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Abstract. In (Ann. Probab. 43 (2015) 528–571), we proved that the renormalized critical Ising magnetization fields Φa :=
a15/8 ∑

x∈aZ2 σxδx converge as a → 0 to a random distribution that we denoted by Φ∞. The purpose of this paper is to estab-
lish some fundamental properties satisfied by this Φ∞ and the near-critical fields Φ∞,h. More precisely, we obtain the following
results.

(i) If A ⊂ C is a smooth bounded domain and if m = mA := 〈Φ∞,1A〉 denotes the limiting rescaled magnetization in A, then
there is a constant c = cA > 0 such that

logP[m > x] ∼
x→∞−cx16.

In particular, this provides an alternative way of seeing that the field Φ∞ is non-Gaussian (another proof of this fact would
use the explicit n-point correlation functions established in (Ann. Math. 181 (2015) 1087–1138) which do not satisfy Wick’s
formula).

(ii) The random variable m = mA has a smooth density and one has more precisely the following bound on its Fourier transform:

|E[eitm]| ≤ e−c̃|t |16/15
.

(iii) There exists a one-parameter family Φ∞,h of near-critical scaling limits for the magnetization field in the plane with vanish-
ingly small external magnetic field.

Résumé. Dans l’article (Ann. Probab. 43 (2015) 528–571), nous avons montré que le champ de magnétisation du modèle d’Ising
critique Φa := a15/8 ∑

x∈aZ2 σxδx converge lorsque a → 0 vers une distribution aléatoire limite Φ∞. Le but de cet article est
d’analyser certaines propriétés fondamentales de cet objet limite Φ∞ ainsi que ses analogues presque-critiques Φ∞,h. Plus préci-
sément, nous obtenons les résultats suivants :

(i) Si A ⊂ C est un domaine borné régulier du plan et si m = mA := 〈Φ∞,1A〉, alors il existe une constante c = cA > 0 telle que

logP[m > x] ∼
x→∞−cx16.

On obtient ainsi une preuve alternative du fait que Φ∞ est non-Gaussian (une autre façon de voir le coté non-Gaussien utilise
les fonctions de corrélations à n-points obtenues dans (Ann. Math. 181 (2015) 1087–1138) qui ne satisfont pas la formule de
Wick).
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(ii) La variable aléatoire m = mA a une densité qui est analytique. Plus précisément, on obtient la borne suivante sur sa transformée

de Fourier : |E[eitm]| ≤ e−c̃|t |16/15
.

(iii) Il existe une famille à un paramètre Φ∞,h de limite d’échelle presque-critiques pour le champ de magnétisation dans le plan
avec un champ magnétique extérieur infinitésimal.

MSC: 82B20; 82B27; 60K35

Keywords: Ising model; Conformal covariance; Ising magnetization field; Sub-Gaussian tails; Near-criticality

1. Introduction

1.1. Overview

In [2], we considered the scaling limit of the appropriately renormalized magnetization field of a critical Ising model
(i.e., at β = βc) on the lattice aZ2 where the mesh a shrinks to zero. The natural object to consider is the following
field:

Φa :=
∑

x∈aZ2

a15/8σxδx, (1.1)

where {σx}x∈aZ2 is the realization of a critical Ising model on aZ2. Note that the renormalization of a15/8 assumes
Wu’s computation [13,15]. If one does not want to rely on Wu’s derivation, one should consider instead the following
renormalization Φa := a2�(a)−1/2 ∑

x∈aZ2 σxδx , where the quantity �(a) was defined in [5]. See Remark 1.6 for
more details. The following theorem is proved in [2] (see Theorem 1.2 and Appendix A in [2] for more details).

Theorem 1.1 ([2]). As the mesh a ↘ 0, the random field Φa converges in law to a limiting random field Φ∞ under
the topology of the Sobolev space H−3(C).

In the case of a bounded smooth simply connected domain Ω equipped with +,− or free boundary conditions
along ∂Ω , one also obtains a limiting magnetization field Φ∞

Ω whose law depends on the choice of the prescribed
boundary conditions ξ ∈ {+,−, free}. See Theorem 1.3 in [2].

Two proofs of these results are provided in [2]: the first one relies on the recent breakthrough results from [5] on the
n-point correlation functions of the critical Ising model. The second proof is more conditional and relies for example
on the recent work [6]. See Section 2 in [2].

The purpose of [2] was to identify a limit in law for these magnetization fields (i.e. Φ∞ and Φ∞
Ω ). Beyond the

conformal covariance nature of these fields (Theorem 1.8 in [2]), we did not investigate the fine properties of these
fields. This is what we wish to address in this paper:

1. To start with, we will focus on the tail behavior of the field Φ∞ (and its bounded domain analog). For any bounded
smooth domain A, we obtain a precise tail estimate for the block magnetization m = mA = 〈Φ∞,1A〉 of e−cx16

where the constant c > 0 does not depend on the prescribed boundary conditions along ∂A. See Theorem 1.2.
2. Then, we investigate whether the random variable mA defined above has a density function or not and if so what

is its regularity. We answer this question by studying the tail of its characteristic function. Namely we prove that
|E[eitm]| ≤ e−c̃|t |16/15

. See Theorem 1.3.
3. Finally, we address a question of a different flavor: we prove in Theorem 1.4 that the magnetization field Φa,h for

the near-critical Ising model with external field ha15/8 has a scaling limit denoted by Φ∞,h.

1.2. Main statements

In Section 2 we will prove the following result.
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Theorem 1.2. There exists a universal constant c > 0 such that for any prescribed boundary conditions ξ ∈
{+,−, free} around the square [0,1]2, the (continuum) magnetization m = mξ = Φξ([0,1]2) in [0,1]2 satisfies as
x → ∞:

logP[m > x] ∼ −cx16.

This result extends to the case of the plane field Φ∞ tested against a bounded smooth domain A, i.e., Φ∞(1A) (in
which case the constant c will depend on A), or to the case of the limiting field Φ∞

Ω for a bounded smooth domain Ω

tested against a smooth sub-domain A ⊂ Ω .

In Section 3, we will prove (assuming Wu’s formula or the forthcoming work [4]):

Theorem 1.3. Let us consider the scaling limit m = mξ of the magnetization in the square [0,1]2 with prescribed
boundary conditions ξ ∈ {+,−, free}. There is a constant c̃ > 0 such that for all t ∈ R one has

∣∣Eξ
[
eitm]∣∣ ≤ e−c̃|t |16/15

.

In particular, the density function f = f ξ of the random variable m = mξ can be extended to an entire function on
the whole complex plane C.4

As in Theorem 1.2, the result extends to the whole-plane field Φ∞ tested against domains A as well as to the fields
Φ∞

Ω for smooth bounded domains Ω .

As we shall see later in Remark 3.2, this theorem should also easily extend to more general boundary conditions ξ

such as finite combinations of +,−, free-arcs. In this case, the constant c = c([0,1]2) > 0 would still be independent
of the boundary condition ξ .

Finally, in Section 4 we will prove the following theorem concerning the near critical (as h → 0) scaling limit. Two
recent reviews that discuss the significance of such near-critical models are [1] and [12].

Theorem 1.4. Let us fix some constant h > 0. Consider the Ising model on aZ2 at β = βc and with vanishingly small
external magnetic field equal to a15/8h. Let Φa,h be the near-critical magnetization field in the plane defined, as in
[2] (where h = 0), by

Φa,h :=
∑

x∈aZ2

δxσxa
15/8,

where {σx}x∈aZ2 is a realization of the above Ising model with external magnetic field equal to ha15/8. Then, as the
mesh a ↘ 0, the random distribution Φa,h converges in law to a near-critical field Φ∞,h under the topology of H−3

in the full plane defined in Section A.2 of [2].

The analogous statement in the case of a bounded smooth domain can be stated as follows.

Proposition 1.5. Let Ω be a bounded smooth domain of the plane with boundary conditions either +,− or free and
let h > 0 be some positive constant. Then, with the obvious notation, Φ

a,h
Ω converges in law to a field Φ

∞,h
Ω as a → 0

under the topology of the Sobolev space H−3(Ω).

This result is stated only as a proposition since as we shall see in Section 4, it follows almost readily from our
previous work [2]. We will then prove Theorem 1.4 using this proposition by considering larger and larger domains
ΛL and by showing that the near-critical fields do stabilize as L → ∞. The relation between Φ∞,h and Φ

∞,h
Ω to Φ∞

and Φ∞
Ω is discussed in Section 4.

4See for example Theorem IX.13 in [14].
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1.3. Brief outline of proofs

• The proof of the tail behaviour given by Theorem 1.2 will be based on the study of the exponential moments of the
magnetization m, i.e., of E[etm], with t > 0 large. Theorem 1.2 will then follow from a specific Tauberian theorem
of Kasahara [11]. One issue in this program is to show that the random variable m indeed has exponential moments.
This property was established in the first part of this series of papers, i.e. in [2] and the proof relied essentially
on the GHS inequality. The other difficulty is to adapt the classical arguments which lead to the existence of free
energies to our present continuum setting, where one cannot use the standard trick of fixing the spins along dyadic
squares in order to use subadditivity. To overcome this, one relies on RSW within thin long tubes.

• In our study of |Eξ [eitm]|, we rely on the FK representation and we prove that with very high probability (of order
1 − e−c|t |16/15

), one can find O(1/ε2) mesoscopic squares of well-chosen size ε = εt which contain an FK cluster
of “mass” about 1/t .

• For the proof of Theorem 1.4, most of the non-trivial work is done in Lemma 4.1 whose purpose is to prove that
the law of the full-plane near-critical field Φa,h is very close in H−3 to the law of a large domain near-critical field
Φ

a,h
ΛL

. The technique used here is a coupling argument similar to the one used in Section 2 in [2] and which relies
on the RSW theorem from [7].

Remark 1.6. Note that the renormalization we used in order to define Φa relies on Wu’s derivation of the two-point
function ([13,15]). See Remark 1.5. in [2] for a discussion on this. This renormalization is also the choice made in the
last versions (v2 and v3) of the breakthrough work [5]. Furthermore a fully rigorous derivation of Wu’s formula [4] by
Chelkak and Hongler has been announced recently in [5]. Yet, in the meantime (i.e. before [4] appears), it turns out
that if one does not wish to rely on Wu’s formula, then our main results Theorems 1.2 and 1.4 still hold except that the
discrete magnetization field Φa should no longer be renormalized by a15/8 (which does assume Wu) but instead by
a2�(a)−1/2, where the quantity �(a) was introduced in [5] and corresponds to the two-point function of the critical
Ising model along the diagonal for points at distance

√
2a−1. More precisely, without Wu and relying on [5], one

still obtains a conformally covariant limiting field for Φa := a2�(a)−1/2 ∑
x∈aZ2 σxδx . Indeed in [5], after adequate

renormalization by �(a), the authors do obtain n-point limiting correlation functions which are conformally covariant
with exponent 1/8 without ever relying on Wu’s result. This is all that we need in order to obtain a conformally
covariant magnetization field Φ∞ which can then be used to prove Theorems 1.2 and 1.4 in this paper. At the time
of [2], we were not aware of this derivation of the exponent 1/8 independent of Wu’s computation in connection
with continuum correlation functions. This is why we added a section there discussing the use of Wu’s computation.
Therefore Theorems 1.2 and 1.4 can be seen as unconditional (w.r.t. Wu’s result). On the other hand, in [3] as well as
in our present Theorem 1.3, we use different techniques which do rely more directly on the arm-exponent 1/8 and thus
will be fully unconditional once [4] is out.

2. Tail behavior

In this section, we shall prove Theorem 1.2.

2.1. Existence of exponential moments

We will need the fact that the (continuum) magnetization m has all exponential moments. This property was proved
in [2] and we provide below the corresponding statement.

Proposition 2.1 (Proposition 3.5 and Corollary 3.8 in [2]). For any boundary condition ξ (either +, − or free
boundary conditions) around [0,1]2, and for any t ∈ R, if m = mξ is the continuum (and ma is the discrete) magneti-
zation of the unit square, then one has

(i) E[etm] < ∞.
(ii) Furthermore, as a → 0, E[etma ] → E[etm].

See [2] for the proof of this proposition which relies essentially on the GHS inequality from [10].
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2.2. Asymptotic behavior of the moment generating function and scaling argument

Since the exponential moments E
ξ [etm] are well-defined, our next step is to study the behavior for large t of the

moment generating function t �→ E
ξ [etm]. We will prove the following proposition.

Proposition 2.2. There exists a universal constant b > 0 which does not depend on the boundary conditions ξ around
[0,1]2 so that as t → ∞:

logEξ
[
etm

] ∼ bt16/15.

Theorem 1.2 follows from the above proposition thanks to the following Tauberian theorem by Kasahara.

Theorem 2.3 (Corollary 1 in [11]). For any random variable X which has all its exponential moments, if there is an
exponent α > 1 and a constant b > 0 such that

logE
[
etX

] ∼ btα,

as t → ∞, then the following holds for some explicit constant c = c(b,α) > 0:

logP[X > x] ∼ −cx1/(1−1/α),

as x → ∞.

Remark 2.4. In fact, this result is stated only for positive random variables in [11] but it is very simple to extend it to
any real-valued random variable X. Let us sketch a short argument here. Assume one has

logE
[
etX

] ∼ btα, (2.1)

as t → ∞ for some b > 0, then necessarily, P[X > 0] has to be strictly positive. Now let Y be the random variable
X conditioned to be positive. It is easy to check that as t → ∞, logE[etY ] ∼ logE[etX]. One then concludes the
argument by noticing that as x → ∞, logP[X > x] ∼ logP[X > x | X > 0] = logP[Y > x].

Remark 2.5. Note that by a straightforward use of the exponential Chebyshev inequality, upper bounds on P
ξ [m > x]

can be directly recovered from Proposition 2.2.

Proof of Proposition 2.2. The main tools to prove the proposition will be the scaling covariance property of the total
magnetization m which was proved in [2] (see Proposition 2.6 below) as well as Theorem 2.7 below which in some
sense defines a free energy for our limiting magnetization field. Let us first state these two results.

Proposition 2.6 (Scaling covariance of m, Corollary 5.2 in [2]). Let m = mξ be the scaling limit of the renormalized
magnetization in the square (i.e., m = 〈Φ∞,1[0,1]2〉), with boundary conditions ξ being either +,− or free. For any

λ > 0, let mλ = m
ξ
λ be the scaling limit of the renormalized magnetization in the square [0, λ]2 with the same boundary

conditions ξ . Then one has the following identity in law:

mλ
(d)= λ15/8m. (2.2)

Theorem 2.7 (Existence of free energy). For any L > 0 and any boundary conditions ξ (made of finitely many +,
− or free arcs) around [0,L]2, let f

ξ
L(t) := 1

L2 logEξ [etmL].
There is a universal constant b > 0, which does not depend on the boundary conditions ξ , such that for any t ∈ R

f
ξ
L(t) := 1

L2
logEξ

[
etmL

] −→
L→∞b|t |16/15.
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With these two ingredients, it is easy to conclude the proof of Proposition 2.2. Indeed if λt := t8/15, then one has:

logE±[
etm

] = logE±[
emλt

]
using Proposition 2.6 (2.3)

= t16/15
(

1

λ2
t

logE±[
emλt

])
(2.4)

∼ t16/15b, (2.5)

as t → ∞. Other boundary conditions are handled by noting that Eξ [etm] is squeezed between the + and − cases by
the FKG inequalities. �

Remark 2.8. Note that we did not need the full strength of Theorem 2.7, only the case t = 1. Nevertheless, since
Theorem 2.7 is interesting in it own right, we prove it for all t ∈ R (which will result in a slight repetition of the above
scaling argument in the proof of Lemma 2.13).

Remark 2.9. It is tempting to compare the above free energy with the classical one coming from the discrete system,
i.e., defined as

F(t) := lim
N→∞

1

N2
logE+[

et
∑

x∈ΛN
σx

]
, (2.6)

but it is easy to see that they must be different, since clearly F(t) ≤ |t | for any t ∈ R. On the other hand, they behave
essentially the same for small t as follows from the results of [3].

2.3. Free energy estimates

The purpose of this section is to prove Theorem 2.7 on the free energy of Φ∞. The proof of this theorem will be
divided into several steps as follows. First, we will show in Lemma 2.10 that for any t ≥ 0, f +

L (t) and f −
L (t) have

limits along dyadic scales Lk = 2k , respectively denoted by f +(t) and f −(t). Then, in Lemma 2.11, we will show
that {

lim supL→∞ f +
L (t) = f +(t),

lim infL→∞ f −
L (t) = f −(t).

In Lemma 2.12, we will prove that f +(t) = f −(t) = f (t) for any t ≥ 0. Finally Lemma 2.13 will identify the limit
f (t) to be exactly b|t |16/15 for all t ∈ R, thus concluding the proof of Theorem 2.7. The main difficulty in this last
lemma will be to show that the constant b is positive.

We will first list these lemmas and then proceed with their proofs. Let us point out that some of the proofs below
follow the standard arguments to prove that a free energy is well defined. Nevertheless, they turn out to be slightly
more involved here since we are working with the continuum limit and therefore all the classical arguments based,
for example, on counting the number of lattice sites on the boundary are no longer valid here. (Only the proof of
Lemma 2.10 follows exactly the classical scheme.)

Lemma 2.10. For any t ≥ 0, and any k ≥ 1,{
f +

2k+1(t) ≤ f +
2k (t),

f −
2k+1(t) ≥ f −

2k (t).

In particular, the sequences f ±
2k (t) converge as k → ∞ and we will denote respectively their limits by f ±(t).

Lemma 2.11. For any t ≥ 0, we have{
lim supL→∞ f +

L (t) = f +(t),

lim infL→∞ f −
L (t) = f −(t).
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Lemma 2.12. For any t ≥ 0, we have

f +(t) = f −(t) = f (t).

Lemma 2.13. There exists a universal constant b > 0 such that for any boundary conditions ξ , we have

f (t) := lim
L→∞

1

L2
E

ξ
[
etmL

] = b|t |16/15,

for all t ∈R.

Proof of Lemma 2.10. Let us consider the case of + boundary conditions; the − case is similar. From Proposi-
tion 2.1(ii), we know that for any L > 0,

E
+[

etmL
] = lim

a→0
E

+[
etma

L
]
.

Now, for any k ∈ N
+, it is easy to check (by breaking the domain [0,2k+1]2 into 4 squares with + boundary conditions

and using FKG) that for suitable choices of the mesh size a (i.e. a such that 2k ∈ aZ), then

E
+[

etma

2k+1
] ≤ E

+[
etma

2k
]4

.

Taking the limit a → 0, we get that

E
+[

etm2k+1
] ≤ E

+[
etm2k

]4
,

which implies f +
2k+1(t) ≤ f +

2k (t). As pointed out above, this proof matches exactly the standard proof in the discrete
setup. �

Proof of Lemma 2.11. We only consider the case of + boundary conditions and we will fix some t ≥ 0 (the case of
minus boundary conditions is handled in the same fashion). Let us also fix some integer k0 ≥ 1. We wish to show that
lim supL→∞ f +

L (t) ≤ f +
2k0

(t).

For L > 0 large enough, let M ≥ 1 be such that L = M2k0 + 2K , with K ∈ [2k0−1,2k0). Divide the domain [0,L]2

into the inside square Q := [K,L − K]2 and the annulus A := [0,L]2 \ Q. Then, as in the proof of the above lemma,
we have

E
+[

etmL
] ≤ E

+[
etm

2k0
]M2

E
+[

etmA
]
, (2.7)

where mA denotes the magnetization in the annulus A with + boundary conditions on its inner and outer boundaries.
One can split this annulus into a number (≤4L/K) of squares of side-length K plus possibly 4 identical rectangles
(up to a rotation) with one side of length K and the other side of shorter length K̃—see Figure 1. Call R1, . . . ,R4
those rectangles and let R be the family of possible shapes they can have. Then, we have

E
+[

etmA
] ≤ E

+[
etmK

]4L/K
sup
R∈R

E
+[

etmR
]4

≤ E
+[

etmK
]8(M+1) sup

R∈R
E

+[
etmR

]4
. (2.8)

Now for any rectangle R = [0, K̃] × [0,K] with 0 < K̃ ≤ K , one has

E
+[

etmR
] ≤ lim

a→0
E

+[
etma

R
]

≤ lim
a→0

exp

(
tE+[

ma
R

] + t2

2
E

+[(
ma

R − 〈
ma

R

〉)2])
,
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Fig. 1. The annulus A and the rectangles R1, . . . ,R4.

using the GHS inequality (see Theorem 3.6 and Corollary 3.7 of [2]). As in the Appendix B of [2], it is easy to check
that

sup
R∈R

(
lim sup

a→0

{
E

+[
ma

R

] +E
+[(

ma
R

)2]})
< ∞,

which thus implies

sup
R∈R

E
+[

etmR
]
< ∞. (2.9)

In the same fashion, we have that

sup
K∈[2k0−1,2k0 )

E
+[

etmK
]
< ∞. (2.10)

Plugging the previous estimates into (2.7), we obtain

1

L2
logE+[

etmL
] ≤ M2

L2
logE+[

etm
2k0

] + 8M + 8

L2
sup
K

logE+[
etmK

] + 4

L2
sup
R∈R

logE+[
etmR

]
.

By letting L,M → ∞, the last two terms tend to zero, while the first one converges to f +
2k0

(t), which ends the
proof of the lemma. �

Proof of Lemma 2.12. It is clear, by monotonicity, that for any t ≥ 0, f −(t) ≤ f +(t). Let us then show the reverse
inequality. We will in fact compare the plus boundary conditions with free boundary conditions showing with the
obvious notation that f free(t) ≥ f +(t). Since the same proof allows us to show that f free(t) ≤ f −(t), this is enough
to conclude the proof.

We wish to show that

f free(t) := lim inf
k→∞ 2−2k logEfree[etm2k

] ≥ f +(t) = lim
k→∞ 2−2k logE+[

etm2k
]
.

Note that we used lim inf to define f free here since we have not proved (yet) that the limit exists in the case of free
boundary conditions and lim inf is the worst possible case here.

Let us fix some small dyadic ε = 2−k0 > 0. For any L > 10, let R = RL,ε be the event that there is a + cluster
going around the annulus aZ2 ∩ [0,L]2 \ [εL, (1 − ε)L]2. From the RSW Theorem in [7], we have that

H := inf
L>10,a<1

P
free[RL,ε] > 0.

Recall furthermore that for any L > 10:

1

L2
logEfree[etmL

] = lim
a→0

1

L2
logEfree[etma

L
]
.
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We have that

lim inf
L→∞

1

L2
logEfree[etmL

] ≥ lim inf
L→∞ lim

a→0

1

L2
logEfree[1Retma

L
]

≥ lim inf
L→∞ lim

a→0

1

L2
logEfree[etma

L

∣∣ R
] + lim

L→∞
1

L2
logH

= lim inf
L→∞ lim

a→0

1

L2
logEfree[etma

L

∣∣ R
]
.

For each dyadic L = Lk = 2k > 10, let us divide the square [0,L]2 into the annulus A = AL = [0,L]2 \
[εL, (1 − ε)L]2 and the inside square Q = QL = [εL, (1 − ε)L]2. As such and with the obvious notation, we will
decompose the magnetization ma

L into

ma
L = ma

A + ma
Q. (2.11)

Furthermore, we will denote by FQ the filtration generated by the spins in aZ2 ∩ Q. By conditioning furthermore on
FQ, we get

lim inf
k→∞

1

L2
k

logEfree[etmLk

] ≥ lim inf
k→∞ lim

a→0

1

L2
k

logEfree[etma
QE

free[etma
A

∣∣FQ,R
] ∣∣ R

]
. (2.12)

Let us first show the following lemma.

Lemma 2.14. There is a function α = α(ε) > 0 such that uniformly in L = 2k > 10 and on the configuration of spins
σQ inside Q, one has

lim
a→0

E
free[etma

A

∣∣FQ,R
] ≥ α(ε). (2.13)

Proof. To prove the lemma, notice that by our choice of ε, the annulus A can be divided into 4(2k0 − 1) exact squares
of side-length 2k−k0 (as in Figure 1 except there are no thin rectangles there) and we have the bound

lim
a→0

E
free[etma

A

∣∣FQ,R
] ≥ lim

a→0
E

−[
e
tma

2k−k0
]4(2k0 −1) using FKG (2.14)

≥ lim
a→0

P
−[

ma

2k−k0
> 0

]4(2k0 −1)
(2.15)

≥ P
−[m2k−k0 > 0]4(2k0 −1) (2.16)

= P
−[m[0,1]2 > 0]4(2k0 −1) ≥ P

−[m[0,1]2 > 0]4/ε, (2.17)

where in the last line, we relied on the scaling covariance property given by Proposition 2.6. �

We conclude the proof of Lemma 2.14 by relying on the following easy lemma.

Lemma 2.15. There is a constant c > 0 such that

P
−[m[0,1]2 > 0] > c.

Proof (Sketch). Since ma
[0,1]2 converges in law to m[0,1]2 , it is enough to prove that under P−, ma

[0,1]2 is bounded from
below by some positive constant with uniform positive probability as a → 0. To show this, use the FK representation
of the spin-Ising model as in [2] and as in Section 3 below, in order to write ma

[0,1]2 as follows:

ma
[0,1]2 = −A0 +

∑
i

σiAi ,
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where Ai = Aa
i (Ci), i ≥ 1 stand for the renormalized areas of the FK clusters Ci which do not intersect ∂[0,1]2,

A0 stands for the renormalized area of the cluster C0 intersecting ∂[0,1]2, and {σi}i are independent ±1 balanced
Bernoulli variables. By a now standard second moment argument (exactly as in Appendix B in [2]), one can easily
show (without using this FK representation) that there is some constant M < ∞ such that P[m[0,1]2 > −M] > 1/2.
This means that the above sum is above −M with probability more than 1/2 uniformly in a → 0. Now for each ε > 0,
Lemma 3.1 below tells us that one can find Ω(1/ε2) small FK clusters whose renormalized areas are of order ε15/8.
(Note that if one does not want to use Wu here, one still obtains Ω(1/ε2) clusters whose renormalized areas are of
order ε2�(ε)−1/2 which is enough.) One thus concludes the proof of the lemma by choosing ε small enough w.r.t. the
value of M and forcing all these ε-clusters to have a + associated spin (which costs a uniform positive probability of
order c1/ε2

). �
Hence this ends the proof of Lemma 2.14 with α(ε) := c4/ε . �

Plugging (2.13) into (2.12) gives us

lim inf
k→∞

1

L2
k

logEfree[etmLk

] ≥ lim inf
k→∞ lim

a→0

1

L2
k

logEfree[etma
Q

∣∣ R
]
. (2.18)

Now, by FKG it is clear that

lim
a→0

E
free[etma

Q
∣∣ R

] ≥ lim
a→0

E
+[

etma
Q
]

(2.19)

= E
+[

etmQ
]
,

where in the latter expectations, the + boundary conditions are around [0,Lk]2 and hence are further away from the
domain Q = QLk

.
To conclude the proof of Lemma 2.12 we still need to compare E

+[etmQ] with E
+[etmL]. This is done by the

following lemma.

Lemma 2.16. There is a function η(x) > 0 satisfying η(x) → 0 as x → 0, and such that for any ε = 2−k0 , one has,
with the above notation,

lim
k→∞

1

L2
k

logE+[
etmQ

] ≥ lim
k→∞

1

L2
k

logE+[
etmLk

] − η(ε). (2.20)

Proof. As in the proof of Lemma 2.11, and dividing [0,Lk]2 as above, we have

E
+[

etmLk

] = E
+[

etmQ+tmA
]

(2.21)

≤ E
+[

etmQ
]
E

+[
etm

2k−k0
]4(2k0 −1)

, (2.22)

where, as above, the boundary conditions in the expectation E
+[etmQ ] are meant to be around the larger square

[0,Lk]2. Now, we have

1

L2
k

logE+[
etm

2k−k0
]4(2k0 −1) = 4(2k0 − 1)

22k0

1

22(k−k0)
logE+[

etm
2k−k0

]
(2.23)

≤ 4εf +
Lk−k0

(t). (2.24)

Letting k → ∞, we obtain

lim
k→∞

1

L2
k

logE+[
etmQ

] ≥ f +(t) − 4εf +(t). (2.25)

This ends the proof of Lemma 2.16. �
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To conclude the proof of Lemma 2.12, we plug (2.25) into (2.18) and obtain, using (2.19),

lim inf
k→∞

1

L2
k

logEfree[etmLk

] ≥ f +(t) − 4εf +(t),

for any value of ε = 2−k0 > 0. Hence, we have that

lim inf
k→∞

1

L2
k

logEfree[etmLk

] ≥ f +(t), (2.26)

which thus implies

f free(t) = lim inf
k→∞

1

L2
k

logEfree[etmLk

] = f +(t). (2.27)
�

Proof of Lemma 2.13. As in the proof of Proposition 2.2, using the scaling covariance given by Proposition 2.6, we
have that for any L > 0 and any t > 0 and for, say, + boundary conditions,

tmL
(d)= mLt8/15 .

This implies

f (t) = f +(t) = lim
L→∞

1

L2
logE+[

etmL
]

= lim
L→∞

1

L2
logE+[

em
Lt8/15

]
= t16/15 lim

L̄→∞
1

L̄2
logE+[

emL̄
]

= f (1)t16/15.

To conclude the proof of the lemma when t > 0, it remains to show that the quantity (with Lk = 2k)

f (1) = f +(1) = lim
k→∞

1

L2
k

logE+[
emLk

]
is strictly positive.

To see this, let us first denote by ML the magnetization Φ∞(1[0,L]2) in [0,L]2 of the full-plane field Φ∞. By
the results of [2], for any L ∈ (0,∞), ML has zero mean and variance in (0,∞). Then by a few uses of the FKG
inequalities, we have

E
+[

em2k
] ≥ E

[
eM2k

]
≥ (

E
[
eM1

])L2
k

≥ (
1 +E

[
M2

1

])L2
k ,

so that f +(1) ≥ log(1 +E[M2
1 ]) > 0. �

3. Analyticity of the probability density function of m

In this section, we shall prove Theorem 1.3. First of all, by the convergence in law of ma towards m, we have, as
a → 0:

E
ξ
[
eitma ] → E

ξ
[
eitm]

. (3.1)
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It is thus sufficient to prove that there exists a constant c > 0 which is such that, for any t ∈R,

lim sup
a→0

∣∣Eξ
[
eitma ]∣∣ ≤ e−c|t |16/15

.

To prove this, we will rely on the FK representation of the Ising model in aZ2 ∩ [0,1]2 endowed with its boundary
conditions ξ ∈ {+,−, free}. Let us assume that ξ = +. (The case of free boundary conditions is even easier.) We can
write

∣∣E+[
eitma ]∣∣ =

∣∣∣∣EFK
[

eitA+ ∏
Ci

1

2

(
eitAi + e−itAi

)]∣∣∣∣
=

∣∣∣∣EFK
[

eitA+ ∏
Ci

cos tAi

]∣∣∣∣, (3.2)

where {Ci}i denotes the collection of clusters that do not intersect the boundary and C+ is the cluster that intersects
the boundary. Furthermore, we let Ai = Aa

i = Aa
i (Ci) stand for the renormalized areas of the cluster Ci , and A+ for

the renormalized area of the cluster C+. Our strategy, in order to obtain an upper bound for (3.2), is to show that with
high probability, there are many clusters in {Ci}i with a renormalized area of order 1/t .

We will rely on the following lemma:

Lemma 3.1. There exist constants c ∈ (0,1) and M > 1 such that for any 0 < ε < 1/10 and any ε-square Q inside
[0,1]2, uniformly as a → 0, and uniformly on the FK configuration outside of Q, with (conditional) probability at
least c > 0, one can find at least one FK cluster C inside Q that does not intersect ∂Q and such that its renormalized
area lies in the interval [ε15/8/M,Mε15/8].

Proof. Let Q be an ε-square inside [0,1]2 and let ωa be any FK-configuration outside Q. Let A1 be the annulus
Q \ 7/8Q, A2 the annulus 7/8Q \ 3/4Q and A3 the annulus 3/4Q \ 1/2Q. Let us introduce the following events: let
D1 be the event that there is a dual circuit in the annulus A1 and let O2 and O3 be the events that there is an open
circuit around each annuli A2 and A3. Using the RSW Theorem from [7] for a free boundary condition, one has that
there is a constant b > 0 such that uniformly on the outside configuration ωa , one has

P
+[D1,O2,O3 | ωa] > b. (3.3)

Now let X = Xa be the number of points in aZ2 ∩ 1/2Q which are connected via an open-arm to ∂( 3
4Q). Then using

similar computations as in Proposition B.2 in [2] or in Lemma 3.1 in [3], one can find a constant C > 0 such that

{
E

+[Xa | D1,O2,O3,ωa] ≥ (ε/a)15/8/C,

E
+[X2

a | D1,O2,O3,ωa] ≤ C(ε/a)15/4.
(3.4)

By a standard second-moment argument, and using the fact that all points counted in Xa belong to the same cluster
(thanks to O3), one obtains that with positive conditional probability, one can find a cluster C which does not intersect
∂Q and whose renormalized mass is larger than 1/Mε15/8. (Note that the event O2 is there to ensure some positive
information inside 3/4Q.)

It remains to prove an upper bound. In the same way as Xa is smaller than the actual number of points in the open
cluster we are interested in, one can also introduce X̃a to be the number of points inside the whole square Q which
are connected to the boundary ∂(3/4Q). This random variable dominates the size of the cluster we are interested in.
It is enough to control its expectation and it is easy to see that, for a well-chosen constant C > 0, one has

E
+[X̃a | ωa] ≤ E

+[X̃a | wired ∂Q]
≤ C(ε/a)15/8.
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Since P+[D1,O2,O3 | ωa] > b, this implies

P
+[

X̃a ≥ M(ε/a)15/8
∣∣ D1,O2,O3,ωa

] ≤ 1

M

C

b
.

By choosing M large enough (so that the conditional probabilities of lower bound and upper bound do not add up to
something larger than one), one concludes the proof of the lemma. �

Proof of Theorem 1.3. For any |t | > 100, choose ε = εt so that Mε15/8 = 1
|t | (we use the constants from Lemma 3.1).

Use a tiling of the square [0,1]2 so that one has 1
2ε−2 disjoint ε-squares Q. Recall from that lemma that for each such

square Q, the probability that one has a cluster inside Q with renormalized area in [(1/M)ε15/8,Mε15/8] is larger
than c > 0 uniformly on what may happen outside of Q. We thus expect that at least about c

2ε−2 squares Q will
contain such a cluster. Let G be the event that at last c

4ε−2 squares Q have a cluster with renormalized area in
[(1/M)ε15/8,Mε15/8]. Then, by a classical Hoeffding inequality one has that

P
+[

Gc
] ≤ e−dε−2

t = e−dM16/15|t |16/15
, (3.5)

for some universal constant d > 0. Now, on the event G, we have

∣∣∣∣eitA+ ∏
Ci

cos tAi

∣∣∣∣ ≤ [
cos 1/M2](c/4)ε−2

t

= [
cos 1/M2](c/4)M16/15|t |16/15

≤ e−c̃|t |16/15
,

for some well-chosen constant c̃ > 0. Combining the above estimate with equations (3.2) and (3.5), we thus end the
proof of Theorem 1.3 with a possibly smaller value of c̃ > 0 (due to P

+[Gc] as well as to the region |t | ∈ [0,100]). �

Remark 3.2. As suggested after Theorem 1.3, it should be possible to extend the above proof to basically any boundary
conditions ξ (with the only constraint that one can prove a scaling limit result for ma as in [2]). For example, if ξ

is made of a finite combination of +,−, free arcs, this is handled in [2]. In this latter case, one would rely on the
following extension of (3.2):

∣∣Eξ
[
eitma ]∣∣ =

∣∣∣∣EFK,ξ

[∏
Ci

1

2

(
eitAi − e−itAi

)∏
C+

k

eitAk
∏
C−

l

e−itAl

]∣∣∣∣
≤ E

FK,ξ

[∏
Ci

| cos tAi |
]
.

The additional difficulty when ξ is a general boundary condition lies in the FK-representation of the associated
Ising model. Indeed, general boundary conditions induce negative information in the bulk (since the FK configuration
is now conditioned to disconnect + and − arcs). But one can see from the above proof that negative information in
fact makes Lemma 3.1 even more likely. Indeed it makes the event D1 of having a dual crossing in the annulus A1

more likely.

Remark 3.3. We note that log |Eξ [eitm]| cannot behave like −|t |16/15 as t → ∞ because, by the Lee–Yang theorem,
E

ξ [eitm], as a function of complex t , has infinitely many zeros {ti}i≥1, all purely real and s.t. ti → ∞. In particular,
log |Eξ [eitm]| must diverge to −∞ near each zero ti , i ≥ 1.
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4. Near-critical magnetization fields

We start by establishing Proposition 1.5.

Proof of Proposition 1.5. Let us assume that the boundary condition ξ is + along ∂Ω (the case of free b.c. is treated
in the same manner). The Ising model with an external field ha := ha15/8 can be thought of as a simple change of
measure with respect to the Ising model without external field. In particular, one has for any field Φ:

P
[
Φa,h = Φ

] = eh〈Φ,1Ω 〉

E[eh〈Φa,1Ω 〉]P
[
Φa,h=0 = Φ

]
.

Or, written in terms of the Radon–Nikodym derivative, one has

dμ
a,h
Ω

dμa
Ω

(Φ) = eh〈Φ,1Ω 〉

E[eh〈Φa,1Ω 〉] = eh〈Φ,1Ω 〉

μa
Ω [eh〈Φ,1Ω 〉] ,

where μa,h and μa denote respectively the laws of Φ
a,h
Ω and Φa

Ω . Now it is not hard to check, using the fact that

Φ∞ ∼ μ∞
Ω has exponential moments (Proposition 2.1), that μ

a,h
Ω converges weakly for the topology of H−3(Ω) to

the measure μ
∞,h
Ω which is absolutely continuous w.r.t. μ∞

Ω and whose Radon–Nikodym derivative is given by

dμ
∞,h
Ω

dμ∞
Ω

(Φ) = eh〈Φ,1Ω 〉

E[eh〈Φ∞,1Ω 〉] .

We refer to the Appendix A of [2] for details on the topological setup used here (H−3). �

We now wish to prove Theorem 1.4. It is based on the lemma below together with Proposition 1.5. In what follows,
for each L ∈N, we will denote by ΛL the domain [−2L,2L]2.

Lemma 4.1. For any α > 0, there exists L = L(h,α) ∈ N sufficiently large so that, uniformly in 0 < a < α, one can
find a coupling of Φ

a,h
ΛL

with Φ
a,h
C

satisfying

E
[∥∥Φ

a,h
ΛL

− Φ
a,h
C

∥∥
H−3

C

]
< α,

where ‖ · ‖H−3
C

is defined by

‖h‖H−3
C

:=
∑
k≥1

1

2k

(‖h|Λk
‖H−3

Λk

∧ 1
)
.

Remark 4.2. It is easy to check that the distance defined in Lemma 4.1 induces the same topology on H−3
C

as the one
introduced in Appendix A of [2].

Proof of Lemma 4.1. Let L1 ∈ N be such that
∑

k≥L1
2−k < α/2 (its value will be fixed later, also depending on the

value of h > 0). We wish to find some L2 � L1 such that one can couple the fields Φ
a,h
ΛL2

and Φ
a,h
C

in such a way that

with probability at least 1 − α they are identical once restricted to the sub-domain ΛL1 . By the definition of ‖ · ‖H−3
C

,

this will clearly imply our result with L = L2.
The coupling will be constructed similarly as in [8] and [2]. We will also use the FK representation with a ghost

vertex used in [3] (see also for example [9]). We refer to [3] for more details on this representation. Since the proof
below will follow very closely the proof of the lower bound given in Section 3 in [3], we will not give the full details
here.

Following the notation of [3], let ω̄
a,h
C

= (ω
a,h
C

, τ
a,h
C

) and ω̄
a,h
L2

= (ω
a,h
L2

, τ
a,h
L2

) be respectively the FK representa-

tions of the Ising model with external field h > 0 on aZ2 and on aZ2 ∩ ΛL2 with + boundary conditions. These
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configurations are FK percolation configurations on the graph aZ2 ∪ {g} and the notation ω̄ = (ω, τ ) distinguishes
between the nearest neighbor edges in aZ2 (ω) and the edges of the type 〈x,g〉, with x ∈ aZ2 (τ ). Furthermore, it is
easy to check that ω

a,h
L2

stochastically dominates ω
a,h
C

. Let us divide the annulus AL1,L2 into disjoint annuli of ratio
4: namely A1 := A4−1L2,L2

,A2 := A4−2L2,4−1L2
and so on. As such one has about log4(L2/L1) annuli. As in [2], we

will explore “inward” both configurations by preserving the monotonicity ωC � ωL2 and by trying to find a matching
circuit γ in each annulus with positive probability. As in [2], the main ingredient for the coupling is the RSW theorem
from [7]. The difference in our present setting is that one also has to deal with the influence of the ghost vertex g. In
particular, finding a matching circuit γ is not enough if one wants to claim that the conditional laws “inside” γ are the
same: one also has to make sure that the circuit γ is connected in both configurations to the ghost vertex g.

We proceed as follows. Assume we did not succeed in coupling the two configurations in the first i − 1 annuli
A1, . . . ,Ai−1 and consider the ith annulus Ai = A4−iL2,4−(i−1)L2

. At this point, the configurations have been explored

everywhere except inside the outer boundary of Ai , and ω
a,h
L2

dominates ω
a,h
C

. Inside the annulus Ai , we will distin-
guish 3 sub-annuli: B1 = A3.4−i ,4−i+1 , B2 = A2.4−i ,3.4−i and B3 = A4−i ,2.4−i . From the RSW theorem of [7], there

are open circuits in ω
a,h
C

(and thus ω
a,h
L2

) with positive probability c > 0 in each of B1,B2,B3. This is due to the

fact that ω
a,h
C

dominates a critical FK configuration with zero magnetic field and with wired boundary conditions
along ∂1Ai (see Section 3 in [3]). Furthermore, due to the positive information inside B2 (thanks to the open circuits
in each B1 and B3), it is easy to extend the techniques used to prove Lemma 3.1 in [3] (i.e. an appropriate second
moment argument) to show that with positive probability c > 0, there are at least c(4−iL2/a)15/8 points inside B2

which are connected in ω
a,h
C

to the “outermost” open circuit γ for the configuration ω
a,h
C

in the annulus B3. Since
(4−iL2)

15/8 ≥ (L1)
15/8, the exact same proof as for Lemma 3.2 of [2] shows that if one chooses L1 large enough

(depending on h), then conditioned on the above event of having at least c(4−iL2/a)15/8 points connected to γ , with
conditional probability at least 1/2, the cluster including γ will be connected to the ghost vertex g for the configura-
tion ω

a,h
C

(and thus for ω
a,h
L2

as well). Once ω
a,h
C

and ω
a,h
L2

have a matching circuit γ connected to g, one can sample
the rest of the configurations so that they match “inside” the circuit γ . (As in [2], the exploration process is driven by
ω

a,h
C

.) To conclude, we choose L1 so that it satisfies the two constraints discussed above (i.e.,
∑

k≥L1
2−k < α/2 and

the constraint relative to h > 0). This gives us a certain positive probability c > 0 to couple both configurations in any
annulus A4−1L,L, L ≥ L1. The proof is then completed by choosing L = L(h,α) = L2 so that clog4(L2/L1) < α/2. �

Proof of Theorem 1.4. By Proposition 1.5, for any L ∈ N, one has that Φ
a,h
ΛL

converges in law to Φ
∞,h
ΛL

in H−3
ΛL

. It is

easy to check that this convergence in law also holds in the space (H−3
C

,‖ · ‖H−3
C

). Since this latter space is Polish, for

any α > 0, there exists a0 = a0(α) > 0 such that, for any a < a0, one can couple Φ
a,h
ΛL

with Φ
∞,h
ΛL

so that

E
[∥∥Φ

a,h
ΛL

− Φ
∞,h
ΛL

∥∥
H−3

C

]
< α.

By using this fact together with Lemma 4.1 and the fact that (H−3
C

,‖ · ‖H−3
C

) is Polish, one easily obtains that

{Φ∞,h
ΛL

}L∈N converges in law in H−3
C

as L → ∞ to a limiting field Φ
∞,h
C

. Now that our limiting random field

is defined, to conclude about the convergence in law of Φ
a,h
C

to this limiting field, we proceed in the same man-
ner: for any ε > 0, one can find a0 > 0 sufficiently small so that for any a < a0, there exists a joint coupling
(Φ

a,h
C

,Φ
a,h
ΛL

,Φ
∞,h
ΛL

,Φ
∞,h
C

) such that all fields are ε-close to each other (for ‖ · ‖H−3
C

) with probability at least 1 − ε.

This proves the convergence in law of Φ
a,h
C

to Φ
∞,h
C

. �
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