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COMPENSATED FRAGMENTATION PROCESSES AND
LIMITS OF DILATED FRAGMENTATIONS

BY JEAN BERTOIN

Universität Zürich

A new class of fragmentation-type random processes is introduced, in
which, roughly speaking, the accumulation of small dislocations which would
instantaneously shatter the mass into dust, is compensated by an adequate di-
lation of the components. An important feature of these compensated frag-
mentations is that the dislocation measure ν which governs their evolutions
has only to fulfill the integral condition

∫
P (1 − p1)2ν(dp) < ∞, where

p = (p1, . . .) denotes a generic mass-partition. This is weaker than the neces-
sary and sufficient condition

∫
P (1−p1)ν(dp) < ∞ for ν to be the dislocation

measure of a homogeneous fragmentation. Our main results show that such
compensated fragmentations naturally arise as limits of homogeneous dilated
fragmentations, and bear close connections to spectrally negative Lévy pro-
cesses.

1. Introduction. Fragmentation processes form a class of stochastic models
taking values in the space of mass-partitions

P =
{

p = (p1,p2, . . .) :p1 ≥ p2 ≥ · · · ≥ 0 and
∞∑
1

pi ≤ 1

}
,

where p can be thought of as the ordered sequence of the masses of atoms of
some probability measure, and then 1 − ∑∞

i=1 pi as the mass of the continuous
component, that is, the dust. They are meant to describe the evolution of some
measurable set with unit mass which breaks into pieces, randomly and repeatedly
as time passes. More precisely, we shall assume here the branching property, that
is, that distinct fragments evolve independently, and homogeneity, in the sense that
if the size of each component in a fragmentation process starting from a single unit
mass is rescaled by a factor m > 0, then the result has the same distribution as the
process started from a single mass m.

It is well known that homogeneous fragmentations bear close similarities and
connections with subordinators. Recall that the law of a subordinator is determined
by its drift coefficient and its Lévy measure �, which is a measure on (0,∞) such
that ∫

(0,∞)
(1 ∧ x)�(dx) < ∞.(1)
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Further, the Lévy–Itô decomposition shows that the drift coefficient corresponds
to the deterministic linear component of the subordinator, and that the Lévy mea-
sure � describes the Poissonian intensity of the jumps. In turn, the law of a ho-
mogeneous fragmentation process is determined by its erosion coefficient and its
dislocation measure ν, which is a measure on P that assigns no mass to the neutral
mass-partition 1 = (1,0,0, . . .) and fulfills the condition∫

P
(1 − p1)ν(dp) < ∞.(2)

The erosion coefficient determines the rate at which each fragment fades away
continuously, and ν describes the statistics of the sudden dislocations in the pro-
cess. More precisely, when ν is finite, the initial unit mass remains stable during
an exponential time with parameter ν(P) and then splits, the distribution after the
split being given by ν(·)/ν(P). Note, however, that (2) allows ν to be infinite. Fur-
thermore, homogeneous fragmentations have a Poissonian construction, which is,
in spirit, close to the Lévy–Itô decomposition of subordinators. See Section 3.1
in [9] and [5].

In the present work, we are mainly interested in the situation when condition (2)
is not fulfilled. It is well known that if one applies the Lévy–Itô construction for
subordinators with a measure � for which (1) fails, then one gets a process which
explodes (i.e., jumps to +∞) instantaneously. Nonetheless, if the Lévy measure
fulfills the weaker condition∫

(0,∞)

(
1 ∧ x2)

�(dx) < ∞,(3)

then, informally, the explosion phenomenon can be prevented by a deterministic
compensation. Specifically, consider for each integer n, a subordinator Sn with
Lévy measure �n which fulfills (1), and, for simplicity, suppose Sn has no drift.
Assume that as n → ∞, there is the weak convergence(

1 ∧ x2)
�n(dx) �⇒ σ 2δ0(dx) + (

1 ∧ x2)
�(dx),(4)

where σ 2 ≥ 0 and � is a measure on (0,∞) which fulfills (3). Then, if we set
bn = ∫

(0,1) x�n(dx), there is the weak convergence(
bnt − Sn(t)

)
t≥0 �⇒ (

ξ(t)
)
t≥0,(5)

say in the sense of finite-dimensional distributions. The limit process ξ is a spec-
trally negative Lévy process, that is, a process with independent and stationary
increments which has only negative jumps.

Similarly, the Poissonian construction of homogeneous fragmentations for a dis-
location measure ν such that (2) fails, would produce a process in which the entire
mass is instantaneously reduced to dust [i.e., the process is immediately absorbed
at the degenerate mass-partition 0 = (0,0, . . .)]. However, the similarities between
subordinators and homogeneous fragmentations suggest that for the latter as well,
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an analogue of compensation, namely a deterministic dilation of fragments, might
prevent instantaneous shattering to dust.

Specifically, we shall consider here a measure ν on P such that∫
P
(1 − p1)

2ν(dp) < ∞,(6)

and a sequence νn of measures on P which fulfill (2). By analogy with (4), we
assume that there is the weak convergence1

(1 − p1)
2νn(dp) �⇒ σ 2δ1(dp) + (1 − p1)

2ν(dp),(7)

where σ 2 ≥ 0 and 1 = (1,0, . . .). Our main goal is to establish an analogue of
(5); in this direction, we consider for each n a homogeneous fragmentation Xn

with dislocation measure νn and no erosion. We shall show that one can choose
adequately coefficients cn > 0 and dilate each fragment of Xn at constant rate cn

so that (
exp(cnt)Xn(t)

)
t≥0 �⇒ (

Z(t)
)
t≥0,(8)

where Z is a Markov process with values in �2(N) which we shall call a com-
pensated fragmentation. Before sketching the idea of our approach, let us briefly
present a couple of natural obstructions which probably explain why this problem
has not been addressed before, even though it looks very natural.

Firstly, the fundamental Lévy–Khintchine formula expresses the Laplace trans-
form of a subordinator in terms of its drift coefficient and its Lévy measure, and
the same holds for spectrally negative Lévy processes provided that one takes also
into account the Gaussian coefficient. However, there is no analogue of the Lévy–
Khintchine formula for homogeneous fragmentations, and this impedes the use
of analytic techniques to establish the convergence of distributions via Fourier–
Laplace transforms.

Secondly, even though the definition of homogeneous fragmentations with a
finite dislocation measure is rather elementary (the first studies in this area go
back to Kolmogorov [19] in 1941), the very construction in the case of an infinite
dislocation measure with (2) is much more subtle. The latter relies on powerful
techniques of sampling and exchangeability which enable to relate mass-partitions
to exchangeable random partitions of N via Kingman’s paintboxes (which also
lies at the heart of Pitman’s construction of �-coalescent processes, see [22]).
Now this requires conservation of the total mass, taking into account the possible
dust, whereas the total mass grows exponentially when dilation is incorporated to
fragmentation. Sampling techniques applied to dilated fragmentations may yield
strong laws for the empirical measure of the components (see, e.g., Theorem 1.2 in
[9], and also Kolmogorov for the first result in this vein), but are inadequate to es-
tablish weak limits such as (8) or to construct general compensated fragmentations.

1As usual, P is endowed with the supremum distance, and is then a compact metric space.



COMPENSATED FRAGMENTATION 1257

The starting point of our approach relies on the elementary observation that
considering the logarithm of components in a homogeneous fragmentation with a
finite dislocation measure yields a continuous-time branching random walk, and
then, incorporating dilation simply amounts to letting each atom of the branching
random walk drift at constant speed. Roughly speaking, we shall first discard the
small masses resulting from small dislocation events, so that in such events, dis-
locations merely induce a loss of mass of the component without creation of new
fragments. By modifying our point of view of the genealogy of atoms, we interpret
the latter events as jumps of particles. In other words, this induces random spatial
displacements of atoms between branching events, whereas in standard branching
random walks, atoms stay still between consecutive branching events. We exploit
the known convergence of compensated Poisson processes to spectrally negative
Lévy processes and finally reincorporate small dislocations events by considering
projective limits. Technically, the crucial property that needs to be verified, is that
the point process in the increasing limit has only finitely many atoms in half-lines
[x,∞).

The present work can thus also be viewed as a contribution to the study of
extremes of certain branching random walks, a topic in which important develop-
ments have been made recently (see in particular Aidekon [1], Arguin et al. [3],
Aidekon et al. [2] and references therein). There is, however, a major difference
with the works just cited, namely the latter deal with large time asymptotics for a
given branching random walk, whereas we rather work at fixed times but consider
a sequence of branching random walks with an increasing reproduction intensity.

In short, our main purpose in this article is to construct a new class of
fragmentation-type processes, which we name compensated fragmentations, for
which the dislocation measure ν fulfills (6) but not necessarily (2). Our main re-
sult shows that these compensated fragmentations arise as limits of rescaled homo-
geneous fragmentations as in (8). This opens the way to a number of interesting
problems which have been considered previously only for usual fragmentation pro-
cesses. To name just a few, we mention the connection with deterministic fragmen-
tation and growth-fragmentation equations (see, e.g., [4, 14] or [17] and references
therein), the study of traveling waves and new versions of the Fisher–Kolmogorov–
Petrowski–Piscounov (FKPP) equation (see, e.g., [7]), additive martingales and
spine-decompositions for compensated fragmentations, asymptotic behavior for
large times, extensions to self-similar fragmentations, etc. In a subsequent work,
we shall also point out that compensated fragmentations arise naturally in dynam-
ical percolation on certain families of random trees.

The rest of this article is organized as follows. In Section 2, we briefly explain
how homogeneous dilated fragmentation processes can be viewed as branching
compound Poisson processes with drift, and discuss a basic construction of the
latter in terms of a process on the Ulam tree. In Section 3, we introduce more gen-
eral branching Lévy processes, relying on a key embedding property which en-
ables us to consider projective limits. Compensated fragmentations are introduced
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in Section 4; we shall establish there some important qualitative and quantita-
tive properties. Finally, in Section 5, we study continuity properties of compen-
sated fragmentations as a function of their characteristics; the convergence (8) then
arises as a simple by-product.

2. Branching compound Poisson processes with drift. Throughout this sec-
tion, we consider a homogeneous fragmentation X = (X(t))t≥0 with a finite dis-
location measure ν and no erosion. This means that each component x > 0 in X
stays stable during an amount of time which is exponentially distributed with pa-
rameter ν(P) and then splits into xm1, xm2, . . . , where (m1,m2, . . .) is a random
mass-partition with law ν(·)/ν(P) and which is further independent of the waiting
time. We implicitly assume that the process starts from a single unit mass, that
is, X(0) = 1 = (1,0, . . .), and then for all t ≥ 0, X(t) = (X1(t),X2(t), . . .) ∈ P .
At the heart of our approach lies the connection between homogeneous fragmen-
tations and branching random walks; we refer to Bertoin and Rouault [11] for
details.

When we assign a Dirac point mass at lnx for every component x of X(t), we
obtain a random process of point measures on the negative half-line

Xt = ∑
i∈N

δlnXi(t), t ≥ 0,(9)

which evolves as a branching random walk in continuous time, that is, of the type
considered first by Uchiyama [23]. That is, in X , each atom a = lnx is replaced
at rate ν(P) by a family of atoms a + γi , where the sequence (γ1, γ2, . . .) is dis-
tributed as the image of the normalized probability law ν(·)/ν(P) by the map
p 
→ ln p = (lnp1, lnp2, . . .), and to different atoms correspond independent se-
quences. We stress that γi may take the value −∞, and in that case, we implicitly
agree that the atom a + γi does not contribute to X .

It will be convenient to formalize the construction of the branching random
walk X , and in this direction, we introduce the universal tree U = ⋃∞

i=0 N
i with

N = {1,2, . . .} and the usual convention N
0 = {∅}. A node u ∈ U is thus a finite

sequence u = (u1, . . . , ui) of positive integers where i = |u| is the generation of u,
and the children of u are given by the nodes uk = (u1, . . . , ui, k) for k ∈ N. We
encode X by a process indexed by U, (λu, au)u∈U, where λu corresponds the life-
time of the atom of X labeled by u and au its spatial location. The birth-time bu

and death-time du of this atom are thus given by

bu =
|u|−1∑
j=0

λ(u1,...,uj ) and du = bu + λu.(10)

We further agree that for every u ∈ U, the sequence (auj )j∈N is always ranked in
the decreasing order, that is the j th largest atom among the offsprings of the atom
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FIG. 1. Representation of a fragmentation as a process on U. Atoms • are labeled lexicographically
and vertical arrows represent their lifetimes. Horizontal dotted segments correspond to branching
events.

labeled by u receives the label uj ; see Figure 1. We express the point measure at
time t in the form

Xt = ∑
u∈U

1{bu≤t<du}δau.(11)

It is convenient to introduce the space

R = {
r = (r1, r2, . . .) : ri ∈ [−∞,0) and r1 ≥ r2 ≥ · · ·}

and write μ for the image of the dislocation measure ν by the map p 
→ ln p =
(lnp1, lnp2, . . .) from P to R. The distribution of (λu, au)u∈U induced by (9) and
(11) for the homogeneous fragmentation X is simple to describe in terms of μ. The
processes (λu)u∈U and (au)u∈U are independent, and the first consists of a family
of i.i.d. exponential variables with parameter ν(P) = μ(R). Further, if we write
�auj = auj − au for the displacement of the j th child of u relative to its parent,
then the sequences2 �au = (�au1,�au2, . . .) for u ∈ U are i.i.d., each being dis-
tributed according to the normalized probability measure μ(·)/μ(R). Again, the
displacement |�auj | may be infinite, in which case the atom corresponding to the
node uj as well as all its descendants are not taken into account in the point process
X ; see (11).

2Beware of the notation: for |u| ≥ 1, �au denotes a sequence of negative random variables, while
�au is a single random variable!
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We next introduce a dilation coefficient c ≥ 0, set

Y(t) = ectX(t), that is, Yi(t) = ectXi(t) for all i ∈ N,

and consider the point measure on R

Yt = ∑
i∈N

δlnYi(t).

In other words, Yt is simply the image of Xt by the linear shift x 
→ x + ct , as
dilation merely induces a linear motion with constant speed c for every atom of
the branching random walk. Note also that a negative coefficient of dilation would
precisely correspond to an erosion, cf. [5].

At the heart of our analysis lies the following representation of Y as a process
indexed by U. This representation differs slightly—but crucially—from the one
for X ; in particular, a same node u ∈ U may label different atoms for X and Y .
The key point is that we now distinguish between two types of dislocation events,
namely, those for which a component gives rise to a single fragment, and the oth-
ers. We shall disregard the former as branching events for Y and rather view them
as displacements of atoms.

Specifically, denote the number (possibly infinite) of components of a mass-
partition p ∈ P by

#p = sup{i ∈N :pi > 0},
and write P1 = {p ∈ P : #p = 1}, that is p ∈ P1 if and only if p = (p,0, . . .) for
some p ∈ (0,1]. Similarly, we write R1 for the subspace of R consisting of se-
quences r = (r,−∞,−∞, . . .) with r ∈ (−∞,0], that is R1 is the image of P1 by
the map p 
→ ln p. Rather than systematically interpreting a dislocation y 
→ yp
for the fragmentation-dilatation process Y as a branching event for the atom of Y
located at lny, in the case when p ∈ P1, we rather see such event as a jump from
lny to lny + lnp of the trajectory of this same atom. In terms of the genealogical
tree of Y , with spatial locations recorded and edge-lengths corresponding to the
lifetime of atoms, this amounts to removing all the inner nodes with degree 2. See
Figure 2 below.

It should be plain that with this point of view, each atom of Y now evolves
during its lifetime as a compound Poisson process with constant linear drift c,
where the intensity of the jumps is given by the measure μ restricted to sequences
r in R1. The lifetime of each atom is exponentially distributed with parameter
ν(P \ P1) = μ(R \ R1), and at its death, this atom produces a random sequence
of offsprings, which is never a singleton. The relative locations of the offsprings
with respect to the location of that atom when it dies, is distributed according to
the conditional probability μ(·|R \R1).

To formalize the discussion above, we shall encode Y as a process indexed
by U. For the sake of convenience, we shall use again the same notation λu and
au to represent quantities which may however differ for X and Y (since our point
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FIG. 2. Representation of a dilated fragmentation as a process on U. Birth locations of atoms are
represented by • and are labeled lexicographically. Oblique segments correspond to linear motion of
atoms and horizontal dashed segments to jumps. Horizontal dotted segments correspond to branching
events.

of view on the genealogy has changed). Specifically, we now consider the process
(λu, au, ξu)u∈U, where λu represents the lifetime of the atom of Y indexed by u, au

its location at birth, and ξu = (ξu(s))s≥0 a process which governs its displacements
after its birth.3 The birth-time bu and the death-time du of this atom are still given
by (10), and its spatial location at time bu + s by au + ξu(s) for 0 ≤ s < λu, so that

Yt = ∑
u∈U

1{bu≤t<du}δau+ξu(t−bu).(12)

The location at death of the atom labeled by u is au +ξu(λu) (observe that, since
ξu and λu are independent, ξu is continuous at time λu, a.s.). We further write

�aui = aui − au − ξu(λu), i ∈ N

for the initial displacement of the ith child of u at its birth time, and set �au =
(�aui)i∈N. Plainly, the process (au)u∈U can be recovered from (λu, ξu,�au)u∈U,
and then we recover Y(t) from Yt by ranking in the decreasing order the exponen-
tials of the atoms of Yt .

We now summarize this discussion.

PROPOSITION 1. Suppose (λu)u∈U, (ξu)u∈U and (�a)u∈U are three indepen-
dent processes such that:

• (λu)u∈U is a family of i.i.d. exponential variables with parameter ν(P \P1).

3Formally, we only need to know ξu on the time interval [0, λu); however it is convenient to
consider ξu as a process on the whole time-interval [0,∞).
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• (ξu)u∈U is a family of i.i.d. compound Poisson processes with drift c and Lévy
measure given by the restriction μ|R1 of μ to R1.

• (�au)u∈U is a family of i.i.d. sequences, each sequence being distributed ac-
cording to the conditional probability μ(·|R \R1).

The atoms of the random point measure Yt defined by (12), repeated according to
their multiplicity, can be ranked in the decreasing order, say, lnY1(t) ≥ lnY2(t) ≥
· · · , and the process Y(t) = (Y1(t), Y2(t), . . .) is then a homogeneous dilated frag-
mentation with dislocation measure ν and dilation coefficient c.

We mention that a related description of a growth-fragmentation model in which
divisions are always binary but where the division rates may depend on the size of
the particle, appears in [15].

We conclude this section by introducing the notion of the selected fragment,
which will be a useful guideline for the intuition. Specifically, imagine that at the
first dislocation event, we select the largest component of Y which results from the
dislocation, and so on for the next dislocation events. We denote the size of this
selected fragment at time t by Y∗(t). Beware that this quantity may of course differ
from Y1(t), the largest of all the components of Y(t). The selected fragment can
be expressed in terms of the process (λu, au, ξu)u∈U restricted to its oldest branch,
namely the branch with nodes ∅, (1), (1,1), (1,1,1), . . . . More precisely, we have

Y∗(t) = exp
(
au(t) + ξu(t)(t − bu(t))

)
,

where u(t) stands for the unique node on the oldest branch such that bu ≤ t < du.
The elementary dynamics of fragmentations with a finite dislocation measure

readily yield the following.

LEMMA 1. The process lnY∗ is a compound Poisson process with drift c and
its Lévy measure is given by the image of the dislocation measure ν by the map
p 
→ lnp1. In particular,

E
(
Y∗(t)q

) = exp
(
t

(
cq −

∫
P

(
1 − p

q
1

)
ν(dp)

))
, q ≥ 0.

3. Branching Lévy processes. Roughly speaking, we have seen in the pre-
ceding section that homogeneous dilated fragmentation processes with a finite dis-
location measure can be described in terms of certain branching compound Pois-
son processes with drift. The purpose of this section is to construct more generally
a fairly general class of branching Lévy processes. This will be used in the next
section to define general compensated fragmentations. Informally, branching Lévy
processes can be thought of as noninteracting particle systems in which particles
move in R according to the dynamics of some Lévy process, and branch. The two
difficulties to be overcome are that branching rates could be infinite, and that dis-
placements and branching events are correlated. We stress that in the literature on
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branching Markov processes, either the branching rate is finite (e.g., for branching
random walks) or spatial motions and reproduction events are independent (e.g.,
for Dawson–Watanabe superprocesses).

As a starting point, consider first the situation of a homogeneous dilated frag-
mentation Y with a finite dislocation measure ν and dilation coefficient c. We first
rewrite the formula for the qth moment of the selected fragment Y∗(t) in Lemma 1
as

E
(
Y∗(t)q

) = exp
(
t

(
c′q +

∫
P

(
p

q
1 − 1 + q(1 − p1)

)
ν(dp)

))
,

with c′ = c − ∫
P(1 −p1)ν(dp), and point out that the integral above remains finite

for q ≥ 1 even when ν is infinite, provided that (6) holds. In the same direction,
note that the Laplace transform of the compound Poisson process with drift ξ = ξu

occurring in Proposition 1 is given by the Lévy–Khintchine formula

E
(
exp

(
qξ(t)

)) = exp
(
t

(
c′′q +

∫
P1

(
p

q
1 − 1 + q(1 − p1)

)
ν(dp)

))
(13)

(we stress that the integral is taken over P1 rather than P in the formula for the
selected fragment), with

c′′ = c −
∫
P1

(1 − p1)ν(dp) = c′ +
∫
P\P1

(1 − p1)ν(dp).

Roughly speaking, this suggests that we can replace the compound Poisson pro-
cess with drift ξ in Proposition 1 by a more general Lévy process with no positive
jumps. As we shall focus on branching measure-valued processes in this section,
rather than considering a measure ν on P , we shall work directly with a measure
μ on R (we may think that μ is the image of ν by the map p 
→ ln p, however, this
would induce some unnecessary restriction). We shall always assume that∫

R

(
1 − er1

)2
μ(dr) < ∞,(14)

which is the analog of (6), and, in a first step, we further impose

μ(R \R1) < ∞.(15)

DEFINITION 1. Let σ 2 ≥ 0, c ∈ R and μ a measure on R which fulfills (14)
and (15). Consider three independent processes (λu)u∈U, (ξu)u∈U and (�a)u∈U
such that:

• (λu)u∈U is a family of i.i.d. exponential variables with parameter μ(R \R1).
• (ξu)u∈U is a family of i.i.d. spectrally negative Lévy processes with Laplace

exponent

�(q) = 1

2
σ 2q2 +

(
c +

∫
R\R1

(
1 − er1

)
μ(dr)

)
q

(16)
+

∫
R1

(
eqr1 − 1 + q

(
1 − er1

))
μ(dr),
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that is,

E
(
exp

(
qξu(t)

)) = exp
(
t�(q)

)
for all t ≥ 0, q ≥ 0 and u ∈ U.

• (�au)u∈U is a family of i.i.d. sequences, each sequence being distributed ac-
cording to the conditional probability μ(·|R \R1).

Define the birth-time bu and the death-time du by (10), a∅ = 0, and then itera-
tively for every u ∈U and i ∈N

aui = au + ξu(λu) + �aui.

Finally, introduce for every t ≥ 0 the point measure on R

Zt = ∑
u∈U

1{bu≤t<du}δau+ξu(t−bu).

We call the process Z = (Zt )t≥0 a branching Lévy process with characteristics
(σ 2, c,μ).

REMARKS. 1. The formula (16) for the Laplace exponent of ξ has its root
in the expression (13) [beware that c in (16) plays the role of c′′ in (13)]. This
explains the rather awkward expression for the drift coefficient.

2. In the special case σ 2 = 0, μ(R) < ∞ and c = − ∫
R(1 − er1)μ(dr), Z is

merely a branching random walk in continuous time, that is, atoms stand still be-
tween consecutive branching events.

In words, given a measure μ on R with μ(R\R1) < ∞, the atoms of a branch-
ing Lévy process with characteristics (σ 2, c,μ) form a noninteracting particle sys-
tem in which each atom moves in R with the dynamics of a spectrally negative
Lévy process with Laplace exponent � given by (16), independently of the other
atoms. Further, each atom dies at rate μ(R \ R1) and, at the instant of its death,
gives birth to a random sequence of children whose spatial position relative to the
parent is distributed according to the conditional probability μ(·|R \ R1). One
deduces from standard arguments (see, e.g., equation (4) in [10]) that the one-
dimensional distributions of Z can be characterized as follows.

For a given measurable function f : [−∞,∞) → (0,1] with f (−∞) = 1, de-
fine first

vt (z) = E
(
exp

〈
Zt , lnf (z + ·)〉),

with the classical notation 〈Zt , g(z + ·)〉 = ∫
g(z + r)Zt (dr). Then there is the

identity

vt (z) = E
(
f

(
ξ(t) + z

)
(17)

+
∫ t

0
ds

∫
R\R1

μ(dr)

( ∞∏
i=1

vt−s

(
ri + ξ(s) + z

) − vt−s

(
ξ(s) + z

)))
,



COMPENSATED FRAGMENTATION 1265

where E refers to the mathematical expectation with respect to the spectrally nega-
tive Lévy process ξ that appears in Definition 1. It is seen from Gronwall’s lemma
that this equation has a unique solution and thus this determines the law of Z .

When we compare the construction of the branching Lévy process Z in Def-
inition 1 with that of a branching random walk in continuous time in Section 2,
we realize that Z can simply be obtained by superposing spatial Lévy motions
to the atoms of the latter. More precisely, let μ be a measure on R which fulfills
(14) and (15). Consider X , a branching random walk in continuous time on R−,
such that X is started from a single atom located at 0 which dies after an expo-
nential time with parameter μ(R \ R1), and then gives birth instantaneously to a
sequence of particles distributed according to the conditional law μ(·|R\R1). Let
also Z denote a branching Lévy process with characteristics (σ 2, c,μ). Fix a time
t ≥ 0 and write (αi)i∈I for the atoms of X at time t repeated according to their
multiplicity, that is,

Xt = ∑
i∈I

δαi
.

The following statement is tailored for our future purpose.

LEMMA 2. In the notation above, there exists a family of real valued random
variables (βi)i∈I such that the random point measure∑

i∈I

δαi+βi

has the same law as Zt , and conditionally on X , each βi has Laplace transform

E
(
exp(qβi)

) = exp
(
t�(q)

)
, q ≥ 0

with � given by (16).

PROOF. Write ∂U for the boundary of U, that is a leaf ū ∈ ∂U is an infinite
sequence (u1, . . .) of positive integers. For every j ∈ N, write ūj = (u1, . . . , uj )

for the ancestor of ū at generation j . In the framework of Definition 1, write ξū

for the process obtained by concatenating the paths (ξūj
(s) : 0 ≤ s < λūj

) for j =
0,1, . . . . It follows from the simple Markov property of Lévy processes that each
ξū is a spectrally negative Lévy process with Laplace exponent � . For each ū ∈
∂U, introduce also the compound Poisson process ηū which makes a jump of size
�aūj

at time λ∅ + ∑j
i=1 λūi

for every j ≥ 0.
We next equip the edges of U with random lengths, λu being the length of the

edge connecting the node u to any of its children uj . We then cut this tree at
height t , denote generically by � ⊆ ∂U a subset of leaves which stem from a cut-
point, and write L for the family of such subsets � (so that the � ∈ L forms a
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partition of ∂U). Clearly, the values ξū(t) [resp., ηū(t)] are the same for all ū ∈ �,
and we can thus define unambiguously

ξ�(t) = ξū(t) and η�(t) = ηū(t), ū ∈ �.

With this notation at hand, we have from the very construction of X and Z the
expressions

X (t) = ∑
�∈L

δη�(t) and Z(t) = ∑
�∈L

δη�(t)+ξ�(t)

and our claim is justified [with α� = η�(t) and β� = ξ�(t)]. �

Our next purpose is to get rid of the condition μ(R \R1) < ∞ in Definition 1;
this requires a monotonicity argument that we now develop (this is somehow remi-
niscent of the construction of Lévy trees by Duquesne and Winkel [16] by growing
a family of Galton–Watson trees which is consistent under percolation). For every
b ≥ 0 and r ∈ [−∞,0], we set

r(b) =
{

r, if r > −b,
−∞, otherwise.

For r = (r1, r2, . . .) ∈ R, we write r(b) = (r1, r
(b)
2 , r

(b)
3 , . . .), that is, r(b) results

from r by keeping the first element r1 unchanged, and then replacing the next
elements smaller than or equal to −b by −∞.

We still consider a measure μ on R which fulfills (14) and such that μ(R \
R1) < ∞. For every b ≥ 0, we write μ(b) for the image of μ by the map r 
→ r(b);
plainly μ(b) also fulfills (14). We shall now show that by suppressing adequately
certain atoms of Z together with their offsprings, we can construct a branching
Lévy process Z(b) with characteristics (σ 2, c,μ(b)).

Let (λu, ξu,�au)u∈U be as in Definition 1. For every node u = (u1, . . . , ui) at
generation i ≥ 1, write u ∈ B(b) and think of the node u as being b-bad if and only
if

�a(u1,...,uj ) ≤ −b and uj ≥ 2 for some j ∈ {1, . . . , i}.

LEMMA 3. The process of point measures

Z(b)
t = ∑

u∈U
1{u/∈B(b)}1{bu≤t<du}δau+ξu(t−bu), t ≥ 0

is a version of a branching Lévy process with characteristics (σ 2, c,μ(b)).

PROOF. Roughly speaking, one obtains Z(b) from Z by keeping systemati-
cally at each birth event the child particle (if any) which is the closest to its parent,
and by suppressing the other child particles which are born at distance ≥ b from



COMPENSATED FRAGMENTATION 1267

their parent, together with their offsprings. By applications of the branching prop-
erty of Z , it is elementary (though somewhat burdensome) to check that Z(b) also
fulfills the formalism of Definition 1 for some parameters that we shall now specify
by analyzing the preceding transformation.

Recall that in Z , a single particle starts from 0 at the initial time and evolves in R

according to a spectrally negative Lévy process ξ∅ with Laplace exponent � given
by (16). After a random time λ∅ with the exponential distribution with parameter
μ(R \ R1), this particle dies at location ξ∅(λ∅) and is replaced by a family of
particles located at ξ∅(λ∅) + ri , where (r1, . . .) = r = �a∅ is independent of λ∅
and distributed according to μ(·|R \R1).

Consider the event �b = {r(b) /∈ R1}, and observe that if r(b) /∈ R1, then a for-
tiori r /∈ R1. Hence, there is the identity

P(�b) = μ(b)(R \R1)

μ(R \R1)
.

On the event �b, the lifetime λ
(b)
∅ of the ancestor particle of Z(b) coincides

with λ∅. At its death, it is replaced by a family of particles located at ξ∅(λ∅)+r(b).
Plainly, the law of r(b) conditionally on �b is μ(b)(·|R \R1).

On the complementary event �c
b, λ∅ corresponds to a jump time of the ancestor

particle of Z(b); more precisely, on the time-interval [λ∅, λ∅ + λ1), the ancestor
particle of Z(b) is given by the particle labeled by the node 1 in Z . In particular,
the jump at time λ∅ is given by r1, and has the law

μ
(
r1 ∈ dr, r(b) ∈ R1, r /∈R1

)
/μ(R \R1), r ∈ (−∞,0).

We then iterate this reasoning at the lifetime of the particles labeled by 1,11, . . .

(i.e., on the oldest branch) in the process Z until reaching the death-time of the
ancestor particle of Z(b). The number of steps has the geometric distribution with
parameter 1 − P(�b).

From basic properties of independent exponential variables, we now see that the
lifetime λ

(b)
∅ of the ancestor particle of Z(b) has the exponential distribution with

parameter

μ(R \R1) × P(�b) = μ(b)(R \R1).

In the notation of the proof of Lemma 2, the displacement of this particle during its
lifetime is governed by the superposition of the spectrally negative Lévy process ξū

for ū = (1,1,1, . . .) ∈ ∂U the oldest leaf, and an independent compound Poisson
process on (−∞,0) with Lévy measure

μ
(
r1 ∈ dr, r(b) ∈ R1, r /∈ R1

)
, r ∈ (−∞,0).
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This is thus a spectrally negative Lévy process with Laplace exponent

�(b)(q) = �(q) +
∫ (

eqr − 1
)
μ

(
r1 ∈ dr, r(b) ∈ R1, r /∈ R1

)

= 1

2
σ 2q2 +

(
c +

∫
R\R1

(
1 − er1

)
μ(b)(dr)

)
q

+
∫
R1

(
eqr1 − 1 + q

(
1 − er1

))
μ(b)(dr),

where for the second line, we used the facts that μ and μ(b) have the same projec-
tion on the first coordinate and that r ∈R1 implies r(b) ∈ R1.

Comparing with (16) and putting the pieces together, this completes the proof
of our statement. �

We now assume that the measure μ fulfills (14) and replace (15) by the weaker

μ(b)(R \R1) < ∞ for all b > 0.(18)

Plainly, for every b ≥ b′ ≥ 0 and r ∈ R, we have (r(b))(b
′) = r(b′), and it follows

that (μ(b))(b
′) = μ(b′). By Lemma 3 and Kolmogorov’s extension theorem, we can

construct on the same probability space a sequence of processes of point mea-
sures, which for simplicity we still denote by (Z(b))b≥0, such that each Z(b) is a
branching Lévy process with characteristics (σ 2, c,μ(b)) and(

Z(b))(b′) = Z(b′) for every b′ ≤ b.(19)

DEFINITION 2. Let σ 2 ≥ 0, c ∈ R and μ be a measure on R which fulfills
(14) and (18). In the notation above, the process

Zt := lim
b→∞ ↑ Z(b)

t , t ≥ 0

is called a branching Lévy process with characteristics (σ 2, c,μ).

We stress that, by the lack of memory of exponential variables and the Markov
property of Lévy processes, a skeleton (Ztn)n≥0 of a branching Lévy process Z
as constructed in Definition 1 (where t > 0 is arbitrary) is a branching random
walk in discrete-time. By monotonicity, this feature also holds for the more general
branching Lévy processes of Definition 2. However, Z itself is in general not a
branching random walk in continuous time in the sense of Uchiyama [23].

In the special case b = 0, we have r(0) = (r1,−∞, . . .) and, in the notation for
Lemma 3, U \ B(0) coincides with the oldest branch. For every branching Lévy
process with characteristics (σ 2, c,μ) in the sense of Definition 2 and every t ≥ 0,
the point measure Z(0)

t has thus at most one atom in (−∞,∞), say ξ∗(t) with
the convention that ξ∗(t) = −∞ when Z(0)

t = 0. The process ξ∗ corresponds to



COMPENSATED FRAGMENTATION 1269

the selected atom of Z , in the sense that at each birth-event, we select the oldest
(i.e., right-most) child. Its law is readily described, extending Lemma 1 in the case
σ 2 = 0 and μ(R) < ∞.

COROLLARY 1. The process of the selected atom ξ∗ is a spectrally negative
Lévy process, possibly killed at some independent exponential time with parameter
μ({∅}), where ∅ = (−∞,−∞, . . .) ∈ R. More precisely its Laplace exponent is
given in terms of μ by

�∗(q) = 1

2
σ 2q2 + cq +

∫
R

(
eqr1 − 1 + q

(
1 − er1

))
μ(dr), q ≥ 0,(20)

that is,

E
(
exp

(
qξ∗(t)

)) = exp
(
t�∗(q)

)
, q ≥ 0,

with the convention that exp(−q∞) = 0.

PROOF. From Lemma 3 and Definition 1, we get indeed that ξ∗ is distributed
as a spectrally negative Lévy process ξ with Laplace exponent given by (16) with
μ(0) replacing μ, and killed at some independent exponential time with parameter
μ({∅}). Since μ(0) is supported by R1 ∪ {∅}, we find that the Laplace exponent
�∗ of ξ∗ can be expressed in the form

�∗(q) = μ
({∅}) + 1

2
σ 2q2 + (

c + μ
({∅}))q

+
∫
R\{∅}

(
eqr1 − 1 + q

(
1 − er1

))
μ(dr),

which yields our claim. �

Lemma 3 also shows that the selected atom plays the role of a spine (or back-
bone) for the branching Lévy process, in the sense that, roughly speaking, one
recovers Z from ξ∗ by grafting adequately shifted independent copies of Z to
the trajectory of the selected atom ξ∗ (obviously, one needs to re-incorporate the
atoms which have been suppressed in the transformation Z 
→ Z(0)). Techniques
of spine-decompositions have been introduced in the pioneer work of Lyons et al.
[21] and have played since then a fundamental role in the study of branching pro-
cesses. Applications of this spine-decomposition to branching Lévy processes will
be developed in a subsequent work.

4. Compensated fragmentations. In this section, we construct general com-
pensated fragmentations from branching Lévy processes. Specifically, we consider
a measure ν on P which fulfills (6) and write as usual μ for the image of ν by the
map p 
→ ln p. Then μ satisfies (14) and also (18) since

μ(b)(R \R1) = μ
(
r(b) /∈ R1

) = ν(lnp1 = −∞ or lnp2 > −b)

≤ ν
(
p1 < 1 − e−b)

< ∞.
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Hence, we may consider a branching Lévy process Z with characteristics
(σ 2, c,μ).

For every q ≥ 2, we set

κ(q) = 1

2
σ 2q2 + cq +

∫
P

( ∞∑
i=1

p
q
i − 1 + q(1 − p1)

)
ν(dp)(21)

and observe that κ(q) is well defined since for every p ∈ P ,

∣∣pq
1 − 1 + q(1 − p1)

∣∣ = O
(
(1 − p1)

2)
and

∞∑
i=2

p
q
i ≤ (1 − p1)

q .

The next statement is a cornerstone of this work; it will be convenient to use the
notation 〈

Zt , eqz〉 = ∫
R

eqzZt (dz).

THEOREM 1. For every q ≥ 2 and t ≥ 0, we have

E
(〈
Zt , eqz〉) = exp

(
tκ(q)

)
.

PROOF. We first assume that μ fulfills (15). The restriction of ν to P \ P1
is then a finite measure, and we consider a homogeneous fragmentation X with
no erosion and dislocation measure ν|P\P1 . We write X for the branching random
walk associated to X by (9). According to equation (7) in [11], one has for every
t ≥ 0 and q ≥ 1

E

( ∞∑
j=1

X
q
j (t)

)
= E

(〈
Xt , eqx 〉) = exp

(
t

∫
P\P1

( ∞∑
j=1

p
q
j − 1

)
ν(dp)

)
.

We next invoke Lemma 2 and use the notation there to write〈
Xt , eqx 〉 = ∑

i∈I

eqαi and
〈
Zt , eqz〉 = ∑

i∈I

eq(αi+βi).

Recall that conditionally on X , each βi has Laplace transform E(exp(qβi)) =
exp(t�(q)), so

E
(〈
Zt , eqz〉) = exp

(
t�(q)

)
E

(〈
Xt , eqx 〉)

= exp

[
t

(∫
P\P1

( ∞∑
j=1

p
q
j − 1

)
ν(dp) + �(q)

)]
.

Recall also from (16) that

�(q) = 1

2
σ 2q2 +

(
c +

∫
P\P1

(1 − p1)ν(dp)

)
q

+
∫
P1

(
p

q
1 − 1 + q(1 − p1)

)
ν(dp),
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so we conclude that E(〈Zt , eqz〉) = exp(tκ(q)).
Finally, the case when μ does not fulfill (15) follows by monotone approxima-

tions. More precisely, for every b > 0, denote by ν(b) the image of ν by the map
p 
→ p(b), where

p(b) = (p1,p21{p2>e−b},p31{p3>e−b}, . . .),(22)

so that the image of ν(b) by the map p 
→ ln p is μ(b). Then, in the obvious notation

κ(b)(q) = 1

2
σ 2q2 + cq

(23)

+
∫
P

(
p

q
1 − 1 + q(1 − p1) +

∞∑
i=2

1{pi>e−b}p
q
i

)
ν(dp),

we have according to the first part of the proof that

E
(〈
Z(b)

t , eqz〉) = exp
(
tκ(b)(q)

)
.

It is immediate to check that limb↑∞ ↑ κ(b)(q) = κ(q), and we conclude by mono-
tone convergence that E(〈Zt , eqz〉) = exp(tκ(q)). �

It is interesting to observe that there is the identity

κ(q) = �∗(q) +
∫
P

∞∑
i=2

p
q
i ν(dp),(24)

where �∗ is given by (20), that is, the Laplace exponent of the selected atom.
In view of Theorem 1, the identity (24) is of course closely related to the spine
decomposition of the branching Lévy process Z with respect to the trajectory of
the selected atom, which was briefly discussed at the end of the preceding section.

Theorem 1 entails that for each t ≥ 0, the random measure Zt is locally finite
a.s., and more precisely, its atoms can be ranked and form a decreasing sequence
(in which of course, each atom is repeated according to its multiplicity). We first
introduce the space

�2↓ =
{

z = (z1, . . .) : z1 ≥ z2 ≥ · · · ≥ 0 and
∞∑
i=1

z2
i < ∞

}
,

endowed with the usual �2-distance and arrive at the following definition.

DEFINITION 3. Let ν be a measure on P which fulfills (6) and μ its image
by the map p 
→ ln p. Let also σ 2 ≥ 0 and c ∈ R, and denote by Z a branching
Lévy process with characteristics (σ 2, c,μ). For every t ≥ 0, the atoms of Zt re-
peated according to their multiplicities can be ranked into a decreasing sequence
lnZ1(t) ≥ lnZ2(t) ≥ · · · , so that

Zt =
∞∑
i=1

δlnZi(t).
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The process Z = (Z(t))t≥0 with Z(t) = (Z1(t), . . .) takes its values in �2↓ and is
called a compensated fragmentation with characteristics (σ 2, c, ν).

Throughout the rest of this section, Z designates a compensated fragmenta-
tion with characteristics (σ 2, c, ν) as defined above. We first point out that Z is
Markovian, with a homogeneous semigroup which fulfills the branching property.
Specifically, consider a sequence of i.i.d. copies of Z, say (Z[j ])j∈N. Then for
z = (z1, . . .) ∈ �2↓, it follows from Theorem 1 that

E

( ∞∑
j=1

∞∑
i=1

(
zjZ

[j ]
i (t)

)2
)

= exp
(
tκ(2)

) ∞∑
j=1

z2
j < ∞,(25)

so we can rank the elements of the family (zjZ
[j ]
i (t) : i ∈ N, j ∈N) in the decreas-

ing order. We denote by Pz the law of the resulting process (in particular, P = P1).
It is then immediately checked from the branching property of Z that for every
t ≥ 0, the conditional law of (Z(t + s))s≥0 given (Z(r))0≤r≤t is Pz with z = Z(t).

We next observe the following Feller-type property of the family of laws
{Pz : z ∈ �2↓}.

COROLLARY 2. Let (zn)n∈N be a sequence in �2↓ which converges in �2

to z∞. Then as n → ∞, there is the weak convergence

Pzn �⇒ Pz∞

in the sense of finite-dimensional distributions on �2↓.

PROOF. Just as above, let (Z[j ])j∈N denote a sequence of i.i.d. copies
of Z, and for every n = 1, . . . ,∞, consider the family of real random variables
(zn,jZ

[j ]
i (t) : i, j ∈ N), where zn = (zn,1, zn,2, . . .). From (25), we get for every

t ≥ 0 that

lim
n→∞E

( ∞∑
j=1

∞∑
i=1

(
(zn,j − z∞,j )Z

[j ]
i (t)

)2
)

= 0.

Now recall the well-known fact that rearranging sequences of positive real num-
bers in the decreasing order decreases the �2-distance, that is if x↓ and y↓ de-
note the decreasing rearrangements of two sequences x and y, then ‖x↓ − y↓‖�2 ≤
‖x − y‖�2 , where for every countable family of real numbers x = (xi)i∈I , we write
‖x‖2

�2 = ∑
i∈I x2

i . See, for example, Theorem 3.5 in [20]. As a consequence

lim
n→∞E

(∥∥(
zn,jZ

[j ]
i (t)

)↓ − (
z∞,jZ

[j ]
i (t)

)↓∥∥2
�2

) = 0,

which implies our claim. �

Another important consequence of Theorem 1 is that it yields a remarkable
family of martingales.
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COROLLARY 3. For every q ≥ 2, the process

M(q)(t) = exp
(−tκ(q)

) ∞∑
i=1

Z
q
i (t) = exp

(−tκ(q)
)〈
Zt , eqz〉, t ≥ 0

is a martingale.

PROOF. This follows directly from the Markov property and the formula of
Theorem 1. �

Additive martingales play a fundamental role in the analysis of the asymptotic
behavior of branching Markov chains (see in particular Biggins [12, 13]), and thus
also for that of homogeneous fragmentations (see [6, 8, 11]). The detailed study
of the additive martingales M(q) and their applications for compensated fragmen-
tations will be developed in a subsequent work. We now complete this section by
establishing the regularity of the paths of compensated fragmentations; the argu-
ment relies crucially on Corollary 3.

PROPOSITION 2. Every compensated fragmentation Z possesses a càdlàg
version in �2↓ and fulfills the strong Markov property.

Although it is well known that Feller processes with values on a locally compact
space always possess a càdlàg version and have the strong Markov property, we
cannot apply Corollary 2 to establish Proposition 2 as the state space �2↓ is not
locally compact. However, we can use a more direct approach.

PROOF OF PROPOSITION 2. Let Z denote the branching Lévy process with
characteristics (σ 2, c,μ) associated with Z, and recall from Definition 2 that
Zs = limb↑∞ ↑ Z(b)

s , where Z(b) is a branching Lévy process with characteris-
tics (σ 2, c,μ(b)) and μ(b) is the image of μ by the map r 
→ r(b).

Because pk ≤ 1/k for every mass-partition p = (p1, . . .), the measure μ(b) is
carried by the set {

r = (r1, . . .) ∈R : rk = −∞ for all k > eb}
.

Therefore, at most �eb� new particles are born at each birth event for Z(b) and if
Z(b) is the compensated fragmentation associated to Z(b), then it is easy to check
that the process Z(b) is càdlàg a.s. (because the set of birth-times of Z(b) is discrete
a.s. and the displacement of its components between consecutive birth events are
governed by càdlàg processes). The first claim of the statement then follows from
Lemma 4 below.

Once we know that there is a càdlàg version, the strong Markov property follows
from Corollary 2 by a standard argument (the Markov property holds for simple
stopping times and one approximates a general stopping time by a decreasing se-
quence of simple stopping times). �
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LEMMA 4. For every t ≥ 0, we have

lim
b→∞ sup

0≤s≤t

∥∥Z(s) − Z(b)(s)
∥∥2
�2 = 0 in probability.

PROOF. By construction, the components of Z(b)(s) form a (random) subse-
quence of those of Z(s), say Z(b)(s) = (Zϕ(i)(s))i∈N for some strictly increas-

ing map ϕ :N → N. Define Z̃
(b)
j (s) = Zj(s) for j in the range ϕ(N) of ϕ and

Z̃
(b)
j (s) = 0 otherwise, so that Z(b)(s) is the sequence of the components of Z̃(b)(s)

rearranged in the decreasing order.
Since Zi(s) − Z̃

(b)
i (s) equals either 0 or Zi(s) depending on whether i ∈ ϕ(N)

or not, we have∥∥Z(s) − Z̃(b)(s)
∥∥2
�2 = ∥∥Z(s)

∥∥2
�2 − ∥∥Z̃(b)(s)

∥∥2
�2 = ∥∥Z(s)

∥∥2
�2 − ∥∥Z(b)(s)

∥∥2
�2 .

We use again the fact that rearranging sequences of positive real numbers in the
decreasing order decreases the �2-distance to deduce∥∥Z(s) − Z(b)(s)

∥∥2
�2 ≤ ∥∥Z(s)

∥∥2
�2 − ∥∥Z(b)(s)

∥∥2
�2 .

In turn, this yields the bounds

sup
0≤s≤t

∥∥Z(s) − Z(b)(s)
∥∥2
�2 ≤ sup

0≤s≤t

e(t−s)κ(2)(∥∥Z(s)
∥∥2
�2 − ∥∥Z(b)(s)

∥∥2
�2

)

≤ etκ(2) sup
0≤s≤t

∣∣M(2)(s) − M(b,2)(s)
∣∣,

where

M(2)(s) = exp
(−sκ(2)

)∥∥Z(s)
∥∥2
�2, M(b,2)(s) = exp

(−sκ(b)(2)
)∥∥Z(b)(s)

∥∥2
�2

and κ(b) ≤ κ is given by (23).
Now we recall from Corollary 3 that M(2) and M(b,2) are two (nonnegative)

martingales. Plainly limb→∞ ↑ κ(b)(2) = κ(2) and, further, by Definitions 1 and 2
and by monotone convergence, limb→∞ ↑ ‖Z(b)(t)‖2

�2 = ‖Z(t)‖2
�2 . Since, by The-

orem 1, ‖Z(t)‖2
�2 ∈ L1(P), we deduce that

lim
b→∞E

(∣∣M(2)(t) − M(b,2)(t)
∣∣) = 0

and the proof is completed by an appeal to Doob’s maximal inequality. �

5. Convergence of compensated fragmentations. In this section, we shall
establish the convergence of homogeneous fragmentations with dilations to com-
pensated fragmentations, which is the main motivation for this work; see the In-
troduction. We shall need to enlarge the state-space and view here compensated
fragmentations as random processes with values in

�q↓ =
{

z = (z1, . . .) : z1 ≥ z2 ≥ · · · ≥ 0 and
∞∑
i=1

z
q
i < ∞

}
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endowed with the �q -distance, for some fixed q > 2. The embedding �2 ⊂ �q be-
ing a contraction of Banach spaces, Proposition 2 entails that every compensated
fragmentation can still be viewed as a càdlàg process in �q↓. The purpose of this
change is that sets in �2↓ which are bounded for the �2-distance are relatively com-
pact for the �q -distance, but in general not for the �2-distance.

We shall use the notation N̄ = N ∪ {∞} and consider for each n ∈ N̄, σ 2
n ≥ 0,

cn ∈ R and νn a measure on P such that (6) holds. We shall often further assume
that

ν∞
({0}) = 0.(26)

We write Zn = (Zn(t))t≥0 for a compensated fragmentation process with char-
acteristics (σ 2

n , cn, νn). The condition (26) means that in any dislocation event
for Z∞, the component that dislocates is never entirely shattered to dust. This is
very minor technical assumption which we make to ease some arguments. It could
easily be dropped, essentially at the cost of a heavier notation; details shall be left
to interested readers.

We now state the main result of this work.

THEOREM 2. Suppose that (26) holds, that

lim
n→∞

(
cn − σ 2

n /2
) = c∞ − σ 2∞/2,(27)

and that there is the weak convergence of finite measures on P

σ 2
n δ1(dp) + (1 − p1)

2νn(dp) �⇒ σ 2∞δ1(dp) + (1 − p1)
2ν∞(dp).(28)

Then, for every q > 2, there is the convergence in distribution as n → ∞
Zn �⇒ Z∞(29)

in the sense of weak convergence on the space D(R+, �q↓) of càdlàg functions
with values in �q↓ endowed with the Skorohod J1-topology.

It is interesting to point out that under the hypotheses of Theorem 2, we have
always, in the notation (21), that

lim
n→∞κn(q) = κ∞(q) for all q > 2.

However, it is easy to provide examples such that κn(2) does not converge to
κ∞(2). Recalling Theorem 1, this a strong evidence that the convergence (29) shall
not hold in full generality for q = 2.

Before tackling the proof of Theorem 2, we point out that it encompasses (8),
which motivated the present work.
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COROLLARY 4. For each n ∈ N, consider a measure νn on P which fulfills
the integral condition (2), and let Xn denote a homogeneous fragmentation with
dislocation measure νn and no erosion. Suppose that as n → ∞, there is the weak
convergence of finite measures on P

(1 − p1)
2νn(dp) �⇒ σ 2∞δ1(dp) + (1 − p1)

2ν∞(dp),

where σ 2∞ ≥ 0 and ν∞ fulfills (6) and (26), and set

cn =
∫
P
(1 − p1)νn(dp).

Then for every q > 2, there is the weak convergence as n → ∞ in the sense of
Skorohod J1-topology on the space D(R+, �q↓)(

exp(cnt)Xn(t)
)
t≥0 �⇒ (

Z(t)
)
t≥0,

where Z is a compensated fragmentation process with characteristics (σ 2∞,

−σ 2∞/2, ν∞).

PROOF. It is easy to check that for each n, the homogeneous dilated fragmen-
tation

Zn(t) = exp(cnt)Xn(t), t ≥ 0

can be viewed as a compensated fragmentation with characteristics (0,0, νn) (the
case when νn is finite has been explained in Section 2, and the general case is then
readily deduced). The statement thus follows directly from Theorem 2. �

REMARK. We stress that the parameter cn of the rescaling of the fragmenta-
tion Xn in Corollary 4 has merely been chosen to ensure the weak convergence of
the selected fragment (cf. Lemma 1 and Corollary 1), and it is not clear a priori
that this should be sufficient for the convergence of the whole process. In particu-
lar, recall that the selected fragment may well not be the largest of all fragments,
and one might have thought that, as a matter of fact, a stronger rescaling would be
needed to control the largest component of Xn. In this direction, it is interesting to
recall that for a branching random walk on R, if at each birth event we select the
right-most atom, then for large times, this selected atom is in fact far away from the
right-most atom of the branching random walk (see [6] for a precise study in the
setting of homogeneous fragmentations). We stress however that the framework of
large-time asymptotics for branching random walks differs from the present one,
as we rather work at fixed times, with a sequence of different branching dynamics.
In our setting, the total rate of branching events increases, but the distribution of
these events also vary with the parameter n, and it turns out that then the selected
fragment of Xn remains relatively close to the largest fragment as n → ∞.

The rest of this section is devoted to the proof of Theorem 2; our strategy is the
following. Rather than working directly with the processes Zn, we shall consider
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their approximations Z(b)
n . Specifically, we write as usual μn for the image of νn

by the map p 
→ ln p and consider the branching Lévy process Zn associated to Zn

by Definition 3. Recall from Definition 2 that Zn = limb↑∞ ↑ Z(b)
n , where Z(b)

n is

a branching Lévy process with characteristics (σ 2
n , cn,μ

(b)
n ) and μ

(b)
n is the image

of μn by the map r 
→ r(b) (equivalently, μ
(b)
n is the image of ν

(b)
n by the map

p 
→ ln p). Then Z(b)
n denotes the compensated fragmentation associated to Z(b)

n by
Definition 3. We shall check in Corollary 5 below that for b fixed, Z(b)

n converges
weakly as n → ∞ in the sense of finite-dimensional distributions to Z(b)∞ . Finally,
we will then deduce Theorem 2 from the following explicit bounds and Aldous’
tightness criterion.

For the sake of simplicity, we drop the index n ∈ N̄ from the notation in the next
statement.

LEMMA 5. For every t ≥ 0, b ≥ 0 and q ≥ 2, we have

E
(∥∥Z(t) − Z(b)(t)

∥∥q
�q

) ≤ exp
(
tκ(q)

)(
1 − exp

(
−t

∫
P

∞∑
i=2

1{pi≤e−b}p
q
i ν(dp)

))
.

PROOF. Because the operation of rearranging sequences of positive real num-
bers in the decreasing order decreases the �q -distance, the same argument as in
Lemma 4 shows that∥∥Z(s) − Z(b)(s)

∥∥q
�q ≤ ∥∥Z(s)

∥∥q
�q − ∥∥Z(b)(s)

∥∥q
�q .

We deduce from Theorem 1 that

E
(∥∥Z(s) − Z(b)(s)

∥∥q
�q

) ≤ exp
(
tκ(q)

) − exp
(
tκ(b)(q)

)

= exp
(
tκ(q)

)(
1 − exp

(
−t

∫
P

∞∑
i=2

1{pi≤e−b}p
q
i ν(dp)

))
,

where κ(b) is given by (23) and the last line results from the expressions of κ

and κ(b). �

We next point out that

ν∞
({

p ∈ P :∃i ≥ 2 such that pi = e−b}) = 0(30)

except for at most countably many b’s. In the sequel, we will implicitly assume
that the parameter b fulfills (30) (in particular expressions such as limb→∞ shall
be understood in this setting). We recall that the map p 
→ p(b) from P to itself has
been defined in (22) and that we write ν

(b)
n for the image of νn by this map.

Our next goal is to establish a finite-dimensional version of Theorem 2 with ν
(b)
n

replacing νn. In this direction, we first point out the following elementary fact.
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LEMMA 6. If (26) and (28) hold, then for b > 0 fixed, there is also the weak
convergence of finite measures on P as n → ∞

σ 2
n δ1(dp) + (1 − p1)

2ν(b)
n (dp) �⇒ σ 2∞δ1(dp) + (1 − p1)

2ν(b)∞ (dp)(31)

and

ν(b)
n (·,P \P1) �⇒ ν(b)∞ (·,P \P1).

PROOF. Indeed, if f :P →R is a continuous function on P , then p → f (p(b))

is continuous at every mass-partition p = (p1, . . .) such that pi �= e−b for all i ≥ 2.
Our first assertion thus stems from (30) and the continuous mapping theorem.

Next, we observe that∫
P\P1

f (p)ν(b)
n (dp) =

∫
P

f (p)1{p2>e−b}ν(b)
n (dp) + f (0)ν(b)

n

({0}).
On the one hand, we have thanks to (26) and the portmanteau theorem that

lim sup
n→∞

ν(b)
n

({0}) ≤ ν(b)∞
({0}) = 0,

since the singleton {0} is closed in P .
On the other hand, it is easy to construct a bounded continuous function g :P →

R such that f (p) = (1 − p1)
2g(p) for all p ∈ P with 1 − p1 > e−b, and a fortiori

with p2 > e−b. It thus follows from the first assertion that

lim
n→∞

∫
P

f (p)1{p2>e−b}ν(b)
n (dp)

= lim
n→∞

∫
P

g(p)1{p2>e−b}
(
σ 2

n δ1(dp) + (1 − p1)
2ν(b)

n (dp)
)

=
∫
P

g(p)1{p2>e−b}
(
σ 2∞δ1(dp) + (1 − p1)

2ν(b)∞ (dp)
)

=
∫
P

f (p)1{p2>e−b}ν(b)∞ (dp).

This completes the proof of the statement. �

Lemma 6 enables us to prove the following limit result for the sequence of
processes Z(b)

n .

COROLLARY 5. Suppose (26), (27) and (28) hold, and fix b > 0. We can con-
struct on the same probability space compensated fragmentation processes Z(b)

n

with characteristics (σ 2
n , cn, ν

(b)
n ) for n ∈ N̄ such that for every t ≥ 0,

lim
n→∞

∥∥Z(b)
n (t) − Z(b)∞ (t)

∥∥
�2 = 0 in probability.
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PROOF. We consider the setting of branching Lévy processes and use nota-
tion that should be obvious. Recall from the proof of Proposition 2 that at most
�eb� new particles are born at each birth event for Z(b)

n . So for each n ∈ N̄,
in the construction of Z(b)

n provided by Definition 1, we may restrict the pro-
cesses (λ

(b)
n,u)u∈U, (�a

(b)
n,u)u∈U and (ξ

(b)
n,u)u∈U to nodes u in the �eb�-regular tree,

say U
(b). More precisely, let N (b)

n,t denote the a.s. finite set of nodes of U(b) such

that b
(b)
n,u ≤ t < b

(b)
n,u + λ

(b)
n,u. Then the atoms of Z(b)

n present at time t are located at

a
(b)
n,u + ξ

(b)
n,u(t − b

(b)
n,u) for u ∈ N (b)

n,t , where we implicitly agree to discard atoms at

−∞. In other words, Z(b)
n (t) is given by the decreasing rearrangement of the finite

family

exp
(
a(b)
n,u + ξ (b)

n,u

(
t − b(b)

n,u

))
for u ∈ N (b)

n,t .

We stress that the random set of nodes N (b)
n,t only depends on the (λ

(b)
n,u), and is

thus independent of the processes (a
(b)
n,u) and (ξ

(b)
n,u).

Recall from Definition 1 that (λ
(b)
n,u) is a sequence of i.i.d. exponential variables

with parameter ν
(b)
n (P \P1). By Lemma 6, we may thus couple the process (λ

(b)
n,u)

for n ∈ N with (λ
(b)∞,u) such that λ

(b)
n,u → λ

(b)∞,u a.s. as n → ∞, and it then follows
that the random sets N (b)

n,t and N (b)
∞,t coincide with high probability as n → ∞.

It follows readily from the assumptions (27) and (28) that limn→∞ �
(b)
n (q) =

�
(b)∞ (q). Skorohod’s coupling also enables us to couple the processes (�a

(b)
n,u) and

(ξ
(b)
n,u) for n ∈ N with (�a

(b)∞,u) and (ξ
(b)∞,u) such that for every node u ∈ U

(b)

lim
n→∞�a

(b)
n,ui = �a

(b)
∞,ui for all i ∈ N, a.s.

and

lim
n→∞ ξ (b)

n,u(s) = ξ (b)∞,u(s) for all s ≥ 0, a.s.

See, for instance, Theorems 15.14 and 15.17 in [18] for the last assertion. We
deduce that

lim
n→∞ exp

(
a(b)
n,u + ξ (b)

n,u

(
t − b(b)

n,u

)) = exp
(
a(b)∞,u + ξ (b)∞,u

(
t − b(b)∞,u

))
a.s.

for every u ∈ U. Since N (b)
n,t and N (b)

∞,t are finite and coincide with high proba-
bility as n → ∞, and since rearranging sequences of positive real numbers in the
decreasing order decreases the �2-distance, this yields our claim. �

We may now establish a weaker version of Theorem 2.

LEMMA 7. Theorem 2 holds if the weak convergence (29) there is taken in the
sense of finite-dimensional distributions on �q↓.
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PROOF. For the sake of simplicity, we shall only establish the one-dimensional
convergence. The argument for the multidimensional case is the same with heavier
notation. We first establish tightness.

We start by observing that for any r > 0, the set

Kr = {
z ∈ �2↓ :‖z‖�2 ≤ r

}
is a compact subset of �q↓. Indeed, from any sequence in Kr , the diagonal proce-
dure enables us to extract a subsequence which converges pointwise, and its limit
belongs to Kr due to Fatou’s lemma. By an argument of equisummability, the
convergence also holds in �q . Next, for any n ∈ N̄, we have from Theorem 1 and
Markov’s inequality

P
(
Zn(t) /∈ Kr

) ≤ r−2
E

(∥∥Zn(t)
∥∥2
�2

) = r−2 exp
(
tκn(2)

)
.(32)

Since (28) easily entails that supn∈N κn(2) < ∞, (32) shows that the sequence of
random variables Zn(t) is tight in �q↓. Hence, we only need to verify uniqueness
of the weak limit of a converging subsequence.

Fix k ≥ 1 arbitrarily and consider a continuous function F :Rk+ → [0,1]. For
every sequence z = (z1, . . .), we write F(z) = F(z1, . . . , zk), and recall that two
probability measures ρ and ρ′ on �q with

∫
F(z)ρ(dz) = ∫

F(z)ρ′(dz) for all such
functions F and k ≥ 1 are necessarily identical. So we need to establish that

lim
n→∞E

(
F

(
Zn(t)

)) = E
(
F

(
Z∞(t)

))
.(33)

Fix ε > 0 arbitrarily small; F is uniformly continuous on Kr and there exists
η > 0 such that∣∣F(z) − F

(
z′)∣∣ < ε for all z, z′ ∈ Kr with

∥∥z − z′∥∥
�q ≤ η.

Observe also that if Zn(t) ∈ Kr , then a fortiori Z(b)
n (t) ∈ Kr for any b > 0. This

yields∣∣E(
F

(
Zn(t)

)) −E
(
F

(
Z∞(t)

))∣∣
≤ ∣∣E(

F
(
Z(b)

n (t)
)) −E

(
F

(
Z(b)∞ (t)

))∣∣ +E
(∣∣F (

Zn(t)
) − F

(
Z(b)

n (t)
)∣∣)

+E
(∣∣F (

Z∞(t)
) − F

(
Z(b)∞ (t)

)∣∣)
≤ ∣∣E(

F
(
Z(b)

n (t)
)) −E

(
F

(
Z(b)∞ (t)

))∣∣ + ε + P
(
Zn(t) /∈ Kr

)
+ P

(∥∥Zn(t) − Z(b)
n (t)

∥∥
�q > η

)
+ ε + P

(
Z∞(t) /∈ Kr

) + P
(∥∥Z∞(t) − Z(b)∞ (t)

∥∥
�q > η

)
.

Recall from (32) that we may pick r > 0 sufficiently large such that

P
(
Zn(t) /∈ Kr

)
< ε for all n ∈ N̄.
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Then define a function fb :P →R+ by fb(1) = 0 and

fb(p) = (1 − p1)
−2

∞∑
i=2

1{pi≤e−b}p
q
i , p �= 1.

Observe that
∞∑
i=2

1{pi≤e−b}p
q
i ≤ e−b(q−2)

∞∑
i=2

p2
i ≤ e−b(q−2)(1 − p1)

2 for all p ∈ P,

and, therefore, fb(p) ≤ e−b(q−2). It then follows from (28) that

lim
b→∞ sup

n∈N̄

∫
P

∞∑
i=2

1{pi≤e−b}p
q
i νn(dp) = 0.

Recall that supn∈N̄ κn(q) < ∞. We deduce from Lemma 5 and the observation
above that we may choose b sufficiently large such that

sup
n∈N̄

E
(∥∥Zn(t) − Z(b)

n (t)
∥∥q
�q

) ≤ εηq;

and then, from Markov’s inequality,

sup
n∈N̄

P
(∥∥Zn(t) − Z(b)

n (t)
∥∥
�q > η

) ≤ ε.

Putting the pieces together, we have shown that∣∣E(
F

(
Zn(t)

)) −E
(
F

(
Z∞(t)

))∣∣ ≤ 6ε + ∣∣E(
F

(
Z(b)

n (t)
)) −E

(
F

(
Z(b)∞ (t)

))∣∣,
and we can now complete the proof with an appeal to Corollary 5. Specifically, we
work with a version of Z(b)

n (t) for n ∈ N̄ such that the conclusion of Corollary 5 is
fulfilled. In particular, there exists nε < ∞ such that

P
(∥∥Z(b)

n (t) − Z(b)∞ (t)
∥∥
�2 > η

) ≤ ε for all n ≥ nε.

Since∣∣E(
F

(
Z(b)

n (t)
)) −E

(
F

(
Z(b)∞ (t)

))∣∣
≤ ε + P

(∥∥Z(b)
n (t) − Z(b)∞ (t)

∥∥
�2 > η

) + P
(
Z(b)

n (t) /∈ Kr

) + P
(
Z(b)∞ (t) /∈ Kr

)
≤ 4ε,

we have found for every ε > 0 an integer nε such that |E(F (Zn(t))) −
E(F (Z∞(t)))| ≤ 10ε whenever n ≥ nε , and (33) is proven. �

To complete the proof of Theorem 2, it now suffices to verify Aldous’ tightness
criterion (see, e.g., Theorem 16.11 in [18]), which is our final lemma.
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LEMMA 8. Assume (26), (27) and (28) hold. Then for any sequence hn > 0
with limn→∞ hn = 0 and any bounded sequence τn of Zn-stopping times, we have
for every q ≥ 2

lim
n→∞

∥∥Zn(τn) − Zn(τn + hn)
∥∥
�q = 0 in probability.

PROOF. Since ‖ · ‖�2 ≥ ‖ · ‖�q for q ≥ 2, it suffices to prove the statement for
q = 2. We shall check that the limit in the statement holds in fact in L2(P). First,
from the strong Markov property (see Proposition 2) and Theorem 1, we have

E
(∥∥Zn(τn) − Zn(τn + hn)

∥∥
�2

) = E
(∥∥Zn(τn)

∥∥2
�2

)
E

(∥∥Zn(hn) − 1
∥∥2
�2

)
.

Assuming that τn ≤ t a.s., we get from Corollary 3 and the optional sampling
theorem the bound

E
(∥∥Zn(τn)

∥∥2
�2

) ≤ exp
(
tκn(2)

)
,

and this quantity remains bounded as n → ∞.
In order to evaluate the second term in the product, we consider the transposition

of N which permutes 1 and j , where j is the rank of the selected fragment in
Zn(hn) (so this transposition is simply the identity when the selected fragment
coincides with the largest fragment), and denote the transposed version of Zn(hn)

by Z̃n(hn). Since rearranging sequences of positive real numbers in the decreasing
order decreases the �2-distance, we have ‖Zn(hn) − 1‖2

�2 ≤ ‖Z̃n(hn) − 1‖2
�2 . In

view of (24) and Corollary 1, this yields in the obvious notation

E
(∥∥Zn(hn) − 1

∥∥2
�2

)
≤ E

(∣∣exp
(
ξ∗,n(hn)

) − 1
∣∣2) + exp

(
hnκn(2)

) − exp
(
hn�∗n(2)

)
≤ E

(∣∣exp
(
ξ∗,n(hn)

) − 1
∣∣2)

+ exp
(
hnκn(2)

)(
1 − exp

(
−hn

∫
P

∞∑
i=2

p2
i νn(dp)

))
.

On the one hand, using
∑∞

i=2 p2
i ≤ (1 − p1)

2, we see from (28) that

lim
n→∞ exp

(
hnκn(2)

)(
1 − exp

(
−hn

∫
P

∞∑
i=2

p2
i νn(dp)

))
= 0.

On the other hand, we get from Corollary 1

E
(∣∣exp

(
ξ∗,n(hn)

) − 1
∣∣2) = E

(
exp

(
2ξ∗,n(hn)

)) − 2E
(
exp

(
ξ∗,n(hn)

)) + 1

= exp
(
hn�∗n(2)

) − 2 exp
(
hn�∗n(1)

) + 1.

Since it follows readily from (20) and (28) that limn→∞ �∗n(r) = �∗∞(r) for
r ≥ 0, we have

lim
n→∞E

(∣∣exp
(
ξ∗,n(hn)

) − 1
∣∣2) = 0,

which completes the proof. �
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