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LOCAL TIME ON THE EXCEPTIONAL SET OF DYNAMICAL
PERCOLATION AND THE INCIPIENT INFINITE CLUSTER

BY ALAN HAMMOND1, GÁBOR PETE2 AND ODED SCHRAMM

University of Oxford, Technical University of Budapest and Microsoft Research

In dynamical critical site percolation on the triangular lattice or bond per-
colation on Z2, we define and study a local time measure on the exceptional
times at which the origin is in an infinite cluster. We show that at a typical
time with respect to this measure, the percolation configuration has the law
of Kesten’s incipient infinite cluster. In the most technical result of this paper,
we show that, on the other hand, at the first exceptional time, the law of the
configuration is different. We believe that the two laws are mutually singular,
but do not show this. We also study the collapse of the infinite cluster near
typical exceptional times and establish a relation between static and dynamic
exponents, analogous to Kesten’s near-critical relation.
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1. Introduction. Critical planar percolation is a central object of probability
theory and statistical mechanics; see [16, 43] for background. The best understood
example is Bernoulli(1/2) site percolation on the triangular lattice T, where con-
formal invariance and hence convergence of interfaces to SLE6 is known [8, 35,
38, 39]. Nevertheless, many results are known for critical bond percolation on Z2

and other nice lattices, as well. In particular, almost everything in the present paper
will apply equally to site percolation on T and bond percolation on Z2.

In dynamical percolation, a model introduced independently by Häggström,
Peres and Steif [17] and Itai Benjamini, the status of each bit (site or bond) is con-
tinuously and independently resampled from the Bernoulli(p) measure, at times
given by independent Poisson clocks of rate one. We will always consider site per-
colation on T and bond percolation on Z2, at the critical value p = pc = 1/2. One
of the principal reasons that dynamical percolation is interesting is that it provides
a natural coupling of an uncountable number of copies of the underlying percola-
tion process, and there may exist some exceptional instances of these copies that
satisfy certain events that have zero probability in static percolation. The existence
(or nonexistence) of such exceptional times is called dynamical sensitivity (or sta-
bility) of the event, and the key event in question is of course the existence of
an infinite cluster. See [41] for a survey, but here is a brief summary of the sub-
ject. It was proved in [17] that for p �= pc on any graph, both the existence and
nonexistence of infinite clusters are dynamically stable; then, dynamical stability
of nonexistence also holds at p = pc on Zd with d ≥ 19 and on regular trees;
and finally, there exist nonregular but spherically symmetric trees with no infinite
clusters at pc in static percolation, but with exceptional times in dynamical perco-
lation. See [27, 33] for more recent results on trees. The first example of dynamical
sensitivity at pc in a transitive graph was given by Schramm and Steif [37], prov-
ing it for the triangular lattice T. This paper used discrete Fourier analysis, a tool
that was introduced by Benjamini, Kalai and Schramm [4] for the closely related
problem of noise sensitivity of percolation. This technique was further developed
in [13], proving that the set of exceptional times almost surely has Hausdorff di-
mension 31/36 and showing dynamical sensitivity of critical percolation also for
bond percolation on Z2. Further studies of dynamical sensitivity and stability in-
clude [1, 5, 6] for percolation type processes, [7] and [10], Section 5, for Ising and
random cluster Glauber dynamics and [3, 11, 21] for some other processes.

The rare appearances of infinite structure at the exceptional times are remi-
niscent of the incipient infinite cluster, a term used by physicists to refer to the
large-scale connected structure present in critical percolation and defined mathe-
matically by Kesten as follows.

DEFINITION 1.1. The incipient infinite cluster, denoted by IIC, is the weak
limit of the probability measures Ppc(·|0 ↔ n) as n → ∞, provided that the limit
exists.



LOCAL TIME FOR DYNAMICAL PERCOLATION 2951

Here, {0 ↔ n} denotes the event that the open cluster of the origin reaches to
distance n. (We will formulate a precise definition shortly.) The existence of the
IIC for numerous lattices in two dimensions was proved by Kesten [24]. In high
dimensions, properties of IIC and its scaling limits have been investigated in detail
using the lace expansion [19, 20]. In two dimensions, several other natural means
of locating large structures at criticality—such as using the above definition with
the condition 0 ↔ n replaced by the requirement that the open cluster of the origin
have size at least n, or the weak limit as n → ∞ of the largest cluster in [−n,n]2

viewed from a uniformly chosen vertex in the cluster—have been shown to also
be equal to IIC [22]. These results support the view that, at least in dimension two,
any natural means of selecting a limit of large scale critical structure is the IIC.
One may ask then how the IIC may be found in dynamical percolation, and this
question is central to the present paper.

1.1. The first exceptional time. There is one very natural mean of selecting
an exceptional time at which the cluster of the origin in dynamical percolation is
infinite:

DEFINITION 1.2. Consider dynamical percolation {ωt : t ∈ R} at criticality.
Let E denote the random set of times at which the cluster of the origin is infinite.
We define the first exceptional time FET to be inf{E ∩ (0,∞}). That FET < ∞
almost surely follows from the principal result of [37] for T and from [13] for Z2.
Note that FET is positive almost surely, since some positive time passes before
there is a change in any bit (be it site or bond) in the boundary of the finite cluster
of the origin in the time zero configuration ω0. The law of ωFET will be denoted
by FETIC, the first exceptional time infinite cluster.

Although it may be a natural candidate for the appearance of the incipient infi-
nite cluster in dynamical percolation, FETIC is not the right choice:

THEOREM 1.3. The laws FETIC and IIC are not equal.

Proving Theorem 1.3 is this paper’s most complex task. Roughly speaking, we
show that the cluster of the origin under FETIC is somewhat thinner than under IIC.
Indeed, as we will state more precisely in the next subsection, while the configu-
ration at a “typical” exceptional time turns out to have the law of IIC, with many
other exceptional times nearby, FET appears at the endpoint of a unit-order inter-
val in which exceptional times are absent; in fact, finite approximations to FETIC
may be constructed by size-biasing dynamical percolation according to the length
of the interval lacking connection from 0 to a high distance R leading up to a mo-
ment of such a connection. As such, FETIC assigns more mass to configurations
which are liable to break apart easily under the perturbation provided by dynami-
cal percolation. What makes the proof difficult is the need to detect this imbalance
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also in the limit R → ∞. We will explain these vague ideas in more detail when
we start proving Theorem 1.3 in Section 4.

We believe that the two measures differ to a greater degree:

CONJECTURE 1.4. The measures FETIC and IIC are singular with respect to
each other.

The above intuitive explanation about how biasing by the length of the waiting
time makes FETIC thinner than IIC might suggest that IIC stochastically dominates
FETIC. However, IIC does not satisfy the FKG inequality (which we shortly re-
view), and so it may be that such a general conclusion does not follow from the
negative conditioning represented by longer waiting times.

QUESTION 1.5. Does IIC stochastically dominate FETIC?

The invasion percolation cluster IPC is an infinite cluster associated to the crit-
ical point which is built by self-organized criticality. It was shown in [9] that IIC
and IPC are singular with respect to each other on Z2. On the other hand, although
IIC dominates IPC on regular trees [2], this is not so on Z2 [34].

It was pointed out to us by Sznitman that, instead of considering the distribution
at the first entry to a given subset of the state space in a Markov process, which
is FETIC in our case, it is often more convenient to study the so-called equilib-
rium measure on the subset. For dynamical percolation on the ball BR and the
subset A := {ζ ∈ {0,1}BR : 0 ↔ R in ζ }, this measure is proportional at ζ ∈ A to
the probability that dynamical percolation started at ζ and stopped at an indepen-
dent exponential time T leaves the set A at the first update and does not return to it
before T . The virtue of considering this measure could be that is has closer connec-
tions to the potential theory of the Markov process (Green’s functions, Dirichlet
forms, etc.; see [42], Section 1.3) than the first entry time; hence it might be easier
to address the analogues of Theorem 1.3, conjecture 1.4 and Question 1.5 for this
measure.

It is proved in [12, 14] that the scaling limit of dynamical percolation on the
triangular lattice exists in an appropriate topology. In this continuum process, as
proved in [12], Theorem 12.4, there exist exceptional times at which there is an
infinite cluster, and the set of such times is almost surely of Hausdorff dimension
31/36, just like in the discrete process. One may ask then how the configurations
at suitably chosen such times are related to the putative scaling limits of IIC and
FETIC. It was pointed out in the last paragraph of [18] that the exceptional sets
of the discrete and the continuum dynamical percolation processes are expected
to exhibit certain differences, hence proving continuum analogues of our discrete
results is unlikely to be completely straightforward.
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1.2. The local time measure and the IIC. Our first effort to seek the IIC in
dynamical percolation was hampered by biasing created by the procedure for se-
lection. In light of this, it is natural to try again by considering the law of the
configuration obtained by selecting an exceptional time at a “uniform” moment.
However, this notion of uniformity requires more structure on the exceptional time
set in order to make sense. For this reason, and because of its intrinsic interest, we
construct a local time measure μ on the exceptional time set E as a weak limit of
certain measures μr on the set of connection times to a large distance r ∈ N.

The simplest construction would be to define an approximative local time μr

for distance r ∈ N by setting

Mr(ω) := 1{0 ↔ r}
P(0 ↔ r)

and μr [a, b] :=
∫ b

a
Mr(ωs) ds,(1.1)

and then hope that these measures have a limit μ[a, b] in some sense, as r → ∞.
However, we have encountered some technical difficulties in trying to prove this
convergence; hence we will rely on the following slightly more complicated, but
still very natural definition, which turns out to be easier to handle.

A local time is supposed to measure how much time the dynamical percolation
process ωs spends near E . For this, we need some notion of how close a percolation
configuration ω is to satisfying 0 ↔ ∞. The simplest such notion was proposed
in (1.1): the existence of a connection to a large distance r . But we seem to get
a more canonical notion by looking at how much a finite piece of the percolation
configuration actually helps in realizing a connection to infinity. Namely, for any
finite set H of bits, we let ωH denote the restriction of ω to H , and define the
random variable

MH(ω) := lim
R→∞

P(0 ↔ R|ωH)

P(0 ↔ R)
.(1.2)

Of course, it is not at all obvious that the limit over R exists. However,

P(0 ↔ R|ωH)

P(0 ↔ R)
= P(0 ↔ R,ωH)

P(0 ↔ R)P(ωH )
= P(ωH |0 ↔ R)

P(ωH )
,(1.3)

whose right-hand side indeed has a weak limit in high R. This is nothing other
than the IIC, whose construction was carried out in dimension two by Kesten [24].
Thus, the limit in (1.2) indeed exists, so that we may define

Mr(ωs) := MBr (ωs), μr [a, b] :=
∫ b

a
Mr(ωs) ds.(1.4)

Note that EMH(ωs) = 1 for any H , hence Eμr [a, b] = b − a, independently
of r , and we may hope to get a nondegenerate random measure in the limit
r → ∞. Moreover, and this is the main advantage of Mr over Mr , the sequence
{μr [a, b]}r∈N is a martingale with respect to the full filtration Fr [a, b] generated
by {ωBr

s : s ∈ [a, b]}; see (2.1) in Section 2 for the proof. Thus, martingale conver-
gence results can be used to prove the following:
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THEOREM 1.6. The limit μ[a, b] = limr→∞ μr [a, b] of (1.4) exists almost
surely, simultaneously for all a, b ∈ R; moreover, the convergence holds in L2 for
any interval [a, b].

Assuming that the limit μ[a, b] = limr→∞ μr [a, b] of (1.1) exists in L2 for all
a, b ∈ R, the two local time measures obtained this way almost surely coincide:
μ[a, b] = μ[a, b] for all a, b ∈ R.

So, we now have a measure from which we wish to sample uniformly to obtain
a candidate for a law coinciding with IIC. However, μ is a σ -finite measure on R
so that further work is needed to make valid the notion of sampling a uniform point
with respect to the measure. The next two theorems give constructions of such a
point and show that indeed the law of the configuration at the selected time is IIC.

THEOREM 1.7 (Quenched sampling). For almost every realization of the
dynamical percolation process {ωs : s ∈ [0,∞)} and the corresponding local
time measure μ, there exists some T0 < ∞ such that for all T > T0 we have
μ[0, T ] > 0. For such T , let χT be a random point from [0, T ] with law μ/μ[0, T ].
Then, for almost all {ωs : s ∈ [0,∞)}, the configuration ω(χT ) converges in law
to IIC, as T → ∞.

THEOREM 1.8 (Annealed sampling). (a) For any fixed T > 0, let {ω∗
s : s ∈

[0, T ]} be dynamical percolation reweighted (size-biased) by μ[0, T ]. Let χ∗
T be a

random time from [0, T ] with law μ/μ[0, T ] for μ = μ(ω∗). Then the configura-
tion ω∗(χ∗

T ) has the distribution of the IIC.
(b) Given a sample of μ = μ(ω) on R, let �μ be the Poisson point process with

intensity μ. One can make sense of conditioning (ω,�μ(ω)) on 0 ∈ �μ(ω); this is
called (ω∗,�∗

μ), the Palm version of (ω,�μ). Then ω∗
0 has the law of the IIC.

A concrete means of realizing the Palm version of (ω,�μ) from dynamical
percolation ω is Liggett’s extra head construction, which we will describe in Sec-
tion 3; see Figure 2.

Another application of the local time μ could be to run the dynamical perco-
lation process ω according to μ(ω). It should be possible to consider this time-
changed dynamical percolation as a Markov process on configurations satisfying
0 ↔ ∞, with stationary measure IIC; however, even the definition of the right state-
space is unclear, especially if one wants IIC to be the unique stationary measure.
We will not study these questions here.

1.3. Structure of the paper. In the rest of this Introduction, we summarize the
necessary background in static and dynamical critical percolation. In Section 2, we
prove Theorem 1.6, and collect some properties of the finite and the limiting local
time measures μr , μr , μ. We then locate the IIC using the local time, proving The-
orems 1.7 and 1.8 in Section 3. The more substantial Section 4 is devoted to telling
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apart FETIC and IIC, with a thinning procedure on bounded configurations being
introduced and analyzed in order to prove Theorem 1.3. The proof of Theorem 1.3
in fact exploits our identification of the IIC in dynamical percolation because the
proof considers a uniform right-hand endpoint of a period of connection 0 ↔ R

and examines how long it takes for this connection to be reestablished as time
advances; in finding an answer, we will exploit the fact that the law of the config-
uration in BR at this endpoint time is a close relative of critical percolation given
0 ↔ R (and thus also of IIC). Section 5 contains Theorem 5.1, a result addressing
the question of how instances of the IIC embedded within dynamical percolation
typically collapse as the time parameter is tuned at short distances to the moment
at which the IIC appears.

As mentioned above, all our results apply equally to critical site percolation on
the triangular lattice T and critical bond percolation on Z2, except for the existence
and values of some critical exponents, of course, but we will formulate our results
without using these exponents. For the sake of definiteness, we will work with
critical site percolation on T, or rather, with critical percolation on the faces of the
dual hexagonal lattice.

1.4. Notation and percolation background. Let e1 and e2 denote the Euclidean

unit vectors. The lattice in R2 with generators e1 and 1
2e1 +

√
3

2 e2 induces a Voronoi
tiling of the plane whose faces are hexagons. We refer to the set of these hexagons,
with the adjacency relation given by two hexagons sharing a common edge, as the
hexagonal lattice H. The hexagon centred at the origin will be denoted by 0. Note
that the set of hexagons intersecting the x-axis forms a bi-infinite simple path.
Define d :H×H −→ N to be graphical distance, and set BR = {h ∈H :d(0, h) ≤
R} for R ∈ N. For R1,R2 ∈ N such that R1 < R2, write AR1,R2 = BR2 \ BR1 for
the annulus with inner and outer radii R1 and R2. The (outer) boundary of a set
A ⊂ H is ∂A := {h ∈ H \ A :d(h,A) = 1}.

In critical percolation on H, each h ∈ H is independently open or closed with
probability one-half. The set {0,1}H of percolation configurations is equipped with
the usual product topology, and the events are the subsets A ⊆ {0,1}H that are
measurable with respect to the corresponding Borel sigma-algebra. For a, b ∈ H,
we write a ↔ b for the event that an open path of hexagons connects a and b. For
A,B ⊆ H, we write A ↔ B if there exist a ∈ A and b ∈ B such that a ↔ b. For
R1,R2 ∈ N such that 1 ≤ R1 < R2, we write R1 ↔ R2 to indicate that ∂BR1 ↔
∂Bc

R2
. For R ∈ N, we also write 0 ↔ R for 0 ↔ ∂Bc

R .
The open cluster of 0, {h ∈ H : 0 ↔ h}, will be denoted by C0.
We will use the notation α1(R1,R2) := P(R1 ↔ R2) and α1(R) := α1(1,R),

this being the one-arm probability. Furthermore, α4(R1,R2) denotes the alter-
nating four-arm probability: the probability that there are two open and two
closed paths connecting ∂BR1 and ∂Bc

R2
, in an alternating order: open-closed-

open-closed. Again, α4(R) := α4(1,R).
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Given a percolation configuration ω ∈ {0,1}H and an event A ⊆ {0,1}H, we call
a hexagon h pivotal for A in ω if changing the status of h changes the outcome of
the event. The set of pivotal hexagons will be denoted by PivA(ω). For instance,
note that h is pivotal for the left–right crossing event in a rectangular region of H
if and only if there are four alternating arms connecting h to the corresponding
sides of the rectangle.

Let us now recall some standard tools in percolation theory [43].

The Harris–FKG inequality. The set {0,1}H of percolation configurations on
the hexagonal lattice has a natural partial order ≤. A percolation event A ⊆ {0,1}H
is called increasing if ω ∈ A and ω ≤ ω′ implies that ω′ ∈ A. The inequality of
Harris and Fortuin, Kesteleyn and Ginibre states that if A and B are increasing
events, then P(A∩B) ≥ P(A)P(B). In other words, the percolation measure has
positive associations.

RSW estimates. For any L > 0, there exists a constant cL > 0 such that the
probability of an open path in critical percolation between the left and right-hand
sides of the region H ∩ [0,Ln] × [0, n] is at least cL, independently of n.

Quasi-muliplicativity of arm probabilities. For 	 ∈ {1,4}, there exists a con-
stant 0 < c	 such that, for any radii R1 < R2 < R3, we have

c	 <
α	(R1,R3)

α	(R1,R2)α	(R2,R3)
≤ 1.(1.5)

The right-hand inequality is trivial; for 	 = 1, the left-hand one is a simple con-
sequence of FKG and RSW; for 	 = 4, more work is needed, done in [25]; see
also [32, 37]. Similarly to quasi-multiplicativity, one can show that we lose only
a constant factor in probability if we require our four alternating arms to have
their endpoints on nice prescribed arcs of the boundary. This implies the following
bounds on the number of pivotals: if A(R) is the left–right crossing event in the
square [0,R]2, then E|PivA(R)| � α4(R)R2, and if A(R1,R2) is the annulus cross-
ing event R1 ↔ R2 with R1 < R2/2, then E|PivA(R1,R2)| � α1(R1,R2)α4(R2)R

2
2 ,

with absolute constant factors. Both upper bounds use the fact that there are not
many pivotals close to a smooth boundary, which follows from some simple results
on arm probabilities in the half-plane; see, for example, the beginning of [13], Sec-
tion 7.2.

For critical percolation on H, we also know the existence and values of
critical exponents: α1(R1,R2) = (R1/R2)

5/48+o(1) by [28], and α4(R1,R2) =
(R1/R2)

5/4+o(1) by [40], as R2/R1 → ∞. In particular, E|PivA(R)| = R3/4+o(1)

as R → ∞. On Z2, we have the bounds

C−1(r/R)2−η ≤ α4(r,R) ≤ C(r/R)1+η(1.6)



LOCAL TIME FOR DYNAMICAL PERCOLATION 2957

for some fixed constants C > 0, η ∈ (0,1) and every 1 ≤ r ≤ R. See [36], Ap-
pendix B, and the references at [13], equation (2.6). Consequently, with some dif-
ferent value of the constant C,

C−1Rη ≤ E|PivA(R)| ≤ CR1−η.(1.7)

The near-critical window. One can consider monotone versions of dynamical
percolation, in which dynamical updates lead always either to the closure or to
the opening of hexagons. These give couplings between dynamical and off-critical
percolation (and also a coupling of percolation measures at different densities), and
therefore information on off-critical percolation can yield bounds on dynamical
percolation questions. We will use these relations (which turn out to be sharp)
several times.

Kesten found the near-critical window of percolation precisely [25] (see [32, 43]
for more modern accounts): for a system of linear size R, the window is given by
the reciprocal of the expected number of pivotals for the left–right crossing event
A(R) at criticality. More precisely, for the annulus crossing event A(R,2R), as
R → ∞, we have

Ppc±ε(A(R,2R))

Ppc(A(R,2R))
→ 1 if ε � 1

E|PivA(R)| ,(1.8)

while

δ < Ppc±ε

(
A(R,2R)

)
< 1 − δ if ε � 1

E|PivA(R)| ,(1.9)

with δ ∈ (0,1) depending only on the constant factors giving the size of ε, and
finally,

Ppc+ε

(
A(R,2R)

) →

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if ε � 1

E|PivA(R)| ,

0, if −ε � 1

E|PivA(R)| .
(1.10)

Kesten also proved the stability of one-arm and alternating four-arm probabilities
inside the window

Ppc±ε(A	(1,R))

Ppc(A	(1,R))
→ 1 if ε � 1

E|PivA(R)| ,
(1.11)

� 1 if ε � 1

E|PivA(R)| ,

for 	 ∈ {1,4}. The ε � 1/E|PivA(R)| case of (1.11) and (1.8) are not stated explic-
itly in [25], but they clearly follow from Kestne’s proof using differential inequal-
ities.
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Using the stability of the 1-arm and 4-arm probabilities in the near-critical win-
dow, he also found the off-critical exponent, a relation usually called Kesten’s
scaling relation [25], Corollary 1,

Ppc+ε(0 ←→ ∞) � α1
(
ρ(1/ε)

)
,(1.12)

where ρ(r) := inf{s ∈ N+ : s2α4(s) ≥ r} for r ≥ 1, the inverse function of R �→
E|PivA(R)|. We have ρ(r) = r4/3+o(1) on H, and C−1rη ≤ ρ(r) ≤ Cr1/η for some
0 < η,C < ∞ on Z2, by (1.7). Note here that Kesten formulated his result in
terms of critical exponents, which would not be enough for us later because of
the unspecified o(1) terms in the exponent, but the proof clearly gives the stronger
result we stated; see [43], Chapter 6.

Dynamical percolation and a dynamical FKG inequality. As mentioned
above, we will consider dynamical critical percolation with updates from the sta-
tionary distribution (resampling the bits) at times given by Poisson clocks of rate
one, with time indexed by R, and, just for the sake of definiteness, with càdlàg
trajectories.

We will need the following extension of the FKG inequality to increasing events
of dynamical percolation, an immediate consequence of [30], Corollary II.2.21.
A weaker form (with a very different proof) was given in [18], Lemma 4.2.

LEMMA 1.9 (Dynamical FKG inequality). Let ω,ω′ :H × R −→ {0,1} de-
note two realizations of dynamical percolation on the hexagonal lattice H. We
say that ω ≤ ω′ if ωt(x) ≤ ω′

t (x) for all (x, t) ∈ H ×R. Let A,B ⊆ {0,1}H×R be
two increasing events (i.e., if ω ∈ A and ω ≤ ω′, then ω′ ∈ A). Then P(A ∩ B) ≥
P(A)P(B).

The same holds if the dynamics is not stationary, but started at time 0 from an
arbitrary distribution on {0,1}H that satisfies the static FKG inequality (i.e., has
positive associations).

PROOF. In Corollary II.2.21 of [30], Liggett states this for increasing events
that depend on the configuration at finitely many time instances t1 < · · · < tn,
proved using induction on n and the infinitesimal generator of the process. Since all
measurable dynamical events can be approximated by events depending on finitely
many time instances, our statement follows. �

1.5. The Fourier spectrum of critical percolation. A key tool for the analysis
of dynamical percolation is discrete Fourier analysis. Here we provide the defini-
tion of the Fourier spectrum of a percolation event, explain the basic relation be-
tween the spectrum and decorrelation for the event under dynamical percolation,
and collect the results from the literature that we will use. A far more thorough
overview of this theory is provided by the survey article [15].
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Let A denote a percolation event in BR , so that A is a subset of percolation
configurations in BR . Define the usual inner product on the L2-space on perco-
lation configurations on BR by 〈f,g〉 = E(fg) = 2−|BR | ∑

ω∈{−1,1}BR f (ω)g(ω),
and note that the collection {χS := ∏

i∈S ω(i) :S ⊆ BR} is an orthonormal basis for
this L2-space. As such, the {−1,1}-indicator function fA of A has a Fourier de-
composition fA = ∑

S⊆BR
f̂A(S)χS . Parseval’s identity

∑
S⊆BR

f̂ 2
A(S) = 1 allows

us to define a random variable SpecA, the spectral sample of A, on subsets of BR

according to P(SpecA = C) = f̂ 2
A(C) for C ⊆ BR .

Recall that the dynamical percolation process {ωt }t∈R is defined using i.i.d. rate
one Poissonian updates for each bit. Now, the basic relation between the spectral
sample and decorrelation under this dynamics is that, for percolation events A and
B in BR ,

E(ω0 ∈ A,ωt ∈ B) = ∑
S⊆BR

f̂A(S)f̂B(S)e−t |S|.(1.13)

This shows that if most of the measure for at least one of the spectral samples
SpecA, SpecB is supported on large sets S, then fast decorrelation occurs.

The spectral sample SpecA is a random subset of BR , with some similarities
to, and some marked differences from the random set PivA of hexagons in BR that
are pivotal for the occurrence of A under critical percolation. As first observed by
Kalai, the two random variables share their first and second moments (see [13],
Section 2.3),

E|PivA| = E|SpecA|, E|PivA|2 = E|SpecA|2,(1.14)

but not the higher ones, and their large deviations usually differ; see [13], Re-
mark 4.6.

Of particular import to us is the case where A is a crossing event from one
boundary arc to another in some planar domain. Let us first consider A(R,2R) =
{R ↔ 2R}. A standard second moment argument yields the conclusion that there
exists C > 0 such that, for all R, E|PivA(R,2R)|2 ≤ C(E|PivA(R,2R)|)2. In light
of (1.14) and the second moment method, we see that there exists c > 0 such that,
for all R ∈N,

P
(|SpecA(R,2R)| ≥ cE|SpecA(R,2R)|

) ≥ c.

Thus, (1.13) and (1.14) show that, for each s > 0, there exists c(s) < 1 [with the
supremum of c(s) strictly less than one over any interval of the form (ε,∞)] such
that, for all R ∈ N,

P
(
ω0 ∈ A(R,2R),ωt ∈ A(R,2R)

) ≤ c(s)P
(
ω0 ∈ A(R,2R)

)
,(1.15)

where t = s(E|PivA(R,2R)|)−1; thus the characteristic time-scale for at least partial
decorrelation of the crossing event is determined by the mean number of pivotals.
We will also need the much stronger assertion, proved in [13], that as s → ∞,

P
(
ω0 ∈ A(R,2R),ωt ∈A(R,2R)

) − P
(
ω0 ∈ A(R,2R)

)2 → 0,(1.16)
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where t = s(E|PivA(R,2R)|)−1, uniformly in R ∈ N; on H, we have the sharp up-
per bound s−2/3+o(1). That is, the crossing event in fact decorrelates fully at large
multiples of the scale determined by the mean pivotal number. Bound (1.16) arises
from a detailed examination of the lower-tail of the size |SpecA(R,2R)| of the spec-
tral sample.

Similar sharp results are proved in [13] for the decorrelation of the crossing
events A(0,R) = {0 ↔ R}, which are the key for the applications to exceptional
times. Namely, Garban, Pete and Schramm [13], equation (9.2), say that, for all
s, t ∈ R with |s − t | = O(1),

P(0
ωs←→R,0

ωt←→R)

P(0 ←→ R)2 ≤ O(1)
1

α1(ρ(1/|t − s|))(1.17)

≤ O(1)|s − t |−1+δ+o(1)(1.18)

for some δ > 0, uniformly in R ∈ N+, the o(1) term being understood as |s −
t | → 0. On H, the sharp result δ = 31/36 is also known. For exceptional times,
the importance of these decorrelation bounds lies in the fact that the exponent δ

of (1.18) is a lower bound on the Hausdorff dimension of the set E , using the
so-called mass distribution principle.

The principal aims of the paper and many important ideas of the proofs were
developed before Oded’s death in September 2008. Bringing the project to fruition
has been a lengthy and at times saddening task for the first two authors; at the same
time, it has been a pleasure to complete this collaboration with an inspirational
mentor and friend.

2. Construction and basic properties of the local time. In this section, we
present the proof of Theorem 1.6 and collect some basic and less basic properties
of the finite and the limiting local time measures. We begin by examining the mar-
tingale property for the approximating local time measures μr [a, b] and μr [a, b],
defined in (1.1) and (1.4).

Note that MR(ω) is a martingale with respect to the filtration FR of the perco-
lation space generated by the variables {1{0 ↔ r} : r ≤ R}; indeed, for any r ′ > r ,

E

(
1{0 ↔ r ′}
P(0 ↔ r ′)

∣∣∣∣F r

)
= P(0 ↔ r ′|0 ↔ r)

P(0 ↔ r ′)
1{0 ↔ r} = 1{0 ↔ r}

P(0 ↔ r)
.

Similarly, it is clear from (1.2) that Mr(ω) is a martingale with respect to the full
filtration Fr generated by ωBr . Being a martingale w.r.t. this larger sigma-algebra
is more useful:

E
(
μR[a, b]|Fr [a, b]) =

∫ b

a
E

(
MR(ωs)|Fr [a, b])ds

=
∫ b

a
E

(
MR(ωs)|Fr (ωs)

)
ds(2.1)

=
∫ b

a
Mr(ωs) ds = μr [a, b];
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FIG. 1. Schematic pictures of the approximate local time densities for μr and μr .

that is, μr [a, b] is a martingale w.r.t. Fr [a, b]. On the other hand, μr [a, b] does
not seem to be a martingale w.r.t. F r [a, b], since

E
(
MR(ωs)|F r [a, b]) �= E

(
MR(ωs)|F r (s)

)
in general, because of the extra information provided by F r (t), t ∈ [a, b] \ {s}.

Consequently, it is much simpler to prove the convergence of μr to some limit μ

than the convergence of μr , though we expect that the latter also holds: as we will
see in the forthcoming proof (and as Figure 1 illustrates), the local time densities
Mr and Mr are closely related to each other.

PROOF OF THEOREM 1.6. We begin by proving the statements for any fixed
interval [a, b].

First recall the quasi-multiplicativity relation (1.5), which implies, for
R > r > 0,

P(0 ↔ R|ωBr )

P(0 ↔ R)
� P(0 ↔ R|ωBr )

P(0 ↔ r)P(r ↔ R)

≤ P(r ↔ R|ωBr )1{0 ↔ r}
P(0 ↔ r)P(r ↔ R)

= 1{0 ↔ r}
P(0 ↔ r)

.

Therefore, with an absolute constant C1 < ∞,

Mr(ω) ≤ C1Mr(ω) and μr [a, b] ≤ C1μr [a, b].(2.2)

Second, recall from (1.18) the bound O(1)|s − t |−1+δ+o(1), with δ > 0. Integrating
over s and t , this gives the second moment estimate

E
(
μr [a, b]2)

(2.3)

≤
{

|b − a|1+δ+o(1), as |b − a| → 0,

C2|b − a|, for all a < b with b − a = O(1),
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uniformly in r , with an absolute constant C2 < ∞. Therefore, by (2.2), the se-
quence μr [a, b] is an L2-bounded martingale w.r.t. Fr [a, b], and the L2 martin-
gale convergence theorem implies the existence of the limit

μr [a, b] a.s.−→
L2

μ[a, b].(2.4)

We also have this convergence almost surely simultaneously over a, b ∈ Q. To
extend it to all a, b ∈ R and to prove that the resulting random variables μ[a, b]
together form a measure on R (finite additivity is clear, but σ -additivity is not), we
will use the following lemma:

LEMMA 2.1 (No atoms). There are almost surely no atoms in μ.

To be more precise, we do not yet know at this point that μ is actually a measure
on R; hence what we mean is that the nondecreasing map q �→ μ[0, q] for q ∈ Q
is a.s. continuous (using the convention that μ[0, q] = −μ[q,0] for q < 0).

PROOF OF LEMMA 2.1. Fix any large n ∈ N, and cover the interval [0,1]
by the intervals In

i := [ i
2n

, i
2n

+ 1
n
], i = 0,1, . . . ,2n − 2. By (2.3) and Cheby-

shev’s inequality, for any c > 0 and any index i, we have P(μr(I
n
i ) > c) ≤

c−2n−1−δ+o(1) as n → ∞, uniformly in r . By a union bound, P(∃i :μr(I
n
i ) > c) ≤

c−2n−δ+o(1) → 0; applying (2.2), a similar statement holds for μr . Now note that
Fatou’s lemma gives that

P
(
for infinitely many r,∀i :μr

(
In
i

) ≤ c
)
> 1 − c−2n−δ+o(1),

and then, since all the intervals In
i have rational endpoints, the simultaneous al-

most sure convergence of (2.4) shows that P(∃i :μ(In
i ) > c) ≤ c−2n−δ+o(1). This

implies the continuity claim for μ. �

The continuity of q �→ μ[0, q] for q ∈ Q gives us a unique way to extend μ[0, x]
continuously to all x ∈ R. The simultaneous almost sure convergence μr [0, q] →
μ[0, q] for all q ∈ Q and the obvious monotonicity μr [0, q] ≤ μr [0, x] ≤ μr [0, q ′]
for q < x < q ′ clearly implies simultaneous convergence for all μr [0, x], and
the finite additivity of μr implies the simultaneous a.s. convergence μr [a, b] →
μ[a, b] for all a, b ∈ R.

Now, we turn to the sequence μr [a, b]. If we fix r > 0, and take R → ∞, then

E(MR|Fr ) = P(0 ↔ R|Fr )

P(0 ↔ R)

a.s.−→
L∞ Mr,

by the very definition of Mr , a random variable on the finite space Br . Thus, for
fixed r , the random variables E(MR|Fr ) are uniformly bounded in R, and∫ b

a
E

(
MR(ωs)|Fr (ωs)

)
ds

a.s.−→
L∞

∫ b

a
Mr(ωs) ds = μr [a, b].
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On the other hand, for random variables, convergence in L2 is stronger than in L1;
hence the hypothetical L2-convergence of the unconditional μR[a, b] implies∫ b

a
E

(
MR(ωs)|Fr (ωs)

)
ds =

∫ b

a
E

(
MR(ωs)|Fr [a, b])ds

= E
(
μR[a, b]|Fr [a, b])−→

L2
E

(
μ[a, b]|Fr [a, b]).

One sequence can have only one L2-limit, and convergence in L∞ is stronger than
in L2, thus

E
(
μ[a, b]|Fr [a, b]) = μr [a, b] in L2, hence almost surely.(2.5)

As r → ∞, Fr [a, b] converges to the full sigma-algebra, hence the left-hand side
of (2.5) converges a.s. to μ[a, b] by Lévy’s zero–one law, while the right-hand side
converges to μ[a, b], by (2.4). The two limits coincide a.s., simultaneously for all
a, b ∈ Q. The proof of Lemma 2.1 now gives us a measure μ[a, b] that agrees with
μ[a, b] simultaneously for all a, b ∈ R, and the proof of Theorem 1.6 is complete.

�

CONJECTURE 2.2. The L2-limit μ[a, b] = limr→∞ μr [a, b] exists, and then,
by Theorem 1.6, μ = μ almost surely.

We collect now some basic properties of the dynamical percolation process, the
exceptional set and the associated local time.

LEMMA 2.3 (Ergodicity). The dynamical percolation process ω on the infinite
lattice [in particular, the local time μ = μ(ω)] is ergodic with respect to time shifts.

PROOF. This argument is rather classical, but having been unable to find an
exact reference, we include it here for completeness.

For any dynamic event A and any ε > 0, there exists a radius r ∈ N, a
time T > 0 and an event Ar,T measurable with respect to ωBr (−T ,T ) such
that P(A�Ar,T ) < ε. Now, by the ergodicity of dynamical percolation in Br

(a Markov chain on a finite state space), there exists t = t (r, T ) such that
|P(Ar,T ∩ (Ar,T + t)) − P(Ar,T )2| < ε, where Ar,T + t represents the event Ar,T

evaluated for the dynamical configuration shifted back by time t . Now if A
is invariant under time shifts, then |P(A∩ (A+ t)) − P(Ar,T ∩ (Ar,T + t))| ≤
P(A�(Ar,T ∩ (Ar,T + t))) < 2ε. Altogether, |P(A)−P(A)2| < 2ε + ε + ε2. This
holds for any ε > 0, hence P(A) ∈ {0,1}. �

LEMMA 2.4 (Perfectness). Almost surely, the set E of exceptional times:

(i) is disjoint from the set of times at which the status of a hexagon is updated;
(ii) is topologically closed;

(iii) has no isolated points.
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PROOF. Parts (i) and (ii) are proved in [17], Lemma 3.2. Part (iii) is proved
in [17], Lemma 3.4, and the remark following it. �

It is clear that μ is supported inside E . The following statement is very natural,
but it seems hard to prove:

CONJECTURE 2.5. The support of the local time measure μ is almost surely
the entire exceptional time set E .

This conjecture cannot fail by much: the Hausdorff dimension of suppμ is the
same as the dimension of E , namely 31/36. The reason is that the proof of the
lower bound in [13] (just like in [37]) uses the approximate local time measures
μr and a version of the mass distribution principle, and via (2.2), it could also have
used the measures μr ; hence it actually yields a lower bound on dimH (suppμ).
The next lemma, which will be of use later, provides a little further evidence for
the conjecture, since (2.7) says that the μ-mass of any short interval that meets E
is not likely to be small.

LEMMA 2.6. For any ε > 0, let με denote μr [0, ε] or μr [0, ε] or the limit
μ[0, ε]. Then there is an absolute constant C < ∞ such that, for all ε > 0 and
r ∈ N,

E
(
μ2

ε|με > 0
) ≤ CE(με|με > 0)2,(2.6)

and another such constant c > 0 such that

P
(
με > cE(με|με > 0)|E ∩ [0, ε] �=∅

)
> c.(2.7)

PROOF. The left-hand side of (2.6) equals E(μ2
ε)/P(με > 0), while the right-

hand side equals E(με)
2/P(με > 0)2 = ε2/P(με > 0)2. Hence, we need to show

that

E
(
μ2

ε

) ≤ C
ε2

P(με > 0)
.

By a usual coupling between dynamical and near-critical percolation, in which
dynamical updates lead always to the opening of hexagons in the latter case, we
have

P(με > 0) ≤ P
(
E ∩ [0, ε] �=∅

) ≤ Ppc+O(ε)(0 ←→ ∞)
(2.8)

= O(1)α1
(
ρ(1/ε)

)
,

by Kesten’s scaling relation (1.12). On the other hand, taking the double integral
of (1.17) over s, t ∈ [0, ε], we claim that

E
(
μ2

ε

) ≤ O(1)
ε2

α1(ρ(1/ε))
,(2.9)
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which will complete the proof of (2.6).
By (2.2) and (2.4), it is enough to verify (2.9) for με = μr [0, ε]. Set R = ρ(1/ε)

and Ai = [CiR,Ci+1R], i ∈ N, where C > 0 is a large constant to be specified
shortly. For i ∈ N, write

Bi = {
(s, t) ∈ [0, ε]2 :ρ

(|s − t |−1) ∈ Ai

}
,

so that

E
(
μ2

ε

) =
∫
[0,ε]2

P(1{0 ωs←→ r}1{0 ωt←→ r})
P(0 ←→ r)2 ds dt ≤ O(1)

∑
i≥0

φi,

with φi = ∫
Bi

1
α1(ρ(1/|t−s|)) ds dt ; the latter inequality is due to (1.17).

Note that ρ(·) is a nonstrictly increasing function. By (1.6), there exists an ab-
solute constant K > 0 such that s2α4(s) < (Ks)2α4(Ks) for all s ∈ Z+, hence
ρ(s2α4(s)) ∈ (s/K, s] for all s ∈ Z+. This implies that

ρ−1(Ai) ⊆ [(
CiR

)2
α4

(
CiR

)
,
(
Ci+1KR

)2
α4

(
Ci+1KR

)]
.(2.10)

If C is large enough, so that (CR)2α4(CR) > 2(KR)2α4(KR), then
(1/ε,2/ε) ⊆ ρ−1(A0); hence the Lebesgue measure of B0 is at least ε2/2. There-
fore,

φ0 =
∫
B0

1

α1(ρ(1/|t − s|)) ds dt ≥ ε2

2
α1

(
ρ(1/ε)

)−1
.

On the other hand, for i ≥ 1, using (2.10),

φi =
∫
Bi

1

α1(ρ(1/|t − s|)) ds dt ≤ 2εC−2iR−2α4
(
CiR

)−1
α1

(
Ci+1R

)−1
.

Thus

φi

φ0
≤ 4ε−1C−2iR−2 α1(R)

α4(CiR)α1(Ci+1R)

≤ 4C−2i

α4(R,CiR)α1(R,Ci+1R)
,

where in the second inequality we used that ε−1 ≤ R2α4(R). Now, Garban, Pete
and Schramm [13], Appendix, say that the sum of the 1-arm and 4-arm exponents
is strictly less than 2—properly interpreted in the case of Z2 where these exponents
are not known to exist. That is, there exists some c ∈ (0,1) such that φi/φ0 ≤
O(1)ci for all i ≥ 1. Thus∫

[0,ε]2

1

α1(ρ(1/|t − s|)) ds dt ≤ O(1)

∫
A0

1

α1(ρ(1/|t − s|)) ds dt

≤ O(1)ε2α1
(
ρ(1/ε)

)−1
,
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and we have confirmed (2.9).
By the Paley–Zygmund second moment inequality (a simple consequence of

Cauchy–Schwarz; see, e.g., [31], Section 5.5), the above computations show that

P(με > 0) ≥ (Eμε)
2

E(μ2
ε)

≥ c1α1
(
ρ(1/ε)

)
,

matching upper bound (2.8) up to a constant factor. Therefore,

P
(
με > 0|E ∩ [0, ε] �=∅

)
> c2 > 0.

On the other hand, again by the Paley–Zygmund inequality, (2.6) implies that

P
(
με > c3E(με|με > 0)|με > 0

)
> c3 > 0,

for some c3 > 0. Combining the last two displayed inequalities proves (2.7). �

We conclude this section with a natural question:

QUESTION 2.7. Is the local time μ the 31/36-dimensional Minkowski content
on the set E? Is μ the Hausdorff measure on E for some Hausdorff gauge function?

3. Finding the incipient infinite cluster. Given the description of the local
time measure using (1.3), it is natural to guess that the infinite cluster at a “typi-
cal” exceptional time (typical with respect to μ) has the law of IIC. The first ex-
ceptional time having been discredited as a candidate for the IIC by Theorem 1.3,
we now prove Theorems 1.7 and 1.8, thereby verifying what may be the simplest
relationship between exceptional times and the IIC.

Unsurprisingly, the proofs go through the finite approximations, about which
we provide a further definition.

DEFINITION 3.1. Let IICr denote the law on percolation configurations in Br

given by Ppc(·|0 ↔ r). In contrast, IICBr will denote the restriction of IIC to Br .

Note that Mr(ω) is the Radon–Nikodym derivative d IICr/dP, while Mr(ω) is
the Radon–Nikodym derivative d IICBr /dP, where P = Ppc is critical percolation.
Since both IICr and IICBr converge to IIC as r → ∞, both μr and μr can be useful
in studying the relationship between dynamical percolation and the IIC. Indeed,
in the forthcoming lemmas, the versions about μr will be used in finding the IIC
in dynamical percolation, while the versions for μr will be used in Section 4 to
prove that FETIC �= IIC. The finite versions of our results will be slightly stronger
than the infinite ones, in that they identify not only a moment where we get IICBr

or IICr , but also an equality of entire processes. We will use the stronger, dynamic
version for μr in Section 4.
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LEMMA 3.2 (Finite r quenched sampling). Let {ω(s) : s ∈ [0,∞)} be dynam-
ical percolation in Br . Let χr,T ∈ R be a random time sampled from μr/μr [0, T ],
defined only when μr [0, T ] > 0. Then the finite-dimensional distributions of
{ω(χr,T + s) : s ∈ [0,∞)} converge for almost all ω as T → ∞ to those of stan-
dard dynamical percolation started from IICr at time zero. Moreover, the law of the
entire process in the Skorokhod topology converges in probability (w.r.t. ω) to the
same limit process.

Similarly, if χr,T ∈ R is a random time sampled from μr/μr [0, T ], then the
same results hold for the process {ω(χr,T + s) : s ∈ [0,∞)}, except that the limit
process is now started from IICBr instead of IICr .

LEMMA 3.3 (Finite r annealed sampling). (a) Let {ω∗(s) : s ∈ [0,∞)} be dy-
namical percolation in Br size-biased by μr [0, T ], and χ∗

r,T ∈ R be a random
time with law μr/μr [0, T ] for μr = μr(ω

∗). Then the process {ω∗(χ∗
r,T + s) : s ∈

[0,∞)} is equal in law to standard dynamical percolation started from IICr at time
zero.

Similarly, if {ω∗(s) : s ∈ [0,∞)} is dynamical percolation in Br size-biased by
μr [0, T ], and χ∗

r,T ∈ R is a random time with law μr/μr [0, T ] for μr = μr(ω
∗),

then the process {ω∗(χ∗
r,T + s) : s ∈ [0,∞)} is equal in law to standard dynamical

percolation started from IICBr at time zero.
(b) The Palm version (ω∗,�∗

r ) of the process (ω,�μr(ω)) in Br is standard
dynamical percolation started from IICr at time zero. A somewhat concrete way to
realize the Palm version is Liggett’s extra head construction [29]; see Figure 2.

Let {pi ∈ [0,∞) : i ∈ N} enumerate a Poisson point process � with intensity
measure Lebesgue on [0,∞), and set q̄r,i = inf{t > 0 :μr [0, t] > pi}. Clearly,
�μr

:= {q̄r,i : i ∈ N} is a Poisson point process with intensity μr . Now let J ∈ N be
the first integer with |�μr

∩ [0, J ]| > J . Then shifting back time by q̄r,J gives the
Palm version of (ω,�μr

).
Similarly, the Palm version (ω∗,�∗

μr
) of the process (ω,�μr(ω)) in Br is stan-

dard dynamical percolation started from IICBr at time zero. As above, the Palm ver-
sions (ω∗,�∗

μr
) and (ω∗,�∗

μ) can be constructed using time shifts by qr,J and qJ .

It should be intuitively quite clear why the ergodic quenched limits in
Lemma 3.2 lead to the size-biased finite averages in Lemma 3.3: each dynamic
configuration of a finite time interval appears in the ergodic quenched limit with a
frequency proportional to its probability. The proofs of these two lemmas will be
a little technical, and mostly classical.

PROOF OF LEMMA 3.2. Note that for any percolation configuration ζ on
Br satisfying 0 ←→ r , by definition, P(ω(χr,T ) = ζ ) = E(

∫ T
0 1{ωt = ζ }dt/

μr [0, T ]), where the event on the left-hand side is taken to be unsatisfied, and
the ratio on the right-hand side is taken to be zero on the event that μr [0, T ] = 0.
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FIG. 2. Depicting Liggett’s extra head construction.

Similarly and more generally, for any time instances 0 = s0 ≤ s1 ≤ · · · ≤ sk and
configurations ζ0, . . . , ζk ,

P
(
ω(χr,T + si) = ζi, i = 0, . . . , k

)
(3.1)

= E

(
1

μr [0, T ]
∫ T

0
Mr(ζ0)

k∏
i=0

1{ωt+si = ζi}dt

)
,

where the random variables on both sides are again interpreted appropriately if
0 ←→ r at no time in [0, T ]. There is a very similar multi-point formula in the
case of χr,T ; in fact, the entire argument for the first part of the lemma runs in
parallel to that for the second, and we omit it.

Dynamical percolation {ωt : t ∈ R} in Br is a tail trivial process, hence not only
is this process ergodic, but so is the process {ω[t,t+s] : t ∈ R} for any fixed s ≥ 0.
Thus, by the ergodic theorem and the Markov property, the integral in (3.1), di-
vided by T , converges almost surely as T → ∞ to

IICBr (ζ0)

k−1∏
i=0

P(ωsi+1 = ζi+1|ωsi = ζi),(3.2)

while μr [0, T ]/T → Eμr [0,1] = 1, almost surely. Therefore, in (3.1), we are tak-
ing the expectation of a random variable that converges almost surely to the for-
mula in (3.2). This random variable is bounded, and hence convergence in expecta-
tion also follows. We have thus shown that, for almost all ω, the finite-dimensional
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distributions of {ω(χr,T + s) : s ∈ [0,∞)} converge as T → ∞ to those of standard
dynamical percolation started from IICBr .

We will now ameliorate this conclusion to hold for the Skorokhod topology,
but only in probability, not almost surely; for the latter, we would actually need
to specify how the variables χr,T are coupled for different T values. Note that,
alongside finite-dimensional distributional convergence and the càdlàg nature of
all the sample paths concerned, it is enough to argue that, for any given K >

0 and ε > 0, the probability that the process [0,K] → R : t → ω(χr,T + t) has
two hexagon switches at times differing by less than ε vanishes in the high T

then low ε limit. To see this, note that the Lebesgue measure of the set AT of
times t ∈ [0, T ] such that [t, t + K] contains two such switch times behaves like
aεT (1 + o(1)) as T → ∞, where limε→0 aε = 0; on the other hand, the Lebesgue
measure of the set BT of times t ∈ [0, T ] such that ω|Br is the completely open
configuration behaves almost surely like bT (1 + o(1)) as T → ∞, where b > 0.
Since the Radon–Nikodym derivative of χr,T is maximized by each point in BT ,
we see that P(χr,T ∈ AT ) ≤ |AT |/|BT | ≤ 2aε/b almost surely for T sufficiently
high, where | · | denotes Lebesgue measure. Since aε ↘ 0 as ε ↘ 0, we verify the
claim needed for convergence in the Skorokhod topology and complete the proof.

�

PROOF OF LEMMA 3.3. The Palm version of a stationary process (ω, ξ) on R,
where ξ is a random measure, is defined in [23], Chapter 11, as follows. For
any Borel set B ⊂ R of positive Lebesgue measure, and any nonnegative measur-
able function f on configurations (ω, ξ), consider ξf (B) := ∫

B f (θs(ω, ξ))ξ(ds),
where θs is the shift by −s. Then the Palm version is the law defined by
Qω,ξ [f ] := Eξf (B)/Eξ(B). It is not hard to show that this does not depend on B .

If we take ξ = μr or μr and B = [0, T ], then this construction specializes to the
processes defined in part (a). Since we know from Lemma 2.3 that (ω,μr,μr) is
ergodic, we can apply [23], Theorem 11.6, saying that these Palm versions equal
the limit processes defined in Lemma 3.2, hence the claim of part (a) follows from
that lemma.

For part (b), since there will be no difference between the proofs for μr and
μr , let us just work with μr . Take ξ = �μr , and the Borel sets Bε := (−ε, ε).
Kallenberg [23], Theorem 11.5, says that the Palm version of (ω,�μr ) is the same
as conditioning on |Bε ∩ �μr | ≥ 1 or on |Bε ∩ �μr | = 1, then taking the limit
ε → 0. This is the most common form of taking the “Palm version of a point
process.” (Note that the two conditionings here are equivalent because μr , being
given by an integral, has no atoms; hence �μr is a simple point process.)

[Let us give a two-sentence intuitive explanation of why the quoted theorem on
the equality between the Palm process and the ε-conditioning holds, at least for
the time-zero configuration. Since μr has a density Mr , for any static percolation
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configuration ζ in Br , we have

P
(
Bε ∩ �μr �=∅|ω(0)Br = ζ,μr

) = 1 − exp
(
−

∫ ε

−ε
Mr(ωt ) dt

)
∼ 2εMr(ζ ) a.s. as ε → 0,

by the Lebesgue differentiation theorem and Fubini. Therefore, Mr(ζ ) being the
Radon–Nikodym derivative dIICBr /dP, the ε-conditioning gives

lim
ε→0

P
(
ω(0)Br = ζ |Bε ∩ �μr �= ∅

) = IICBr (ζ ),

as desired.]
Since �μr is obtained from μr using independent stationary randomness (the

Lebesgue Poisson point process �), the ω∗ marginal in the Palm version of
(ω,�μr ) is the same as in the Palm version of (ω,μr), which we already described
in part (a).

Finally, regarding his extra head construction, [29], Corollary 4.18, Liggett says
that shifting back by qr,J as defined in the statement of part (b) produces the
Palm version of �μr . Now we need to extend this result from the marginal �μr

to (ω,�μr ); we will certainly need to use that Liggett’s shift coupling acts nicely
also on the level of ω and �, since the result clearly would not hold for an arbitrary

measurable map (ω,�) �→ f (ω,�) with the property that �μr(f (ω,�))
d= �∗

μr(ω).
[E.g., if f (ω,�) is a measurable map for which the extension holds, one could
define f̃ (ω,�) by thinning out the percolation configuration slightly, keeping all
long-range connections and the �-marginal intact.] The niceness of Liggett’s con-
struction lies in the fact that it gives a random time shift TJq,r that is measurable
with respect to �μr , where each time shift Tx is a measure-preserving transfor-
mation on the space of configurations (ω,�). Therefore, if A and B are arbi-
trary events for the Palm version �∗

μr
, and Ã and B̃ are the maximal events for

(ω∗,�∗
μr

) that project to A and B in the second coordinate, then

P∗(A)

P∗(B)
= P(T −1(A))

P(T −1(B))
= P(T −1(Ã))

P(T −1(B̃))
,

whenever the denominator on either side of this equation is positive. See Figure 3

for an illustration of this identity. Since P∗(A)
P∗(B)

= P∗(Ã)

P∗(B̃)
by definition, we get that

the effect of T is the same as conditioning on {0 ∈ �μr } not only on �μr but also
on (ω,�μr ), and we are done. �

We can now turn to sampling from the limit measure μ[0, T ].

PROOF OF THEOREM 1.7. We must argue that μ[0, T ] > 0 for all T suffi-
ciently high, and also that, for each r ∈ N, ω(χT )Br converges in distribution to
IICBr as T → ∞, for almost every ω.
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FIG. 3. A schematic picture of the effect of Liggett’s extra head time shift T on (�μr ,ω). [For
simplicity, the figure pretends that � is a measurable function of ω, instead of (ω,�).] Different
Palm point process realizations �∗

1 and �∗
2 may arise from a different “amount” of Palm dynamical

percolation realizations �∗
1 = {ω∗

1,i : i ∈ I1} and �∗
2 = {ω∗

2,i : i ∈ I2} (a ratio 4 : 2 on the right-side of

the picture), and the preimages T −1(�∗
1) and T −1(�∗

2) might also have different sizes (which gives
the reweighting of the Palm measure compared to the ordinary measure, a ratio 3 : 2 in the middle of
the picture). The product of these ratios is the same as the ratio for the preimages T −1((�∗

1,�∗
1))

and T −1((�∗
2,�∗

2)).

First we will construct ω-dependent couplings Q of χR,T and χT with the fol-
lowing property: for each ε > 0 and n ∈ N, there exists an ω-dependent R ∈ N
such that, for all large enough T simultaneously, χR,T and χT are coupled under
Q = QR so that

lim sup
T

Q
(|χR,T − χT | ≥ 1/n

) ≤ ε.(3.3)

This coupling will turn out to be good enough to show that for each ε > 0 and
r ∈ N, there exists R ∈N such that

lim inf
T

Q
(
ω(χR,T )Br = ω(χT )Br

) ≥ 1 − ε.(3.4)
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Then we will use Lemma 3.2 to complete the proof of the theorem.
For n ∈ N, set In

i = [i/n, (i + 1/n)). For R ∈ N, define f n
R : [0,∞) → [0,∞)

according to f n
R(x) = nμR(In

i ) if x ∈ In
i for i ∈ N. Similarly define f n∞ : [0,∞) →

[0,∞) according to f n∞(x) = nμ(In
i ) if x ∈ In

i for i ∈ N. We now argue that, for
each ε > 0 and n ∈N, there exists R ∈N such that

lim sup
T

∫ T

0

∣∣∣∣ f n
R(t)∫ T

0 f n
R(s) ds

− f n∞(t)∫ T
0 f n∞(s) ds

∣∣∣∣dt ≤ ε.(3.5)

This assertion clearly allows one to construct the couplings Q = QR of (3.3).
Note that (3.5) is a consequence of the next three assertions. First, for each ε > 0

and n ∈ N, there exists an ω-dependent R ∈N such that

lim sup
T

T −1
∫ T

0

∣∣f n
R(t) − f n∞(t)

∣∣dt ≤ ε, P-almost surely.(3.6)

Second, for this same value of R ∈N,

lim sup
T

T −1
∣∣∣∣∫ T

0
f n

R(s) ds −
∫ T

0
f n∞(s) ds

∣∣∣∣ ≤ ε, P-almost surely.(3.7)

Third,

lim
T

T −1
∫ T

0
f n∞(s) ds = 1, P-almost surely.(3.8)

We now justify (3.6), (3.7) and (3.8).
To confirm (3.6), note that

∫ 1/n
0 |f n

R(t)−f n∞(t)|dt = |μ(0,1/n)−μR(0,1/n)|.
We fix R ∈ N by Theorem 1.6 so that E|μ(0,1/n) − μR(0,1/n)| ≤ ε/n.
Lemma 2.3 then provides (3.6) along T values that are multiples of 1/n. To extend
this to all T , we can sandwich the integral up to T between the integrals up to the
closest multiples of 1/n, and use that limT →∞ T/(T ± 1/n) = 1.

Note that (3.7) is a trivial consequence of (3.6).
To show (3.8), note that, by definition, E(μr [0,1]) = 1 for each r ∈ N.

Thus Theorem 1.6 implies that E(μ[0,1]) = 1. Lemma 2.3 then implies that
limT T −1μ(0, T ) = 1, P-almost surely. This limit coincides with that in (3.8),
which establishes this claim. Note that in this derivation we have confirmed that
indeed μ(0, T ) > 0 for T sufficiently high, P-almost surely.

Having constructed the couplings in (3.3), let us verify (3.4). In light of (3.3), it
is enough to argue that, for given ε > 0 and r ∈ N, there exists n ∈ N such that, for
all R ≥ r and all T sufficiently high, the Q-probability that a hexagon in Br flips
during [χR,T − 1/n,χR,T + 1/n] is at most ε. However, by Lemma 3.2, the times
of hexagon flips in Br during [χR,T − 1/n,χR,T + 1/n], shiftward backwards in
time by χR,T , converges weakly as T → ∞ to a Poisson process of rate |Br |/2 on
[−1/n,1/n]. Choosing n ≥ Cεr

2 thus gives the desired statement.
It remains to show that (3.4) suffices for Theorem 1.7. Recall that we must argue

that, for each r ∈ N, ω(χT )Br converges weakly as T → ∞ to IICBr . We know by
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Lemma 3.2 that the weak limit as T → ∞ of ω(χR,T ) equals IICBR . Thus, fixing
any ε > 0 and any R ≥ r , for large enough T , the total variation distance between
ω(χR,T )Br and IICBr is at most ε. (Note here that on the discrete topological space
{0,1}Br , convergence in law is the same as in total variation distance.) On the other
hand, by (3.4), ω(χT ) coincides with ω(χR,T ) on Br with Q-probability at least
1 − ε for all high enough T . Thus the total variation distance between ω(χT )Br

and IICBr becomes less than 2ε, and we are done. �

PROOF OF THEOREM 1.8. Part (a) follows from Theorem 1.7—by Lemma 2.3
and [23], Theorem 11.6—just as Lemma 3.3 followed from Lemma 3.2.

Part (b) follows from Lemma 3.3(b) and the next two lemmas. �

LEMMA 3.4. If τ ∈ E is an exceptional time, and τn → τ , then, for any r > 0,
we have ω(τn)

Br = ω(τ)Br for all sufficiently high n.

PROOF. By Lemma 2.4(i), there is an open interval I which contains the ex-
ceptional time τ such that, for t ∈ I , ω(t)Br = ω(τ)Br ; hence τn → τ implies the
lemma. �

LEMMA 3.5. For the times qr,J and qJ defined in Lemma 3.3(b), the limit
qJ = limr→∞ qr,J holds almost surely, and qJ is an exceptional time.

PROOF. For a nondecreasing function f : [0,∞) −→ [0,∞), let us call x ∈
[0,∞) a point of strict increase if, for all y < x < z, we have f (y) < f (x) <

f (z). Now, if fn : [0,∞) −→ [0,∞) is a sequence of nondecreasing functions
converging pointwise on [0,∞) to a function f : [0,∞) −→ [0,∞), and we write

f −1
n (x) = inf

{
t > 0 :fn(t) > x

}
,

then, whenever x ∈ [0,∞) is a point of strict increase of f : [0,∞) −→ [0,∞), we
have that limn→∞ f −1

n (x) = f −1(x). The following thus suffices for Lemma 3.5.
�

LEMMA 3.6. For any ρ ∈ �, tρ := inf{s > 0 :μ(0, s) > ρ} is almost surely a
strict point of increase of μ(0, ·).

PROOF. By Lemma 2.1, μ has no atoms; hence the set of ρ ∈ [0,∞) for which
tρ is a point of strict increase of μ(0, ·) is given by R \ μ(0,Q), with μ(0,Q) =
{μ(0, q) :q ∈ Q}, where Q is the collection of left-hand endpoints of intervals
comprising supp(μ)c. Note that Q is countable and thus is so μ(0,Q). Thus � ∩
μ(0,Q) =∅ a.s. because � is independent of μ(0,Q). �
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4. FETIC is not IIC. In this section, we prove Theorem 1.3.

4.1. The skeleton of the argument.

DEFINITION 4.1. Let ω be a sample of dynamical percolation in the R-ball
BR . Write ER for the set of times such that 0 ↔ R. Let FETR = inf{t ≥ 0 : 0

ωt←→
R}, and let FETICR be the law of ωFETR

conditioned on FETR > 0. [Since C0(ω0)

is almost surely finite, it takes positive time for the first bit on its boundary to
change, and hence the event FETR > 0 is the same as 0 �←→ R in ω0, which is
almost surely satisfied for large enough R.]

These finite approximations will be very useful. On the one hand, IICR is the
law of the configuration at a typical point of ER , as we saw in Lemmas 3.2 and 3.3.
On the other hand, by [18], Lemma 4.5, we have that FETR → FET almost surely
as R → ∞; hence FETICR converges to FETIC in law (by Lemma 3.4).

There is a natural line of attack if we want to distinguish IICR from FETICR .
Let us call the left-isolated points of ER arrivals, and the right-isolated points de-
partures. As we will see, the law of a typical arrival configuration can be easily
obtained from IICR (and will be denoted by IIC′

R): we get it by size-biasing with
respect to the number of pivotal hexagons for the event {0 ↔ R}. This is different
from IICR , but not by much: it can be shown (though we will not do so) that its
weak limit as R → ∞ coincides with IIC. However, FETICR is not given by a typ-
ical arrival: as usual when waiting for the first arrival of a stationary point process,
the time between FETR and the last departure before it (somewhere in the neg-
ative half-line) is a size-biased sample of the typical reconnection time between
departures and arrivals, and if an arrival configuration typically occurs at the end
of longer disconnection intervals, then it is more likely to appear in FETICR . Since
it is harder to think about dynamical percolation ending at a certain configuration
than about starting it at such a configuration, our strategy to understand FETICR

will be to reverse time, start dynamical percolation from certain typical IIC′
R con-

figurations, condition on immediate termination of {0 ↔ R} and then estimate the
expected time of reconnection. If we can exhibit two events at time zero that have
the same positive probability under the limit measure IIC, but for which the ex-
pected reconnection times differ, then these events will turn out to have different
probabilities under FETIC, and we will be done.

Roughly, of these two events under IIC′
R , the first will be that the configuration

looks “normal” in a bounded neighborhood of 0, while the second will be that
the configuration is “thinner” in the same neighborhood. (We will in fact define
a thinning procedure on normal static configurations satisfying 0 ↔ R, changing
the configuration in a bounded neighborhood of 0.) A thinner configuration falls
apart more easily and hence reconnects to distance R with more difficulty; so, one
may expect that such a configuration is more probable under FETICR than is a nor-
mal configuration, which is to say, FETICR is thinner than IICR . This is certainly
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the case if the thin configuration is, say, given by a single straight line segment
of open hexagons from 0 to ∂BR , with all other hexagons in BR being closed.
However, this R-dependent configuration has a vanishing probability in the limit
measure IIC; therefore, while the imbalance in probability of this configuration
distinguishes FETICR from IICR , a distinction between FETIC and IIC cannot be
deduced. This is why we want to require the configuration to be thin only in a
bounded neighborhood of 0. However, the main difficulty now is that normal re-
connection times are very short if R is large, and that, with high probability, the
configuration is entirely static in a bounded neighborhood of the origin; hence it is
not clear that our thinning will have a noticeable effect on the reconnection time.
The solution will be that the expected reconnection time, though tiny, turns out to
be dominated by times that are macroscopically large (independently of R), large
enough that if the configuration close to 0 is thin, then it does indeed start falling
apart, making expected reconnection time noticeably larger when the thinning pro-
cedure has been applied. To argue this, we will need the result from [18] that FET
has finite expectation (in fact, an exponential tail): this will tell us that the normal
reconnection time is well behaved, making it possible to prove that, in expectation,
it is strictly dominated by the reconnection time of thinned configurations.

Note that this strategy shows only that the measures are distinct, not that they
are mutually singular, since we applied the thinning only in a bounded neighbor-
hood of the origin. To prove singularity, one would need to have a similar thinning
procedure for every scale, in such a way that the thinned configuration remains uni-
formly probable, while it makes the expected reconnection time noticeably larger.
Unfortunately, our thinning procedure does not have a suitable immediate analogue
for larger scales.

In this introductory subsection, we first explain the time-reversal and the size-
biasing effects determining the relationship between IICR and FETICR , then define
the thinning procedure and finally show that a noticeable difference between ex-
pected reconnection times indeed implies that FETIC and IIC are different. In the
subsequent subsections, we will prove that there is such a difference.

Recall from the above discussion that, in standard càdlàg dynamical percolation,
a time t ∈ ER for which there exists ε > 0 such that [t − ε, t) ∩ ER = ∅ is called
an arrival. Write AR for the set of arrivals. Furthermore, for a static percolation
configuration ζ in BR that satisfies 0 ↔ R, denote by Piv = Piv0↔R(ζ ) the set of
hexagons in BR that are pivotal in the configuration ζ for 0 ↔ R, and recall that
IIC′

R denotes the law on configurations in BR whose Radon–Nikodym derivative
with respect to IICR is given by |Piv| up to normalization.

LEMMA 4.2. The following three definitions for the process P(·|0 ∈ AR) are
equivalent:

(i) consider dynamical percolation in BR conditionally on the event {0 ↔ R}
occurring at time 0 but not at time −ε, and take the weak limit as ε ↓ 0;
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(ii) for large T > 0, pick uniformly an element τ ∈ AR ∩ [0, T ], consider the
shifted dynamical percolation configuration {ωt−τ : t ∈ R} and take the weak limit
as T → ∞ (conditionally on ω, or averaged);

(iii) let ω0 be distributed according to IIC′
R , choose uniformly an element S ∈

Piv(ω0), obtain the configuration ω0− by closing the hexagon S and let the rest
of the evolution {ωt : t ∈ R} be given by càdlàg dynamical percolation updates
independently of the values of ω0 and S.

PROOF. While the weak limits in (i) and (ii) might not exist a priori, the defini-
tion of (iii) is clearly well formulated. We first prove the equivalence of (i) and (iii),
implying the existence of the weak limit in (i), in particular. It is enough to show
that, for all configurations ζ in BR such that 0 ↔ R,

lim
ε→0

dP(·|0 ∈ ER,−ε /∈ ER)

dIICR

(ζ ) = Z−1
1

∣∣Piv0↔R(ζ )
∣∣,(4.1)

where Z1 ∈ (0,∞) is a normalization.
Given a configuration ζ such that 0 ↔ R, let pε(ζ ) be the probability that dy-

namical percolation given ω0 = ζ satisfies 0 �↔ R at time −ε. If ε is tiny (de-
pending on R), then the probability of having at least two hexagons flipping in the
time interval (−ε,0) is much less than the probability of any specific hexagon flip.
Therefore, limε→0 pε(ζ )/ε = |Piv0↔R(ζ )|, which implies (4.1).

To prove the equivalence of (ii) and (iii), let us reformulate the T -dependent law
defined in (ii) as taking uniformly one from all pairs of configurations (ωt−,ωt ) ∈
Ec

R ×ER , with t ∈ [0, T ], and then running dynamical percolation in the two direc-
tions from here. By the ergodicity of {ωt : t ∈ R} (Lemma 2.3), the weak limit of
this law is the same as taking a pair of static configurations (ζ1, ζ2) that differ only
in one hexagon such that 0 ↔ R in ζ2 but not in ζ1 to start the dynamics. This is
clearly the same as the law defined in (iii).

The equivalence of (i) and (ii) follows from the above two equivalences; or,
just like in Lemma 3.3, we can also quote [23], Theorem 11.6, on the equivalent
definitions of the Palm version of the process (ω,AR). �

Now, as we promised, in order to understand the effect of waiting for the first
exceptional time on the distribution of the configuration at that time, we time-
reverse the dynamics, started from typical arrival times:

DEFINITION 4.3. Let Pnorm denote the time-reversal of P(·|0 ∈ AR) (i.e., t �→
−t for all t ∈ R). More explicitly, it is the càglàd (left-continuous with right limits)
Markov process given as follows. Under Pnorm, the distribution of ω0 is IIC′

R . Given
ω0, a uniform element S ∈ Piv is selected, with the configuration ω0+ being set
equal to ω0 modified by closing the hexagon S. The rest of the evolution of {ωt : t ∈
R} is given by càglàd dynamical percolation updates independently of the values
of ω0 and S.
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LEMMA 4.4. Under the law Pnorm, recall that 0 ↔ R is satisfied by ω0 but not
by ω0+ ; let the reconnection time N ∈ (0,∞) be given by N = inf{t > 0 : 0

ωt←→
R}. For each static BR configuration ζ , we have that

dFETICR

dIICR

(ζ ) = Z−1Enorm(N |ω0 = ζ )
∣∣Piv0↔R(ζ )

∣∣,
where Z ∈ (0,∞) is a normalization.

PROOF. We claim that
dFETICR

dP(·|0 ∈ AR)
(ζ ) = Z−1

2 Enorm(N |ω0 = ζ ),(4.2)

where Z2 ∈ (0,∞) is another normalization. From (4.1) and (4.2) follows the
statement of the lemma.

To prove (4.2), let φ :Ec
R −→ AR associate to each moment of disconnection

0 �↔ R in càdlàg dynamical percolation the first connection time to its right (which
is necessarily an arrival). Condition the process on Ec

R ∩ [−n,0] �= ∅, and pick a
random time χ whose conditional law is given by normalized Lebesgue measure
on Ec

R ∩ [−n,0]; note that FETICR is the weak limit as n → ∞ of ωφ(χ), for
almost every ω, by ergodicity (Lemma 2.3). In this weak limit, the probability that
ωφ(χ) is a given static configuration ζ (for which 0 ↔ R) is proportional to the
limiting average length of intervals in Ec

R ∩ [−n,0] at whose right-hand endpoint
the configuration is ζ . By ergodicity again, this limit equals the expectation on the
right-hand side of (4.2) for almost every ω, completing the proof. �

Here is a straightforward variant of (4.2). For any nonnegative random vari-
able X of finite mean, X̂ will denote the size-biased version; that is, P(X̂ ≥ t) =
E(X)−1E(X1X≥t ).

LEMMA 4.5. Let N̂ be the size-biased version of the reconnection time N

under the law Pnorm, and let U be an independent Unif[0,1] random variable.
Then N̂U has the distribution of FETR .

The following useful fact was proved in [18].

LEMMA 4.6. In dynamical percolation we have

P(FETR > t) ≤ exp{−ct}
for all t > 0, where c > 0 may be chosen uniformly in R ∈ N.

Note that the preceding two lemmas imply that P(N̂ > t) ≤ exp{−ct}, uni-
formly in R. In particular, this random variable has finite moments: for each k ∈ N,
E(N̂k) = E(Nk+1)/EN < ∞, again uniformly in R.

We now introduce the thinning procedure which is central to our technique for
showing that FETIC differs from IIC.
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DEFINITION 4.7. A circuit � is a finite self-avoiding path of hexagons such
that for no vertex in the hexagonal lattice are all three of the neighboring hexagons
visited by � and such that H \ � has exactly two connected components: a finite
one, denoted by Int(�), and an infinite one. Note that a partial order on circuits �

is provided by containment of the enclosed regions Int(�).
Let ζ be a percolation configuration in BR such that 0 ↔ R. Note that if some

ζ -open circuit � satisfies Br ⊆ Int(�), then there is a unique ζ -open circuit which
encloses Br and is minimal in the partial order among such circuits. If ζ is such
that this circuit exists, we label the circuit by �r .

DEFINITION 4.8. Recall the exponent η ∈ (0,1) from (1.6), and fix ε > 0
small enough that (1 + 2ε)(1 − η) < 1. Now assume that r satisfies r2(1+2ε) ×
α4(r

1+2ε) < r/2, which holds for all large enough r , by (1.7). Let R ∈ N satisfy
R ≥ r1+2ε . A configuration ζ in BR is said to satisfy ζ ∈ Fine if the following
conditions hold:

• 0 ←→ R;
• the circuit �r exists and satisfies �r ⊆ Br1+ε ;
• the pivotal set Piv0↔�r = Piv0↔R ∩ Int(�r) satisfies |Piv0↔�r (ζ )| ≤ r2(1+2ε) ×

α4(r
1+2ε).

Finally, a dynamical configuration {ωt : t ∈ R} is said to satisfy Fine if ω0 ∈ Fine.

DEFINITION 4.9. Let r ∈ N be even. Let � denote a circuit such that
Br ⊆ Int(�). Let a ∈ {0, . . . , r/2}. The (r,�, a)-slim configuration χr,�,a is a
particular percolation configuration in Int(�) whose set of open hexagons in
Int(�) ∩ Br/2 consists of the hexagons in Br/2 that intersect the x-axis, and for
which |Piv0↔�| = a. A configuration that achieves this is shown in Figure 4.

DEFINITION 4.10. The thinning procedure Thinning = ThinningR
r maps the

set of configurations in BR to itself. Let ζ be such a configuration. If ζ /∈ Fine,
then set Thinning(ζ ) = ζ . If ζ ∈ Fine, let Thinning(ζ ) be the configuration in BR

of the following form:

Thinning(ζ )(x) =
{

ζ(x), if x ∈ BR \ Int(�r),

χr,�r ,|Piv0↔�r |(x), if x ∈ Int(�r).

We define a coupling of Pnorm with another dynamical process begun by pair-
ing the initial condition with its thinned counterpart. We denote by ω′ the process
under Pnorm, and write ω′′ for the process under the measure Pthin which we now
introduce by coupling with Pnorm. We set Pthin by choosing its initial condition
ω′′

0 = Thinning(ω′
0); if the hexagon S selected for initial closure in the definition

of Pnorm lies in the unbounded component of the complement of �r(ω
′
0), we set
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FIG. 4. The boundary paths delimiting B2 and B4 are black, and the circuit � is light green. The
darker (red and brown) hexagons are the open hexagons of χ4,�,2: the red hexagonal circuit is set
in such a way that its distance from � is a = 2, and the brown path is chosen in some arbitrary but
fixed way so that it realizes this distance a. Note that this brown path is the set of pivotals for 0 ↔ �.

S′′ = S; otherwise, we choose S′′ uniformly among Piv0↔R(ω′′
0) ∩ Int(�r). We de-

fine ω′′
0+ by modifying ω′′

0 by closing S′′. The subsequent evolution of ω′′ is made
in accordance with the càglàd dynamical updates used in defining ω′. Note that
there might be updates that do not have an effect on ω′ (the new status coinciding
with the old one), and hence are not visible if we see only ω′, while do have an
effect on ω′′; thus ω′′ is not entirely measurable w.r.t. ω′, even though the extra
randomness in ω′′ is quite simple.

We denote by Pnorm and Pthin the above dynamics and its thinned counterpart,
and write N and T for the reconnection time inf{t > 0 : 0

ωt←→ R} under Pnorm

and Pthin. We will often use the above coupling of the two càglàd processes, but
will not need a separate notation to denote it. The principal result we need is now
stated.

PROPOSITION 4.11 (Thinned versus normal). Fix ε > 0 small and r ∈ N large
enough that the conditions in Definition 4.8 are satisfied. Then, uniformly in R ≥
r1+2ε , we have Ethin(T 1Fine)

Enorm(N1Fine)
→ ∞ as r → ∞.

PROOF OF THEOREM 1.3, ASSUMING PROPOSITION 4.11. We want to show
that there exist some ε > 0, r ∈ N, a circuit � in the annulus Ar,r1+ε and two
configurations ζ ′ and ζ ′′ on � ∪ Int(�) with � = �r(ζ

′) = �r(ζ
′′), such that

IICR(ζ ′) = IICR(ζ ′′) for each integer R ≥ r1+2ε , with the common value having
a positive limit as R → ∞, while infR≥r1+2ε

FETICR(ζ ′′)
FETICR(ζ ′) > 1.

By Proposition 4.11, we may choose ε > 0 and r ∈ N so that Ethin(T 1Fine) >

2Enorm(N1Fine) for all R sufficiently high. Hence, there exists a choice of circuit
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� in Ar,r1+ε and a configuration ζ ′ in Int(�) ∪ �, such that � = �r(ζ
′), the sec-

ond and third conditions for Fine occur, and setting ζ ′′ equal to the restriction of
Thinning(ζ ′) to Int(�) ∪ �,

Enorm
(
N |ω0|Int(�)∪� = ζ ′′) > 2Enorm

(
N |ω0|Int(�)∪� = ζ ′).

It is clear that IICR(ζ ′′) = IICR(ζ ′); moreover, IIC′
R(ζ ′′) = IIC′

R(ζ ′), since the num-
ber of pivotals for {0 ↔ R} is left intact by Thinning. Hence, by Lemma 4.4, we
have FETICR(ζ ′′) > 2FETICR(ζ ′). �

The rest of the section will be devoted to the proof of Proposition 4.11. Let us
start by collecting the main ingredients needed for the proof; these ingredients will
then be proved in the remaining subsections.

Thinning will make a difference only if there is enough time before reconnection
for the configuration in Int(�r) to change significantly. To this end, as we will
see, the events {N > 1/r} and {T > 1/r} will be important to us. How different
are these two events? Although the set of open hexagons in Thinning(ζ ) is not
exactly a subset of its counterpart for ζ , we can compare the thinned and normal
reconnection times in this regime under a certain event Good:

Good ∩ {N > 1/r} ⊆ {T > 1/r},(4.3)

where Good is defined as follows (and is applied in the above relation to the con-
figuration before thinning):

DEFINITION 4.12. Let R, r ∈ N satisfy R ≥ r1+2ε where ε > 0 is specified in
Definition 4.8. Let ω be a dynamical configuration in BR . We say that ω ∈ Good
if the following conditions are satisfied:

• ω0 ∈ Fine, as specified in Definition 4.8;
• for each t ∈ [0, r−1], the inner and outer boundaries of the annulus Ar1+ε,r1+2ε

are separated by an ωt -open circuit;
• for each t ∈ [0, r−1], 0

ωt←→ r1+2ε .

Now, to see (4.3), note that the occurrence of Good implies that 0 is connected
to some open circuit � = �(t) such that Br1+ε ⊆ � for all 0 ≤ t ≤ r−1. Hence,
N > 1/r implies that r1+ε �←→ R for all t ∈ [0, r−1] under Pnorm. Since the dy-
namical percolations under Pnorm and Pthin agree at all positive times in Ar1+ε,R ,
we have that r1+ε �←→ R for all t ∈ [0, r−1] also under Pthin. Thus T > 1/r , and
we obtain (4.3).

The event Good is of course useful only if it is reasonably likely to occur. Propo-
sition 4.26, which is the main result of Section 4.2, will show that

Pnorm(Good|N > 1/r) ≥ c1.
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This, (4.3) and Good ⊆ Fine imply the following “stochastic quasi-domination”
between T and N :

Pthin(T > 1/r,Fine) ≥ Pnorm(N > 1/r,Good) ≥ c1Pnorm(N > 1/r).(4.4)

Although the event {N > 1/r} has minute probability when R is large, a large
portion of the expectation E(N1Fine) is contributed by sample points realizing this
event. This can be proved using the size-biasing description of the connection time
discussed in Lemma 4.5. Indeed, by some rather general size-biasing arguments,
together with the uniform boundedness of the expectation E(N̂R) < ∞ (due to
Lemmas 4.5 and 4.6 above), alongside the fact that Pnorm(Fine|N > 1/r) ≥ c1
(due to Good ⊆ Fine), it will be proved in Section 4.3 that

Enorm(N |N > 1/r,Fine) < C2 < ∞,(4.5)

and that

Pnorm(N̂1Fine > 1/r) = Enorm(N1N>1/r1Fine)

Enorm(N1Fine)
> c2 > 0.(4.6)

Finally, as we will prove in Proposition 4.31 of Section 4.4, should the dynamics
begun under Thinning result in at least a short reconnection time, T > 1/r , then
there is a uniformly positive probability that connection will not be reestablished
until very much later,

Pthin
(
T > g(r)|T > 1/r,Fine

)
> c3 > 0,(4.7)

for some g(r) → ∞ as r → ∞.

PROOF OF PROPOSITION 4.11. From the above assemblage of facts, we find
that

Ethin(T 1Fine) ≥ Ethin(T 1T >1/r1Fine)

= Ethin(T |T > 1/r,Fine)Pthin(T > 1/r,Fine)

≥ c3c1g(r)Pnorm(N > 1/r,Fine), by (4.7) and (4.4)

≥ c3c1g(r)
Enorm(N1N>1/r1Fine)

C2
, by (4.5)

≥ c3c1c2g(r)
Enorm(N1Fine)

C2
, by (4.6).

Therefore, the ratio Ethin(T 1Fine)
Enorm(N1Fine)

tends to infinity as r → ∞, uniformly in R ≥
r1+2ε , as required. �

We will now start proving the above ingredients.
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4.2. Understanding the law Pnorm(·|N > 1/r). In this section, P will denote
the law of càglàd dynamical percolation with time R. Recall that ER is the set of
times such that 0 ↔ R, now a union of left-open right-closed intervals.

It is hard to understand the conditioned measure P′ := Pnorm(·|N ≥ 1/r) di-
rectly because the condition has a tiny probability. We will handle this issue by
noticing that, for large enough s ∈ Z+, we have P(ER ∩ (s/r, (s + 1)/r] = ∅|0 ∈
ER) > c > 0, uniformly in r > 0 (see Lemma 4.18), and given the existence of this
empty interval, γ := sup{ER ∩ [0, s/r)} is a moment such that the reconnection
time from it is at least 1/r . If s is bounded, then the law of dynamical percolation
viewed from such a γ (to be denoted by P′′; see Lemma 4.15) turns out to be not
very different from the law P′; see Lemma 4.16. Therefore, once we prove that
ωt has certain good properties with high probability for all t ∈ [0, (s + 1)/r] un-
der P(·|0 ∈ ER,ER ∩ (s/r, (s + 1)/r) = ∅), which is already a feasible task, and
hence that the dynamical configuration viewed from γ (i.e., the measure P′′) is
well behaved, we will be able to deduce almost the same for the measure P′; this
will be Proposition 4.26, the main goal of this subsection.

DEFINITION 4.13. Call an element x ∈ ER a marker if (x, x + r−1]∩ER = ∅.
Write M ⊆ ER for the set of markers. For x ∈ M, set 	x ≥ r−1 so that x +	x is the
first limit point of ER encountered to the right of x. Let s ∈ Z+ be a (large) integer
to be determined later. For each x ∈ M, set Lx = [x − sr−1, x − sr−1 + 	x − r−1]
if r−1 ≤ 	x < (s + 1)r−1; if 	x ≥ (s + 1)r−1, take Lx = [x − sr−1, x]. Define the
domain of attraction Dx of x ∈ M by Dx = Lx ∩ ER; see Figure 5.

Note that Lemma 4.2 has a straightforward analogue for P(·|0 ∈M), and we
have P′ = Pnorm(·|N ≥ 1/r) = P(·|0 ∈ M). We now define the measure P′′ on
dynamical configurations on BR that will be our main tool for understanding P′.

FIG. 5. The domain of attraction Dm appearing in the definition of P′′, and the map A :J −→ M
appearing in the proof of P′′ = P̃ (Lemma 4.15).
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DEFINITION 4.14. Define the law P′′ so that, for any càglàd dynamical per-
colation configuration ω satisfying 0 ∈ M,

dP′′

dP′ (ω) = Z−1|D0|,
where | · | is Lebesgue measure, and Z > 0 is a normalization chosen to ensure that
P′′ is indeed a probability measure.

LEMMA 4.15. Let P̃ denote the following dynamical process. Consider
càglàd dynamical percolation {ωt : t ∈ R} in BR with ω0 distributed as IICR ,
and with the update decisions made independently of ω0. Condition this process
on the event that ER ∩ (sr−1, (s + 1)r−1) = ∅. Let γ ∈ [0, sr−1] be given by
γ = sup{ER ∩ [0, sr−1)}. Now set P̃ equal to the conditional law of ω(γ + ·).
Then P̃ = P′′.

PROOF. Under dynamical percolation on BR , let J denote the set of times j ∈
ER such that (j + sr−1, j + (s +1)r−1)∩ER = ∅. Consider the map A :J −→M
such that, for each j ∈ J , A(j) is the largest element of M preceding j + sr−1.
Note that j ∈ ER implies that j ≤ A(j) ≤ j + sr−1. Note further that, for each
m ∈ M, we have A−1(m) =Dm; see Figure 5.

Consider now an experiment in which, for x > 0, dynamical percolation is sam-
pled conditionally on J ∩ [0, x] �= ∅, and an element χ ∈ J ∩ [0, x] is chosen
with the conditional law of normalized Lebesgue measure on this set. Note that,
by limx→∞P(J ∩ [0, x] �= ∅) = 1, the law of ωA(χ)+· (using the randomness in
both ω and χ ) has the limit P̃ as x → ∞. However, from the previous paragraph
we also know that ωA(χ)+· has a weak limit whose Radon–Nikodym derivative
with respect to dynamical percolation given 0 ∈ M is |D0| up to normalization.

�

LEMMA 4.16 (Typical events of P′′ will appear in P′). The Radon–Nikodym
derivative dP′′

dP′ has a second moment that is bounded above by some B < ∞ which
might depend on the parameter s but not on R. Consequently, P′(A) ≥ P′′(A)2/B

for any event A.

PROOF. The claim regarding the Radon–Nikodym derivative follows directly
from Lemma 4.17 below. The second claim then follows by Cauchy–Schwarz,

P′′(A) =
∫

1A dP′′ =
∫

1A
dP′′

dP′ dP′

≤
√∫

12
A dP′

√∫ (
dP′′
dP′

)2

dP′ ≤ √
P′(A)

√
B,

as desired. �
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LEMMA 4.17. Let mR,r denote the conditional mean under dynamical perco-
lation of |ER ∩ (0, r−1)| given that this intersection is nonempty. Consider dynam-
ical percolation P on BR conditionally on 0 ∈ M. Then the Lebesgue measure of
the domain of attraction of the origin satisfies

P
(|D0| ≥ cmR,r |0 ∈ M

) ≥ cs−2(4.8)

and

E
(|D0|2|0 ∈ M

) ≤ Cs2m2
R,r ,(4.9)

for constants C > c > 0 which do not depend on r,R or s.

Before starting the proof of Lemma 4.17, we need to verify a basic decorrelation
result. In light of Lemma 4.15 (describing P′′ as P̃), it is far from surprising that
this result will be crucial in understanding the measures P′′ and P′.

LEMMA 4.18 (Ensuring an empty interval). There exists a large s ∈ Z+ and a
small c > 0 such that, for each r ∈ Z+ and R > R0(r), the probability that dynam-
ical percolation with initial condition ω0 distributed according to IICR satisfies
ER ∩ (sr−1, (s + 1)r−1) =∅ exceeds c.

An important element of the proof of Lemma 4.18 is the following claim. It is
slightly more convenient to reverse time once again, just for this claim. Recall that
ρ(r) = inf{s : s2α4(s) ≥ r}, and keep in mind that its magnitude is known to be
r4/3+o(1) for percolation on the faces of H and to lie between C−1r1+η and Cr1/η

for some η ∈ (0,1) and 0 < C < ∞ for bond percolation on Z2.

LEMMA 4.19. There exists c > 0 such that the following holds, independently
of r ∈ N. Let N denote the event that at no time in the interval [−r−1,0] is there
an open crossing of the annulus Aρ(r),2ρ(r). For s > 0, let Ys denote the event that
an open crossing of Aρ(r),2ρ(r) exists at time sr−1. Then, for all large enough s > 0
(without dependence on r), we have P(N ∩Ys) ≥ c.

PROOF. By considering a coupling in which dynamical updates lead always
to the closure of hexagons, we know that P(N ) ≥ c by (1.9), Kesten’s result on
the near-critical window. Let N0 denote the time-0 static event that the condi-
tional probability of N given the time 0 configuration is at least c. We have that
P(N0) ≥ c by adjusting the value of c > 0. Note then that, denoting by f and
g the ±1-indicator functions of N0 and Y0, and by f̂ and ĝ their Fourier series,
relation (1.13) yields

P(N0 ∩Ys) − P(N0)P(Ys) = ∑
S �=∅

f̂ (S)ĝ(S) exp
{−sr−1|S|}.
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We apply Cauchy–Schwarz to bound above the absolute value of the right-hand
side. Then basic relation (1.13) and decorrelation estimate (1.16) applied to g give
the following bound on the resulting term:( ∑

S �=∅

f̂ 2(S)

)1/2( ∑
S �=∅

ĝ2(S) exp
{−2sr−1|S|})1/2

≤ ε1 +
( ∑

|S|≥ε2r

ĝ2(S) exp{−2ε2s}
)1/2

≤ ε1 + exp{−ε2s},

where ε1 depends on the choice of cutoff ε2 > 0 and may be chosen so that ε1 → 0
as ε2 → 0. Noting that P(N0)P(Ys) ≥ c1 > 0, we see that P(N0 ∩Ys) ≥ c1/2 by
making a suitable choice of ε1, ε2 and s. Note that P(N ∩Ys) ≥ cP(N0 ∩Ys)

because N and Ys are conditionally independent given the time-0 configuration.
This completes the proof. �

The next lemma relates the restriction of IIC to a dyadic annulus to the perco-
lation configuration in the annulus obtained by conditioning on an open crossing
between the annulus’ boundaries.

LEMMA 4.20 (Localizing the IIC conditioning). Let PR
r denote the law of

critical percolation in Ar,R given that r ←→ R, for 0 ≤ r < R ≤ ∞ (where the
conditional law P(·|r ↔ ∞) on Bc

r is obtained as a weak limit of P(·|r ↔ R) as
R → ∞, constructed by [24]). Then, for each ε > 0 there exists δ > 0 such that
if A ∈ σ {AR,2R} (i.e., an event measurable in the annulus), then P2R

R (A) ≥ ε im-
plies that Pb

a(A) ≥ δ, for all 0 ≤ a ≤ R/2 and 4R ≤ b ≤ ∞ (in particular, for
IIC = P∞

0 ).

PROOF. For ζ a configuration in AR,2R such that R ↔ 2R, let Wa,R,b(ζ ) de-
note the conditional probability that a ↔ b given the occurrence of the events
ω|AR,2R

= ζ , a ↔ R and 2R ↔ b. We will argue that for each ε > 0 there exists
δ > 0 such that, for all large enough R ∈ N and a, b ∈ N with 0 ≤ a ≤ R/2 and
2R ≤ b ≤ ∞,

P(Wa,R,b ≤ δ|R ←→ 2R) ≤ ε.(4.10)

This easily implies the lemma, as follows. Note that

dPb
a

dP2R
R

(ζ ) = Z−1
a,R,bWa,R,b(ζ ),

where Za,R,b = P(a ↔ b|a ↔ R,R ↔ 2R,2R ↔ b) ≤ 1. Given ε > 0, choose by
means of (4.10) an ε′ > 0 such that P2R

R (Wa,R,b ≤ ε′) ≤ ε/2 for each R ∈N. Thus
if A ∈ σ {AR,2R} satisfies P2R

R (A) ≥ ε, then

Pb
a(A) = Z−1

a,R,b

∫
A

Wa,R,b(ω)dP2R
R (ω) ≥ ε′ε/2,
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where the inequality follows from restricting the integral to that part of A on which
Wa,R,b > ε′. Hence the lemma holds with the choice δ = ε′ε/2.

To prove (4.10), we introduce the function Wε
R(ζ ) on configurations ζ in AR,2R ,

for R ∈ N and ε ∈ (0,1/2), which is the conditional probability of R(1 − ε) ←→
2R(1 + ε) under critical percolation given that ω|AR,2R

= ζ . �

LEMMA 4.21. For each ε ∈ (0,1/2), there exists a constant c = cε > 0 such
that, for each R,a, b ∈ N as before and for all configurations ζ in AR,2R , we have
Wa,R,b(ζ ) ≥ cWε

R(ζ ).

PROOF. Let p1 denote the probability under critical percolation that there ex-
ists an open surrounding circuit in the annulus AR(1−ε),R , and let p2 denote the
corresponding probability for the annulus A2R,2R(1+ε). Note that p1,p2 ≥ cε > 0
for all R by a simple application of RSW. We claim that

Wa,R,b(ζ ) ≥ p1p2W
ε
R(ζ ).(4.11)

Indeed, consider the conditioning appearing in the definition of Wa,R,b(ζ ): under
the conditional law, the configuration in Ac

R,2R stochastically dominates critical
percolation, and thus open surrounding circuits appear in the annuli AR(1−ε),R and
A2R,2R(1+ε) with probability at least p1p2; the presence of such circuits being
an increasing event, the conditional law further conditioned on the presence of
such circuits has probability at least Wε

R(ζ ) of realizing R(1 − ε) ←→ 2R(1 +
ε). However, the event R(1 − ε) ←→ 2R(1 + ε) and the presence of the two
surrounding circuits is enough, alongside the conditions met under the conditional
law, to ensure that 0 ←→ ∞. In summary, we obtain (4.11); applying p1p2 ≥ c2

ε

completes the proof. �

LEMMA 4.22. For each δ > 0, there exists ε0 > 0 such that, for all large
enough R ∈ N and all ε ∈ (0, ε0),

P
(
Wε

R ≤ 1 − δ|R ←→ 2R
) ≤ δ.

PROOF. Note that for any δ1 > 0, there is an ε1 > 0 such that, for all ε < ε1,

E
(
Wε

R|R ←→ 2R
) = P

(
R(1 − ε) ←→ 2R(1 + ε)|R ←→ 2R

)
= 1 − P(R ←→ 2R, but R(1 − ε) �←→ 2R(1 + ε))

P(R ←→ 2R)

≥ 1 − δ1,

because the event {R ←→ 2R, but R(1 − ε) �←→ 2R(1 + ε)} implies that there
are three arms from one side of the annulus A(R(1 − ε),2R(1 + ε)), from radius
about εR to radius about R, and this event has probability of order ε, the 3-arm
half-plane probability being of order ε2. See [43], first exercise sheet.
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From this bound, applying Markov’s inequality to 1 − Wε
R , we get that

P
(
1 − Wε

R ≥ √
δ1|R ←→ 2R

) ≤ √
δ1,

which implies the lemma immediately. �

Now note that (4.10) follows from Lemmas 4.21 and 4.22 immediately. This
completes the proof of Lemma 4.20 (localizing the IIC conditioning) for large
enough R ∈ N; on the other hand, for R bounded, the lemma is trivial.

PROOF OF LEMMA 4.18 (Ensuring an empty interval). Let C ∈ σ {Aρ(r),2ρ(r)}
denote the static event consisting of configurations ζ satisfying ρ(r) ↔ 2ρ(r) and
such that

P
(
ρ(r) ↔ 2ρ(r) at no time in

[
sr−1, (s + 1)r−1]|ω0 = ζ

) ≥ c.

By considering the process ω(sr−1 − ·) in Lemma 4.19, we see that

P
(
ρ(r) ↔ 2ρ(r) at time 0, ρ(r) ↔ 2ρ(r) at no time in

[
sr−1, (s + 1)r−1]) ≥ c;

in the notation of the statement of Lemma 4.20, we see that P2ρ(r)
ρ(r) (C) ≥ c by

reducing the value of c > 0. By Lemma 4.20, we infer that for some δ > 0 and for
R ≥ 4ρ(r), IICR(C) > δ, as required for the statement of Lemma 4.18. �

PROOF OF LEMMA 4.17. We start by a simple corollary of Lemma 4.18 con-
cerning the density of markers.

DEFINITION 4.23. Let {Ii = (i/r, (i + 1)/r) : i ∈ N} enumerate the consec-
utive intervals of length r−1 rightwards from the origin. Call any such interval
active if it has nonempty intersection with ER . For any i ∈ N, call Ii promising if
Ii is an active interval with the property that M intersects

⋃
i≤j≤i+s Ij .

LEMMA 4.24. There exists c > 0, independent of R, such that the condi-
tional probability under dynamical percolation BR given that I0 is active that I0 is
promising is at least c.

PROOF. Let P0 denote dynamical percolation on (0,1/r) weighted according
to the size |ER ∩(0,1/r)|; under P0, define τ to be an element of ER ∩(0,1/r) with
conditional law given by normalized Lebesgue measure on this set. Under P0, the
law of dynamical percolation at times τ + t , t ≥ 0 is, by Lemma 3.3, dynamical
percolation started from IICR . By Lemma 4.18, the conditional probability that
(τ + sr−1, τ + (s +1)r−1)∩ER = ∅ exceeds some R-independent constant c > 0.
Whenever this disjointness condition is satisfied, there exists an element of M
somewhere in the interval between τ and τ + sr−1, and thus in the interval (0, (s +
1)r−1).
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We learn that the P0-probability that I0 is promising exceeds an R-independent
constant c > 0. Lemma 4.24 will follow once we establish this assertion for dy-
namical percolation conditioned on the interval Ii being active, a measure we label
P1. To make this reduction, it is enough to argue that dP0

dP1
has a bounded second

moment, in light of the proof of Lemma 4.16, with the roles of P′′ and P′ being
played by P0 and P1. By Lemma 2.6, there exists C > 0 such that, for all R > 0,∫ (

dP0

dP1

)2

dP1 = E
(∣∣ER ∩ (

0, r−1)∣∣2|ER ∩ (
0, r−1) �=∅

)
≤ C

(
E

(∣∣ER ∩ (
0, r−1)∣∣|ER ∩ (

0, r−1) �= ∅
))2

.

This completes the proof of Lemma 4.24. �

We can now prove (4.9). Let {mi : i ∈ N+} enumerate the elements of M ∩
(0,∞) in increasing order. By ergodicity, we have almost surely that

E
(|D0|2|0 ∈M

) = lim
n

n−1
n∑

i=2

|Dmi
|2,(4.12)

where the term with index i = 1 has been harmlessly omitted for later nota-
tional convenience. Let {λi} (or {αi}) enumerate the indices i ∈ N+ of promis-
ing (or active) intervals Ii in increasing order. For i ≥ 1, consider the consecu-
tive intervals Ij beginning the interval after that containing mi and stopping at
the one containing mi+1. Among these, there are at most s + 1 promising in-
tervals, and Dmi+1 is contained in the union of these promising intervals. There-

fore,
∑n

i=2 |Dmi
|2 ≤ (s + 1)

∑λ(s+1)n

i=2 |Ii ∩ ER|2. By Lemma 4.24 and the ergod-
icity Lemma 2.3, λn ≤ 2c−1αn for all large enough n. Hence,

∑n
i=2 |Dmi

|2 ≤
(s + 1)

∑2c−1α(s+1)n

i=1 |Ii ∩ ER|2. By ergodicity again, this upper bound behaves like

2c−1(s + 1)2nE
(∣∣ER ∩ (0,1/r)

∣∣2|ER ∩ (0,1/r) �= ∅
)(

1 + o(1)
)

as n → ∞. Applying Lemma 2.6 to |ER ∩ (0,1/r)| [which is just a scaled version
of μR(0,1/r)] and using (4.12), we obtain (4.9).

To prove (4.8), in light of (4.9), the Paley–Zygmund second moment method
says that it suffices to verify that, for some c > 0 and all R, r, s ∈ N+,

E
(|D0||0 ∈ M

) ≥ cmR,r .(4.13)

We now verify this inequality. Let ρ = limn n−1|M ∩ (0, n)| denote the mean
number of markers in [0,1], or, alternatively, ρ = E(|M∩ (0,1)|).

We claim the following.

LEMMA 4.25. Recall that J denotes the set of times j such that the event
0 ↔ R occurs at time j and at no time in the interval (j + sr−1, j + (s + 1)r−1).
Then ρE(|D0||0 ∈M) = E(|J ∩ [0,1]|).
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PROOF. Recall that the subset J of ER is partitioned into disjoint classes given
by domains of attraction Dm and thus indexed by the set of markers m ∈ M.

The quantity ρE(|D0||0 ∈ M) is thus the mean Lebesgue measure of the union
of the domains of attractions indexed by markers lying in a given unit interval. By
the above partition and ergodicity, we arrive at the statement of Lemma 4.25. �

By translation invariance, E(|J ∩ [0,1]|) = limn n−1E(|J ∩ [0, n]|); by Lem-
mas 3.2 and 4.18, there exists c > 0 such that, for n sufficiently high,

n−1E
(∣∣J ∩ [0, n]∣∣) ≥ cn−1E

(∣∣ER ∩ [0, n]∣∣).
By translation invariance again, n−1E(|ER ∩ [0, n]|) = E(|ER ∩ [0,1]|) which may
be written rmR,rP(I0 is active). To summarise the derivation of (4.13) thus far, the
preceding inequality and Lemma 4.25 yield

ρE
(|D0||0 ∈M

) ≥ crmR,rP(I0 is active).(4.14)

We will show that

ρ ≤ rP(I0 is active);(4.15)

note then that (4.14) and (4.15) yield (4.13).
To verify (4.15), recall that a marker is by definition an element of ER bordered

on the right by an interval of length r−1 having no intersection with ER . Thus,
each marker lies in an active interval, and no active interval contains more than one
marker. This implies that the mean rate ρ of markers is at most the mean number
of active intervals in a given unit interval, a quantity which may be expressed as
rP(I0 is active). This verifies (4.15). This completes the derivation of (4.13) and
thus of (4.8), which completes the proofs of Lemmas 4.17 and 4.16 on the Radon–
Nikodym derivative dP′′

dP′ . �

We are now ready to address the main goal of this subsection. Recall the notion
of Good from Definition 4.12.

PROPOSITION 4.26 (P′ is well behaved). There exists c > 0 such that, for any
r > r0 and R > R0(r),

P(ω ∈ Good|0 ∈ M) ≥ c.

In the proof, we will use the following notion and claim.

DEFINITION 4.27. Fix ε > 0 and r ∈ N as in Definition 4.8, and let R ∈ N
satisfy R ≥ r1+2ε . We say that a dynamical configuration ω in BR is ω ∈ VeryGood
if the following conditions are satisfied:

• 0
ω0←→ R;
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• for each t ∈ [0, (s + 1)r−1], the inner and outer boundaries of the annulus
Ar1+ε,r1+2ε are separated by an ωt -open circuit;

• for each t ∈ [0, (s + 1)r−1], the circuit �r exists and satisfies �r ⊆ Br1+ε in ωt ;
• |Piv0↔�r | ≤ |Piv0↔r1+ε (ωt )| ≤ r2(1+2ε)α4(r

1+2ε) for all such t ;

• for each t ∈ [0, (s + 1)r−1], 0
ωt←→ r1+2ε .

LEMMA 4.28. For any δ > 0, there exists r0 ∈ N such that, for all r ≥ r0 and
R ≥ r1+2ε ,

P(ω ∈ VeryGood|0 ω0←→ R) ≥ 1 − δ.(4.16)

PROOF. Let P1 denote dynamical percolation in Br1+2ε with ω0 having the dis-
tribution P(·|0 ↔ R), and with conditionally independent updates at rate one. Let
P2 denote the asymmetric dynamical process in Br1+2ε with the same initial distri-
bution as in P1, but with the updates always leading to the closure of hexagons. As
usual, we form the obvious coupling Q of P1 and P2 such that the first marginal
dominates the second for all t ≥ 0.

In this new notation, the statement of the lemma is equivalent to the following:
for any δ > 0, there exists r0 ∈ N such that, for all r ≥ r0 and R ≥ r1+2ε ,

P1
(
ω ∈ VeryGood′) ≥ 1 − δ,(4.17)

where VeryGood′ is given by the second and later conditions defining VeryGood.
We claim that, to show (4.17), it is enough that

P2
(
ω ∈ VeryGood′) ≥ 1 − δ.(4.18)

To see that (4.18) is enough for (4.17), note that, under the coupling Q, it is
clear that if the second (P2-distributed) marginal satisfies the second, third and
fifth conditions of Definition 4.27, then so does the first (P1-distributed) marginal
because these conditions are monotone. In regard to the fourth condition, write Piv
for Piv0↔r1+ε . Note that if ω1 and ω2 are two configurations in Br1+ε such that
ω1 ≥ ω2 and 0 ↔ r1+ε under ω2, then Piv(ω1) ⊆ Piv(ω2): indeed, were a hexagon
h in Br1+ε to satisfy h ∈ Piv(ω1)\Piv(ω2), then its closure would disable 0 ↔ r1+ε

in ω1 but not in ω2, a circumstance which stochastic domination prevents. That is,
whenever 0

ωt←→ r1+ε occurs under P2, we have that |Piv(ω1
t )| ≤ |Piv(ω2

t )| (where

ω1 and ω2 denote the P1 and P2 marginals), and thus (4.18) implies (4.17) and
hence (4.16).

It remains to verify (4.18). We start with a simple lemma.

LEMMA 4.29. Let P↓
s denote asymmetric dynamical percolation {ωt : t ≥ 0}

with ω0 having the distribution IICs , then closing hexagons at rate one. Then, re-

stricted to the ball Br , the Radon–Nikodym derivative
dP

↓
R

dP
↓
r

(ω[0, t]Br ) is bounded
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from above uniformly in r , R ≥ r , t ≥ 0 and all dynamical configurations
ω[0, t]Br .

PROOF. We claim that

dP↓
R

dP↓
r

(
ω[0, t]Br

) ≤ P(0 ↔ r)P(r + 1 ↔ R)

P(0 ↔ R)
,(4.19)

with the right-hand side understood simply in static critical percolation. From this,
the lemma follows by quasi-multiplicativity. For the claim, note that the Radon–
Nikodym derivatives with respect to asymmetric dynamical percolation P↓ started
from criticality, restricted to Br , can be written as

dP↓
s

dP↓
(
ω[0, t]Br

) = P↓(0 ↔ s in ω0|ω[0, t]Br )

P↓(0 ↔ s in ω0)
,

for any s ≥ r ; in particular, for s ∈ {r,R}. On the other hand,

P↓(
0 ↔ R in ω0|ω[0, t]Br

) ≤ P↓(
0 ↔ r in ω0|ω[0, t]Br

)
P↓(r + 1 ↔ R in ω0).

Since the distribution of ω0 under P↓ is simply critical percolation, from the last
two displays follows (4.19). �

PROOF OF (4.18). Let P3 denote asymmetric dynamical percolation P↓
r1+2ε

in Br1+2ε , with the notation of Lemma 4.29. By this lemma, it is enough to ver-
ify (4.18) with P3 in place of P2. We are going to show that each of the four
conditions defining VeryGood′ happens with probability close to 1 if r is large
enough.

Let us first look at the four conditions at time zero. The fifth condition (that 0 ↔
r1+2ε) is automatically satisfied under P3. The second and third conditions (open
circuits in Ar1+ε,r1+2ε and in Ar1+ε,r ) are satisfied with high probability in critical
percolation by RSW along several scales, and also under the conditioning 0 ↔
r1+2ε by FKG. The fourth condition (there are not too many pivotals for 0 ↔ r1+ε)
follows from standard quasi-multiplicativity arguments. Namely, as illustrated on
Figure 6, we have

P
(
x ∈ Piv0↔r1+ε |0 ↔ r1+2ε)

� α4
(
dist(x, ∂Br1+ε ) ∧ dist(0, x)

)
α3

(
dist(x, ∂Br1+ε ), r

1+ε),
which can be summed up over the possible hexagons x ∈ Br1+ε to get

E
(|Piv0↔r1+ε ||0 ↔ r1+2ε) = O(1)r2(1+ε)α4

(
r1+ε).

By quasi-multiplicativity and (1.6), we have

α4(r
1+ε)

α4(r1+2ε)
< C

(
rε)2−η � r2ε,
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FIG. 6. Conditioned on 0 ↔ r1+2ε , one 4-arm event (first picture) or one 4-arm and one 3-arm
events (second picture) are roughly equivalent to x being pivotal for 0 ↔ r1+ε .

and hence Markov’s inequality yields

P
(|Piv0↔r1+ε | > r2(1+2ε)α4

(
r1+2ε)|0 ↔ r1+2ε) → 0,

as r → ∞, as desired.
We now have to prove that the four conditions are also satisfied with high prob-

ability at time t = (s +1)r−1; then, by the earlier monotonicity argument, we have
the result for all t ∈ [0, (s + 1)r−1], as well.

By the exponent bound (1.7) and the choice (1 + 2ε)(1 − η) < 1 made in Def-
inition 4.8 and onward, we have that r−1 � 1/(r2(1+2ε)α4(r

1+2ε)), as r → ∞.
Thus the constant closing of hexagons for time (s + 1)r−1 keeps the system Br1+2ε

well inside the critical window of percolation, established by Kesten, as described
in (1.8) and (1.11). Therefore, the above arguments for the second to fourth con-
ditions of Definition 4.27 apply verbatim. The fifth condition can be verified in a
similar manner: using (1.11), we have

P↓(
0

ω
(s+1)r−1←→ r1+2ε|0 ω0←→ r1+2ε) = 1 − o(1),

as r → ∞. This finishes the proof of (4.18) and Lemma 4.28. � �

PROOF OF PROPOSITION 4.26. Whenever (4.16) holds, by Lemma 4.18 we
also have that

P
(
ω ∈ VeryGood|0 ω0←→ R,ER ∩ (

sr−1, (s + 1)r−1) = ∅
)

≥ P(ER ∩ (sr−1, (s + 1)r−1) =∅|0 ∈ ER) − P(ω /∈ VeryGood|0 ∈ ER)

P(ER ∩ (sr−1, (s + 1)r−1) =∅|0 ∈ ER)
(4.20)

≥ 1 − δ

c
.
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Note that if a realization of dynamical percolation in BR realizes VeryGood, then
the process ω(γ + ·) identified in Lemma 4.15 realizes Good. By Lemma 4.15
and (4.20), we find then that P′′(ω ∈ Good) ≥ 1 − δ/c. Now Lemma 4.16 implies
that an appropriate small choice of δ in (4.16) forces P′(ω ∈ Good) ≥ c′ for some
absolute constant c′ > 0, completing the proof of Proposition 4.26.

4.3. Size-biasing arguments. In this subsection, we will prove the bounds
(4.5) and (4.6), used in the proof of Proposition 4.11 at the end of Section 4.1.
To start with, note that

P(N̂ > 1/r) = E(N1N>1/r )

EN
> c > 0.(4.21)

Indeed, by Lemma 4.5, the distribution of N̂ = N̂R stochastically dominates that
of FETR , which implies (4.21) trivially.

Deriving (4.5). Our goal is to show that

E(N |N > 1/r) < C < ∞,(4.22)

uniformly in r and R for which R ≥ r1+2ε , since Proposition 4.26 and Good ⊆
Fine then imply that, for such values of R and r ,

E(N |N > 1/r,Fine) ≤ E(N |N > 1/r)

P(Fine|N > 1/r)
≤ c−1E(N |N > 1/r) < c−1C < ∞,

which was the statement of (4.5).
Lemmas 4.5 and 4.6 imply that E(N̂) < C for some constant C < ∞ that is

independent of R. This, together with the lower bound (4.21), plugged into the
next lemma with X := N and t := 1/r , implies (4.22).

LEMMA 4.30 (Rough size-biasing). If X is a nonnegative random vari-
able, and 0 < t < 1 is such that P(X̂ > t) > c > 0 and E(X̂) < C < ∞, then
E(X|X > t) < C ′ < ∞, where C′ depends only on c and C, and not on t .

PROOF. Note that E(X|X > t) = P(X̂ > t) E(X)
P(X>t)

. Hence, we need to show
that E(X) ≤ C ′P(X > t). We will need two ingredients for this:

(A) There exists an absolute constant A < ∞ such that

E(X1t≥X) < AP(X > t).

(B) For all b > 0 there is some K < ∞ such that

E(X1X>K) < bE(X1X>t),

and therefore E(X1X>K) < b′E(X1K≥X>t) with b′ = b/(1 − b).
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How would we conclude from here?

E(X) = E(X1t≥X) +E(X1K≥X>t) +E(X1X>K)

< AP(X > t) + K
(
1 + b′)P(K ≥ X > t)

<
(
A + K

(
1 + b′))P(X > t),

and we are done.
Now, for the proof of (A), let us look at

C ≥ E(X̂) = E(X2)

E(X)
= E(X21X>K) +E(X21K≥X>t) +E(X21t≥X)

E(X1X>K) +E(X1K≥X>t) +E(X1t≥X)

≥ E(X21X>K)

E(X21X>K)/K + KP(K ≥ X > t) +E(X1t≥X)
,

hence

CKP(K ≥ X > t) + CE(X1t≥X) ≥
(

1 − C

K

)
E

(
X21X>K

)
,

for K > t to be fixed later. Assuming the opposite of (A), we have that
E(X1t≥X) ≥ AP(K ≥ X > t), and the last displayed inequality implies that(

CK

A
+ C

)
E(X1t≥X) ≥

(
1 − C

K

)
E

(
X21X>K

) ≥ K

2
E(X1X>K),

whenever K ≥ 2C. Therefore,

c <
E(X1X>t)

E(X)
≤ E(X1K≥X>t) +E(X1X>K)

E(X1t≥X)

≤ KP(K ≥ X > t)

E(X1t≥X)
+ 2((CK)/A + C)

K
≤ K

A
+ 4C

K
,

whenever A ≥ K . The first inequality is due to P(X̂ > t) > c. By choosing K then
A large enough (depending only on c and C), this gives a contradiction, prov-
ing (A).

Now, to prove (B), assume that it is not satisfied for some b > 0 and an arbitrar-
ily large K > 0. Then

CE(X) ≥ E
(
X2) ≥ E

(
X21X>K

) ≥ KE(X1X>K) ≥ bKE(X1X>t).

For large enough K , this contradicts the bound P(X̂ > t) > c > 0, and we are done.
�
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Deriving (4.6). Recall that we want to show that P(N̂1Fine > 1/r) > c2 > 0,
uniformly in r and R. Because of the monotonicity in r , it is enough to prove this
for some fixed r = r0 (say, r0 = 2). We obviously have

E(N1N>1/r01Fine)

E(N1Fine)
≥ r−1

0 P(N > 1/r0,Fine)

EN
.

We have already noted that Proposition 4.26 implies that P(Fine|N > 1/r0) > c >

0, and hence the numerator is at least cr−1
0 P(N > 1/r0). For the denominator, in

Lemma 4.30 we have proved that EN < C′P(N > 1/r0). Thus we get that the ratio
is at least cr−1

0 /C′, and we are done.

4.4. Reconnection from thinned configurations. The missing ingredient in the
proof of Proposition 4.11 at the end of Section 4.1 is (4.7), namely:

PROPOSITION 4.31 (Things fall apart). For some g(r) → ∞ as r → ∞, we
have that

Pthin
(
T > g(r)|T > 1/r,Fine

)
> c3 > 0.

The main step in proving this proposition is:

PROPOSITION 4.32 (The center cannot hold). Consider dynamical percola-
tion in Bn with an initial condition in which only the hexagons intersecting the
x-axis are open. Then, for some function g :N −→ R+ satisfying g(r) → ∞ as
r → ∞, the probability that at some time between 1/(2n) and g(2n) there exists
an open path realizing 0 ↔ n is bounded away from one, uniformly in n.

PROOF OF PROPOSITION 4.31 ASSUMING PROPOSITION 4.32. Recall the
dynamics Pthin specified after Definition 4.10, and note that

Pthin
(
T ≤ g(r)|T > 1/r,Fine

)
= Pthin

(∃t ∈ [
1/r, g(r)

]
: 0

ωt←→ r|T > 1/r,Fine
)

≤ Pthin
(∃t ∈ [

1/r, g(r)
]
: 0

ωt←→ r/2|T > 1/r,Fine
)
.

Under Pthin(·|Fine), the starting configuration ω0 is specified in Definition 4.9;
inside Br/2, this is a deterministic configuration with only the hexagons intersect-
ing the x-axis being open. Since a point mass trivially satisfies the static FKG in-
equality, we can apply the dynamical FKG inequality Lemma 1.9 for Pthin(·|Fine)

inside Br/2. Namely, for any s ∈ [0,1], consider the dynamical event

As :=
{
[0,∞)

ω−→{0,1}Br/2 càglàd :P(T > 1/r|ω,Fine) ≥ s
}
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in Br/2. This event is decreasing, so that Lemma 1.9 tells us that it is negatively

correlated with the increasing event {∃t ∈ [1/r, g(r)] : 0
ωt←→ r/2}, that is,

Pthin
(
As ∩ {∃t ∈ [

1/r, g(r)
]
: 0

ωt←→ r/2
}|Fine

)
≤ Pthin(As |Fine)Pthin

(∃t ∈ [
1/r, g(r)

]
: 0

ωt←→ r/2|Fine
)
.

Integrating over s ∈ [0,1] gives

Pthin
({T > 1/r} ∩ {∃t ∈ [

1/r, g(r)
]
: 0

ωt←→ r/2
}|Fine

)
≤ Pthin(T > 1/r|Fine)Pthin

(∃t ∈ [
1/r, g(r)

]
: 0

ωt←→ r/2|Fine
)
.

Summarizing,

P
(
T ≤ g(r)|T > 1/r,Fine

) ≤ Pthin
(∃t ∈ [

1/r, g(r)
]
: 0

ωt←→ r/2|Fine
)
.

By Proposition 4.32, the right-hand side is bounded away from one, uniformly
in r . This completes the proof. �

PROOF OF PROPOSITION 4.32. Let Hn denote the set of hexagons in Bn in-
tersecting the x-axis. The elements of Hn will be labeled {hi : i ∈ {−n, . . . , n}} by
the x-coordinate of the triangular lattice point at the centre of the hexagon. We
let Bn \ Hn = Un ∪ Ln decompose Bn \ Hn into its two components above and
below the x-axis. The domain Un has the shape of a half-hexagon, whose inner
boundary naturally decomposes into four paths of hexagons, each along a straight
line segment: Hn ∪ 	1

n ∪ 	2
n ∪ 	3

n, where 	2
n denotes the horizontal path of hexagons

on the top side of Un (so that the “corner” hexagons containing the points given in
complex coordinates by neiπ/6 and neiπ/3 belong to 	n

2).
We will denote by PHn the dynamical percolation process of the proposition,

under which only elements of Hn are open at time 0.
Let CUn denote the event that there is a closed path in Un from 	1

n to 	3
n. For

each i ∈ {−n/2, . . . , n/2}, let SUn

hi
denote the event that there is a closed path γ in

Un from a hexagon bordering hi to 	2
n. The events CUn and SUn

hi
have counterparts

CLn and SLn

hi
defined verbatim after reflection in the x-axis. Finally, define

T n+ := {∃i ∈ {0, . . . , n/2} :hi is closed,SUn

hi
,SLn

hi

}
and

T n− := {∃i ∈ {−n/2, . . . ,0} :hi is closed,SUn

hi
,SLn

hi

}
.

Figure 7 illustrates that, for any t ∈ (0,∞),{
ωt ∈ CUn ∩ CLn ∩ T n+ ∩ T n−

} ⊆ {0 �←→ n in ωt }.(4.23)

Given (4.23), Proposition 4.32 will easily follow from the next two lemmas. �
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FIG. 7. The events CUn , CLn , T n+ , T n− .

LEMMA 4.33. For each t > 0,

PHn

( ⋂
0<s<t

{
ωs ∈ CUn ∩ CLn

}) → 1

as n → ∞.

PROOF. Initially the set of open hexagons in Un is empty; thus, at time s, it
has the law of a Bernoulli percolation P(1/2)(1−e−s ). For 0 < s < t < ∞, let ωs,t

denote the configuration in which a hexagon is open if the hexagon is open un-
der PHn at some time during [s, t]. Note then that the marginal law of ωs,t in
Un is a percolation whose parameter is at most 1

2(1 − e−s) + 1
2(1 + e−s)(1 −

e−(t−s)). For any given s > 0, the percolation parameter of ωs,s+e−s/2 is sub-
critical. By a standard subcritical percolation estimate, then, for each s > 0,
PHn(

⋂
s<t<s+e−s/2{ωt ∈ CUn}) → 1. By a union bound over at most 2ses sets,

we see that PHn(
⋂

0<t<s{ωt ∈ CUn}) → 1. The statement of the lemma follows
by symmetry in the x-axis. �

LEMMA 4.34. There exists c > 0 such that, for all C > 0 and for all n suffi-
ciently high,

PHn

( ⋂
1/n≤t≤C

{
ωt ∈ T n+

}) ≥ c.

PROOF. We will argue that, for some c > 0, and for all n,

PHn

( ⋂
1/n≤t≤c

{
ωt ∈ T n+

}) ≥ c,(4.24)

and also that, for any s ∈ (0,∞),

lim
n→∞PHn

( ⋂
s≤t≤s+e−s/2

{
ωt ∈ T n+

}) = 1.(4.25)
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Note that (4.24) and (4.25) prove the lemma.
Note that each of the percolations ωt for s ≤ t ≤ s + e−s/2 is stochastically

dominated in Un ∪ Ln by ωs,s+e−s/2 which, as we just noted, is a subcritical per-
colation of parameter ps < 1/2.

Let Qn denote the set of hexagons in H that lie in the upper-half plane and that
intersect the rectangle with vertices −n1/4e1, n1/4e1, −n1/4e1 + n

2e2 and n1/4e1 +
n
2e2. Let R+

n denote the event that there exists a closed path in Qn from a hexagon
on the top side of Qn to one that borders h0. By [16], Theorem 11.55, for any
p < 1/2, lim infn Pp(R+

n ) > 0.
Let R−

n denote the event R+
n defined after reflection in the y-axis, and let

Rn = R+
n ∩ R−

n ∩ {h0 is closed}. Clearly, c = lim infn Pp(Rn) > 0. By partition-
ing {0, . . . , n/2} into order n1/4 disjoint intervals and considering the analogue of
Rn for each one, we see that

P
(∃i ∈ {0, . . . , n/2} :hi is closed,SUn

hi
∩ SLn

hi
under ωs,s+e−s/2

)
≥ 1 − (1 − cs)

n1/4
,

where for each s > 0, cs > 0. Hence, we obtain (4.25).
It is a simple matter to verify (4.24). With a probability that is bounded away

from zero uniformly in n, some hexagon hi , 0 ≤ i ≤ n/2, closes during [0,1/n],
and remains closed until at least time one. For some c > 0, the marginal of ω0,c in
Un ∪ Ln is a subcritical percolation. Thus SUn

hi
∩ SLn

hi
occurs with positive proba-

bility under all ωs for 0 ≤ s ≤ c. This verifies (4.24) and completes the proof of
Lemma 4.34. �

PROOF OF PROPOSITION 4.32, CONTINUED. Note that Lemma 4.34 has a
verbatim counterpart for the event T n− . Combining these two lemmas with the aid
of dynamical FKG Lemma 1.9 for the process PHn , and using Lemma 4.33, we
find that, for any C > 0, the left-hand side of (4.23) is satisfied simultaneously for
1/n ≤ t ≤ C with probability tending to one as n → ∞. Hence (4.23) proves the
result. �

5. The collapse of the connection near the exceptional set. In this section,
we address the question of how quickly the infinite cluster C0 in dynamical perco-
lation disintegrates as time varies away from a typical exceptional time. In view of
Theorems 1.7 and 1.8, we may rephrase the question as how rapidly this collapse
occurs at small positive times in dynamical percolation where ω0 is chosen to have
the law IIC. In constructing approximative local times in Section 2, we mentioned
that there are several natural measurements for how close a finite cluster C0 is to
being infinite. We write SIZE(C0) as a label for any such notion, and consider
three possibilities for it: the volume |C0|, the radius sup{‖x‖ :x ∈ C0} or the “help-
fulness” (in providing the event 0 ↔ ∞) HELP(C0) = MC0(ω) which was defined
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in (1.2). Using any of these notions of size, one may try to define a static perco-
lation exponent σSIZE that measures the robustness of the infinite cluster C0(ω0),
a dynamical percolation exponent δSIZE that measures how the size of C0(ωt ) de-
grades with time, and then may try to relate the two exponents, a relation that is
expected to reflect the fact that the “speed” of the dynamical process is governed
by the number of pivotals in critical percolation. We first give a rough heuristic
description of such a general scaling relation; however, since the existence of clas-
sical critical exponents is known only for H, our actual theorem will reformulate
the relation in a way that does not use the existence of exponents and is valid also
for the case of Z2.

To understand the robustness of the initial infinite cluster C0(ω0), we measure
the size of its restrictions to finite balls. Thus we define the static percolation
exponents by

σSIZE := lim
n→∞

logEIIC(SIZE(C0 ∩ Bn(0)))

logn
,

(5.1)
SIZE ∈ {VOL,RADIUS,HELP}.

From [28] and [26] we know the existence and values of the classical critical
exponents

1

ρ
:= lim

n→∞
− logP(RADIUS(C0) > n)

logn
= 5

48
,

1

δ
:= lim

n→∞
− logP(|C0| > n)

logn
= 1

2ρ − 1
= 5

91
,

which imply, with some work, that the exponents in (5.1) can be given as

σVOL = δ

ρ
= 2 − 1

ρ
, σRADIUS = ρ

ρ
= 1, σHELP = 1

ρ
.(5.2)

The first one was established in [24], Theorem (8). The second one is a trivial-
ity. For the third one, an upper bound on EIIC(HELP(C0 ∩Bn)) follows from (2.2),
while a lower bound can be given by the following argument. Under IIC, the small-
est open circuit �n/2 that surrounds Bn/2 is contained in Bn with a uniform prob-
ability c > 0. When conditioning on ωBn , let us restrict ourselves to the part of
the probability space where �n/2 ⊂ Bn, condition first on ωInt(�n/2) and then, for
R > n, use the bound

EIIC
(
P

(
0 ↔ R|ωBn

)) ≥ EIIC
(
1{�n/2⊂Bn}EIIC

(
P

(
0 ↔ R|ωBn

)|ωInt(�n/2)
))

≥ EIIC
(
1{�n/2⊂Bn}P(n/2 ↔ R)

)
≥ cP(n/2 ↔ R)

to find that

EIIC

(
lim

R→∞
P(0 ↔ R|ωBn)

P(0 ↔ R)

)
≥ lim sup

R→∞
cP(n/2 ↔ R)

P(0 ↔ R)
≥ c′P(0 ↔ n/2)−1.
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In the first inequality, we used quasi-multiplicativity to obtain the uniform bound-
edness P(0 ↔ R|ωBn)/P(0 ↔ R) ≤ C/P(0 ↔ n) and are thus able to apply the
dominated convergence theorem; the second inequality likewise uses quasi-
multiplicativity. This completes the argument for the third equality of (5.2) above.

For the dynamical scaling relation, we will also need the static exponent for the
number of pivotals for left–right and annulus crossings,

τ := lim
n→∞

logEpc |PivA(n)|
logn

= lim
n→∞

logEpc |PivA(n,2n)|
logn

= 3

4
,

following from [40], as already mentioned in Section 1.4.
Now, we define the dynamic percolation exponents by

δSIZE = inf
{
y ≥ 0 : lim inf

t↓0
tySIZE

(
C0(ωt )

) = 0
}
,

starting the process from ω0 having the law of IIC. Note that this is a reasonable
notion of measuring the collapse of the IIC near ω0: time 0 is a limit point of
exceptional times, hence SIZE(C0(ωt )) is infinite along some sequence tn ↓ 0,
but at typical times the cluster is finite and should indeed get smaller with time,
according to the following mechanism.

As we will see, for short times t > 0, a fragment of the original infinite cluster
C0(ω0) survives at all times s ∈ [0, t], with the radius of this fragment determined
by the maximal scale on which a pivotal hexagon rings during [0, t]. As such, we
expect that, for any of the above three notions of size,

τδSIZE = σSIZE.(5.3)

In the interest of concision, we will prove this relation only when SIZE =
RADIUS. The next theorem reformulates the relation in this case, in a way that
is valid even for the case of Z2. The rest of the section is devoted to the theorem’s
proof.

THEOREM 5.1. Consider dynamical percolation PIIC with ω0 having the
distribution IIC. For t > 0, set χt = infs∈[0,t] RADIUS(C0(ωs)). We then have
logχt ∼ logρ(1/t) P-a.s. as t ↘ 0, with ρ(·) introduced in (1.12). In particular,
on H, we have χt = t−4/3+o(1).

PROOF. We start by showing the upper bound on the radius, that is, by proving
that the cluster of the origin falls apart fast enough. The following lemma will be
a key step.

LEMMA 5.2. There exists c > 0 such that the following holds. Let t ∈ (0,1)

and r ≥ ρ(1/t). Let ζ denote a configuration in the annulus Ar,2r . Let Nt
r (ζ )

denote the event that the conditional probability of the inner and outer boundaries
of Ar,2r not being connected by an open path at time t , given that ω0 in Ar,2r
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equals ζ , exceeds c > 0. Then IIC({ζ :Nt
r (ζ )}) ≥ c. Moreover, the same conclusion

holds for the measure IIC(·|O is open), where O is any given circuit in Ar/4,r/2
surrounding Br/4, and where c > 0 may be chosen independently of O .

PROOF. Let C denote the event that r ←→ 2r . That

P
(
C(ω0) ∩ C(ωt )

c) ≥ c,(5.4)

where c > 0 is uniform in r ∈ N and t ≥ 1/(r2α4(r)), is a standard and simple con-
sequence of the discrete Fourier analysis approach to critical percolation, already
stated as (1.15).

Note that (5.4) implies the statement of the lemma when ω0 has the law of
critical percolation conditioned to have the crossing. To obtain the same state-
ment when ω0 has the law IIC, we can apply Lemma 4.20. For the case of
IIC(·|O is open), we can apply a direct analogue of Lemma 4.20, using P∞

O =
P(·|O ↔ ∞) in place of Pb

a . �

We want to argue that, for any ε > 0, we have PIIC-a.s., for all small enough
t > 0, that

χt ≤ ρ(1/t)t−ε.(5.5)

We define an iterative procedure in an effort to prove (5.5). Let 	1 ∈ N be min-
imal such that 2	1 ≥ ρ(1/t). Write ω

(	1)
0 for ω0 restricted to A1 := A2	1 ,2	1+1 . If

Nt

2	1
(ω(	1)) occurs, and if no open path connects the inner and outer boundaries

of A1 at time t , then the procedure terminates. If one of these conditions is un-
satisfied, let 	∗

1 be the minimal 	 ≥ 	1 + 1 such that A2	,2	+1 contains an open
circuit which encloses B2	 . Set 	2 = 	∗

1 + 2. Write A2 = A2	2 ,2	2+1 , and denote by

ω
(	2)
0 the configuration ω0 restricted to A2. If Nt

2	2
(ω(	2)) occurs, and if no open

path connects the inner and outer boundaries of A2 at time t , then the procedure
terminates. Otherwise, it continues to its next step. The generic step has a similar
description to the second one.

LEMMA 5.3. Let J ≥ 1 denote the index of the step at which the procedure
terminates. Then there exists c > 0 such that, for each k ∈ N, P(	J − 	1 ≥ k) ≤
exp{−ck}.

PROOF. Note that, by Lemma 5.2, there exists c > 0 such that J = 1 with PIIC-
probability at least c2. Under the law PIIC given the event that either Nt

2	1
(ω(	1))

does not occur, or Nt

2	1
(ω(	1)) occurs and 2	1

ωt←→ 2	1+1, note that the condi-

tional distribution of ω0 in Bc

2	1+1 stochastically dominates critical percolation.
(This statement is true because it is valid for PIIC conditionally on an arbitrary
configuration in B2	1+1 that satisfies 0 ↔ 2	1+1 at time zero.) By RSW, FKG and
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independence on disjoint sets, each dyadic annulus with index at least 	1 + 1 in-
dependently has probability at least c > 0 to contain an open circuit disconnecting
its boundaries. Thus, conditionally on the value of 	1, the random variable 	∗

1 − 	1
is stochastically dominated by a geometric random variable (which we call X1).
Let O1 denote the innermost of the surrounding open circuits located in A2	1 ,2	1+1 .
Conditionally on ω0 taking a given form on O ∪ Int(O), the conditional distribu-
tion of ω0 in the exterior of O is given by IIC given that O is open. Thus, we may
apply the IIC(·|O is open) case of Lemma 5.2 to learn that there is probability at
least c that N	2(ω

(	2)) occurs. Should this event not occur, or should this event

occur alongside the event 2	2
ωt←→ 2	2+1, then, as previously, the conditional dis-

tribution of 	∗
2 − 	2 is stochastically dominated by a geometric random variable,

which we call X2.
In this way, we see that 	J − 	1 is stochastically dominated by

∑G1−1
i=1 Xi +

2(G1 − 1), where G1 is a geometric random variable and {Xi : i ∈ N} is an inde-
pendent sequence of i.i.d. geometric random variables. This completes the proof
of Lemma 5.3. �

Note that the inner and outer boundaries of A2	J ,2	J +1 are disconnected at time t .

Therefore, by Lemma 5.3, χt ≤ ρ(1/t)t−ε has probability at least 1 − clog2(t
−ε).

We have thus verified (5.5).
To complete the proof of Theorem 5.1, it remains to argue that, PIIC-a.s.,

χt ≥ ρ(1/t)tε(5.6)

for all small enough t > 0. To prove this, we need the following lemma.

LEMMA 5.4. Let R ∈ N. For each ε > 0, there exists δ > 0 such that if A ∈
σ {BR} satisfies IIC(A) ≥ ε, then IICR(A) ≥ δ.

PROOF. Recalling the definitions made in (1.1), (1.2), the Bayes rule com-
putation (1.3) and the quasi-multiplicativity bound (2.2), we have that, for each
configuration ζ in BR realizing 0 ←→ R,

dIIC

dIICR

(ζ ) = MR(ζ )

MR(ζ )
≤ C1,

with an absolute constant C1 < ∞. This readily implies the claim. �

Starting dynamical percolation from IICR and using the coupling in which bits
always turn off, Kesten’s near-critical one-arm stability (1.11) shows that the
probability of still having the connection 0 ←→ R at all times until (R2(1−ε) ×
α4(R

1−ε))−1 is 1 − o(1), as R → ∞. By Lemma 5.4, the same statement holds
when the initial condition is IIC-distributed. From this, (5.6) follows readily. This
completes the proof of Theorem 5.1. �
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