
β ′+α/2−1

∫ t

tj

(s − si)
−η/2+α(s − tj )

αN0/4−1 ds · ε1+αN0/4

(3.75)
<� (t − si)

β ′−η/2+(3α)/2 · εαN0/4.

The fourth sum satisfies∑
j : si<tj≤t

(tj − si)
β ′
∫ t

tj

(s − si)
−η/2(s − tj )

ξ/2−1 ds · ε
(3.76)

<� (t − si)
β ′−η/2+ξ/2+1 <� (t − si)

β ′−η/2+(3ξ)/2,

where the last inequality applies since ξ ∈ (0,1). The last sum satisfies∑
j : si<tj≤t

(tj − si)
β ′−1

∫ t

tj

(s − si)
−η/2+ξ (s − tj )

ξ/2−1 ds · ε
(3.77)

<� (t − si)
β ′−η/2+(3ξ)/2.

The proof of Lemma 3.9 is complete upon applying (3.73)–(3.77) to the right-
hand side of (3.71).
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3.5. Proof of Lemma 3.10. As in Section 3.4, we fix t ∈ [si + ε
2 , si +1], i ∈N,

and ε ∈ (0, [8ψ(1)]−1 ∧ 1] and drop the subscripts of Pε and Qi
ε . For the proof

of Lemma 3.10, the arguments in Section 3.4 work essentially. Now, we begin to
use the condition (3.22)(b) in Assumption 3.4 and the upper limit σXi

β ∧σYj

β in the
time integral in (3.30), which are neglected when we prove Lemma 3.9.

To motivate our adaptation of the arguments for critical clusters in Section 3.4,
we discuss some parts of Section 3.4. First, it is straightforward to modify the
proof of (3.35) and obtain

Qi(2(ε1/2 + (tj − si)
β ′)≤ |yj − xi | ≤ 2

(
ε1/2 + (t − si)

β ′))<� (t − si)
β ′ .(3.78)

If we proceed as in (3.34) and use (3.78) in the obvious way, then this leads to

EQi
[ ∑
j∈Li

β′ (t,t∧τ i∧σXi

β )

(
ψ(1)ε

+
∫ t∧τ i∧σXi

β ∧σYj

β

tj

1

Xi
s(1)

∫
R

Xi(x, s)1/2Y j (x, s)1/2 dx ds

)]
<�

∑
j : si<tj≤t

(t − si)
β ′ε

+ ∑
j : si<tj≤t

∫ t

tj

ds
1

(s − si)η/2E
Qi [[

Y j
s (1)

]1/2; s < τ i,2
(
ε1/2 + (tj − si)

β ′)
≤ |yj − xi | ≤ 2

(
ε1/2 + (t − si)

β ′)].
[Compare this with (3.34) for critical clusters.] If we argue by using (3.78) repeat-
edly in the steps analogous to steps 2-2–2-4 of Section 3.4, then we obtain the
following <�-inequality similar to (3.71):

EQi
[ ∑
j∈Li

β′ (t,t∧τ i∧σXi

β )

(
ψ(1)ε

+
∫ t∧τ i∧σXi

β ∧σYj

β

tj

1

Xi
s(1)

∫
R

Xi(x, s)1/2Y j (x, s)1/2 dx ds

)]
<�

∑
j : si<tj≤t

(t − si)
β ′ε

+ ∑
j : si<tj≤t

(t − si)
β ′(tj − si)

−1
∫ t

tj

(s − si)
−η/2+α(s − tj )

α/2+αN0/4−1 ds

× ε1+αN0/4(3.79)
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+ ∑
j : si<tj≤t

(t − si)
β ′(tj − si)

α/2−1
∫ t

tj

(s − si)
−η/2+α(s − tj )

αN0/4−1 ds

× ε1+αN0/4

+ ∑
j : si<tj≤t

(t − si)
β ′
∫ t

tj

(s − si)
−η/2(s − tj )

ξ/2−1 ds · ε

+ ∑
j : si<tj≤t

(t − si)
β ′(tj − si)

−1
∫ t

tj

(s − si)
−η/2+ξ (s − tj )

ξ/2−1 ds · ε,

taking into account some simplifications similar to (3.64)–(3.66) where some or-
ders are discarded. (We omit the derivation of the foregoing display, as it will
not be used for the proof of Lemma 3.10.) In other words, replacing the factor
(tj − si)

β ′ for each of the sums in (3.71) by (t − si)
β ′ gives the bound in the fore-

going display. Applying integral domination to the second and the last sums of the
foregoing display as in step 4 of Section 3.5 results in bounds which are divergent
integrals.

Examining the arguments in steps 2-2–2-4 of Section 3.4 shows that the prob-
lematic factor

(tj − si)
−1(3.80)

in (3.79) results from using the bound (3.48) for the survival probability P(tj <

T Xi

0 ). The exponent −1 in the foregoing display, however, is critical, and any de-
crease in this value will lead to convergent integrals. Also, we recall that (3.9)
is used repeatedly in steps 2-2–2-4 of Section 3.4, while (3.9) is a consequence
of (3.8) and the proof of (3.8) uses in particular the Markov property of Y j (1)

at tj . These observations suggest that we should modify the arguments in Sec-
tion 3.4 by replacing tj with a “larger” value, subject to the condition that certain
P-independence, similar to (3.8) with tj replaced by the resulting value, still holds.

First, let us identify the value to replace tj . The idea comes from the following
observation.

OBSERVATION. It takes a positive amount of time before the support process
of a lateral cluster Y j intersects the support process of Xi , as leads to a time tc

j

larger than the landing time tj of Y j . Prior to tc
j , the supports of Xi and Y j are

disjoint. See Figure 2.

We formalize the definition of this time tc
j as follows. Let j ∈ N with tj ∈

(si, si + 1]. Recall that the range for the possible values y of yj associated with a
lateral cluster is

2
(
ε1/2 + (tj − si)

β ′)≤ |y − xi | ≤ 2
(
ε1/2 + (t − si)

β ′),(3.81)
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and we use PXi

β (·) and PY j

β (·) to envelop the support processes of Xi and Y j ,

respectively. Let the processes of parabolas {PXi

β (t); t ∈ [si,∞)} and {PY j

β (t); t ∈
[tj ,∞)} evolve in the deterministic way, and consider the support contact time

tc
j (yj ), that is, the first time t when PXi

β (t) and PY j

β (t) intersect. Here, for any y

satisfying (3.81), tc
j (y) ∈ (tj ,∞) solves⎧⎨⎩xi + ε1/2 + (tc

j (y)− si
)β = y − ε1/2 − (tc

j (y)− tj
)β

, if y > xi ,

xi − ε1/2 − (tc
j (y)− si

)β = y + ε1/2 + (tc
j (y)− tj

)β
, if y < xi .

(3.82)

By simple arithmetic, we see that the minimum of tc
j (y) for y satisfying (3.81) is

attained at the boundary cases where y satisfies 2(ε1/2 + (tj − si)
β ′) = |y − xi |.

Let us consider the worst case of the support contact time as

t�j � min
{
tc
j (y);y satisfies (3.81)

}
.(3.83)

Recall that β ′ < β by (3.22)(b).

LEMMA 3.14. Let j ∈N with tj ∈ (si, si + 1].
(1) The number t�j defined by (3.83) satisfies

t�j = si +A(tj − si) · (tj − si)
β ′/β,(3.84)

where A(r) is the unique number in (r1−β ′/β,∞) solving

A(r)β + [A(r)− r1−β ′/β]β = 2, r ∈ (0,1].(3.85)

(2) The function A(·) defined by (3.85) satisfies

1≤A(r)≤ 1+ r1−β ′/β ∀r ∈ (0,1].(3.86)

PROOF. Without loss of generality, we may assume that t�j = tc
j (y) for y sat-

isfying

xi − y = 2
(
ε1/2 + (tj − si)

β ′).
Using this particular value y of yj in (3.82), we see that t�j solves the equation

xi − ε1/2 − (t�j − si
)β = y + ε1/2 + (t�j − tj

)β
= xi − ε1/2 − 2(tj − si)

β ′ + (t�j − tj
)β

.

Taking t�j = si + A · (tj − si)
β ′/β for some constant A ∈ (0,∞) left to be deter-

mined, we obtain from the foregoing equality that

2(tj − si)
β ′ =Aβ · (tj − si)

β ′ + [A · (tj − si)
β ′/β − (tj − si)

]β
=Aβ · (tj − si)

β ′ + [A− (tj − si)
1−β ′/β]β · (tj − si)

β ′,
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which shows that A=A(tj − si) for A(·) defined by (3.85) upon cancelling (tj −
si)

β ′ on both sides. We have obtained (1).
From the definition (3.85) of A(·), we obtain

2A(r)β ≥A(r)β + [A(r)− r1−β ′/β]β = 2,

2
[
A(r)− r1−β ′/β]β ≤A(r)β + [A(r)− r1−β ′/β]β = 2,

and both inequalities in (3.86) follow. The proof is complete. �

As a result of Lemma 3.14, we have

P
(
t�j < T Xi

0
)
<� ε(tj − si)

−β ′/β,(3.87)

where the exponent −β ′
β

is an improvement in terms of our preceding discussion
about the factor (3.80). The value t�j will serve as the desired replacement of tj .

Let us show how t�j still allows some independence similar to (3.8).

LEMMA 3.15 (Orthogonal continuation). Let (Ht ) be a filtration satisfy-
ing the usual conditions, and U and V be two (Ht )-Feller diffusions such that
U0 ⊥⊥ V0 and, for some (Ht )-stopping σ⊥, 〈U,V 〉σ⊥ ≡ 0. Then by enlarging the
underlying filtered probability space if necessary and writing again (Ht ) for the
resulting filtration with a slight abuse of notation in this case, we can find a (Ht )-
Feller diffusion Û such that Û ⊥⊥ V and Û =U over [0, σ⊥].

PROOF. We only give a sketch of the proof here, and leave the details, calling
for standard arguments, to the readers. Using Lévy’s theorem, we can define a
Brownian motion B̂ by

B̂t =
∫ T U

0 ∧σ⊥∧t

0

1√
Us

dUs +
∫ t

0
1{T U

0 ∧σ⊥<s} dBs,

for some Brownian motion B independent of (U,V ). We can use B̂ to solve for
a Feller diffusion Û with initial value U0. Then the proof of pathwise uniqueness
for Feller diffusions (cf. [27]) gives Û =U on [0, σ⊥]. Note that 〈Û ,V 〉 ≡ 0, and
consider the martingale problem associated with a two-dimensional independent
Feller diffusions with initial values U0 and V0. By its uniqueness, Û ⊥⊥ V . Hence,
Û is the desired continuation of U beyond σ⊥. �

We apply Lemma 3.15 to the total mass processes Xi(1) and Y j (1) under P and
prove the following analogue of (3.8).

PROPOSITION 3.16. Let i, j ∈ N be given so that si < tj . Suppose that σ⊥

is a (Gt )-stopping time such that σ⊥ ≥ tj and 〈Xi(1), Y j (1)〉σ⊥ ≡ 0. Then for
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r2 > r1 ≥ tj and nonnegative Borel measurable functions H1,H2 and h,

EP[H1
(
Y j

r (1); r ∈ [tj , r2])H2
(
Xi

r(1); r ∈ [si, r1])h(yj , xi); r1 ≤ σ⊥
]

≤ EP[H1
(
Y j

r (1); r ∈ [tj , r2])]×EP[H2
(
Xi

r(1); r ∈ [si, r1])](3.88)

×EP[h(yj , xi)
]
.

PROOF. By the monotone class theorem, we may only consider the case that

H1
(
Y j

r (1); r ∈ [tj , r2])=H1,1
(
Y j

r (1); r ∈ [tj , r1])H1,2
(
Y j

r (1); r ∈ [r1, r2]),
H2
(
Xi

r(1); r ∈ [si, r1])=H2,1
(
Xi

r(1); r ∈ [si, tj ])H2,2
(
Xi

r(1); r ∈ [tj , r1]),
for nonnegative Borel measurable functions Hk,�.

As the first step, we condition on Gr1 and obtain

EP[H1
(
Y j

r (1); r ∈ [tj , r2])H2
(
Xi

r(1); r ∈ [si, r1])h(yj , xi); r1 ≤ σ⊥
]

= EP[H1,1
(
Y j

r (1); r ∈ [tj , r1])EP[H1,2
(
Y j

r (1); r ∈ [r1, r2])|Gr1

]
(3.89)

×H2
(
Xi

r(1); r ∈ [si, r1])h(yj , xi); r1 ≤ σ⊥
]
.

Since Y j (1) is a (Gt )-Feller diffusion, we know that

EP[H1,2
(
Y j

r (1); r ∈ [r1, r2])|Gr1

]= Ĥ1,2
(
Y j

r1
(1)
)

(3.90)

for some nonnegative Borel measurable function Ĥ1,2. Hence, from (3.89), we get

EP[H1
(
Y j

r (1); r ∈ [tj , r2])H2
(
Xi

r(1); r ∈ [si, r1])h(yj , xi); r1 ≤ σ⊥
]

= EP[H1,1
(
Y j

r (1); r ∈ [tj , r1])Ĥ1,2
(
Y j

r1
(1)
)

(3.91)

×H2
(
Xi

r(1); r ∈ [si, r1])h(yj , xi); r1 ≤ σ⊥
]
.

Next, since Y
j
tj
(1)≡ ψ(1)ε is obviously P-independent of Xi

tj
(1) and σ⊥ ≥ tj

by assumption, we can do an orthogonal continuation of Xi(1) over [σ⊥,∞) by
Lemma 3.15. This gives a Feller diffusion X̂i such that X̂i ⊥⊥ Y j (1) under P and
X̂i,σ⊥ =Xi(1)σ

⊥
. Hence,

Xi(1)= X̂i over [si, r1] on
{
r1 ≤ σ⊥

}
and from (3.91) we get

EP[H1
(
Y j

r (1); r ∈ [tj , r2])H2
(
Xi

r(1); r ∈ [si, r1])h(yj , xi); r1 ≤ σ⊥
]

= EP[H1,1
(
Y j

r (1); r ∈ [tj , r1])Ĥ1,2
(
Y j

r1
(1)
)

×H2
(
X̂i

r; r ∈ [si, r1])h(yj , xi); r1 ≤ σ⊥
]

(3.92)

≤ EP[H1,1
(
Y j

r (1); r ∈ [tj , r1])Ĥ1,2
(
Y j

r1
(1)
)

×H2
(
X̂i

r; r ∈ [si, r1])h(yj , xi)
]
,
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where the last inequality follows from the nonnegativity of Ĥ1,2, Hk,� and h.
Next, we condition on Gtj . From (3.92), we get

EP[H1
(
Y j

r (1); r ∈ [tj , r2])H2
(
Xi

r(1); r ∈ [si, r1])h(yj , xi); r1 ≤ σ⊥
]

≤ EP[EP[H1,1
(
Y j

r (1); r ∈ [tj , r1])Ĥ1,2
(
Y j

r1
(1)
)

(3.93)
×H2,2

(
X̂i

r; r ∈ [tj , r1])|Gtj

]
×H2,1

(
X̂i

r; r ∈ [si, tj ]
)
h(yj , xi)

]
.

To evaluate the conditional expectation in the last term, we use the independence
between X̂i and Y j (1) and deduce from the martingale problem formulation and
Theorem 4.4.2 of [10] that the two-dimensional process (X̂i, Y j (1)) � [tj ,∞) is
(Gt )t≥tj -Markov with joint law

L
(
X̂i � [tj ,∞)

)⊗L
(
Y j (1) � [tj ,∞)

)
.

Hence,

EP[H1,1
(
Y j

r (1); r ∈ [tj , r1])Ĥ1,2
(
Y j

r1
(1)
)
H2,2

(
X̂i

r; r ∈ [tj , r1])|Gtj

]
= EP[H1,1

(
Y j

r (1); r ∈ [tj , r1])Ĥ1,2
(
Y j

r1
(1)
)]

×E
P0

X̂i
tj
[
H2,2

(
Zr; r ∈ [0, r1 − tj ])],

where we recall that (Z,P0
z) denotes a copy of 1

4BESQ0(4z). [The value of Y j (1)

at tj is ψ(1)ε.] Applying the foregoing equality to (3.93) and using (3.90), we
obtain

EP[H1
(
Y j

r (1); r ∈ [tj , r2])H2
(
Xi

r(1); r ∈ [si, r1])h(yj , xi); r1 ≤ σ⊥
]

≤ EP[H1
(
Y j

r (1); r ∈ [tj , r2])]
×EP[EP0

X̂i
tj
[
H2,2

(
Zr; r ∈ [0, r1 − tj ])]H2,1

(
X̂i

r; r ∈ [si, tj ]
)
h(yj , xi)

]
(3.94)

= EP[H1
(
Y j

r (1); r ∈ [tj , r2])]
×EP[EP0

Xi(1)tj
[
H2,2

(
Zr; r ∈ [0, r1 − tj ])]

×H2,1
(
Xi

r(1); r ∈ [si, tj ])h(yj , xi)
]
,

where the last equality follows since we only redefine Xi(1)t for t ≥ σ⊥ to ob-
tain X̂i , whereas σ⊥ ≥ tj . The rest is easy to obtain. Using (3.8), we see that (3.94)
gives

EP[H1
(
Y j

r (1); r ∈ [tj , r2])H2
(
Xi

r(1); r ∈ [si, r1])h(yj , xi); r1 ≤ σ⊥
]

≤ EP[H1
(
Y j

r (1); r ∈ [tj , r2])]
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×EP[EP0
Xi(1)tj

[
H2,2

(
Zr; r ∈ [0, r1 − tj ])]H2,1

(
Xi

r(1); r ∈ [si, tj ])]
×EP[h(yj , xi)

]
= EP[H1

(
Y j

r (1); r ∈ [tj , r2])]EP[H2
(
Xi

r(1); r ∈ [si, r1])]EP[h(yj , xi)
]
.

We have obtained the desired inequality, and the proof is complete. �

We are ready to prove Lemma 3.10 with arguments similar to those in Sec-
tion 3.4. The following steps are labelled in the same way as their counterparts
in Section 3.4, except that steps 2-5 and 3 below correspond to steps 2-6 and 4
in Section 3.4, respectively. Due to the similarity, we will only point out the key
changes, leaving other details to readers.

Recall that we fix t ∈ [si + ε
2 , si + 1], i ∈N and ε ∈ (0, [8ψ(1)]−1 ∧ 1].

Step 1. We begin with a simple observation for the integral term∫ t∧τ i∧σXi

β ∧σYj

β

tj

1

Xi
s(1)

∫
R

Xi(x, s)1/2Y j (x, s)1/2 dx ds

in (3.30), for yj = y satisfying (3.81) and j ∈ N with tj ∈ (si, si + 1]. For s ∈
[tj , t ∧ τ i ∧ σXi

β ∧ σYj

β ] with s < t�j , the support processes of Xi and Y j can be

enveloped by PXi

β (·) and PY j

β (·) up to time s, respectively, and PXi

β (s)∩PY j

β (s)=
∅ by the definition of t�j in (3.83). Hence, for such s,∫

R
Xi(x, s)1/2Y j (x, s)1/2 dx = 0.

Using the bound (3.78), we obtain as for (3.34) that

EQi
[ ∑
j∈Li

β′ (t,t∧τ i∧σXi

β )

(
ψ(1)ε

+
∫ t∧τ i∧σXi

β ∧σYj

β

tj

1

Xi
s(1)

∫
R

Xi(s, x)1/2Y j (s, x)1/2 dx ds

)]
<�

∑
j : si<tj≤t

(t − si)
β ′ε

(3.95)

+ ∑
j : si<tj≤t

∫ t

tj

ds 1t�j <s

1

(s − si)η/2E
Qi [[

Y j
s (1)

]1/2; s < τ i ∧ σXi

β ∧ σYj

β ,

2
(
ε1/2 + (tj − si)

β ′)≤ |yj − xi |
≤ 2
(
ε1/2 + (t − si)

β ′)].
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Hence, for lateral clusters, we consider

EQi [[
Y j

s (1)
]1/2; s < τ i ∧ σXi

β ∧ σYj

β ,

2
(
ε1/2 + (tj − si)

β ′)≤ |yj − xi | ≤ 2
(
ε1/2 + (t − si)

β ′)],
s ∈ (t�j , t

]
, si < tj < t, t�j < t.

Step 2-1. We partition the event {Xi
s(1)T

Xi

1 > 0} into the two events in (3.39)
and (3.40) with tj replaced by t�j . Then as in (3.41), we write

EQi [[
Y j

s (1)
]1/2; s < τ i ∧ σXi

β ∧ σYj

β ,2
(
ε1/2 + (tj − si)

β ′)
≤ |yj − xi | ≤ 2

(
ε1/2 + (t − si)

β ′)]
≤ 1

ψ(1)ε
EP[[Y j

s (1)
]1/2; s < τ i ∧ σXi

β ∧ σYj

β ,2
(
ε1/2 + (tj − si)

β ′)
≤ |yj − xi | ≤ 2

(
ε1/2 + (t − si)

β ′), T Xi

1 < T Xi

0 ≤ t�j
]

+ 1

ψ(1)ε
EP[∣∣Xi(1)

T Xi

1
s −ψ(1)ε

∣∣[Y j
s (1)

]1/2; s < τ i ∧ σXi

β ∧ σYj

β ,

2
(
ε1/2 + (tj − si)

β ′)≤ |yj − xi |(3.96)

≤ 2
(
ε1/2 + (t − si)

β ′),Xi
s(1)T

Xi

1 > 0, t�j < T Xi

0
]

+ 1

ψ(1)ε
·ψ(1)εEP[[Y j

s (1)
]1/2; s < τ i ∧ σXi

β ∧ σYj

β ,

2
(
ε1/2 + (tj − si)

β ′)≤ |yj − xi |
≤ 2
(
ε1/2 + (t − si)

β ′), t�j < T Xi

0
]

∀s ∈ (t�j , t
]
, si < tj < t, t�j < t,

where we replace the event {Xi
s(1)T

Xi

1 > 0, t�j < T Xi

0 } by the larger one {t�j < T Xi

0 }
for the third term.

Step 2-2. Consider the first term on the right-hand side of (3.96). We have

1

ψ(1)ε
EP[[Y j

s (1)
]1/2; s < τ i ∧ σXi

β ∧ σYj

β ,

2
(
ε1/2 + (tj − si)

β ′)≤ |yj − xi |
≤ 2
(
ε1/2 + (t − si)

β ′), T Xi

1 < T Xi

0 ≤ t�j
]

≤ 1

ψ(1)ε
EP[[Y j

s (1)
]1/2; s ≤ T Yj

1 , t�j ≤ σXi

β ∧ σYj

β ,(3.97)
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2
(
ε1/2 + (tj − si)

β ′)≤ |yj − xi |
≤ 2
(
ε1/2 + (t − si)

β ′), T Xi

1 < T Xi

0 ≤ t�j
]

∀s ∈ (t�j , t
]
, si < tj < t, t�j < t.

We then apply Proposition 3.16, taking

σ⊥ = (σXi

β ∧ σYj

β ∧ t�j
)∨ tj , r1 = t�j , r2 = s.(3.98)

Hence, from (3.78) and (3.97), we obtain

1

ψ(1)ε
EP[[Y j

s (1)
]1/2; s < τ i ∧ σXi

β ∧ σYj

β ,2
(
ε1/2 + (tj − si)

β ′)
≤ |yj − xi | ≤ 2

(
ε1/2 + (t − si)

β ′), T Xi

1 < T Xi

0 ≤ t�j
]

<�
1

ε
P
(
T Xi

1 < T Xi

0 ≤ t�j
)
(t − si)

β ′EP0
ψ(1)ε

[
(Zs−tj )

1/2; s − tj ≤ T Z
1
]

(3.99)

<� (t − si)
β ′ ·EP0

ψ(1)ε
[
(Zs−tj )

1/2; s − tj ≤ T Z
1
]

∀s ∈ (t�j , t
]
, si < tj < t, t�j < t.

Step 2-3. Let us consider the second term in (3.96). As before, using (3.45)
gives

1

ψ(1)ε
EP[∣∣Xi

s(1)T
Xi

1 −ψ(1)ε
∣∣[Y j

s (1)
]1/2; s < τ i ∧ σXi

β ∧ σYj

β ,

2
(
ε1/2 + (tj − si)

β ′)≤ |yj − xi |
≤ 2
(
ε1/2 + (t − si)

β ′),Xi
s(1)T

Xi

1 > 0, t�j < T Xi

0
]

<�
εαN0

(s − si)
α + (s − si)

ξ

ε
(3.100)

×EP[[Y j
s (1)

]1/2; s ≤ T Yj

1 , t�j ≤ σXi

β ∧ σYj

β ,

2
(
ε1/2 + (tj − si)

β ′)≤ |yj − xi |
≤ 2
(
ε1/2 + (t − si)

β ′), t�j < T Xi

0
]

∀s ∈ (t�j , t
]
, si < tj < t, t�j < t.

Taking the choice (3.98) again, we obtain from Proposition 3.16, (3.78) and the
last display that

1

ψ(1)ε
EP[∣∣Xi

s(1)T
Xi

1 −ψ(1)ε
∣∣[Y j

s (1)
]1/2; s < τ i ∧ σXi

β ∧ σYj

β ,

2
(
ε1/2 + (tj − si)

β ′)≤ |yj − xi |
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≤ 2
(
ε1/2 + (t − si)

β ′),Xi
s(1)T

Xi

1 > 0, t�j < T Xi

0
]

<�
εαN0

(s − si)
α + (s − si)

ξ

ε
(t − si)

β ′P
(
t�j < T Xi

0
)

×EP0
ψ(1)ε

[
(Zs−tj )

1/2; s − tj ≤ T Z
1
] ∀s ∈ (t�j , t

]
, si < tj < t, t�j < t.

Hence, by a computation similar to (3.47) and Lemma 3.14, the foregoing display
gives

1

ψ(1)ε
EP[∣∣Xi

s(1)T
Xi

1 −ψ(1)ε
∣∣[Y j

s (1)
]1/2; s < τ i ∧ σXi

β ∧ σYj

β ,

2
(
ε1/2 + (tj − si)

β ′)≤ |yj − xi |
≤ 2
(
ε1/2 + (t − si)

β ′),Xi
s(1)T

Xi

1 > 0, t�j < T Xi

0
]

(3.101)
<�
(
εαN0

(s − si)
α + (s − si)

ξ )(t − si)
β ′(tj − si)

−β ′/β

×EP0
ψ(1)ε

[
(Zs−tj )

1/2; s − tj ≤ T Z
1
]
∀s ∈ (t�j , t

]
, si < tj < t, t�j < t.

Step 2-4. For the third term in (3.96), the calculation in the foregoing step 2-3
readily shows

1

ψ(1)ε
·ψ(1)εEP[[Y j

s (1)
]1/2; s < τ i ∧ σXi

β ∧ σYj

β ,2
(
ε1/2 + (tj − si)

β ′)
≤ |yj − xi | ≤ 2

(
ε1/2 + (t − si)

β ′), t�j < T Xi

0
]

(3.102)
<� (t − si)

β ′(tj − si)
−β ′/β · ε ·EP0

ψ(1)ε
[
(Zs−tj )

1/2; s − tj ≤ T Z
1
]

∀s ∈ (t�j , t
]
, si < tj < t, t�j < t.

Step 2-5. At this step, we apply (3.99), (3.101) and (3.102) to (3.96) and give a
summary as follows:

EQi [[
Y j

s (1)
]1/2; s < τ i ∧ σXi

β ∧ σYj

β ,2
(
ε1/2 + (tj − si)

β ′)≤ |yj − xi |
≤ 2
(
ε1/2 + (t − si)

β ′)]
<�
[
(t − si)

β ′ + (t − si)
β ′(tj − si)

−β ′/β(εαN0
(s − si)

α + (s − si)
ξ + ε

)]
×EP0

ψ(1)ε
[
(Zs−tj )

1/2; s − tj ≤ T Z
1
]

<� (t − si)
β ′(tj − si)

−β ′/β((tj − si)
β ′/β + εαN0

(s − si)
α + (s − si)

ξ + ε
)

× εαN0/2(s − tj )
α/2
(

ε

s − tj

)1−αN0/4

(3.103)
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+ (t − si)
β ′(tj − si)

−β ′/β((tj − si)
β ′/β + εαN0

(s − si)
α + (s − si)

ξ + ε
)

× ε1/2
(

ε

s − tj

)1−αN0/4

+ (t − si)
β ′ε(s − tj )

ξ/2−1

+ (t − si)
β ′(tj − si)

−β ′/β(εαN0
(s − si)

α + ε
)
ε(s − tj )

ξ/2−1

+ (t − si)
β ′(tj − si)

−β ′/β(s − si)
ξ ε(s − tj )

ξ/2−1

∀s ∈ (t�j , t
]
, si < tj < t, t�j < t,

where as in step 2-6 of Section 3.4, the last “<�”-inequality follows again from
Lemma 3.12, some arithmetic, and an application of (3.63).

For any s ∈ (t�j , t] with si < tj < t and t�j < t , we have

(tj − si)
β ′/β + εαN0

(s − si)
α + (s − si)

ξ + ε <� (s − si)
α,

which results from (3.22)(a), (3.22)(b), Lemma 3.14 and tj − si ≥ ε
2 . Hence, with

some simplifications similar to (3.64)–(3.66), we obtain

EQi [[
Y j

s (1)
]1/2; s < τ i ∧ σXi

β ∧ σYj

β ,

2
(
ε1/2 + (tj − si)

β ′)≤ |yj − xi | ≤ 2
(
ε1/2 + (t − si)

β ′)]
<� (t − si)

β ′(tj − si)
−β ′/β(s − si)

α(s − tj )
α/2+αN0/4−1ε1+αN0/4

+ (t − si)
β ′(tj − si)

α/2−β ′/β(s − si)
α(s − tj )

αN0/4−1ε1+αN0/4(3.104)

+ (t − si)
β ′(s − tj )

ξ/2−1ε

+ (t − si)
β ′(tj − si)

−β ′/β(s − si)
ξ (s − tj )

ξ/2−1ε

∀s ∈ (t�j , t
]
, si < tj < t, t�j < t.

Step 3. We complete the proof of Lemma 3.10 in this step. Apply the bound
(3.104) to the right-hand side of the inequality (3.95). We have

EQi
[ ∑
j∈Li

β′ (t,t∧τ i∧σXi

β )

(
ψ(1)ε

+
∫ t∧τ i∧σXi

β ∧σYj

β

tj

1

Xi
s(1)

∫
R

Xi(x, s)1/2Y j (x, s)1/2 dx ds

)]
<� (t − si)

β ′ ∑
j : si<tj≤t

ε

+ (t − si)
β ′ ∑

j : si<tj≤t

(tj − si)
−β ′/β

∫ t

tj

(s − si)
−η/2+α
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× (s − tj )
α/2+αN0/4−1 ds · ε1+αN0/4

+ (t − si)
β ′ ∑

j : si<tj≤t

(tj − si)
α/2−β ′/β

∫ t

tj

(s − si)
−η/2+α

× (s − tj )
αN0/4−1 ds · ε1+αN0/4

+ (t − si)
β ′ ∑

j : si<tj≤t

∫ t

tj

(s − si)
−η/2(s − tj )

ξ/2−1 ds · ε

+ (t − si)
β ′ ∑

j : si<tj≤t

(tj − si)
−β ′/β

∫ t

tj

(s − si)
−η/2+ξ (s − tj )

ξ/2−1 ds · ε.

Thanks to the second inequality in (3.22)(b), the integral domination outlined in
step 3 of Section 3.4 can be applied to each term on the right-hand side of the
foregoing <�-inequality, giving bounds which are convergent integrals. As in step 4
of Section 3.4, we obtain

EQi
[ ∑
j∈Li

β′ (t,t∧τ i∧σXi

β )

(
ψ(1)ε

+
∫ t∧τ i∧σXi

β ∧σYj

β

tj

1

Xi
s(1)

∫
R

Xi(x, s)1/2Y j (x, s)1/2 dx ds

)]
<� (t − si)

β ′+1 + (t − si)
β ′−η/2+(3α/2) · εαN0/4 + (t − si)

β ′−η/2+(3ξ/2),

which proves Lemma 3.10.

4. Uniform separation of approximating solutions. In this section, we
prove the main result of the present paper that there is pathwise nonuniqueness
in the SPDE (1.2). The result is summarized in Theorem 4.4. We continue to sup-
press the dependence on ε of the approximation solutions and emphasize it only
through Pε , unless otherwise mentioned.

Our program to obtain uniform separation of the approximating solutions is
sketched as follows (cf. the discussion in Section 1). For small r, ε ∈ (0,1], we
will define an event S(r) = Sε(r) which keeps track of certain separation of the
ε-approximating solutions X and Y over the territory of a “large” immigrant pro-
cess Xi . The immigrant processes range over those large and arriving approxi-
mately by time r . The definition of S(r) is based on the earlier results for condi-
tional separation of the approximating solutions. The effect is that these particular
events S(r) imply the required uniform separation: for some �(r) ∈ (0,∞) de-
pending only on the parameter vector in Assumption 3.4 and r , we have

S(r)⊆
{

sup
0≤s≤2r

‖Xs − Ys‖rap ≥�(r)
}

(4.1)
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[recall the definition of ‖ · ‖rap in (1.6)] and, for fixed r ,

lim inf
ε↘0

Pε

(
S(r)

)
> 0.(4.2)

Let us give the precise definition of the events S(r) and discuss the ingredients.
First, recall the parameter vector chosen in Assumption 3.4 as well as the con-
stants κj defined in Theorem 3.5. We need to use small portions of the constants
κ1 and κ3, and by (3.22)(d) we can find a constant ℘ satisfying

℘ ∈ (0, κ1 ∧ κ3) such that κ1 −℘ > η.

We insist that ℘ depends only on the parameter vector in (3.21). For any i ∈ N,
ε ∈ (0, [8ψ(1)]−1∧1], and random time T ≥ si , let Gi(T )=Gi

ε(T ) be the growth
event defined by

Gi(T )=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xi
s

([
xi − ε1/2 − (s − si)

β, xi + ε1/2 + (s − si)
β
])

≥ (s − si)
η

4
and

Ys

([
xi − ε1/2 − (s − si)

β, xi + ε1/2 + (s − si)
β
])

≤K∗
[
(s − si)

κ1−℘ + εκ2(s − si)
κ3−℘

]
∀s ∈ [si, T ]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
,(4.3)

where the constant K∗ ∈ (0,∞) is as in Theorem 3.5. Note that Gi(·) is decreas-
ing in the sense that, for any random times T1, T2 with T1 ≤ T2, Gi(T1)⊇Gi(T2).
Later on when taking into consideration of the support propagation of the immi-
grant processes, we will explain how the description in (4.3) for X is related to the
stopping time τ i,(1) underlying (3.12), and how the description in the same display
for Y is related to the event in (3.24) for partial sums of the total mass processes
Y j (1).

Next, we set

S(r)= Sε(r) �
�rε−1�⋃
i=1

Gi
ε(si + r), r ∈ (0,∞), ε ∈

(
0,

1

8ψ(1)
∧ 1
]
.(4.4)

Whereas the event S(r) depends on all immigrant processes Xi arriving approxi-
mately by time r , it is intended to keep track of separation over the territories of the
“large” ones, as we have planned above. This idea underlies the arguments below,
and will become explicit in the proof of Lemma 4.3 where inclusion–exclusion
and conditioning come into play in applying the result of Theorem 3.5 immigrant-
by-immigrant with respect to Xi ’s.

By the following lemma, (4.1) is a simple consequence of the events Gi(·).
LEMMA 4.1. For some r0 ∈ (0,1], we can find ε0(r) ∈ (0, r ∧ [8ψ(1)]−1 ∧ 1]

and �(r) ∈ (0,∞) for any r ∈ (0, r0] so that the inclusion (4.1) holds almost surely
for any ε ∈ (0, ε0(r)]. The constant �(r) depends only on r and the parameter
vector chosen in Assumption 3.4.
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PROOF. First, we specify the strictly positive numbers r0, ε0(r), and �(r).
Since the small portion ℘ taken away from κ1 and κ3 satisfies κ1−℘ > η, we can
choose r0 ∈ (0,1] such that

rη

4
− 2K∗rκ1−℘ > 0 ∀r ∈ (0, r0].(4.5)

Then we choose, for every r ∈ (0, r0], a number ε0(r) ∈ (0, r ∧ [8ψ(1)]−1 ∧ 1]
such that

0 < ε0(r)
κ2 ≤ rκ1−κ3 .(4.6)

Finally, we set

�(r) � 1

2

[(
rη/4− 2K∗rκ1−κ

2+ 2rβ

)
∧ 1
]

> 0, r ∈ (0, r0].(4.7)

We check that the foregoing choices give (4.1). Fix r ∈ (0, r0], ε ∈ (0, ε0(r)],
and 1 ≤ i ≤ �rε−1� (note that �rε−1� ≥ 1 since ε ≤ r). In this paragraph, we
assume that the event Gi(si + r) occurs. Then by definition,

Ys

([
xi − ε1/2 − (s − si)

β, xi + ε1/2 + (s − si)
β])

(4.8)
≤K∗

[
(s − si)

κ1−℘ + εκ2(s − si)
κ3−℘] ∀s ∈ [si, si + r].

In particular, (4.6) and (4.8) imply that

Ysi+r

([
xi − ε1/2 − rβ, xi + ε1/2 + rβ])≤ 2K∗rκ1−℘.

Since X ≥Xi , the last inequality and the definition of Gi(si + r) imply

Xsi+r

([
xi − ε1/2 − rβ, xi + ε1/2 + rβ])− Ysi+r

([
xi − ε1/2 − rβ, xi + ε1/2 + rβ])

≥ rη

4
− 2K∗rκ1−℘,

where the lower bound is strictly positive by (4.5). To carry this to the Crap(R)-
norm of Xsi+r − Ysi+r , we make an elementary observation: if f is Borel measur-
able, integrable on a finite interval I , and satisfies

∫
I f > A, then there must exist

some x ∈ I such that f (x) > A/�(I ), where �(I ) is the length of I . Using this, we
obtain from the last inequality that, for some x ∈ [xi − ε1/2 − rβ, xi + ε1/2 + rβ],

X(x, si + r)− Y(x, si + r)≥ rη/4− 2K∗rκ1−℘

2ε1/2 + 2rβ
≥ rη/4− 2K∗rκ1−℘

2+ 2rβ
,

so the definition of ‖ · ‖rap [in (1.6)] and the definition (4.7) of �(r) entail

�(r)≤ ‖Xsi+r − Ysi+r‖rap ≤ sup
0≤s≤2r

‖Xs − Ys‖rap,

where the second inequality follows since si = (2i−1)
2 ε and 1≤ i ≤ �rε−1�.
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In summary, we have shown that (4.1) holds because each component Gi(si+r)

of S(r) satisfies the analogous inclusion. The proof is complete. �

We proceed to the proof of (4.2) for small enough r > 0. From now on, we take
into account the support propagation of the immigrant processes. The major argu-
ment will be in Lemma 4.3 below. As the preliminary step to use Theorem 3.5, we
bring the involved stopping times into the events Gi(·) and then translate the de-
scriptions about Y in (4.3) into ones about its immigrant processes (see Lemma 4.2
below).

Recall Figure 2, and define the event i(r)= i
ε(r) by

i(r) �
{
PXi

β (si + r)∩
( ⋃

j : tj≤si

supp
(
Y j ))=∅

}

∩ ⋂
j : tj≤si+r

{
σYj

β > tj + 3r
}∩ {σXi

β > si + 2r
}
,(4.9)

r ∈ (0,1], i ∈N, ε ∈
(

0,
1

8ψ(1)
∧ 1
]
,

where supp(Y j ) denotes the topological support of the two-parameter (random)
function (x, s) �−→ Y j (x, s), and the time durations r , 3r and 2r on the right-hand
side in restricting PXi

β , σYj

β and σXi

β , respectively, are chosen only for technical
convenience and can be replaced by suitably large constant multiples of r . Through
i(r), we confine the ranges of the supports of Y j , for j ∈N satisfying tj ≤ si+ r ,
and Xi . It will become clear in passing that one of the reasons for considering this
event is to make precise the informal argument of choosing J i

β ′(·), as discussed in
Section 3.2.

LEMMA 4.2. Fix r ∈ (0,1], i ∈ N and ε ∈ (0, [8ψ(1)]−1 ∧ 1]. Then on the
event i(r) defined by (4.9), we have

Ys

([
xi − ε1/2 − (s − si)

β, xi + ε1/2 + (s − si)
β])

= ∑
j∈J i

β′ (s)
Y j

s

([
xi − ε1/2 − (s − si)

β, xi + ε1/2 + (s − si)
β])(4.10)

∀s ∈ [si, si + r].
In particular, on i(r),

Ys

([
xi − ε1/2 − (s − si)

β, xi + ε1/2 + (s − si)
β])≤ ∑

j∈J i
β′ (s)

Y j
s (1)

(4.11)
∀s ∈ [si, si + r].
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PROOF. In this proof, we argue on the event i(r) and call �s � {x; (x, s) ∈
�} the s-section of a subset � of R×R+ for any s ∈R+.

Consider (4.10). Since the s-section supp(Y j )s contains the support of Y
j
s (·), it

suffices to show that, for any s ∈ [si, si + r] and j ∈N with tj ≤ s and j /∈ J i
β ′(s),[

xi − ε1/2 − (s − si)
β, xi + ε1/2 + (s − si)

β]∩ supp
(
Y j )

s =∅.(4.12)

If j ∈N satisfies tj ≤ si , then using the first item in the definition (4.9) of i(r)

gives

PXi

β (si + r)∩ supp
(
Y j )=∅.

Hence, taking the s-sections of both PXi

β (si + r) and supp(Y j ) shows that Y j

satisfies (4.12).
Next, suppose that j ∈N satisfies si < tj ≤ s but j /∈ J i

β ′(s). On one hand, this
choice of j implies

|yj − xi |> 2
(
ε1/2 + (s − si)

β ′)≥ 2
(
ε1/2 + (s − si)

β),
where the second inequality follows from the assumption r ∈ (0,1] and the choice
β ′ < β by (3.22)(b), so Lemma 7.3 entails

PXi

β (s)∩PY j

β (s)=∅.(4.13)

On the other hand, using the second item in the definition of i(r), we deduce that

supp
(
Y j )∩ (R× [tj , tj + 3r])⊆ PY j

β (tj + 3r).

Using tj + r > si + r ≥ s and taking s-sections of supp(Y j ) and PY j

β (tj + 3r), we
obtain from the foregoing inclusion that

supp
(
Y j )

s ⊆
[
yj − ε1/2 − (s − tj )

β, yj + ε1/2 + (s − tj )
β]

= PYj

β (tj + 3r)s(4.14)

= PYj

β (s)s.

Since

PXi

β (s)s = [xi − ε1/2 − (s − si)
β, xi + ε1/2 + (s − si)

β],
(4.13) and (4.14) give our assertion (4.12) for j ∈ N satisfying sj < tj ≤ s and
j /∈ J i

β ′(s). We have considered all cases for which j ∈ N, tj ≤ s, and j /∈ J i
β ′(s).

The proof is complete. �

Recall r0 ∈ (0,1] and ε0(r) ∈ (0, r ∧ [8ψ(1)]−1 ∧ 1] chosen in Lemma 4.1 and
the events S(r) in (4.4). The following lemma completes the last step (4.2) to
obtain uniform separation of the approximating solutions.
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LEMMA 4.3. For some r1 ∈ (0, r0], we can find ε1(r) ∈ (0, ε0(r)] for any r ∈
(0, r1] such that

inf
ε∈(0,ε1(r)]

Pε

(
S(r)

)
> 0.(4.15)

PROOF. In this proof, we transfer the Qi
ε-probabilities of separation in The-

orem 3.5 to Pε-probabilities of separation by conditioning and use inclusion–
exclusion as in [17]. The latter makes the Pε-probabilities of separation stand out
among others.

For any i ∈ N, ε ∈ (0, [8ψ(1)]−1 ∧ 1], and random time T ≥ si , we define
Ĝi(·)= Ĝi

ε(·) by

Ĝi(T )=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Xi

s(1)≥ (s − si)
η

4
and∑

j∈J i
β′ (s)

Y j
s (1)≤K∗

[
(s − si)

κ1−℘ + εκ2(s − si)
κ3−℘]

∀s ∈ [si, T ]

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.(4.16)

Note that Ĝi(·) is decreasing, and its definition about the masses of Y is the same
as the event considered in Theorem 3.5 except for the restrictions from stopping
times τ i , σXi

β and σYj

β .

The connection between Ĝi(·) and Gi(·) is as follows. First, we note that
by (4.11), the statement about the masses of Y in Ĝi(r) ∩ i(r) implies that in
Gi(r) ∩ i(r). Also, the statements in Gi(·) and Ĝi(·) concerning the masses of
Xi are linked by the obvious equality:

Xi
s(1)=Xi

s

([
xi − ε1/2 − (s − si)

β, xi + ε1/2 + (s − si)
β]) ∀s ∈ [si, σXi

β

]
.

Since σXi

β > si + 2r on i(r), we are led to the inclusion

Ĝi(τ i ∧ (si + r)
)∩ i(r)⊆Gi(τ i ∧ (si + r)

)∩ i(r)(4.17)

for any r ∈ (0,1], i ∈ N and ε ∈ (0, [8ψ(1)]−1 ∧ 1] (τ i is defined in Proposi-
tion 3.3). We can also write (4.17) as

Ĝi(τ̂ i (si + r)∧ (si + r)
)∩ i(r)⊆Gi(τ̂ i (si + r)∧ (si + r)

)∩ i(r),(4.18)

where

τ̂ i (si + r)� τ i ∧ σXi

β ∧ ∧
j : si<tj≤si+r

σ Y j

β .(4.19)

Here, although the restriction σXi

β ∧∧j : si<tj≤si+r σ Y j

β is redundant in (4.18) [be-

cause σYj

β > tj + 3r > si + r for each j ∈N with si < tj ≤ si + r by the definition

of i(r)], we emphasize its role by writing it out.
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We start bounding Pε(S(r)). For any r ∈ (0, r0] and ε ∈ (0, ε0(r)], we have

Pε

(
S(r)

)≥ Pε

(�rε−1�⋃
i=1

Gi(τ̂ i (si + r)∧ (si + r)
)∩ i(r)∩ {T Xi

1 < T Xi

0
}

∩ {τ̂ i (si + r)≥ si + r
})

≥ Pε

(�rε−1�⋃
i=1

Ĝi(τ̂ i (si + r)∧ (si + r)
)∩ i(r)∩ {T Xi

1 < T Xi

0
}

∩ {τ̂ i (si + r)≥ si + r
})

,

where the last inequality follows from the inclusion (4.18). We make the restric-
tions {T Xi

1 < T Xi

0 } in order to invoke Qi-probabilities later on. By considering
separately τ̂ i (si + r) ≥ si + r and τ̂ i (si + r) < si + r , we obtain from the last
inequality that

Pε

(
S(r)

)≥ Pε

(�rε−1�⋃
i=1

Ĝi

(
τ̂ i (si + r)∧ (si + r)

)∩ i(r)∩ {T Xi

1 < T Xi

0
})

(4.20)

− Pε

(�rε−1�⋃
i=1

[
τ̂ i (si + r) < si + r

]∩ {T Xi

1 < T Xi

0
})

.

Applying another inclusion–exclusion to the first term on the right-hand side
of (4.20) gives the main inequality of this proof:

Pε

(
S(r)

)≥ Pε

(�rε−1�⋃
i=1

Ĝi(τ̂ i(si + r)∧ (si + r)
)∩ {T Xi

1 < T Xi

0
})

− Pε

(�rε−1�⋃
i=1

i(r)� ∩ {T Xi

1 < T Xi

0
})

(4.21)

− Pε

(�rε−1�⋃
i=1

{
τ̂ i (si + r) < si + r

}∩ {T Xi

1 < T Xi

0
})

∀r ∈ (0, r0], ε ∈ (0, ε0(r)
]
.

In the rest of this proof, we bound each of the three terms on the right-hand side
of (4.21) and then choose according to these bounds the desired r1 and ε1(r)

for (4.15).
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At this stage, we use Proposition 3.3 and Theorem 3.5 in the following
way. For any ρ ∈ (0, 1

2), we choose δ1 ∈ (0,1], independent of i ∈ N and ε ∈
(0, [8ψ(1)]−1 ∧ 1], such that

sup
{
Qi

ε

(
τ i ≤ si + δ1

); i ∈N, ε ∈
(

0,
1

8ψ(1)
∧ 1
]}
≤ ρ,(4.22)

sup
{
Qi

ε

(
∃s ∈ (si, si + δ1],

∑
j∈J i

β′ (s∧τ i∧σXi

β )

Y j
s (1)

τ i∧σXi

β ∧σYj

β

> K∗
[
(s − si)

κ1−℘ + εκ2 · (s − si)
κ3−℘]);(4.23)

i ∈N, ε ∈
(

0,
1

8ψ(1)
∧ 1
]}
≤ ρ.

Consider the first probability on the right-hand side of (4.21). We use the ele-
mentary inequality: for any events A1, . . . ,An for n ∈N,

P

(
n⋃

j=1

Aj

)
≥

n∑
j=1

P(Aj )−
n∑

i=1

∑
j : j �=i
1≤j≤n

P(Ai ∩Aj).

Then

Pε

(�rε−1�⋃
i=1

Ĝi(τ̂ i (si + r)∧ (si + r)
)∩ {T Xi

1 < T Xi

0
})

≥
�rε−1�∑
i=1

Pε

(
Ĝi(τ̂ i (si + r)∧ (si + r)

)∩ {T Xi

1 < T Xi

0
})

(4.24)

−
�rε−1�∑
i=1

∑
j : j �=i

1≤j≤�rε−1�

Pε

(
T Xi

1 < T Xi

0 , T Xj

1 < T Xj

0
)

∀r ∈ (0, r0], ε ∈ (0, ε0(r)
]
.

The first term on the right-hand side of (4.24) can be written as

�rε−1�∑
i=1

Pε

(
Ĝi(τ̂ i (si + r)∧ (si + r)

)∩ {T Xi

1 < T Xi

0
})

(4.25)

=
�rε−1�∑
i=1

ψ(1)ε ·Qi
ε

(
Ĝi(τ̂ i (si + r)∧ (si + r)

))
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by the definition of Qi
ε in (3.1). By inclusion–exclusion, we have

Qi
ε

(
Ĝi(τ̂ i (si + r)∧ (si + r)

))
≥Qi

ε

(
Xi

s(1)≥ (s − si)
η

4
,∀s ∈ [si, τ̂ i(si + r)∧ (si + r)

])
−Qi

ε

(
∃s ∈ (si, τ̂ i(si + r)∧ (si + r)

]
,
∑

j∈J i
β′ (s)

Y j (1)s(4.26)

> K∗
[
(s − si)

κ1−℘ + εκ2 · (s − si)
κ3−℘])

∀i ∈N, ε ∈
(

0,
1

8ψ(1)
∧ 1
]
.

Recall that τ i,(1) ≤ τ i and Xi
si
(1) = ψ(1)ε > 0. Hence, by the definition of

τ̂ i (si + r),

Qi
ε

(
Xi

s(1)≥ (s − si)
η

4
,∀s ∈ [si, τ̂ i(si + r)∧ (si + r)

])= 1

(4.27)

∀i ∈N, ε ∈
(

0,
1

8ψ(1)
∧ 1
]
.

For r ∈ (0, δ1], i ∈N, and ε ∈ (0, [8ψ(1)]−1 ∧ 1], the second probability in (4.26)
can be bounded as

Qi
ε

(
∃s ∈ (si, τ̂ i(si + r)∧ (si + r)

]
,
∑

j∈J i
β′ (s)

Y j
s (1)

> K∗
[
(s − si)

κ1−℘ + εκ2 · (s − si)
κ3−℘])

≤Qi
ε

(
∃s ∈ (si, τ i ∧ (si + r)

]
,

∑
j∈J i

β′ (s∧τ i∧σXi

β )

Y j
s (1)

τ i∧σXi

β ∧σYj

β

> K∗
[
(s − si)

κ1−℘ + εκ2 · (s − si)
κ3−℘])(4.28)

≤Qi
ε

(
∃s ∈ (si, si + δ1],

∑
j∈J i

β′ (s∧τ i∧σXi

β )

Y j
s (1)

τ i∧σXi

β ∧σYj

β

> K∗
[
(s − si)

κ1−℘ + εκ2 · (s − si)
κ3−℘])

+Qi
ε

(
τ i ≤ si + δ1

)≤ 2ρ.
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Here, the first inequality follows since for s ∈ (si, τ̂
i(si + r) ∧ (si + r)], we have

s ≤ τ i ∧ σXi

β and

j ∈ J i
β ′(s) "⇒ j ∈ J i

β ′(si + r) "⇒ tj ∈ (si, si + r]
"⇒ τ̂ i (si + r)≤ σYj

β "⇒ s ≤ σYj

β ,

where the third implication follows from the definition of τ̂ i (si + r) in (4.19).
The first term in the second inequality follows by considering the scenario τ i >

si+ δ1 and using r ∈ (0, δ1], and the last inequality follows from (4.22) and (4.23).
Applying (4.27) and (4.28) to (4.26), we get

Qi
ε

(
Ĝi(τ̂ i (si + r)∧ (si + r)

))≥ 1− 2ρ
(4.29)

∀r ∈ (0, δ1 ∧ r0], i ∈N, ε ∈ (0, ε0(r)
]
.

From (4.25) and the last inequality, we have shown that

�rε−1�∑
i=1

Pε

(
Ĝi

(
τ̂ i (si + r)∧ (si + r)

)∩ {T Xi

1 < T Xi

0
})≥ψ(1)(r − ε)(1− 2ρ)

∀r ∈ (0, δ1 ∧ r0], ε ∈ (0, ε0(r)
]
.

[Recall that ε0(r) ≤ r .] The second term on the right-hand side of (4.24) is rela-
tively easy to bound. Indeed, by using the independence between the clusters Xi

and Lemma 3.1,

�rε−1�∑
i=1

∑
j : j �=i

1≤j≤�rε−1�

Pε

(
T Xi

1 < T Xi

0 , T Xj

1 < T Xj

0
)

=
�rε−1�∑
i=1

∑
j : j �=i

1≤j≤�rε−1�

Pε

(
T Xi

1 < T Xi

0
)
Pε

(
T Xj

1 < T Xj

0
)≤ψ(1)2r2

∀r ∈ (0,1], ε ∈
(

0,
1

8ψ(1)
∧ 1
]
.

Recalling (4.24) and using the last two displays, we have the following bound for
the first term on the right-hand side of (4.21):

Pε

(�rε−1�⋃
i=1

Ĝi

(
τ̂ i (si + t)∧ (si + r)

)∩ {T Xi

1 < T Xi

0
})

≥ψ(1)(r − ε)(1− 2ρ)−ψ(1)2r2(4.30)

∀r ∈ (0, δ1 ∧ r0], ε ∈ (0, ε0(r)
]
.
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Next, we consider the second probability on the right-hand side of (4.21). By
the definition of i(r) in (4.9) and the general inclusion (A1 ∩A2 ∩A3)

� ⊆ (A�
1 ∩

A2 ∩A3)∪A�
2 ∪A�

3, we have

i(r)� ⊆
({

PXi

β (si + r)∩
( ⋃

j : tj≤si

supp
(
Y j )) �=∅

}

∩ ⋂
j : tj≤si

{
σYj

β > tj + 3r
}∩ {σXi

β > si + 2r
})

(4.31)

∪
( ⋃

j : tj≤si+r

{
σYj

β ≤ tj + 3r
})∪ {σXi

β ≤ si + 2r
}
,

where we note that the indices j in
⋂

j : tj≤si
{σYj

β > tj +3r} range only over j ∈N
with tj ≤ si . Hence,

Pε

(�rε−1�⋃
i=1

i(r)� ∩ {T Xi

1 < T Xi

0
})

≤ Pε

(�rε−1�⋃
i=1

({
PXi

β (si + r)∩
( ⋃

j : tj≤si

supp
(
Y j )) �=∅

}
(4.32)

∩ ⋂
j : tj≤si

{
σYj

β > tj + 3r
}∩ {σXi

β > si + 2r
}∩ {T Xi

1 < T Xi

0
}))

+ Pε

(�2rε−1�+1⋃
j=1

{
σYj

β ≤ tj + 3r
})+ Pε

(�rε−1�⋃
i=1

{
σXi

β ≤ si + 2r
})

,

where we have the second probability in the foregoing inequality since

tj ≤ s�rε−1� + r "⇒ tj ≤ 2r "⇒ j ≤ ⌊2rε−1⌋+ 1.

Resorting to the conditional probability measures Qi
ε , we see that the first proba-

bility in (4.32) can be bounded as

Pε

(�rε−1�⋃
i=1

({
PXi

β (si + r)∩
( ⋃

j : tj≤si

supp
(
Y j )) �=∅

}

∩ ⋂
j : tj≤si

{
σYj

β > tj + 3r
}∩ {σXi

β > si + 2r
}∩ {T Xi

1 < T Xi

0
}))

≤
�rε−1�∑
i=1

ψ(1)εQi
ε

({
PXi

β (si + r)∩
( ⋃

j : tj≤si

supp
(
Y j )) �=∅

}
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∩ ⋂
j : tj≤si

{
σYj

β > tj + 3r
}∩ {σXi

β > si + 2r
})

≤
�rε−1�∑
i=1

ψ(1)εC1
suppr

1/6 ≤ψ(1)C1
suppr

7/6 ∀r ∈ (0, r0], ε ∈ (0, ε0(r)
]
,

where the next to the last inequality follows from Proposition 7.2 and the con-
stant C1

supp ∈ (0,∞) is independent of r ∈ (0, r0] and ε ∈ (0, r0]. (Here, we use

the choice β ∈ [13 , 1
2) to apply this proposition.) By Proposition 7.1, the second

probability in (4.32) can be bounded as [recall ε0(r)≤ r]

Pε

(�2rε−1�+1⋃
j=1

{
σYj

β ≤ tj + 3r
})

≤ C0
supp
(
2rε−1 + 1

) · 3εr(4.33)

≤ 9C0
suppr

2 ∀r ∈ (0, r0], ε ∈ (0, ε0(r)
]
,

where C0
supp is a constant independent of r ∈ (0, r0] and ε ∈ (0, ε0(r)]. Similarly,

Pε

(�rε−1�⋃
i=1

{
σXi

β ≤ si + 2r
})≤ 2C0

suppr
2 ∀r ∈ (0, r0], ε ∈ (0, ε0(r)

]
.(4.34)

From (4.32) and the last three displays, we have shown that the second probability
in (4.21) satisfies the bound

Pε

(�rε−1�⋃
i=1

i(r)� ∩ {T Xi

1 < T Xi

0
})≤ 11C0

suppr
2 +ψ(1)C1

suppr
7/6

(4.35)
∀r ∈ (0, r0], ε ∈ (0, ε0(r)

]
.

It remains to bound the last probability on the right-hand side of (4.21). Recall
the number δ1 chosen for (4.22). Similar to the derivation of (4.32), we have

Pε

(�rε−1�⋃
i=1

{
τ̂ i (si + r) < si + r

}∩ {T Xi

1 < T Xi

0
})

≤ Pε

(�rε−1�⋃
i=1

{
σXi

β ≤ si + r
})+ Pε

(�2rε−1�+1⋃
i=1

{
σY i

β ≤ ti + r
})

(4.36)

+
�rε−1�∑
i=1

ψ(1)εQi
ε

(
τ i < si + r

)
≤ 11C0

suppr
2 +ψ(1)rρ ∀r ∈ (0, δ1 ∧ r0], ε ∈ (0, ε0(r)

]
,
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where we use (4.33) and (4.34) in the last inequality.
We apply the three bounds (4.30), (4.35) and (4.36) to (4.21). This shows that for

any ρ ∈ (0, 1
2), there exist δ1 > 0 such that for any r ∈ (0, δ1∧r0] and ε ∈ (0, ε0(r)]

[note that ε0(r)≤ r ∧ 1],

Pε

(
S(r)

) ≥ [ψ(1)(r − ε)(1− 2ρ)−ψ(1)2r2]− (11C0
suppr

2 +ψ(1)C1
suppr

7/6)
− (11C0

suppr
2 +ψ(1)rρ

)
= r
[
ψ(1)(1− 3ρ)− (ψ(1)2 + 22C0

supp
)
r −ψ(1)C1

suppr
1/6]

−ψ(1)ε(1− 2ρ).

Finally, to attain the uniform lower bound (4.15), we choose ρ ∈ (0, 1
2) and

r1 ∈ (0, δ1 ∧ r0] such that

ψ(1)(1− 3ρ)− (ψ(1)2 + 22C0
supp
)
r −ψ(1)C1

suppr
1/6 ≥ ψ(1)

2
∀r ∈ (0, r1],

and then ε1(r) ∈ (0, ε0(r)] such that

ψ(1)ε1(r)(1− 2ρ)≤ ψ(1)r

4
.

By the last three displays, we obtain

Pε

(
S(r)

)≥ ψ(1)r

4
∀ε ∈ (0, ε1(r)

]
, r ∈ (0, r1],

and hence (4.15) follows. The proof is complete. �

We use Lemma 4.3 to give the proof for a more precise version of our main
theorem, namely Theorem 1, in Theorem 4.4 below.

THEOREM 4.4 (Separation of limiting solutions). Let (εn)⊆ (0, [8ψ(1)]−1 ∧
1] with εn ↘ 0 be such that the sequence of laws of ((X,Y ),Pεn) converges to
the law of ((X,Y ),P0) of a pair of solutions to the SPDE (1.2) in the space of
probability measures on the product space D(R+,Crap(R))×D(R+,Crap(R)) (cf.
Proposition 2.3). Then we have

P0

(
sup

0≤s≤2r1

‖X− Y‖rap ≥ �(r1)

2

)
≥ inf

ε∈(0,ε1(r1)]
Pε

(
S(r1)

)
> 0,

where �(r1) > 0 is chosen in Lemma 4.1 and r1, ε1(r1) ∈ (0,1] are chosen in
Lemma 4.3.

PROOF. By Skorokhod’s representation theorem, we may take (X(εn), Y (εn))

to be copies of the εn-approximating solutions which live on the same probability
space, and assume that (X(εn), Y (εn)) converges almost surely to (X(0), Y (0)) in the
product (metric) space D(R+,Crap(R))×D(R+,Crap(R)).
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It follows from Lemmas 4.1 and 4.3 that

inf
n : εn≤ε1(r1)

P
(

sup
0≤s≤2r1

∥∥X(εn)
s − Y (εn)

s

∥∥
rap ≥�(r1)

)
≥ inf

ε∈(0,ε1(r1)]
Pε

(
S(r1)

)
> 0.

Hence, by Fatou’s lemma, we get

0 < inf
ε∈(0,ε1(r1)]

Pε

(
S(r1)

)
≤ lim sup

n→∞
P
(

sup
0≤s≤2r1

∥∥X(εn)
s − Y (εn)

s

∥∥
rap ≥�(r1)

)
(4.37)

≤ P
(
lim sup
n→∞

{
sup

0≤s≤2r1

∥∥X(εn)
s − Y (εn)

s

∥∥
rap ≥�(r1)

})
≤ P
(

sup
0≤s≤2r1

∥∥X(0)
s − Y (0)

s

∥∥
rap ≥

�(r1)

2

)
,

where the last inequality follows from the convergence

X(εn)
a.s.−−−−→

n→∞ X(0) and Y (εn)
a.s.−−−−→

n→∞ Y (0)

in the Skorokhod space D(R+,Crap(R)), the continuity of X(0) and Y (0), and
Proposition 3.6.5(a) of [10]. The proof is complete. �

5. Proof of Proposition 2.3. Many arguments in this section can be modi-
fied from the proofs in Section 6 in [17] because of the apparent similarity of
the involved stochastic processes, and so we only give sketches whenever neces-
sary. Readers interested in a complete proof of Proposition 2.3 may see Section 3.9
of [3]. Some connections between limit theorems for Crap(R)-valued processes and
limit theorems for processes taking values in the space of real-valued continuous
functions over R can be found in Section 3.11 of [3].

Throughout this section, we fix a sequence (εn) ⊆ (0,1] with εn ↘ 0 and
assume that the εn-approximating solutions live on the same probability space.
To save notation, we write {(X(n), Y (n));n ∈ N} for this approximating se-
quence and denote by P the underlying probability measure. We will be-
gin with the C-tightness of the sequence of joint laws of {(X(n), Y (n))} in
D(R+,Crap(R))×D(R+,Crap(R)), where D(R+,Crap(R)) is equipped with Sko-
rokhod’s J1-topology. Here, C-tightness means not only tightness but also the
property that the limiting object of any convergent subsequence is a continuous
process. We will only discuss the C-tightness of the sequence of laws of {X(n)}
in D(R+,Crap(R)), and the argument for {Y (n)} follows similarly. Later on in
Lemma 5.4, we will prove that the limit of any convergent subsequence of laws of
{(X(n), Y (n))} is the law of a pair of solutions to the SPDE (1.2) with respect to the
same space–time white noise.
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Consider our first objective that the sequence of laws of {X(n)} is C-tight as
probability measures on D(R+,Crap(R)). The proof uses the mild forms of {X(n)}
stated below. Let

ps(x) dx ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1√
2πs

exp
(
−x2

2s

)
dx, s ∈ (0,∞),

δ0(dx), s = 0,

0, s ∈ (−∞,0).

Recall the random measure AX(n)
[cf. (2.2)] associated with X(n) which is con-

tributed by the initial masses of its immigrants, and write

MX(n)

t (φ)≡X
(n)
t (φ)−

∫ t

0
X(n)

s

(
�

2
φ

)
ds −

∫
(0,t]

∫
R

φ(y) dAX(n)

(y, s),

(5.1)
φ ∈ C∞c (R),

for the martingale measure of X(n).
By summing up the mild forms of the immigrant processes for X(n) which are

solutions to the SPDE (1.1) and have initial conditions taking the form ψ(1)J a
ε (·)

for J a
ε (·) defined by (1.13) (see Theorem 2.1 of [25]), we deduce that the mild

form of X(n) is given by

X(n)(x, t)= p � AX(n)

(x, t)+ p � MX(n)

(x, t), (x, t) ∈R×R+.(5.2)

Here, the convolutions on the right-hand side are given by

p � AX(n)

(x, t)=
∫
(0,t]

∫
R

pt−s(x − y)dAX(n)

(y, s)

(5.3)
= ψ(1)

∑
i : 0<si≤t

∫
R

pt−si (x − y)J xi
εn

(y) dy,

p � MX(n)

(x, t)=
∫ t

0

∫
R

pt−s(x − y)dMX(n)

(y, s)

(5.4)

=
∫ t

0

∫
R

pt−s(x − y)X(n)(y, s)1/2 dW(y, s).

More precisely, in p � AX(n)
, we read p0(x − y)dy = δ0(x − dy) = δx(dy), and

hence ∫
R

p0(x − y)J xi
εn

(y) dy ≡ J xi
εn

(x).(5.5)

The mild form (5.2) implies the C-tightness of the sequence of laws of {X(n)}
in D(R+,Crap(R)), provided that the sequences of laws of {p � AX(n);n ∈N} and

{p � MX(n);n ∈N} are both C-tight as probability measures on the same space.
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LEMMA 5.1. The sequences of laws of {p � AX(n);n ∈ N} is C-tight and
converges in probability in D(R+,Crap(R)) to the deterministic process
(
∫ t

0
∫
R pt−s(· − y)ψ(y)dy ds)t∈R+ .

LEMMA 5.2. For any q ∈ [1,∞) and λ,T ∈ (0,∞), there exists a constant
Č ∈ (0,∞) depending only on (ψ, q,λ,T ) such that

sup
n∈N

sup
0≤t≤T

sup
x∈R

eλ|x|E
[
X(n)(x, t)q + Y (n)(x, t)q

]≤ Č.

LEMMA 5.3. For some universal constants q ∈ (0,∞) and γ ∈ (2,∞), the
following inequality holds for any λ,T ∈ (0,∞):

sup
n∈N

E
[∣∣p � MX(n)(

x′, t ′
)− p � MX(n)

(x, t)
∣∣q]

≤ Č
(∣∣x′ − x

∣∣2γ + ∣∣t ′ − t
∣∣γ )e−λ|x|(5.6)

∀t, t ′ ∈ [0, T ], ∣∣x − x′
∣∣≤ 1.

Here, the constants Č are as in Lemma 5.2 and are enlarged if necessary. More-
over, the sequence of laws of {p � MX(n)} is tight as probability measures on
C(R+,Crap(R)).

The proofs of Lemmas 5.1, 5.2 and 5.3 can be obtained by arguments similar to
the proofs of Lemmas 6.6, 6.1 and 6.7 in [17], respectively. In this direction, the
proofs of Lemmas 5.1 and 5.2 use the particular form of the distribution (1.15) of
xi and yi which is dominated by a constant multiple of Lebesgue measure over a
compact interval, as well as the fact that in our case, immigrants can land through-
out time. The latter does not create additional difficulties since C-tightness of
Crap(R)-valued processes and the bound in Lemma 5.2 only concern distributional
properties of the corresponding processes over compact intervals. In addition, for
the proof of Lemma 5.3, we need the moment bound in Lemma 5.2 for its first
assertion, and the second assertion follows from (5.6) and Lemma 6.4 of [17].

By Lemmas 5.1 and 5.3, the sequence of laws of {X(n)} is C-tight as probability
measures on D(R+,Crap(R)), thanks to (5.2). By similar arguments, the same is
true for the sequence of laws of {Y (n)}.

LEMMA 5.4. Suppose that, by taking a subsequence if necessary, we have

(
X(n), Y (n)) (d)−−−−→

n→∞
(
X(0), Y (0))(5.7)

for some continuous Crap(R)-valued processes X(0) and Y (0). Then X(0) and Y (0)

solve the SPDE (1.2) with respect to the same space–time white noise.
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SKETCH OF PROOF. The argument in the proof of Proposition 2.2 of [17] (in
Section 6 there) still applies and implies that both X(0) and Y (0) are solutions to
the SPDE (1.2). Here, the readers may use as supporting facts a reinforcement of
the convergence in (2.6) to almost-sure convergence along (εn) (by the strong law
of large numbers), and the moment bound in Lemma 5.2.

It remains to show that X(0) and Y (0) can be subject to the same space–time
white noise, and moreover, all of these random objects obey their defining proper-
ties with respect to the same filtration satisfying the usual conditions. Observe that,
by the moment bound in Lemma 5.2 and the fact that X(n) and Y (n) are subject to
the same SPDE, the covariation of X(0) and Y (0) satisfies〈

X(0)(φ1), Y
(0)(φ2)

〉
t =
∫ t

0

∫
R

X(0)(x, s)1/2Y (0)(x, s)1/2φ1(x)φ2(x) dx ds,

φ1, φ2 ∈ C∞c (R).

By an enlargement of the underlying probability space, we may assume that for
some filtration (Ht ) satisfying the usual conditions, X(0) and Y (0) are adapted
to (Ht ) and there exists an (Ht )-space–time white noise W̃ independent of
(X(0), Y (0)). Let MX(0)

and MY(0)
denote the martingale measures of X(0) and

Y (0), respectively [cf. the definition of MX(n)
in (5.1)]. Then by the foregoing dis-

play, the required space–time white noise can be chosen to be

Wt(φ) �
∫ t

0

∫
R

1(X(0)>0)(y, s)
φ(x)

X(0)(y, s)1/2 dMX(0)

(y, s)

+
∫ t

0

∫
R

1(X(0)=0,Y (0)>0)(y, s)
φ(x)

Y (0)(y, s)1/2 dMY(0)

(y, s)

+
∫ t

0

∫
R

1(X(0)=0,Y (0)=0)(y, s)φ(x) dW̃ (y, s), φ ∈ C∞c (R)

[recall the notation (Z ∈ ) in (2.7)]. The proof is complete. �

6. Proof of Proposition 3.3. In this section, we prove Proposition 3.3 by ver-
ifying all of the following analogues of (3.12):

∀ρ > 0 ∃δ > 0 such that
(6.1)

sup
{
Qi

ε

(
τ i,(j) ≤ si + δ

); i ∈N, ε ∈
(

0,
1

8ψ(1)
∧ 1
]}
≤ ρ,

where 1 ≤ j ≤ 3. The proofs rely on the basic fact that for any i ∈ N and ε ∈
(0, [8ψ(1)]−1 ∧ 1], Xi(1)T

Xi

1 under Qi
ε is a 1

4BESQ4(4ψ(1)ε) started at si and
stopped upon hitting 1 (see the discussion after Proposition 3.3), and we will work
with various couplings of 1

4BESQ4(4z). We assume that the couplings are obtained
from a (Ht )-standard Brownian motion B for a filtration (Ht ) satisfying the usual
conditions, the constructions explained in detail later on.
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Recall that we write P1
z for the law of a copy Z of 1

4BESQ4(4z). Throughout
this section, we do not impose the constraints in Assumption 3.4 on the auxiliary
parameters.

LEMMA 6.1. Fix η ∈ (1,∞), and let τ i,(1) be the stopping times defined in
Proposition 3.3. Then (6.1) holds for j = 1.

PROOF. The proof is an application of the lower escape rate of BESQ4(0):

P1
0
(∃h > 0 such that 4Zt ≥ tη,∀t ∈ [0, h])= 1(6.2)

(cf. Theorem 5.4.6 of [14]).
We will need a monotonicity of BESQ4 in initial values. For this purpose,

we construct all 1
4BESQ4(4z)-processes Zz with initial values z ∈ R+ from the

(Ht )-standard Brownian motion. This is implied by the pathwise uniqueness in
their stochastic differential equations (cf. Theorems IX.1.7 and IX.3.5 of [23]),
and we can characterize them by

Zz
t ≡ z+ t +

∫ t

0

√
Zz

s dBs, z ∈R+.(6.3)

In view of the first components in τ
i,(1)
ε (cf. Proposition 3.3), we consider

σz � inf
{
t ≥ 0;Zz

T Zz

1 ∧t
<

tη

4

}
, z ∈

[
0,

1

8

]
.

Let us bound the distribution function of σz ∧ T Zz

1 . The comparison theorem of
stochastic differential equations (cf. Theorem IX.3.7 of [23]) implies that Zz1 ≤
Zz2 whenever 0≤ z1 ≤ z2 <∞. In particular, for any z ∈ (0, 1

8 ],
T Z1/8

1 ≤ T Zz

1 ≤ T Z0

1 and σz ≥ σ0 a.s.,(6.4)

where the second inequality follows since

Zz

t∧T Zz

1
≥Z0

t∧T Z0
1

≥ tη

4
∀t ∈ [0, σ0].

Hence, by (6.4), we have

sup
z∈(0,1/8]

P
(
σz ∧ T Zz

1 ≤ δ
)≤ sup

z∈(0,1/8]
P(σz ≤ δ)+ sup

z∈(0,1/8]
P
(
T Zz

1 ≤ δ
)

≤ P(σ0 ≤ δ)+ P
(
T Z1/8

1 ≤ δ
) ∀δ ∈ (0,∞).

Applying the lower escape rate (6.2) to the right-hand side of the foregoing in-
equality shows that

∀ρ > 0 ∃δ > 0 such that sup
z∈(0,1/8]

P
(
σz ∧ T Zz

1 ≤ δ
)≤ ρ.

Using the foregoing display and the distributional property of Xi(1)T
Xi

1 under Qi
ε ,

for i ∈N and ε ∈ (0, [8ψ(1)]−1 ∧ 1] mentioned above, we have proved our asser-
tion (6.1) for j = 1. �
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LEMMA 6.2. Fix L ∈ (0,∞) and α ∈ (0, 1
2), and let τ i,(2) be the stopping

times defined in Proposition 3.3. Then (6.1) holds for j = 2.

PROOF. As in the proof of Lemma 6.1, we need a grand coupling of all
1
4BESQ4(4z), z ∈ R+, on the same probability space. For the first component of
τ i,(2), we need to measure the modulus of continuity of the martingale part of a
1
4BESQ4 in terms of its quadratic variation. Hence, it will be convenient to extract
all of the 1

4BESQ4(4z)’s, say Zz, from a fixed copy Z of 1
4BESQ4(0), and we

consider Zz
t ≡ ZT Z

z +t for z ∈ R+, where the stopping times T Z
z are finite almost

surely by the transience of BESQ4 (cf. page 442 of [23]). We may further assume
that Z = Z0 and is defined by (6.3). It follows that

Zz
t = z+ t +

∫ T Z
z +t

T Z
z

√
Zs dBs.(6.5)

In this case, the analogues of τ i,(2) are given by, for z ∈ (0, 1
8 ],

σz � inf
{
t ≥ 0; ∣∣Zz

t∧T Zz

1
− z− t

∣∣> L

(∫ t

0
Zz

s∧T Zz

1
ds

)α}
∧ T Zz

1

= inf
{
t ≥ 0;

∣∣∣∣∫ (T Z
z +t)∧T Z

1

T Z
z

√
Zs dBs + (t ∧ T Zz

1 − t
)∣∣∣∣(6.6)

> L

[∫ (T Z
z +t)∧T Z

1

T Z
z

Zs ds + (t ∧ T Zz

1 − t
)]α}∧ T Zz

1 ,

where the last equality follows from (6.5) and the obvious equality
T Z

z + T Zz

1 = T Z
1 .

Let us bound the distribution function of σz. By the Dambis–Dubins–Schwarz
theorem (cf. Theorem V.1.6 of [23]),

√
Z •B = B ′〈Z〉 for some standard Brownian

motion B ′, where 〈Z〉 = ∫ ·0 Zs ds. Also,

0 <

∫ (T Z
z +t)∧T Z

1

T Z
z

Zs ds ≤ t if t > 0,

where the first inequality follows since {0} is polar for BESQ4 (cf. page 442 of
[23]). Hence, from (6.6), we deduce that, for any H,δ ∈ (0,∞),

sup
z∈(0,1/8]

P(σz ≤ δ)

(6.7)

≤ P
(
T Z

1 > H
)+ P

(
sup

0<|t−s|≤2δ
0≤s<t≤H

|B ′t −B ′s |
|t − s|α > L

)
+ P
(
T Z1/8

1 ≤ δ
)

[for the third probability, recall the inequalities for hitting times of 1 by BESQ4

in (6.4)].



SPDES OF SUPER-BROWNIAN MOTIONS WITH IMMIGRATION 3451

Let us make the dependence on δ of the second probability of (6.7) explicit. For
the fixed α ∈ (0, 1

2), we pick α′ ∈ (0, 1
2) and p > 1 such that α < α′ < p−1

2p
. Then

applying Chebyshev’s inequality to the second term on the right-hand side of (6.7),
we get

sup
z∈(0,1/8]

P(σz ≤ δ)

≤ P
(
T Z

1 > H
)+ (2δ)2p(α′−α)

L2p
E
[(

sup
0≤s<t≤H

|B ′t −B ′s |
|t − s|α′

)2p]
(6.8)

+ P
(
T Z1/8

1 ≤ δ
) ∀H,δ ∈ (0,∞),

where

E
[(

sup
0≤s<t≤H

|B ′t −B ′s |
|t − s|α′

)2p]
<∞(6.9)

(cf. the discussion preceding Theorem I.2.2 of [23] as well as its Theorem I.2.1).
By the transience of BESQ4, the first probability on the right-hand side

of (6.8) can be made as small as possible by choosing sufficiently large H .
Since (σψ(1)ε,P) and (τ i,(2),Pε) have the same distribution and ψ(1)ε ≤ 1

8 , (6.8)
and (6.9) are enough to obtain (6.1) for j = 2. The proof is complete. �

It remains to prove (6.1) for j = 3. We need a few preliminary results.

LEMMA 6.3. Fix i ∈N and ε ∈ (0, [8ψ(1)]−1 ∧ 1]. Then

EQi
ε

[(
sup

r∈[0,R]

∑
j : si<tj≤si+r

Y
j
si+r (1)

)p]
<∞ ∀p,R ∈ (0,∞).(6.10)

PROOF. Plainly, it suffices to consider p > 1. By Lemma 3.1, we have

EQi
ε

[(
sup

r∈[0,R]

∑
j : si<tj≤si+r

Y
j
si+r (1)

)p]

= 1

ψ(1)ε
EPε

[
Xi

si+R(1)T
Xi

1

(
sup

r∈[0,R]

∑
j : si<tj≤si+r

Y
j
si+r (1)

)p]

≤ 1

ψ(1)ε
EPε

[(
sup

r∈[0,R]

∑
j : si<tj≤si+r

Y
j
si+r (1)

)p]

≤ 1

ψ(1)ε
EPε

[( ∑
j : si<tj≤si+R

sup
t∈[tj ,si+R]

Y
j
t (1)

)p]
(6.11)
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≤ 1

ψ(1)ε
#{j ; si < tj ≤ si +R}p−1

× ∑
j : si<tj≤si+R

EPε

[(
sup

t∈[tj ,si+R]
Y

j
t (1)

)p]
,

where the last inequality follows from Hölder’s inequality. Since each Y j (1) under
Pε is a Feller diffusion with initial value ψ(1)ε and started at tj , the summands on
the right-hand side of (6.11) are finite. This gives (6.10), and the proof is complete.

�

Next, we recall the canonical decomposition of Y j (1) for tj > si under Qi
ε in

Lemma 3.2(2). Recall (2.73) and the explicit form (3.6) of the finite variation pro-
cess I j of Y j (1) under Qi

ε . Then by the Cauchy–Schwarz inequality, we deduce
that ∑

j : si<tj≤t

(
ψ(1)ε+ I

j
t

)

≤ψ(1)ε#{j ; si < tj ≤ t} +
∫ t∧T Xi

1

si

(∑
j : si<tj≤t Y

j
s (1)

Xi
s(1)

)1/2

ds

(6.12)

≤ 2ψ(1)(t − si)+
∫ t∧T Xi

1

si

(∑
j : si<tj≤s Y

j
s (1)

Xi
s(1)

)1/2

ds

∀t ∈ [si,∞).

Here, the last inequality follows since for t ≥ si+ ε
2 , si+ε(#{j ; si < tj ≤ t}− 1

2)≤
t and the clusters Y j with s < tj ≤ t have no contributions to

∑
j : si<tj≤t Y

j
s (1).

Also, recall that Mj denotes the martingale part of Y j (1) under Qi
ε , and the

super-Brownian motions Y j are Pε-independent by Theorem 2.12. Hence, we de-
duce from Girsanov’s theorem (cf. Theorem VIII.1.4 of [23]) that〈 ∑

j : si<tj≤·
Mj

〉
t

=
∫ t

si

∑
j : si<tj≤t

Y j
s (1) ds =

∫ t

si

∑
j : si<tj≤s

Y j
s (1) ds

(6.13)
∀t ∈ [si,∞),

where the omission of the clusters Y j for s < tj ≤ t follows from the same reason
as in (6.12).

LEMMA 6.4. Fix i ∈N and ε ∈ (0, [8ψ(1)]−1 ∧ 1]. Then

EQi
ε

[
1

[Xi
si+r (1)]a ; si + r ≤ T Xi

1

]
≤ 1

ra
EP1

0

[
1

(Z1)a

]
∀r, a ∈ (0,∞),(6.14)
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where

EP1
0

[
1

(Z1)a

]
<∞ ⇐⇒ a ∈ (−∞,2).(6.15)

PROOF. Recall the grand coupling of 1
4BESQ4(4z) in the proof of Lemma 6.1

under which Zz1 ≤Zz2 whenever 0≤ z1 ≤ z2. Then for every r, a ∈ (0,∞),

EQi
ε

[
1

[Xi
si+r (1)]a ; si + r ≤ T Xi

1

]
≤ EP1

ψ(1)ε

[
1

(Zr)a

]

≤ EP1
0

[
1

(Zr)a

]

= 1

ra
EP1

0

[
1

(Z1)a

]
,

where the last equality follows from the scaling property of Bessel squared pro-
cesses (cf. Proposition XI.1.6 of [23]). This gives the bound (6.14). In addition,
notice that Z under P1

0 has the same distribution as the image of a 4-dimensional
standard Brownian motion under x �−→ ‖x‖2 where ‖ · ‖ denotes the Euclidean
norm, and so we deduce (6.15) by writing out the expectation on its left-hand side
as an elementary integral in polar coordinates. The proof is complete. �

With Lemma 6.4, we have the following improvement of (6.10).

LEMMA 6.5. Fix i ∈N and ε ∈ (0, [8ψ(1)]−1 ∧ 1]. Then we have

EQi
ε

[ ∑
j : si<tj≤si+r

Y
j
si+r (1)

]

≤
(

2ψ(1)R +EP1
0

[
1

Z1

]1/2

2R1/2
)

exp
(

2EP1
0

[
1

Z1

]1/2√
r

)
(6.16)

∀r ∈ [0,R],R ∈ (0,∞),

where EP1
0[1/Z1]<∞ by (6.15).

PROOF. Recall that the local martingale part of Y j (1) under Qi
ε is a true mar-

tingale by Lemma 3.2(2). Hence, for any r ∈ [0,R], we obtain from (6.12) that

EQi
ε

[ ∑
j : si<tj≤si+r

Y
j
si+r (1)

]

≤ 2ψ(1)r +
∫ si+r

si

EQi
ε

[(∑
j : si<tj≤s Y

j
s (1)

Xi
s(1)

)1/2

; s ≤ T Xi

1

]
ds(6.17)
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≤ 2ψ(1)r

+
∫ si+r

si

EQi
ε

[
1

Xi
s(1)

; s ≤ T Xi

1

]1/2

EQi
ε

[ ∑
j : si<tj≤s

Y j
s (1)

]1/2

ds

≤ 2ψ(1)r

+
∫ si+r

si

1√
s − si

EP1
0

[
1

Z1

]1/2(
1+EQi

ε

[ ∑
j : si<tj≤s

Y j
s (1)

])
ds

≤
(

2ψ(1)R+EP1
0

[
1

Z1

]1/2

2R1/2
)

(6.18)

+EP1
0

[
1

Z1

]1/2 ∫ r

0

1√
s
EQi

ε

[ ∑
j : si<tj≤si+s

Y
j
si+s(1)

]
ds,

where the third inequality follows from Lemma 6.4. With the change of variables
s′ = √s, the foregoing inequality with r replaced by r2 and R by R2 becomes

EQi
ε

[ ∑
j : si<tj≤si+r2

Y
j

si+r2(1)

]

≤
(

2ψ(1)R2 +EP1
0

[
1

Z1

]1/2

2R

)

+ 2EP1
0

[
1

Z1

]1/2 ∫ r

0
EQi

ε

[ ∑
j : si<tj≤si+(s′)2

Y
j

si+(s′)2(1)

]
ds′

∀r ∈ [0,R],
so by Lemma 6.3 and Gronwall’s lemma

EQi
ε

[ ∑
j : si<tj≤si+r2

Y
j

si+r2(1)

]

≤
(

2ψ(1)R2 +EP1
0

[
1

Z1

]1/2

2R

)
exp
(

2EP1
0

[
1

Z1

]1/2

r

)
∀r ∈ [0,R].

With another change of time scales by r ′ = r2, the foregoing gives the desired
inequality (6.16). The proof is complete. �

We are ready to prove (6.1) for j = 3.

LEMMA 6.6. Let τ i,(3) be the stopping times defined in Proposition 3.3.
Then (6.1) holds for j = 3.



SPDES OF SUPER-BROWNIAN MOTIONS WITH IMMIGRATION 3455

PROOF. Fix i ∈N and ε ∈ (0, [8ψ(1)]−1 ∧ 1]. It follows from (6.12) that, for
any R > 0 with 1

3 ≥ 2ψ(1)R, we have

Qi
ε

(
sup

r∈[0,R]

∑
j : si<tj≤si+r

Y
j
si+r (1) > 1

)

≤Qi
ε

(∫ (si+R)∧T Xi

1

si

(∑
j : si<tj≤s Y

j
s (1)

Xi
s(1)

)1/2

ds >
1

3

)

+Qi
ε

(
sup

r∈[0,R]

∣∣∣∣ ∑
j : si<tj≤si+r

M
j
si+r

∣∣∣∣> 1

3

)
(6.19)

≤ 3EQi
ε

[∫ (si+R)∧T Xi

1

si

(∑
j : si<tj≤s Y

j
s (1)

Xi
s(1)

)1/2

ds

]

+ 9 sup
r∈[0,R]

EQi
ε

[( ∑
j : si<tj≤si+r

M
j
si+r

)2]
,

where the first term of the last inequality follows from Chebyshev’s inequality, and
the second term follows by applying Doob’s L2-inequality to the Qi

ε-martingale∑
j : si<tj≤·M

j .

We claim that the right-hand side of (6.19) converges to zero uniformly in i ∈N
and ε ∈ (0, [8ψ(1)ε]−1 ∧ 1] as R −→ 0+. Inspecting the arguments from (6.17)
to (6.18) shows that the first term in (6.19) satisfies

3EQi
ε

[∫ (si+R)∧T Xi

1

si

(∑
j : si<tj≤s Y

j
s (1)

Xi
s(1)

)1/2

ds

]

≤ 3
(

2ψ(1)R+EP1
0

[
1

Z1

]1/2

2R1/2
)

+ 3EP1
0

[
1

Z1

]1/2 ∫ R

0

1√
s
EQi

ε

[ ∑
j : si<tj≤si+s

Y
j
si+s(1)

]
ds.

For the second term on the right-hand side of (6.19), we use (6.13) and obtain

9 sup
r∈[0,R]

EQi
ε

[( ∑
j : si<tj≤si+r

M
j
si+r

)2]

≤
∫ R

0
EQi

ε

[ ∑
j : si<tj≤si+s

Y
j
si+s(1)

]
ds.
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Applying the uniform bound (6.16) to the right-hand sides of the last two displays
shows the existence of a constant C ∈ (0,∞) depending only on ψ such that

Qi
ε

(
sup

r∈[0,R]

∑
j : si<tj≤si+r

Y
j
si+r (1) > 1

)
≤ CR1/2

∀R ∈
(

0,
1

6ψ(1)

]
, i ∈N, ε ∈

(
0,

1

8ψ(1)
∧ 1
]
,

where the restriction on R follows since 1
3 ≥ 2ψ(1)R. The foregoing inequality

proves our claim and is enough for our assertion of the present lemma. �

7. Some properties of support processes. We study the supports of the im-
migrant processes Xi,Y j in this section. Recall that Assumption 3.4 does not ap-
ply to the present section.

PROPOSITION 7.1. There is a constant C0
supp ∈ (0,∞) depending only on the

immigration function ψ and the parameter β ∈ [14 , 1
2) such that

Pε

(
σXi

β − si ≤ r
)+ Pε

(
σY i

β − ti ≤ r
)≤ C0

suppε(r ∨ ε)
(7.1)

∀ε, r ∈ (0,1], i ∈N.

PROOF. The immigrant processes satisfy the SPDE (1.1) with initial condition
taking the form ψ(1)J a

ε [recall that J a
ε is defined by (1.13)]. Hence, Corollary 7.2

of [17] applies to the normalized processes Xi/ψ(1) and Y i/ψ(1) with the pa-
rameter a in equation (7.1) set to be ψ(1)−1/2. Our assertion follows. �

In the remainder of this section, we consider, under Qi
ε , the supports of the

immigrant processes Y j landing by time si + r ∈ (si,∞) and with space–time
locations (yj , tj ) lying outside the rectangle RXi

β (si + r) defined by (3.18). We

start with the immigrants Y j landing before time si .

PROPOSITION 7.2. There exists a constant C1
supp ∈ (0,∞) depending only on

the immigration function ψ such that whenever β ∈ [13 , 1
2),

Qi
ε

(
PXi

β (si + r)∩
( ⋃

j : tj≤si

supp
(
Y j )) �=∅,

min
j : tj≤si

(
σYj

β − tj
)
> 3r, σXi

β − si > 2r

)
≤ C1

suppr
1/6 ∀i ∈N with si ≤ 1, r ∈ [si,1], ε ∈ (0, r].
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The proof of Proposition 7.2 is similar to the proof of Lemma 8.4 in [17] for
γ = 1/2 (note that our notation β is denoted by α there instead), except that in [17]
the immigrant processes are subject to i.i.d. space–time white noises, but in our
case they are not. For this reason, we need a slightly different argument whenever
covariations between the involved immigrants may be nonzero. Roughly speaking,
we will handle the Y j -immigrants which land a bit “far away” from the support
of Xi in both space and time. Since these immigrants do not interfere with Xi

immediately, we can apply orthogonal continuation (Lemma 3.15) to Xi(1) and
then argue as in [17] accordingly.

SKETCH OF PROOF OF PROPOSITION 7.2. We give the details to handle the
Y j -immigrants mentioned above and sketch the rest of the proof. A complete proof
can be found in Section 3.12 of [3].

Fix (β, i, r, ε) as described in the statement of Proposition 7.2. We will argue
throughout this proof on the event that

min
j : tj≤si

(
σYj

β − tj
)
> 3r and σXi

β − si > 2r.(7.2)

Let n0 and n1 be nonnegative integers chosen as equation (8.5) in [17], that is,

2−n0−1 < r ≤ 2−n0 and 2−n1−1 < ε ≤ 2−n1 .(7.3)

Then as in the proof of Lemma 8.4 in [17] [cf. equation (8.8) there], we have{
(yj , tj ); tj ∈ (0, si),PXi

β (si + r)∩ supp
(
Y j ) �=∅

}
(7.4)

⊆ [xi − 7 · 2−n0β, xi + 7 · 2−n0β
]× [0, si).

The inclusion in (7.4) rules out a number of clusters Y j landing before si whose
space–time supports can intersect PXi

β (si + r) by time si + r . In the following, we

handle the remaining immigrant processes Y j for j ∈N with tj < si .
As in the proof of Lemma 8.4 of [17], we classify the clusters Y j for j ∈ N

satisfying tj ∈ (0, si) and yj /∈ [xi − 7 · 2−n0β, xi + 7 · 2−n0β] according to the
space–time landing locations (yj , tj ). Define the following random rectangles

R0
n =

[
xi − 7 · 2−nβ, xi + 7 · 2−nβ]× [si − 2−n+1, si − 2−n],

RL
n =

[
xi − 7 · 2−nβ, xi − 7 · 2−(n+1)β]× [si − 2−n, si

]
,

RR
n =

[
xi + 7 · 2−(n+1)β, xi + 7 · 2−nβ]× [si − 2−n, si

]
,

for nonnegative integers n ≥ n0, and we group the clusters Y j according to these
rectangles by

Y (n),q �
∑

j : tj≤si

1Rq
n
(yj , tj )Y

j , q = L,0,R, n≥ n0.
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Then as in equation (8.11) of [17], the probability under consideration can be
bounded as

Qi
ε

(
PXi

β (si + r)∩
( ⋃

j : tj≤si

supp
(
Y j )) �=∅,

min
j : tj≤si

(
σYj

β − tj
)
> 3r, σXi

β − si > 2r

)

≤Qi
ε

( ∞⋃
n=n1+1

⋃
q=L,0,R

{
PXi

β (si + r)∩ supp
(
Y (n),q) �=∅

})
(7.5)

+
n1∑

n=n0

∑
q=L,0,R

Qi
ε

(
PXi

β (si + r)∩ supp
(
Y (n),q) �=∅,

min
j : tj≤si

(
σYj

β − tj
)
> 3r, σXi

β − si > 2r
)
.

Recall that the landing locations xi and yi have distributions given by (1.15). Then
following the arguments between equations (8.11) and (8.22) in [17], we deduce
that

Qi
ε

( ∞⋃
n=n1+1

⋃
q=L,0,R

{
PXi

β (si + t)∩ supp
(
Y (n),q) �=∅

})≤ Cψεβ,(7.6)

Qi
ε

(
PXi

β (si + r)∩ supp
(
Y (n),0) �=∅,

min
j : tj≤si

(
σYj

β − tj
)
> 3r, σXi

β − si > 2r
)

(7.7)

≤Cψ2−n/6

for some constant Cψ depending only on the immigration function ψ .
It remains to deal with the summands on the right-hand side of (7.5) associated

with Y (n),R for n0 ≤ n ≤ n1 (the probability bounds for Y (n),L follow similarly).
In this case, the Y j summands in Y (n),R can arrive up to si − ε

2 , and hence, Y (n),R

can survive beyond si when the covariation between Y (n),R and Xi may become
nonzero.

Fix n such that n0 ≤ n ≤ n1. Following the argument from equation (8.24) to
equation (8.26) in [17], we deduce that

Qi
ε

(
PXi

β (si + r)∩ supp
(
Y (n),R) �=∅,

min
j : tj≤si

(
σYj

β − tj
)
> 3r, σXi

β − si > 2r
)

(7.8)

≤Qi
ε

(
Y

(n),R
si+2−n(1) > 0, min

j : tj≤si

(
σYj

β − tj
)
> 3r, σXi

β − si > 2r
)
.
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We can use a calculation of Feller diffusions to bound the right-hand side of (7.8).
Let us start with the inequality:

Qi
ε

(
Y

(n),R
si+2−n(1) > 0, min

j : tj≤si

(
σYj

β − tj
)
> 3r, σXi

β − si > 2r
)

≤ 1

ψ(1)ε
EPε
[
Xi

si+2−n(1)T
Xi

1 ;Y (n),R
si+2−n(1) > 0, σXi

β − si > 2−n,(7.9)

σYj

β − si > 2−n,∀(yj , tj ) ∈RR
n

]
,

where the restriction for σYj

β applies since r ≥ si and 2r ≥ 2−n0 ≥ 2−n.
To evaluate the right-hand side of (7.9), we apply orthogonal continuation in the

following way. First, note that under Pε , Xi(1) � [si,∞) and Y (n),R(1) � [si,∞)

are (Gs)s≥si -Feller diffusions with independent starting values by the independent
landing property (2.16). Define a (Gs)s≥si -stopping time σ⊥ by

σ⊥ =
(
σXi

β ∧ ∧
j : tj≤si

σ̂ Y j

β ∧ (si + 2−n))∨ si,

where the (Gs)s≥si -stopping times σ̂ Y j

β are given by

σ̂ Y j

β =
{

σYj

β , (yj , tj ) ∈RR
n ,

∞, otherwise.

Through σ⊥, we control the support propagation of Xi and Y j for (yj , tj ) ∈RR
n .

Note that

PXi

β

(
si + 2−n)∩PY j

β

(
si + 2−n)=∅(7.10)

for any j ∈ N with (yj , tj ) ∈RR
n , since the distance between PXi

(si + 2−n) and

PY j

β (si + 2−n) is given by(
yj − (si + 2−n − tj

)β − ε1/2)− (xi − 2−nβ − ε1/2)
≥ 7 · 2−(n+1)β − [si + 2−n − (si − 2−n)]β − 2−nβ − 2 · 2−nβ

≥ (7 · 2−β − 2β − 3
) · 2−nβ > 0,

where for the first inequality, we recall (7.3) and β ∈ [13 , 1
2). The equality (7.10) im-

plies 〈Xi(1), Y (n),R(1)〉σ⊥ = 0. This allows for orthogonal continuation of Xi(1)

beyond σ⊥ (cf. Lemma 3.15), and thereby we get a (Gs)s≥si -Feller diffusion X̂i

independent of Y (n),R(1) � [si,∞) and satisfying X̂i = Xi(1) over [si, σ⊥], un-
der Pε .
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We use X̂i to compute the right-hand side of (7.9) and get

Qi
ε

(
Y

(n),R
si+2−n(1) > 0, min

j : tj≤si

(
σYj

β − tj
)
> 3r, σXi

β − si > 2r
)

≤ 1

ψ(1)ε
EPε
[
Xi

si+2−n(1)T
Xi

1 ;Y (n),R
si+2−n(1) > 0, σ⊥ = si + 2−n]

= 1

ψ(1)ε
EPε
[(

X̂i
si+2−n

)T X̂i

1 ;Y (n),R
si+2−n(1) > 0, σ⊥ = si + 2−n](7.11)

≤ 1

ψ(1)ε
EPε
[(

X̂i
si+2−n

)T X̂i

1 ;Y (n),R
si+2−n(1) > 0

]
= Pε

(
Y

(n),R
si+2−n(1) > 0

)
,

where the last quantity follows from the independence of X̂i and Y (n),R and the
martingale property of X̂i , both under Pε . With an argument similar to equa-
tion (8.22) in [17], we have

Pε

(
Y

(n),R
si+2−n(1) > 0

)
≤ Pε

(
Y (n),R

si
≥ 2−n(1+β−1/6))+ 2 · 2n · 2−n(1+β−1/6)

≤ψ(1)ε2n(1+β−1/6)#
{
j ∈N; si − 2−n ≤ tj < si

} · ‖ψ‖∞
ψ(1)

14 · 2−nβ(7.12)

+ 2 · 2−n(β−1/6)

≤ (28‖ψ‖∞ + 2
)
2−n/6,

where the last inequality follows since β ≥ 1
3 and #{j ∈ N; si − 2−n ≤ tj < si} ≤

ε−12−n + 1. Then we apply (7.11) and (7.12) to bound the probability on the
right-hand side of (7.8). By symmetry, the resulting bound also holds when Y (n),R

is replaced by Y (n),L. We have shown that, by enlarging the constant Cψ for (7.6)
and (7.7) if necessary,

Qi
ε

(
PXi

β (si + r)∩ supp
(
Y (n),q) �=∅,

min
j : tj≤si

(
σYj

β − tj
)
> 3r, σXi

β − si > 2r
)

(7.13)

≤ Cψ2−n/6, q = L,R,∀n0 ≤ n≤ n1.

We apply (7.6), (7.7) and (7.13) to (7.5). This gives the conclusion that

Qi
ε

(
PXi

β (si + r)∩
( ⋃

j : tj≤si

supp
(
Y j )) �=∅,

min
j : tj≤si

(
σYj

β − tj
)
> 3r, σXi

β − si > 2r

)
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≤ Cψεβ +
n1∑

n=n0

(3Cψ)2−n/6

≤ Cψεβ +
[( ∞∑

n=0

(3Cψ)2−n/6

)
· 21/6

]
· 2(−n0−1)/6.

Since 2−n0−1 ≤ r by (7.3) an εβ ≤ rβ ≤ r1/6, our assertion follows from the last
inequality. �

Finally, we deal with the simple case where the clusters land after the landing
time si of Xi but outside the rectangle RXi

β (si + r) defined by (3.18).

LEMMA 7.3. Let r ∈ (0,∞). Then for any j ∈ N with tj ∈ (si, si + r] and

|yj − xi |> 2(ε1/2 + rβ), PXi

β (si + r)∩PY j

β (si + r)=∅.

PROOF. We only consider the case that xi < yj , as the other case follows by

symmetry. Note that the distance between PXi

β (si + r) and PY j

β (si + r) is strictly
positive since (

yj − (si + r − tj )
β − ε1/2)− (xi + rβ + ε1/2)

> 2ε1/2 + 2rβ − (si + r − tj )
β − rβ − 2ε1/2

≥ 2rβ − rβ − rβ = 0.

It follows that PXi

β (si + r) and PY j

β (si + r) are disjoint. �

8. Improved modulus of continuity. In this section, we study pointwise
modulus of continuity for bounded Borel-measurable functions satisfying certain
Gronwall-type integral inequalities.

THEOREM 8.1. Let T ∈ (0,∞). Suppose that (ft )t∈[0,T ] is a real-valued
bounded Borel-measurable function such that for some b, a ∈ (0,∞) and
C,B,A ∈R+ which are all independent of t ∈ [0, T ], we have

|ft − f0| ≤ C +Btb +A

(∫ t

0
|fs |ds

)a

∀t ∈ [0, T ].(8.1)

Set ‖f ‖∞ � sups∈[0,T ] |ft | and Da � 2a−1 ∨ 1. Then for any n ∈N,

|ft − f0| ≤ C +Btb

+ (Da)
2n

n∑
j=1

[∏j
k=1(A)a

k−1 ·∏j−1
k=1(Da)

2(n−k)ak · (|f0| +C)a
j∏j−1

k=1(ak + 1)a
j−k

]
taj(8.2)
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+ (Da)
2n

n∑
j=1

[∏j
k=1(A)a

k−1 ·∏j−1
k=1(Da)

2(n−k)ak · (B/(b+ 1))a
j∏j−1

k=1(bk + 1)a
j−k

]
tbj

+ (Da)
2n

[
(A)cn ·∏n

k=1(Da)
2(n−k)ak · ‖f ‖an+1

∞∏n
k=1(ak + 1)a

n−k+1

]
tan+1 ∀t ∈ [0, T ],

with the convention that
∏0

k=1 ≡ 1, where the sequences {ak}, {bk}, and {ck} are
given by

ak =
k∑

j=1

aj , bk =
k−1∑
j=1

aj + (b+ 1)ak and ck =
k∑

j=0

aj(8.3)

with the convention that
∑0

j=1 ≡ 0.

PROOF. By (8.3), we can characterize the sequences {ak}, {bk} and {ck} alter-
natively by the equations:

a1 = a, ak+1 = a(ak + 1),

b1 = (b+ 1)a, bk+1 = a(bk + 1),(8.4)

c1 = a + 1, ck+1 = ack + 1.

We use these identifications in the following argument.
We prove the theorem by an induction on n ∈ N. We will need the following

elementary inequality: for any n ∈N with n≥ 2,(
n∑

j=1

xj

)a

≤ (Da)
n−1

(
n∑

j=1

xa
j

)
∀x1, . . . , xn ∈R+.(8.5)

Consider (8.2) for n= 1. Note that (8.1) implies

|ft − f0| ≤ C +Btb +A‖f ‖a∞ta ∀t ∈ [0, T ].(8.6)

Apply (8.6) to (8.1), and we obtain

|ft − f0|
≤ C +Btb +A

(
|f0|t +

∫ t

0

(
C +Bsb +A‖f ‖a∞sa)ds

)a

=C +Btb +A

((|f0| +C
)
t + B

b+ 1
tb+1 + A‖f ‖a∞

a + 1
ta+1

)a

≤ C +Btb

+A · (Da)
2
[(|f0| +C

)a
ta +

(
B

b+ 1

)a

t(b+1)a +
(

A‖f ‖a∞
a + 1

)a

t(a+1)a

]
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= C +Btb

+ (Da)
2
[
A
(|f0| +C

)a
ta1 +A

(
B

b+ 1

)a

tb1 + (A)a+1‖f ‖a2

∞
(a + 1)a

ta2

]
,

where the second inequality follows from (8.5). This proves (8.2) for n= 1.
Suppose that (8.2) holds for some n ∈N. Then for any t ∈ [0, T ], we have∫ t

0
|fs |ds

≤ |f0|t +
∫ t

0
|fs − f0|ds

≤ (|f0| +C
)
t + B

b+ 1
tb+1

+ (Da)
2n

×
n∑

j=1

[∏j
k=1(A)a

k−1 ·∏j−1
k=1(Da)

2(n−k)ak · (|f0| +C)a
j∏j−1

k=1(ak + 1)a
j−k

]
1

(aj + 1)
taj+1

+ (Da)
2n

×
n∑

j=1

[∏j
k=1(A)a

k−1 ·∏j−1
k=1(Da)

2(n−k)ak · (B/(b+ 1))a
j∏j−1

k=1(bk + 1)a
j−k

]
1

bj + 1
tbj+1

+ (Da)
2n

[
(A)cn ·∏n

k=1(Da)
2(n−k)ak · ‖f ‖an+1

∞∏n
k=1(ak + 1)a

n−k+1

]
1

an+1 + 1
tan+1+1,

where the right-hand side is a sum of 2n+3 many terms (there are 2n terms in total
under the two summation signs). Recall the recursive equations in (8.4). Applying
(8.1) and (8.5) for n replaced by 2n+ 3 to the foregoing inequality, we obtain, for
every t ∈ [0, T ],
|ft − f0|

≤ C +Btb +A · (Da)
2n+2(|f0| +C

)a
ta +A · (Da)

2n+2
(

B

b+ 1

)a

t(b+1)a

+A · (Da)
2n+2 · (Da)

2na

×
n∑

j=1

[∏j+1
k=2(A)a

k−1 ·∏j
k=2(Da)

2[(n+1)−k]ak · (|f0| +C)a
j+1∏j−1

k=1(ak + 1)a
(j+1)−k

]

× 1

(aj + 1)a
taj+1

+A · (Da)
2n+2 · (Da)

2na
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×
n∑

j=1

[∏j+1
k=2(A)a

k−1 ·∏j
k=2(Da)

2[(n+1)−k]ak · (B/(b+ 1))a
j+1∏j−1

k=1(bk + 1)a
(j+1)−k

]

× 1

(bj + 1)a
tbj+1

+A · (Da)
2n+2 · (Da)

2na

[
(A)cna ·∏n+1

k=2(Da)
2[(n+1)−k]ak · ‖f ‖an+2

∞∏n
k=1(ak + 1)a

(n+1)−k+1

]

× 1

(an+1 + 1)a
tan+2 .

Then the rest follows by writing the right-hand side of the foregoing inequality
into the desired form:

|ft − f0|
≤C +Btb +A · (Da)

2n+2(|f0| +C
)a

ta +A · (Da)
2n+2

(
B

b+ 1

)a

t(b+1)a

+ (Da)
2n+2

×
n∑

j=1

[∏j+1
k=1(A)a

k−1 ·∏j
k=1(Da)

2[(n+1)−k]ak · (|f0| +C)a
j+1∏j

k=1(ak + 1)a
(j+1)−k

]
taj+1

+ (Da)
2n+2

×
n∑

j=1

[∏j+1
k=1(A)a

k−1 ·∏j
k=1(Da)

2[(n+1)−k]ak · (B/(b+ 1))a
j+1∏j

k=1(bk + 1)a
(j+1)−k

]
tbj+1

+ (Da)
2n+2

[
(A)cn+1 ·∏n+1

k=1(Da)
2[(n+1)−k]ak · ‖f ‖an+2

∞∏n+1
k=1(ak + 1)a

(n+1)−k+1

]
tan+2

= C +Btb

+ (Da)
2n+2

×
n+1∑
j=1

[∏j
k=1(A)a

k−1 ·∏j−1
k=1(Da)

2[(n+1)−k]ak · (|f0| +C)a
j∏j−1

k=1(ak + 1)a
j−k

]
taj

+ (Da)
2n+2

×
n+1∑
j=1

[∏j
k=1(A)a

k−1 ·∏j−1
k=1(Da)

2[(n+1)−k]ak · (B/(b+ 1))a
j∏j−1

k=1(bk + 1)a
j−k

]
tbj

+ (Da)
2n+2

[
(A)cn+1 ·∏n+1

k=1(Da)
2[(n+1)−k]ak · ‖f ‖an+2

∞∏n+1
k=1(ak + 1)a

(n+1)−k+1

]
tan+2 .
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This proves our assertion for (8.2) when n is replaced by n+ 1, and the proof is
complete by mathematical induction. �

COROLLARY 8.2 (Improved modulus of continuity). Let T ∈ (0,1], a ∈
(0, 1

2), and B,A ∈ R+. If (ft )t∈[0,T ] is a real-valued Borel-measurable func-
tion uniformly bounded by 1 and satisfies (8.1) with C = 0 and b = 1, then for
ξ ′ ∈ (0,1) and N ′ ∈N satisfying

∑N ′
j=1 aj ≤ ξ ′ <∑N ′+1

j=1 aj , we have

|ft − f0| ≤
[(

A1/(1−a) + 1
) N ′∑
j=1

|f0|aj

]
ta

+
[
B + (A1/(1−a) + 1

) N ′∑
j=1

(
B

2

)aj

+A1/(1−a) + 1

]
tξ
′

(8.7)

∀t ∈ [0, T ].

PROOF. We simplify the right-hand side of (8.2) with elementary alge-
bra, using the present assumptions. First, Da = 1 since a ∈ (0, 1

2). Next, since∑j
k=1 ak−1 ≤ 1

1−a
for all j ∈N, we have

j∏
k=1

Aak−1 ≤A1/(1−a) + 1, 1≤ j ≤ n and Acn ≤A1/(1−a) + 1.(8.8)

Finally, let us handle the exponents bj in the second sum in (8.2). Using b= 1 and
the definition of {bk} in (8.3), we obtain

bk = a(1− ak−1)

1− a
+ 2ak = a − ak + 2ak − 2ak+1

1− a

= a + ak(1− 2a)

1− a
↘ a

1− a
=

∞∑
j=1

aj

as k tends to infinity since a ∈ (0, 1
2). The inequality (8.7) follows by applying the

above observations to (8.2). The proof is complete. �
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