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Abstract. The model of random interlacements is a one-parameter family Iu, u ≥ 0, of random subsets of Z
d , which locally

describes the trace of simple random walk on a d-dimensional torus run up to time u times its volume. Its complement, the so-
called vacant set Vu, has been shown to undergo a non-trivial percolation phase-transition in u; i.e., there exists u∗(d) ∈ (0,∞)

such that for u ∈ [0, u∗(d)) the vacant set Vu contains a unique infinite connected component Vu∞, while for u > u∗(d) it consists
of finite connected components. It is known (Probab. Theory Related Fields 150 (2011) 575–611, Ann. Probab. 39 (2011) 70–103)
that u∗(d) ∼ logd, and in this article we show the existence of u(d) > 0 with u(d)

u∗(d)
→ 1 as d → ∞ such that Vu∞ is transient for

all u ∈ [0, u(d)).

Résumé. Le modèle des entrelacs aléatoires est une famille Iu, u ≥ 0, de sous-ensembles aléatoires de Z
d . Cette famille décrit

localement la trace d’une marche aléatoire sur le tore de dimension d qui évolue jusqu’au temps u fois le volume du tore. Il est
connu que l’ensemble vacant Vu fait l’objet d’une transition de phase non-triviale en u, c’est-à-dire qu’il existe u∗(d) ∈ (0,∞) tel
que pour u ∈ [0, u∗(d)), l’ensemble vacant Vu a une unique composante infinie connexe Vu∞ tandis que pour u > u∗(d), toutes les
composantes connexes de Vu sont finies. Il est connu (Probab. Theory Related Fields 150 (2011) 575–611, Ann. Probab. 39 (2011)
70–103) que u∗(d) ∼ logd; dans cette article nous montrons l’existence de u(d) > 0, avec u(d)

u∗(d)
→ 1 quand d → ∞, tel que Vu∞

est transiente pour tout u ∈ [0, u(d)).
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1. Introduction and the main result

1.1. Introduction

The model of random interlacements has been introduced by Sznitman [15] as a family of random subsets of Z
d

denoted by Iu, u ≥ 0, where u plays the role of an intensity parameter. It locally describes the trace of simple random
walk on the discrete torus (Z/NZ)d run up to time uNd (see Windisch [23] as well as Teixeira and Windisch [21]).
Using the inclusion-exclusion formula the distribution of the set Iu can be neatly characterized via the equalities

P
[
K ∩ Iu =∅

] = e−u cap(K), ∀K ⊂⊂ Z
d .
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Here, cap(K) is used to denote the capacity of the set K (see (2.3) for the definition of capacity). In a more constructive
fashion, random interlacements at level u can also be obtained by considering the trace of the elements in the support
of a Poisson point process with intensity parameter u ≥ 0, which itself takes values in the space of locally finite
measures on doubly infinite simple random walk trajectories modulo time shift (see Section 2.2 for further details).

This constructive definition already suggests that the model exhibits long range dependence, and indeed the asymp-
totics

Cov(1x∈Iu ,1y∈Iu) ∼ c(u)|x − y|−(d−2)
2 , (1.1)

(and similarly for Iu replaced by Vu) holds for |x − y|2 → ∞, as can be deduced from (0.11) in [15]. As a con-
sequence, standard techniques from Bernoulli percolation do not apply anymore. For example, due to (1.1) Peierl’s
argument and the van den Berg–Kesten inequality break down. The long range dependence also entails that random
interlacements neither stochastically dominates nor can be dominated by Bernoulli percolation (cf. Remark 1.6 1) of
[15]). Moreover from the constructive definition of random interlacements alluded to above, one can infer that the
model does not fulfill the finite energy property (see Remark 2.2 3) of [15]). These features make the model both,
more appealing and more complicated to investigate.

During the past couple of years there has been intensive research on random interlacements. Basic properties such
as e.g. the shift-invariance, ergodicity and connectedness of Iu have been established in the seminal paper [15]. Since
then, one has obtained a deeper understanding of the geometry of random interlacements. In fact, Ráth and Sapozh-
nikov [12] have shown the transience for random interlacements Iu itself throughout the whole range of parameters
u ∈ (0,∞). The same authors in [13], as well as Procaccia and Tykesson in [11] have shown by essentially different
methods (using ideas from the field of potential theory on the one hand, and stochastic dimension on the other hand)
that any two points of the set Iu can be connected by using at most �d/2� trajectories from the constructive defini-
tion alluded to above. Recently, using in parts extensions of the techniques in [13], this result has been generalized
to an arbitrary number of points by Lacoin and Tykesson [6]. Another step in showing that the geometry of random
interlacements resembles that of Zd has been undertaken by Černý and Popov [3], where the authors prove that the
chemical distance (also called graph distance or internal distance) in the set Iu is comparable to that of Zd . Using
this result they proceed to prove a shape theorem for balls in Iu with respect to the metric induced by the chemical
distance.

It is particularly interesting to obtain a deeper understanding of the vacant set Vu and its geometry also. Indeed, on
the one hand, this is more challenging than the investigation of Iu in the sense that one cannot directly take advantage
of the many tools available for simple random walk, which have proven to be very helpful in understanding the set
Iu. On the other hand, it has been shown by Sznitman [15] as well as Sidoravicius and Sznitman [14] that there
exists a non-trivial percolation phase-transition for Vu at some u∗(d) ∈ (0,∞) in the following sense: For u > u∗(d)

the vacant set Vu as a subgraph of Z
d contains only finite connected components (subcritical phase), whereas for

u ∈ [0, u∗(d)) it has an infinite connected component almost surely (supercritical phase). Using a strategy inspired
by that of the seminal paper of Burton and Keane [2], and taking care of the difficulties arising from the lack of the
finite energy property for random interlacements, Teixeira [19] has shown the uniqueness of the infinite connected
component of Vu (denoted by Vu∞) in the supercritical phase.

While for random interlacements itself many results have been shown to be valid for any u > 0, the situation is more
complicated when investigating the vacant set Vu. In fact, while there are few results concerning the vacant set in the
first place so far, the ones which describe geometric properties such as Teixeira [20], Drewitz, Ráth and Sapozhnikov
[4], Popov and Teixeira [9] (dealing with the size distribution of finite clusters of the vacant set and local uniqueness
properties of Vu∞) and Drewitz, Ráth and Sapozhnikov [5] as well as Procaccia, Rosenthal and Sapozhnikov [10]
(providing chemical distance results as well as heat kernel estimates in a more general context) are valid for some
non-degenerate fraction of the supercritical phase only. To the best of our knowledge, our main result Theorem 1.1 is
the first one concerning geometric properties of the vacant set which is valid throughout most, and asymptotically all,
of the supercritical phase for Vu.

1.2. Main result

Here we formulate our main result. For this purpose recall that a connected graph with finite degree G = (V ,E) with
vertex set V and edge set E is called transient if simple random walk on G is transient. For the rest of this article
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V will usually denote a subset of Zd and E will be the set of nearest neighbor edges in Z
d which have both ends

contained in V .

Theorem 1.1. Let ε ∈ (0,1). There is d0 = d0(ε) ∈ N, such that for all d ≥ d0 and all u ≤ (1 − ε)u∗(d), the unique
infinite connected component Vu∞ of the vacant set Vu of random interlacements in Z

d is transient P-a.s.

Recall here that u∗(d) ∼ logd , see [16,17], where log denotes the natural logarithm. We refer to Section 2 for a
rigorous definition of the terms appearing in Theorem 1.1.

1.3. Discussion

Theorem 1.1 provides a rough geometrical description of the infinite connected component of the vacant set, which
is valid throughout most of the supercritical phase when d is large enough. To establish this result we introduce a
classification of vertices in Z

3 ×{0}d−3 into “good” ones and “bad” ones, where “good” refers to exhibiting sufficiently
strong local connectivity properties. This way the problem will be reduced to showing the transience of an infinite
connected component of good vertices in Z

3. Our construction of this infinite cluster will employ results of Sznitman
[16,18], whereas the proof of the actual transience of this component uses ideas of Angel, Benjamini, Berger and Peres
[1]. Besides making the attempt to extend our result to the entire supercritical phase it would be interesting to obtain a
more precise understanding of Vu∞. Results in this direction have been obtained in [5,10]. A key assumption in these
papers was a local uniqueness property (in our context of Vu∞), which roughly states that with high probability the
second largest component in a predetermined macroscopic box is small compared to the largest connected component
in the same box. However, this local uniqueness property has so far only been established for a non-degenerate part
of the supercritical phase, and obtaining its validity throughout the whole supercritical phase would be an interesting
topic for further investigations.

The rest of this article is organized as follows. In Section 2 we introduce further notation, give a more detailed
description of the model and provide a decoupling inequality tailored to our needs (Proposition 2.3). The proof of
Theorem 1.1 is carried out in Section 3. Sections 4 and 5 contain the proofs of auxiliary results employed when
proving Theorem 1.1.

2. Notation and introduction to the model

Section 2.1 introduces notation used in this article, Section 2.2 defines random interlacements, while Section 2.3 states
a decoupling inequality. Throughout the article we assume that d ≥ 3.

2.1. Basic notation

In the rest of this article we will tacitly identify Z
3 with Z

3 × {0}d−3 via the bijection (x1, x2, x3) �→ (x1, x2, x3,

0, . . . ,0), if no confusion arises.
For a subset K ⊆ Z

d we write K ⊂⊂ Z
d , if its cardinality |K| is finite or equivalently if K is compact. We denote

by | · |1 the �1-norm, by | · |2 the Euclidean norm, whereas | · |∞ stands for the �∞-norm on Z
d . Sites x, x′ in Z

d are
said to be nearest neighbors (∗-neighbors), if |x − x′|1 = 1 (|x − x′|∞ = 1). A sequence x0, x1, . . . , xn in Z

d is called
a nearest neighbor path (∗-path), if xi and xi+1 are nearest neighbors (∗-neighbors), for all 0 ≤ i ≤ n − 1; in this case
we say that the path has length n + 1. A set K ⊆ Z

d is said to be connected (∗-connected), if for any pair x1, x2 ∈ K

there exists a nearest neighbor (∗-neighbor) path x1, y1, y2, . . . , yn, x2 such that these vertices are contained in K . For
K ⊆ Z

d we introduce the following notions of boundaries

∂intK = {
x ∈ K: x has a nearest neighbor in Kc

}
,

∂∗
intK = {

x ∈ K: x has a ∗-neighbor in Kc
}
,

(2.1)
∂K = {

x ∈ Kc: x has a nearest neighbor in K
}
,

∂∗K = {
x ∈ Kc: x has a ∗-neighbor in K

}
,
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to which we refer as interior boundary (interior ∗-boundary) and boundary (∗-boundary), respectively. Moreover, the
exterior boundary (exterior ∗-boundary), denoted by ∂extK (∂∗

extK), is the set of vertices in the boundary (∗-boundary),
which are the starting point of an infinite non-intersecting nearest neighbor path with no vertex inside K .

The closure of a set K ⊆ Z
d is defined by K = K ∪ ∂K . If x ∈ Z

d or x ∈ Z
3 and L ≥ 0, we write

Bi(x,L) = {
y ∈ Z

d : |x − y|i ≤ L
}

and B3
i (x,L) = {

y ∈ Z
3: |x − y|i ≤ L

}
,

respectively, for i ∈ {1,2,∞}. Given a set K ⊆ Z
d and w :N0 → Z

d , we denote by

HK(w) = inf
{
n ≥ 0: w(n) ∈ K

}
and H̃K(w) = inf

{
n ≥ 1: w(n) ∈ K

}
(2.2)

the first entrance time in and the first hitting time of K , respectively. For x ∈ Z
d , let Px denote the law of simple

random walk on Z
d with starting point x. If K ⊂⊂ Z

d , we write eK for the equilibrium measure of K , i.e.,

eK(x) = Px[H̃K = ∞]1{x∈K} and cap(K) =
∑
x∈K

eK(x) (2.3)

for the total mass of eK , which is usually referred to as the capacity of K . From this one immediately obtains the
subadditivity of the capacity; i.e., for all K,K ′ ⊂⊂ Z

d one has

cap
(
K ∪ K ′) ≤ cap(K) + cap

(
K ′). (2.4)

We denote by g :Zd ×Z
d → [0,∞) the Green function of simple random walk on Z

d , which is defined via

g
(
x, x′) =

∑
n∈N0

Px

[
Xn = x′], for x, x′ ∈ Z

d ,

and we write g(0) = g(0,0). Finally, let us explain the convention we use concerning constants. Throughout the
article, small letters such as c, c′, c1, c2, . . . , denote constants which are independent of d . Capital letters, such as C

and C1 might depend on the dimension. Constants that come with an index are fixed from their first appearance on
(modulo changes of the dimension if they are capital letter constants), whereas constants without index may change
from place to place.

2.2. Definition of random interlacements

The model of random interlacements has been introduced in [15], and we refer to this source for a discussion that goes
beyond the description we are giving here. We write

W+ =
{
w :N0 → Z

d :
∣∣w(n) − w(n + 1)

∣∣
1 = 1 ∀n ∈ N0, and lim

n→∞
∣∣w(n)

∣∣
1 = ∞

}
for the set of infinite nearest neighbor paths tending to infinity and

W =
{
w :Z → Z

d :
∣∣w(n) − w(n + 1)

∣∣
1 = 1 ∀n ∈ Z, and lim

n→±∞
∣∣w(n)

∣∣
1 = ∞

}
for the set of doubly infinite nearest neighbor paths tending to infinity at positive and negative infinite times. W+ is
endowed with the σ -algebra W+ generated by the canonical coordinate maps Xn, n ∈ N0. Similarly, we will write W
and Xn, n ∈ Z, for the canonical σ -algebra and the canonical coordinate process on W . We denote by W ∗ the space
of equivalence classes of trajectories in W modulo time-shifts, i.e.,

W ∗ = W/∼, where w ∼ w′ iff w(·) = w′(· + k) for some k ∈ Z.

We let π∗ :W → W ∗ be the canonical projection and endow W ∗ with the σ -algebra induced by π∗ via

W∗ = {
A ⊂ W ∗:

(
π∗)−1

(A) ∈ W
}
.
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We furthermore introduce for K ⊂⊂ Z
d the subsets

WK = {
w ∈ W : there is k ∈ Z such that w(k) ∈ K

}
,

W ∗
K = π∗(WK)

of W and W ∗, respectively. Note that WK ∈ W and W ∗
K ∈ W∗. For A,B ∈ W+, K ⊂⊂ Z

d and x ∈ Z
d we define a

finite measure QK on W via

QK

[
(X−n)n≥0 ∈ A,X0 = x, (Xn)n≥0 ∈ B

] = Px[A | H̃K = ∞]eK(x)Px[B].

According to Theorem 1.1 in [15] there exists a unique σ -finite measure ν on (W ∗,W∗) such that for all K ⊂⊂ Z
d

and E ∈W∗ with E ⊆ W ∗
K , the equation

ν[E] = QK

[(
π∗)−1

(E)
]

is fulfilled. We will also need the space

Ω =
{
ω =

∑
i≥0

δ(w∗
i ,ui ) with

(
w∗

i , ui

) ∈ W ∗ × [0,∞), for i ≥ 0,

and ω
[
W ∗

K × [0, u]] < ∞ for any K ⊂⊂ Z
d and u ≥ 0

}

of locally finite point measures on W ∗ × [0,∞). Let B([0,∞)) be the Borel σ -algebra on [0,∞) and let A be the
σ -algebra on Ω which is generated by the family of evaluation maps ω �→ ω[D], D ∈ W∗ ⊗ B([0,∞)). We denote
by P the law of the Poisson point process on (Ω,A) with intensity measure ν ⊗ du. This process is usually referred
to as the interlacement Poisson point process. Random interlacements at level u is then defined as the subset of Zd

given by

Iu(ω) =
⋃
ui≤u

range
(
w∗

i

)
, where ω =

∑
i≥0

δ(w∗
i ,ui ) ∈ Ω,

and range(w∗) = {w(n): n ∈ Z} for arbitrary w ∈ π−1({w∗}). The vacant set at level u ≥ 0 is defined by

Vu(ω) = Z
d \ Iu(ω), ω ∈ Ω.

As has been shown in [15] and [14], in any dimension d ≥ 3 there exists a u∗(d) ∈ (0,∞) such that for u ∈ [0, u∗(d))

the vacant set Vu contains an infinite connected component, whereas for u ∈ (u∗(d),∞) it consists of finite connected
components.

2.3. Cascading events and a decoupling inequality

In this section we give a slightly refined version of a decoupling inequality of [18], Theorem 3.4. This is a fundamental
tool to deal with the dependence structure inherent to the model. Since the constants appearing in the decoupling
inequality depend implicitly on the dimension d , we have to pay special attention to their behavior for large d .
Proposition 2.3 below states all these dependencies explicitly. We write Ψx , x ∈ Z

d , for the canonical coordinates on
{0,1}Zd

. Let us recall Definition 3.1 of [18] of so-called cascading events.

Definition 2.1 (Cascading events). Let λ > 0. A family G = (Gx,L)x∈Zd ,L≥1 integer of events in {0,1}Zd
cascades with

complexity at most λ, if

Gx,L is σ
(
Ψx′ , x′ ∈ B2(x,10

√
dL)

)
-measurable for each x ∈ Z

d , L ≥ 1,
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and for each multiple l of 100, x ∈ Z
d , L ≥ 1, there exists Λ ⊆ Z

d and a constant C1 = C1(G, λ) such that

Λ ⊆ B2(x,9
√

dlL),

|Λ| ≤ C1l
λ,

Gx,lL ⊆
⋃

x′,x′′∈Λ: |x′−x′′|2≥(l/100)
√

dL

Gx′,L ∩ Gx′′,L.

Remark 2.2. Note that the cascading events are defined with respect to the �2-norm instead of the more common
�∞-norm. Since we are working in a high dimensional setting, this makes the constants appearing in Proposition 2.3
easier to control. This again is due to the fact that, see (1.22) and (1.23) of [17], there are constants c2, c3 > 0 (which
do not depend on d), such that for all L ≥ d ,(

c2L√
d

)d−2

≤ cap
(
B2(0,L)

) ≤
(

c3L√
d

)d−2

. (2.5)

The notions introduced below pertain to the so-called sprinkling technique. The idea is that with high probability
the mutual dependencies of the events under consideration can be dominated by considering random interlacements
at two different levels u−∞ < u. For this purpose we introduce for l0 positive the quantity

f (l0) =
∏
k≥0

(
1 + 32e2cd

1
1

(k + 1)3/2
l
−(d−3)/2
0

)
. (2.6)

The constant c1 will be chosen according to the statement of Proposition 2.3 below. Furthermore, we define for u > 0,
u−∞ = u−∞(u) = u

f (l0)
, as well as for L0 ≥ 1,

ε(u) = 2e−uLd−2
0 l0

1 − e−uLd−2
0 l0

. (2.7)

We let L0 ≥ 1 and define the scales Ln = ln0 L0, n ∈ N0. Ln and l0 will play from now on the role of L and l in

Definition 2.1. Finally, for a subset A ⊂ {0,1}Zd
and u ≥ 0 we write

Au := {ω ∈ Ω: 1Iu(ω) ∈ A}.

Also, A ⊂ {0,1}Zd
is called increasing if the following holds: For all ξ ∈ A and ξ ′ ∈ {0,1}Zd

such that ξx ≤ ξ ′
x holds

for all x ∈ Z
d , one has that ξ ′ ∈ A also.

A refinement of the arguments in [18], proof of Theorem 2.6 (with a special emphasis on the dependence of the
constants on the dimension), leads to the following result.

Proposition 2.3 (Decoupling inequality). Let λ > 0. Consider G = (Gx,L)x∈Zd ,L≥1 integer a collection of increasing

events on {0,1}Zd
that cascades with complexity at most λ. Then there are c0, c1 > 1 (the latter one comes into play

in (2.6)) such that for all l0 ≥ 106
√

dc0, all L0 ≥ √
d and all n ∈N0, one has

sup
x∈Zd

P
[
G

u−∞
x,Ln

] ≤ (
C1l

2λ
0

)2n
(

sup
x∈Zd

P
[
G

u0
x,L0

] + ε
(
u−∞

))2n

. (2.8)

See the Appendix for the proof.

3. Proof of Theorem 1.1

In this section we introduce a classification of vertices in Z
3 into “good” (exhibiting strong connectivity properties,

see Definition 3.1 below) and “bad” vertices. Subsequently, we give two auxiliary results on the existence of an infinite



90 A. Drewitz and D. Erhard

connected component of good vertices (Proposition 3.3) which is transient as a subset of Z3 (Proposition 3.5). From
the latter result we deduce Theorem 1.1.

3.1. Auxiliary results

Let Cy = 2y + {0,1}d , y ∈ Z
d , and C = C0.

Definition 3.1. Let u ≥ 0. A vertex y ∈ Z
3 is defined to be u-good (with respect to ω ∈ Ω) if

ω ∈ Gy,u :=
{
ω ∈ Ω: ∀z ∈ Z

3 with |y − z|1 ≤ 1, the set Vu(ω) ∩ Cz contains a connected

component Cy,z with |Cy,z ∩ Cz| ≥
(
1 − d−2)|Cz|, and these

components are connected in Vu(ω) ∩
( ⋃

z∈Z3: |y−z|1≤1

Cz

)}
. (3.1)

Otherwise, y is called u-bad (with respect to ω ∈ Ω).

Remark 3.2. Lemma 2.1 in [16] states that there is a d0 ∈ N such that if d ≥ d0, then any subset V ⊂ C contains at
most one connected component C of V such that |C ∩ C| ≥ (1 − d−2)|C|. Thus, for d ≥ d0, if a connected component
Cy,z as in (3.1) exists, then it is necessarily unique.

Denote by

Gu(ω) := {
y ∈ Z

3: ω ∈ Gy,u

}
and Bu(ω) := Z

3 \ Gu(ω) (3.2)

the set of u-good and u-bad vertices given ω. We can now state the auxiliary results alluded to above.

Proposition 3.3 (Existence of an infinite connected component of good vertices). Fix ε ∈ (0,1). There is d0 =
d0(ε) ∈N such that for all d ≥ d0 and u ≤ (1 − ε)u∗(d), P-a.s. there exists an infinite connected component in Gu.

Remark 3.4. Using Proposition 4.1 below, it is not hard to establish the uniqueness of this infinite connected compo-
nent. However, since we do not need this uniqueness, we will not give a proof of this fact.

In the forthcoming proposition all parameters are chosen according to Proposition 3.3 above. From now on, Gu∞
will denote an arbitrary infinite connected component of Gu.

Proposition 3.5 (Transience of Gu∞). Fix ε ∈ (0,1). There is d0 = d0(ε) ∈ N such that for all d ≥ d0 and u ≤
(1 − ε)u∗(d), one has that Gu∞ is transient P-a.s.

The above two results will be proven in Sections 4 and 5.

3.2. Proof of Theorem 1.1 given Propositions 3.3 and 3.5

In this section we show how Theorem 1.1 can be deduced from Propositions 3.3 and 3.5. For a connected subset G of
Z

d , let Πy(G), y ∈ G, be the set of infinite non-intersecting (which we will also call simple for the sake of brevity)
nearest neighbor paths on G starting in y. We recall the following characterization of the transience of G.

Lemma 3.6. The following are equivalent:

(a) The graph G (with connectivity structure induced by Z
d ) is transient.
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(b) There is y ∈ G such that there is a probability measure μ on Πy(G) fulfilling

∑
x∈V

μ2[π ∈ Πy(G): x ∈ π
]
< ∞. (3.3)

Remark 3.7. A version similar to Lemma 3.6 may be found in [8], Theorem 10.1. We refer the reader also to [7],
Chapter 2, where further transience and recurrence criteria may be found. Note that in [8], Theorem 10.1, the sum in
(3.3) is taken over nearest neighbor edges whose ends both lie in G, rather than over the vertices. However, using the
fact that Zd has uniformly bounded degree, one can deduce Lemma 3.6 from the corresponding edge-based version
without problems. We will omit the proof of this fact.

Our strategy to prove Theorem 1.1 is as follows: Since by Propositions 3.3 and 3.5 the subset Gu∞ of Z3 is transient
for d and u as in the assumptions, Lemma 3.6 provides us with a measure μ on the simple nearest neighbor paths in
Gu∞ fulfilling (3.3) for G = Gu∞. We then map simple nearest neighbor paths in Gu∞ to simple nearest neighbor paths
in Vu∞, in a way that does not blow up the lengths of the paths too much, cf. (3.5) below. The pushforward of μ under
this mapping then supplies us with a probability measure supported on infinite simple nearest neighbor paths in Vu∞
that still satisfies condition (3.3) (cf. Claim 3.8). We now make this strategy precise.

Proof of Theorem 1.1. We fix ε ∈ (0,1) and choose d0 = d0(ε) such that the implications of both, Proposition 3.3
and 3.5, hold true. Write

Γ :Gu∞ →
⋃

y∈Gu∞

Cy,y

for the mapping that sends y ∈ Gu∞ to the element z ∈ Cy,y that has minimal lexicographical order among all elements
of Cy,y . Moreover, by the definition of Gu∞, for each

x, y ∈ Gu∞ with |x − y|1 = 1 (3.4)

there is a simple nearest neighbor path (π̃x
y (k))n−1

k=0 on

Vu∞ ∩ {
Cz: z ∈ Z

3 and |y − z|1 ≤ 1
}

such that

• π̃x
y (0) = Γ (y) and π̃x

y (n − 1) = Γ (x);
(3.5)

• n ≤
∣∣∣∣ ⋃
z∈Z3: |y−z|1≤1

Cy,z

∣∣∣∣ ≤ 7 × 2d .

For any pair of points x and y as in (3.4) we choose and fix a path π̃x
y with the above properties. Given an infinite

simple nearest neighbor path π on Gu∞, we obtain an infinite nearest neighbor path π̃ on Vu∞ starting in Γ (π(0)) by
concatenating the paths π̃

π(k+1)
π(k)

, k = 0,1,2, . . . . Finally, we denote by ϕ the map that sends π to the loop-erasure of
π̃ (note that the latter is an infinite simple nearest neighbor path in Vu∞).

Now due to Proposition 3.5 and Lemma 3.6 there exists a probability measure μ on Πy(Gu∞), for some y ∈ Gu∞,
fulfilling (3.3). Hence, Theorem 1.1 is a consequence of the claim below and Lemma 3.6. �

Claim 3.8. If a measure μ on Πy(Gu∞) fulfills (3.3), then so does the measure μ̃ := μ ◦ ϕ−1 on ΠΓ (y)(Vu∞).

Proof. In a slight abuse of notation, for x ∈ Vu∞ ⊂ Z
d define Γ −1(x) to be the z ∈ Z

3 (unique, if it exists) such that
x ∈ Cz. If no such z exists, then let Γ −1(x) = ∞ and define |Γ −1(x) − w|1 = ∞ for all w ∈ Z

3 in this case. We will
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see that sites for which the latter case applies are of no importance, since the construction of ϕ is such that it restricts
all paths on Vu∞ to such x for which Γ −1(x) ∈ Z

3. Then for x ∈ Vu∞, one has

μ ◦ ϕ−1[π ∈ ΠΓ (y)

(
Vu∞

)
: x ∈ π

] ≤
∑

z∈Z3: |Γ −1(x)−z|1≤1

μ
[
π ∈ Πy

(
Gu∞

)
: z ∈ π

]
.

Thus, an application of the Cauchy–Schwarz inequality yields that

∑
x∈Zd

μ ◦ ϕ−1[π ∈ ΠΓ (y)

(
Vu∞

)
: x ∈ π

]2

≤
∑
x∈Zd

[( ∑
z∈Z3: |Γ −1(x)−z|1≤1

μ
[
π ∈ Πy

(
Gu∞

)
: z ∈ π

]2
)1/2

× ∣∣{z ∈ Z
3:

∣∣Γ −1(x) − z
∣∣
1 ≤ 1

}∣∣1/2
]2

. (3.6)

Note that for any x ∈ Z
d , by the definition of Γ −1, one has |{z ∈ Z

3: |Γ −1(x) − z|1 ≤ 1}| = 7. Hence, the right-hand
side of (3.6) is upper bounded by

7
∑
x∈Zd

∑
z∈Z3: |Γ −1(x)−z|1≤1

μ
[
π ∈ Πy

(
Gu∞

)
: z ∈ π

]2
. (3.7)

By (3.5) (or the fact that |Cy | = 2d and again using that for x ∈ Z
d one has |{z ∈ Z

3: |Γ −1(x) − z|1 ≤ 1}| = 7), we
may finally bound (3.7) from above by

2d · 72
∑
z∈Z3

μ2[π ∈ Πy

(
Gu∞

)
: z ∈ π

]
< ∞, (3.8)

where the finiteness follows from the assumptions. This concludes the proof. �

4. Proof of Proposition 3.3 (existence of an infinite connected component of good vertices)

In the proof of this proposition we exploit the fact that as d → ∞, certain averaging effects occur which (in combi-
nation with so-called “sprinkling”) imply that with high probability and for slightly supercritical intensities u, such
hypercubes are u-good in the sense of Definition 3.1 (a big chunk of this work is done by Theorem 4.2 in [16] and
in Lemma 4.2 we neatly adapt this result to our purposes). By identifying hypercubes with vertices this will lead to
a dependent percolation problem on Z

3. This is where we will take advantage of the decoupling inequality (2.8) in
order to deduce that ∗-connected components of u-bad vertices are sufficiently small, and hence an infinite connected
component of u-good vertices exists.

4.1. Proof of Proposition 3.3 given an auxiliary result

The result below provides an estimate on the size of ∗-connected components of u-bad vertices. Its proof is postponed
to Section 4.2.

Proposition 4.1 (∗-connected components of u-bad vertices are small). Fix ε ∈ (0,1). There is d0 = d0(ε) ∈ N

such that for all d ≥ d0, there are C2,C3 > 0 such that for all u ≤ (1 − ε)u∗(d) and N ∈ N,

sup
x∈Z3

P[x is contained in a simple ∗-path of u-bad vertices of length at least N ] ≤ C2e−NC3
.

Before we proceed, recall the notion of exterior boundary below (2.1). We now prove Proposition 3.3.
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Proof of Proposition 3.3. For x ∈ Z
3 define

Gx =
{

the connected component of u-good vertices containing x, if x is u-good,
∅, otherwise.

Now assume that there is N ∈ N such that Gx has finite cardinality for all x ∈ Z
3 with |x|∞ ≤ N . We claim that

in this case there is a y ∈ Z
3 with |y|∞ ≥ N , such that y is connected to B3∞(y, |y|∞)c by a ∗-path

(4.1)
of u-bad vertices.

Let us for a moment assume that the claim is correct. Then by Proposition 4.1 and using a union bound in combination
with the fact that ∂|B3∞(y, k)| ≤ 6(2k + 1)2 elements, one has

P
[
Gx is finite for all |x|∞ ≤ N

] ≤ C′
2

∞∑
k=N

k2e−kC3
, (4.2)

which is smaller than one if N is large enough. Consequently there is, with positive P-probability, an infinite connected
component in Gu. Since the existence of an infinite connected component in Gu is an event that is invariant under shifts
in Z

3, and since P is ergodic with respect to these shifts (see [15], Theorem 2.1), we obtain that, P-a.s. there is an
infinite connected component in Gu.

We now prove (4.1). If ∂extGx = ∅ for all x ∈ B3∞(0,N), then due to the finiteness assumption on the Gx we get
Gx = ∅ for all such x, and hence all such x are u-bad, which would yield the claim. Therefore, assume otherwise,
and let y′ ∈ ∂extGx , with |x|∞ ≤ N , be such that it has maximal first coordinate among all such vertices y′ fulfilling
y′

2, y
′
3 ∈ [−N,N ] (where y′

i , i ∈ {1,2,3}, denotes the ith coordinate of y′). Choose one (of the possibly several) x

such that y′ ∈ ∂extGx and denote it by x(0). We aim to find a u-bad z ∈ Z
3, such that |z − y′|∞ > |y′|∞ and such that

there is a ∗-path of u-bad vertices which connects y′ to z. For this purpose, we distinguish two cases:

(i) If |y′|∞ ≤ N , then observe that as a consequence of the definition of y′, all vertices in ∂intB
3∞(0,N)∩ ({N}×Z

2)

are u-bad. Hence, one can immediately choose y, z ∈ ∂intB
3∞(0,N)∩ ({N}×Z

2) fulfilling the required properties.
(ii) Assume now that |y′|∞ > N . Then we have |y′|∞ = y′

1 > N , and we set y(0) := y := y′ and x(0) := x. Define a

nearest neighbor path via Φ(n) = (y
(0)
1 − n,y

(0)
2 , y

(0)
3 ) for n ≥ 0. In addition let z(0) ∈ ∂Gx(0) be such that there is

no vertex in range(Φ) ∩ ∂Gx(0) which has a smaller first coordinate than z(0), and define m0 via Φ(m0) := z(0). In
particular, by definition we have z(0) ∈ ∂extGx(0) . In addition, let

n0 = max
{
n ≥ m0: Φ(m) is u-bad for all m0 ≤ m ≤ n

} ∧ 2y
(0)
1 ,

and set y(1) = Φ(n0). By Timár [22], Lemma 2, the set ∂extGx(0) is ∗-connected. Now if y
(1)
1 < 0, then this ∗-

connectivity of ∂extGx(0) is enough to deduce the claim. In fact, in this case we may connect y(0) to y(1) via a
∗-path of u-bad vertices of length more than |y(0)|, by first connecting y(0) to z(0) via a ∗-path contained in
∂extGx(0) and by then connecting z(0) to y(1) along Φ; this would finish the proof. If, on the other hand, y

(1)
1 ≥ 0,

then observe that y(1) ∈ ∂extGΦ(n0+1) (to see this, use that y(1) ∈ ∂GΦ(n0+1) and that it is connected to y(0) along
a ∗-path of u-bad vertices, and that y(0) has maximal first coordinate among all elements z ∈ ∂extGx , for some
|x|∞ ≤ N , and such that z2, z3 ∈ [−N,N ]). We can now repeat the procedure started in (ii) with y(1) taking the
role of y(0) in order to obtain a y(2) taking the role of the previous y(1), and so on. That is, we construct a sequence
y(0), y(1), . . . , y(n) (up to the smallest n ∈ N such that y

(n)
1 < 0) such that y(k) may be connected to y(k+1) by a

∗-path of u-bad vertices for all k ∈ {0,1, . . . , n − 1}. In particular, since y
(k)
1 ≤ y

(k−1)
1 − 2 for all k ≤ n, after at

most |y′|∞/2 + 1 iterations (and taking the loop-erasure of the path connecting y(0) to z := y(n)) we will have
found the desired z ∈ Z

3, which finally yields the claim. �

4.2. Proof of Proposition 4.1

The proof will be divided into several lemmas. For this purpose fix ε ∈ (0,1) and define

ũ0 = (1 − ε)u∗(d). (4.3)
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The following estimate will serve as a seed estimate for the decoupling inequality of Proposition 2.3 and as such be
employed in Lemma 4.4.

Lemma 4.2. There is d0 ∈ N such that for all y ∈ Z
3,

P
[
Gc

y,̃u0

] ≤ d−7/5 for all d ≥ d0, d ∈ N,

where Gy,̃u0 was defined in (3.1).

Proof. We will derive the result using Theorem 4.4 of [16]. For this purpose identify Z
2 with Z

2 × {0}d−2 and set

Z̃
2 = {

x ∈ Z
d : xi = 0 for all i /∈ {2,3}}.

Furthermore, define G2
y,u and G̃2

y,u, respectively, by Gy,u as in (3.1), but with Z
3 replaced by Z

2 and Z̃
2, respectively.

By Remark 3.2, there is d0 ∈ N such that for d ≥ d0, the hypercube C contains at most one connected component C
with |C∩ C| ≥ (1 − d−2)|C|. As a consequence we deduce

G2
0,̃u0

∩ G̃2
0,̃u0

⊆ G0,̃u0 . (4.4)

Finally, it remains to apply Theorem 4.2 in [16]. Note that the intensity parameter in that result equals (1−ε)g(0) logd ,
where g(0) was the Green function at the origin; however since the main result of [17] supplies us with u∗(d) ≤
(1 + ε) logd for ε > 0 arbitrary d large enough, and since g(0) → 1 as d → ∞ (see e.g. Lemma 1.2 in [16]), we can
apply it with intensity ũ0 also, if d large enough. Hence, we infer that for d ≥ d0

P
[
G2

0,̃u0

] ≥ 1 − d−7/10.

As the same is true for G̃2
0,̃u0

, in combination with (4.4) we obtain the claim for y = 0. Since P is invariant under shifts

in space, we obtain the result for every y ∈ Z
3. �

We define for x ∈ Z
3 and L ≥ 1, L integer,

Ax,L = {
Ψ ∈ {0,1}Zd

: B3∞(x,L) is connected to ∂intB
3∞(x,2L) by a ∗-path

on Z
3 along which Ψ equals one

}
.

If x /∈ Z
3, then Ax,L =∅. We will denote “bad” crossing events by

Bu
x,L = {ω ∈ Ω: 1Bu(ω) ∈ Ax,L}

= {
ω ∈ Ω: B3∞(x,L) is connected to B3∞(x,2L) by a ∗-path on Z

3 of u-bad vertices
}
,

where we recall that Bu had been defined in (3.2). Also, recall Definition 2.1 of cascading events.

Lemma 4.3. A = (Ax,L)x∈Zd ,L≥1 integer is a family of increasing events which cascades with complexity at most 3.
Moreover C1 = C1(A,3) as introduced in Definition 2.1 does not depend on d .

Proof. The proof is similar to the proof of (3.10) in [18], except that one additionally has to make use of the fact that
| · |2 ≤ √

d| · |∞. We omit the details. �

The family of events (Bu
x,L)x∈Zd ,L≥1 integer is shift invariant in the following sense: Let

ω =
∑
i≥0

δ(w∗
i ,ui ) ∈ Ω,
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and define

τx :Ω �→ Ω, ω �→
∑
i≥0

δ(w∗
i +x,ui ),

where w∗ + x = π(w(·) + x), any w ∈ π−1(w∗). Then for all x, y ∈ Z
3 one has

ω ∈ Bx,L if and only if τy(ω) ∈ Bx+y,L. (4.5)

We are now in the position to apply the decoupling inequality (2.8). For this purpose l0 and L0 are such that they
satisfy the relations

l0 ≥ 106
√

dc0 and L0 = �√d�. (4.6)

We further recall the definition of u−∞, see the lines following (2.6), as well as the definition of ũ0, in (4.3).

Lemma 4.4. There is d0 ∈ N such that for all d ≥ d0, d ∈ N, there is l0 satisfying (4.6) such that for all u ≤ u−∞ =
u−∞(̃u0), one has

P
[
Bu

0,Ln

] ≤ e−2n

. (4.7)

Proof. By Proposition 2.3, Lemmas 4.2–4.3, (4.5) and the fact that P is invariant under shifts in Z
3, we get

P
[
B

u−∞
0,Ln

] ≤ (
C1l

6
0

)2n(
P
[
B

ũ0
0,L0

] + ε
(
u−∞

))2n

. (4.8)

To estimate the probability on the right-hand side of (4.8), note that

P
[
B

ũ0
0,L0

] ≤ P
[
There is x ∈ ∂∗

intB
3∞(0,L0) which is ũ0-bad

] ≤ cdP
[
Gc

y,̃u0

] ≤ cd−6,

where we used a union bound in combination with the fact that there is a constant c > 0 such that the cardinality of
∂∗

intB
3∞(0,L0) is bounded by cd to get the second inequality. The last inequality is a consequence of Lemma 4.2.

Hence, in order to prove the desired decay of the right-hand side, it is enough to determine l0 such that

cC1l
6
0d−6 ≤ 1

2e
and C1l

6
0ε

(
u−∞

) ≤ 1

2e
. (4.9)

The first inequality in (4.9) is indeed satisfied for all d large enough, subject to the choice of l0 in (4.6). To show the
second inequality in (4.9), observe that

lim
d→∞

cd
1

l
(d−3)/2
0

= 0, for l0 ≥ 106
√

dc0.

Employing this equality in the definition of u−∞ in (2.6), we obtain that u−∞ ≥ (1 − 2ε)u∗(d), if d large enough. Using
this inequality and the fact that by the main result of [16] one has that for d large enough u∗(d) ≥ (1 − ε) logd , the
definition of ε(u−∞) leads to the desired estimate. This shows that (4.7) is true for u = u−∞. The claim for every other
u ≤ u−∞ follows by the fact that Bu

x,L is increasing in u. �

As a direct consequence of this result we obtain the following corollary.

Corollary 4.5. If (4.7) holds true, then for some C = C(d) < ∞, all u ≤ u−∞ and N ≥ 1,

P
[
There is a ∗-path of u-bad vertices from the origin to ∂intB

3∞(0,N)
] ≤ Ce−N1/C

.
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Using this corollary, we can now prove Proposition 4.1.

Proof of Proposition 4.1. For all l0 subject to (4.6) using similar arguments as in the proof of Lemma 4.3 we see
that there is d0 such that for all d ≥ d0 one has u−∞ ≥ (1 − 2ε)u∗(d). Fix u ≤ u−∞. Due to the shift-invariance of
P it is enough to prove the result for x = 0. Assume that 0 is in a ∗-connected component of u-bad vertices of
length at least N . Consequently, there is a ∗-path of u-bad vertices from 0 to ∂intB

3∞(0, (N/3)1/d) in Z
3. Thus, by

Corollary 4.5,

P[0 is contained in a ∗-path of u-bad vertices of length at least N ]
≤ P

[
There is a ∗-path of u-bad vertices from the origin to ∂intB

3∞
(
0, cN1/d

)]
≤ C2e−NC3

, C2,C3 > 0,

which proves the claim. �

5. Proof of Proposition 3.5 (transience of Gu∞)

In this section we take advantage of the relations between simple random walk and electrical network theory in order
to deduce that Gu∞ is transient for u as in (4.1) and d large enough (see Proposition 3.5).

5.1. Rerouting paths around bad vertices

The following is inspired by methods of [1]. Assume that the almost sure event of Proposition 3.3 occurs. Since Z
3

is transient, Lemma 3.6 supplies us with the existence of a probability measure μ on infinite simple nearest neighbor
paths in Z

3 starting in some y ∈ Z
3, and fulfilling (3.3). The idea now is to map infinite simple nearest neighbor paths

π on Z
3 via a function ϕ̂ to infinite simple nearest neighbor paths ϕ̂(π) on Gu∞ ⊂ Z

3 in such a way that μ ◦ ϕ̂−1 still
satisfies condition (3.3) and hence, again by Lemma 3.6, this supplies us with the transience of Gu∞. This mapping
will be constructed by cutting out pieces of a path π on Z

3 which are not in Gu∞ and afterwards replacing them by
finite simple nearest neighbor paths of vertices on ∂intGu∞. These sequences are chosen in such a way that they connect
all parts of the path which are inside Gu∞. In order to ensure that P-a.s., the measure μ ◦ ϕ̂−1 still satisfies condition
(3.3), we will have to ensure that ∗-connected components of u-bad vertices are not too large. This is the content of
the following lemma.

Lemma 5.1. Let u and d be as in Proposition (4.1). Then there is C4 > 0 such that P-a.s. one finds N0 ∈N such that
for all N ≥ N0 the event{

There is x ∈ B3∞(0,N) such that x is contained in a simple ∗-path

of u-bad vertices of length at least (logN)C4
}

does not occur.

Proof. This follows from Proposition 4.1 and an application of the Borel–Cantelli Lemma. �

In the rest of this section we describe the mapping ϕ̂ that will send infinite simple nearest neighbor paths on Z
3 to

infinite simple nearest neighbor paths ϕ̂(π) on Gu∞ as alluded to above. Let π be an infinite simple nearest neighbor
path on Z

3. We use the following notation for the sequence of successive returns to and departures from Gu∞:

D0 = min
{
k ≥ 0: π(k) ∈ Z

3 \ Gu∞
}
, R0 = min

{
k > D0: π(k) ∈ Gu∞

}
,

Dn = min
{
k > Rn−1: π(k) ∈ Z

3 \ Gu∞
}
, Rn = min

{
k > Dn: π(k) ∈ Gu∞

}
, for n ∈ N.

We modify the path π on Z
3 in the following way:
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(a) if D0 = 0, we erase the segment (π(0), . . . , π(R0 − 1));
(b) for each n with 0 < Dn < ∞ we replace the segment (π(Dn), . . . , π(Rn − 1)) by a finite shortest simple nearest

neighbor path on Gu∞ which connects π(Dn − 1) to π(Rn).

Finally, let ϕ̂(π) be the loop-erasure of the path obtained this way, which is an infinite simple nearest neighbor path
on Gu∞. Below we will use the notation

Bx,u =
{

the ∗-connected component of x ∈ Z
3 \ Gu∞ of u-bad vertices, if x is u-bad,

∅, if x is u-good.

Remark 5.2. Step (b) in the above construction is P-a.s. well-defined. In fact, if Dn < ∞, then by Lemma 5.1, Bπ(Dn),u

is of finite cardinality, and π has to hit ∂∗
extBπ(Dn),u in finite time. By definition, ∂∗

extBπ(Dn),u consists of u-good
vertices only; in addition, due to [22], Theorem 4, it is connected, and since it contains π(Dn − 1) ∈ Gu∞, we get
∂∗

extBπ(Dn),u ⊂ Gu∞. As a consequence, Rn, n ≥ 1, coincides with the first hitting time of ∂∗
extBπ(Dn),u after time Dn

and is finite. If D0 > 0, then the same arguments show that R0 is finite. To see that this is also true in the case that
D0 = 0 note that one may connect π(D0) by a finite nearest neighbor path to Gu∞. This allows to apply the previous
arguments to deduce the finiteness of R0 also in this case. In particular, a finite shortest simple nearest neighbor path
as postulated in (b) exists.

5.2. Rerouting paths preserves finite energy

In this section we show that ϕ̂(π) induces a probability measure as in condition (b) of Lemma 3.6. In fact, since Z
3

is transient, Lemma 3.6 implies that there is z ∈ Z
3 and a probability measure μ on Πz(Z

3) which satisfies the finite
energy condition (3.3), i.e., we have∑

x∈Z3

μ2[π ∈ Πz

(
Z

3): x ∈ π
]
< ∞. (5.1)

By Lemma 3.6, in order to prove that Gu∞ is transient a.s., we only need to show that μ ◦ ϕ̂−1 satisfies (3.3), i.e.,
we have∑

x∈Z3

μ2[x ∈ ϕ̂(π)
]
< ∞, P-a.s.2 (5.2)

We set for x, y ∈ Z
3

S(x) =
{

∂∗
intZ

3 \Bx,u, if x ∈ Z
3 \ Gu∞,

{x}, if x ∈ Gu∞,

and

T (y) = {
x: y ∈ S(x)

}
.

Using the definition of ϕ̂, we obtain the first inequality in

μ2[x ∈ ϕ̂(π)
] ≤

( ∑
y∈T (x)

μ[y ∈ π]
)2

≤ ∣∣T (x)
∣∣ ∑
y∈T (x)

μ2[y ∈ π],

and the second inequality in this chain is due to the Cauchy–Schwarz inequality. Hence,∑
x∈Z3

μ2[x ∈ ϕ̂(π)
] ≤

∑
x∈Z3

∣∣T (x)
∣∣ ∑
y∈T (x)

μ2[y ∈ π] =
∑
y∈Z3

μ2[y ∈ π]
∑

x∈S(y)

∣∣T (x)
∣∣.

2In fact, note that since by Lemma 5.1 we have |Bz,u| < ∞ a.s., there exists z′ ∈ Gu∞ such that μ◦ ϕ̂−1 puts positive mass on Πz′
(
Gu∞

)
. Restricting

μ to this latter set and normalizing it puts us into the exact context of Lemma 3.6.
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Therefore, in order to establish (5.2), by (5.1) it suffices to show that

sup
x∈Z3

E

[ ∑
y∈S(x)

∣∣T (y)
∣∣] < ∞. (5.3)

Lemma 5.3. The term in (5.3) is finite.

Proof. By shift invariance of P it suffices to prove the claim for x = 0. Note that

z ∈
⋃

y∈S(0)

T (y) ⇐⇒ S(0) ∩ S(z) �=∅,

which yields

E

[ ∑
y∈S(0)

∣∣T (y)
∣∣] = P

[
S(0) �=∅

] +
∑
z �=0

P
[
S(0) ∩ S(z) �=∅

]
. (5.4)

To estimate the second term on the right-hand side of (5.4) note that if S(0) ∩ S(z) �=∅, then for y ∈ S(0) ∩ S(z),

(1) there is x0 ∈ B0,u such that |y − x0|∞ = 1;
(5.5)

(2) and there is x1 ∈ Bz,u such that |y − x1|∞ = 1.

Since B0,u and Bz,u are ∗-connected, there is a ∗-path of u-bad vertices starting in 0 and ending in x0, and a ∗-path
of u-bad vertices starting in x1 and ending in z. Since |x0 − x1|∞ ≤ 2, we infer that at least one of these two paths
must have length at least �|z|∞ − 1�/2, and hence either 0 is contained in a ∗-path of u-bad vertices of length at least
�|z|∞ − 1�/2, or this property holds for z. Proposition 4.1 and the shift invariance of P yield

P
[
S(0) ∩ S(z) �=∅

]
≤ 2P

[
0 is contained in a simple ∗-path of u-bad vertices of length at least

⌊|z|∞ − 1
⌋
/2

]
≤ C5e−|z|C6∞ , C5,C6 > 0. (5.6)

�

Appendix: Proof of Proposition 2.3

In this appendix we prove Proposition 2.3. The proof is essentially the same as the proof of Theorems 2.1 and 3.4 in
[18]. While the proof of the latter one goes through in exactly the same way, we restrict ourselves to giving the main
modifications of the proof of Theorem 2.1 in [18]. Note that the setting in [18] differs slightly from the setting of the
current work. Indeed, in [18] more general graphs are considered and the norm in [18] is different from the Euclidean
norm we are considering here. Nevertheless, as stated in the first paragraph in [18] up to a change of constants the
results of [18] stay true when working in the setting of this article.

• Notation in [18]. Let l0 > 1 be a constant to be chosen later on, L0 ≥ 1, and define the geometric scales Ln =
ln0 L0, n ∈ N0. For n ∈ N0, we denote the dyadic tree of depth n by Tn = ⋃

0≤k≤n{1,2}k and the set of vertices of the
tree at depth k by T(k) = {1,2}k . Given a mapping T :Tn → Z

d , we define

xm,T = T (m), C̃m,T = B2(xm,T ,10
√

dLn−k), for m ∈ T(k),0 ≤ k ≤ n. (A.1)

For any 0 ≤ k < n, m ∈ T(k), we say that m1,m2 are the two descendants of m in T(k+1), if they are obtained by
concatenating 1 and 2 to m, respectively. We say that T is a permitted embedding if for any 0 ≤ k < n and m ∈ T(k),

C̃m1,T ∪ C̃m2,T ⊆ C̃m,T , |xm1,T − xm2,T |2 ≥
√

d

100
Ln−k. (A.2)
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The set of all permitted embeddings is denoted by Λn. Given n ∈N0 and T ∈ Λn, we say that a family Am, m ∈ T(n),

of events of measurable subsets of {0,1}Zd
is T -adapted if

Am is σ(Ψx, x ∈ C̃m,T )-measurable for each m ∈ T(n).

For n ∈ N0 and T ∈ Λn+1, we denote by Ti , i ∈ {1,2}, the embeddings of Tn such that Ti (m) = T ((i, i1, . . . , ik)),
for m = (i1, i2, . . . , ik) in T(k). Given a T -adapted collection Am, m ∈ T(n+1), we define Ti -adapted collections, Am,i ,
i ∈ {1,2}, via

Am,i = A(i,i1,...,in), for m = (i1, i2, . . . , in) ∈ T(n).

• The proof. Recall (2.6)–(2.7) and the convention we made about constants in the introduction. We now adapt
Theorem 2.1 in [18] to our setting.

Theorem A.1. There are c0, c1 > 1, such that for l0 ≥ 106
√

dc0 and L0 ≥ √
d , for all n ∈ N0, T ∈ Λn+1, for all

T -adapted collections Am, m ∈ T(n+1), of increasing events on {0,1}Zd
, and for all u > u′ > 0 such that

u ≥
(

1 + 32e2cd
1

1

(n + 1)3/2
l
−(d−3)/2
0

)
u′,

one has

P

[ ⋂
m∈T(n+1)

Au′
m

]
≤ P

[ ⋂
m1∈T(n)

Au
m1,1

]
P

[ ⋂
m2∈T(n)

Au
m2,2

]
+ 2e−2u′(1/(n+1)3)Ld−2

n l0 .

Proof. The proof is analogous to that of Theorem 2.1 in [18]. Thus, we only point out the modifications which are
necessary to adapt the proof of [18] to our setting.

First replace Lemma 1.2 in [18], which is used in equation (2.31) in [18], by Proposition 1.3 in [17], which reads
as follows.

Proposition A.2. There exist c0, c4 > 1, such that if L ≥ d and if h is a non-negative function defined on B2(0, c0L)

and harmonic in B2(0, c0L), one has

max
x∈B2(0,L)

h(x) ≤ cd
4 min

x∈B2(0,L)
h(x).

Second, define similarly as in [18], (2.13)–(2.14), for i ∈ {1,2} and T ∈ Λn+1

U = U1 ∪ U2 with Ui = B2

(
T (i),

√
dLn+1

1000

)
,

as well as

B̃i = B2

(
T (i),

√
dLn+1

2000M

)
(A.3)

for a constant 1 ≤ M ≤ l0/(2 ·104) to be determined. Note in particular that, by (A.2), one has U1 ∩U2 =∅. Moreover,
from the definition of the scales Ln we infer C̃i,T ∈ Ui , i ∈ {1,2}.

The forthcoming lemma replaces Lemma 2.3 in [18] and provides bounds on the probability that a random walk
starting in ∂U ∪ ∂intU enters a strict subset W̃ of U in finite time. It is applied in equations (2.33) and (2.36) in [18].
Before stating the lemma we recall the definition of the entrance time HK in (2.2) and we moreover define

PeU
=

∑
x∈U

eU(x)Px.
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Lemma A.3. Let l0 ≥ 106
√

dc0 and L0 ≥ √
d . For any W̃ ⊆ B2(T (1),

√
dLn+1/2000) ∪ B2(T (2),

√
dLn+1/2000),

x ∈ ∂U ∪ ∂intU , x′ ∈ W̃ , one has for some constants c5, c6 > 0,

cd
5L

−(d−2)
n+1 eW̃

(
x′) ≤ Px

[
HW̃ < ∞,XHW̃

= x′] ≤ cd
6L

−(d−2)
n+1 eW̃

(
x′).

Proof. The proof follows the lines of the proof of Lemma 2.3 in [18] with a special attention to the dependence of
constants on the dimension. First, since W̃ ⊆ U , one has the sweeping identity

eW̃

(
x′) = PeU

[
HW̃ < ∞,XHW̃

= x′],
from which one infers that

cap(U) inf
x∈∂intU

Px

[
HW̃ < ∞,XHW̃

= x′]
≤ eW̃

(
x′) ≤ cap(U) sup

x∈∂intU

Px

[
HW̃ < ∞,XHW̃

= x′]. (A.4)

Next, we claim that using (A.1)–(A.2) one can find c7 > 0 such that any two points x1, x2 ∈ ∂intU may be connected by
not more than c7 overlapping balls B2(x

′,
√

dLn+1/4000c0), x′ ∈ ∂intU ∪Uc. In fact, along the lines of Lemma 2.2 of

[17], any two points on ∂intUi can be connected “along” the great circle centered in T (i) with radius
√

dLn+1
1000 , by c7/3

such overlapping balls; on the other hand, from (A.1) one can deduce that the same is true for two points y1, y2 such
that yi ∈ ∂intUi , and such that they have minimal distance among any such pair of points, whence the claim follows.
Since the function h(x) = Px[HW̃ < ∞,XHW̃

= x′] is non-negative and harmonic on B2(x
′,

√
dLn+1/4000) ⊆ W̃ c ,

for all x′ ∈ ∂intU ∪ Uc , and since
√

dLn+1/4000c0 ≥ d , we obtain by Proposition A.2 that

sup
x∈∂intU

Px

[
HW̃ < ∞,XHW̃

= x′] ≤ c
dc7
4 inf

x∂intU
Px

[
HW̃ < ∞,XHW̃

= x′]
= cd inf

x∈∂intU
Px

[
HW̃ < ∞,XHW̃

= x′]. (A.5)

Finally, note that by (2.5) and the subadditivity of capacity (see (2.4)) we have

(
c2Ln+1

1000

)d−2

≤ cap(U) ≤ 2(c3Ln+1)
d−2. (A.6)

Inserting (A.5) and (A.6) into (A.4), yields the claim for x ∈ ∂intU . The extension to x ∈ ∂U follows from the fact that
Px[X1 = y] = 1/(2d) for all x, y ∈ Z

d with |x − y|1 = 1. �

Since for all n ∈ N0 the inequality
√

dLn ≥ d holds one can apply (2.5) to all balls in the Euclidean norm whose
radius is larger than

√
dLn. Using this fact repeatedly, from that moment on, the proof works similarly as the proof of

[18], Theorem 2.1. In particular M as introduced in (A.3), which is determined in equation (2.36) in [18], satisfies

cd
6L

−(d−2)
n+1 cap(B̃1 ∪ B̃2) ≤ 2cd

6L
−(d−2)
n+1

(
c3Ln+1

2000M

)d−2

≤ (2e)−1.

Thus, M does not depend on d . To conclude Proposition 2.3 from Theorem A.1 one proceeds as in the proof of [18],
Theorem 3.4. �
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