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We study convergence properties of pseudo-marginal Markov chain
Monte Carlo algorithms (Andrieu and Roberts [Ann. Statist. 37 (2009) 697—
725]). We find that the asymptotic variance of the pseudo-marginal algorithm
is always at least as large as that of the marginal algorithm. We show that if the
marginal chain admits a (right) spectral gap and the weights (normalised esti-
mates of the target density) are uniformly bounded, then the pseudo-marginal
chain has a spectral gap. In many cases, a similar result holds for the absolute
spectral gap, which is equivalent to geometric ergodicity. We consider also
unbounded weight distributions and recover polynomial convergence rates
in more specific cases, when the marginal algorithm is uniformly ergodic or
an independent Metropolis—Hastings or a random-walk Metropolis targeting
a super-exponential density with regular contours. Our results on geomet-
ric and polynomial convergence rates imply central limit theorems. We also
prove that under general conditions, the asymptotic variance of the pseudo-
marginal algorithm converges to the asymptotic variance of the marginal al-
gorithm if the accuracy of the estimators is increased.

1. Introduction. Assume that one is interested in sampling from a proba-
bility distribution 7 defined on some measurable space (X, B(X)). One practical
recipe to achieve this in complex scenarios consists of using Markov chain Monte
Carlo (MCMC) methods, of which the Metropolis—Hastings update is the main
workhorse [15, 24]. We may write the Markov kernel related to a Metropolis—
Hastings algorithm in the form

(1) P(x,dy) :=min{l,r(x, y)}q(x,dy) + 8x(dy)p(x),
where r(x, y) is the Radon—Nikodym derivative as defined in [34]

Q2 r(x,y):= 7(dy)q(y,dx)

—m and ,O(X)::l—fmin{l,r(x,y)}q(x’dy)’
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where ¢ is the so-called proposal kernel (or proposal distribution). We follow the
terminology of [4] and call this method the marginal algorithm.

In some situations, the marginal algorithm cannot be implemented due to the
intractability of the distribution 7. For example, assuming that 7 and ¢ have den-
sities (also denoted 7 and g) with respect to some o -finite measure, it may be
that 7w cannot be evaluated point-wise, and although r(x, y) may be well defined
theoretically, it cannot be evaluated either. However, in some situations unbiased
nonnegative estimates 7 (x) = W, (x) may be available; that is, W, ~ Qy(-) >0
and E[W,] =1 for any x € X (we will refer to W, as a “weight” throughout the
paper). A naive idea may be to use such estimates in place of the true values in
order to compute the acceptance probability. A remarkable property is that such
an algorithm is in fact correct [4]. This can be seen by considering the following
probability distribution:

3) 7 (dx, dw) := w(dx)m, (dw) with 7y (dw) := Oy (dw)w

on the product space (X x W, B(X) x B(W)) where W is a Borel subset of R
and B(W) are the Borel sets on W. Here 7, (dw) is a probability measure for each
x € X, and therefore 7 is a marginal distribution of 7.

It is possible to implement a Metropolis—Hastings algorithm targeting
7 (dx, dw) using a proposal kernel g (x, w; dy, du) := g (x, dy) Qy(du) by defining

ﬁ(x, w; dy, du)
“4)

= min{Lr(x, y)%}q(x, 4y) 0, (dit) + 81 1 (dy, du) 3 (x, w),

where the probability of rejection is given as

~ 1 . 1
plx,w):=1 // mm{l, r(x, y)w }q(x, dy)Qy(du).

This is the pseudo-marginal algorithm [4], which targets m marginally since it
is a marginal distribution of 7, and may be implemented in situations where the
marginal algorithm may not. As a particular instance of the Metropolis—Hastings
algorithm, the pseudo-marginal algorithm converges to 7 under mild assumptions
(e.g., [28]), and although it may be seen as a “noisy” version of the marginal algo-
rithm, it is exact since it allows us to target the distribution of interest 7. The aim of
this paper is to study some of the theoretical properties of such algorithms in terms
of the properties of the weights and those of the marginal algorithm. More pre-
cisely we investigate the rate of convergence of the pseudo-marginal algorithm to
equilibrium and characterise the approximation of the marginal algorithm by the
pseudo-marginal algorithm in terms of the variability of their respective ergodic
averages.

The apparently abstract structure of the pseudo-marginal algorithm is in fact
shared by several practical algorithms which have recently been proposed in or-
der to sample from intractable distributions. The distribution of w is most often
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implicit, as we illustrate now with one of the simplest examples. Assume for sim-
plicity that the space X is (a Borel subset of) R¢, and B(X) consists of the Borel
subsets of X and that both = and ¢ (x, -) (for any x € X) have densities with respect
to the Lebesgue measure. Consider a situation where the target density is of the
form 7 (x) = [ 7 (x, z) dz where the integral cannot be computed analytically. One
can suggest approximating this density with an importance sampling estimate of
the integral,

N w(x, Zy)

1
(5) Wxﬂ(x):ﬁ(x):NZm,
n=1 %

Zi ~ hy(-) independently,

where £, is a probability density for each x € X. Note that it is in fact possible to
consider unbiased estimators up to a normalising constant since such a constant
cancels in the acceptance ratio of the pseudo-marginal algorithm, and without loss
of generality, we will assume this constant to be equal to one throughout. This set-
ting was considered by Beaumont in the seminal paper [9] and various extensions
proposed in [4]. There are more involved applications of this idea. In the context
of state-space models, it has been shown in [1] that W, can be obtained with a par-
ticle filte—resulting in “particle MCMC” algorithms. In [10] it was shown how
exact sampling methods can be used to carry out inference in discretely observed
diffusion models for which the transition probability is intractable. See also the
discussion [20] on the connection with pseudo-marginal MCMC and approximate
Bayesian computation.

We now summarise our main findings, which are of two different types, al-
though some of their underpinnings and consequences are related.

Rates of convergence. In previous work [4] it has been shown that a pseudo-
marginal chain is uniformly ergodic whenever the marginal algorithm targeting
m(x) is uniformly ergodic, and the weights are bounded uniformly in x. It was
also shown that geometric ergodicity is not possible as soon as the weights W,
are unbounded on a set of positive 7-probability. We extend the analysis of the
convergence rates of pseudo-marginal algorithms in several directions.

In Section 3, we show that if the marginal chain admits a nonzero (right) spectral
gap, and the weights are bounded uniformly in x, then the pseudo-marginal chain
has also a nonzero spectral gap. Our proof relies on an explicit lower bound on the
spectral gap (Propositions 8 and 10). Our results imply that geometric ergodicity
of a marginal algorithm is inherited by the pseudo-marginal chain as soon as the
weights are uniformly bounded, either through a slight modification (Remark 15)
or directly in many cases by observing that the pseudo-marginal Markov operator
is positive (Proposition 16).

We also restate in a more explicit form a result of Andrieu and Roberts [4] which
establishes the necessity of the existence of a function w: X — [0, co) such that
0+ ([0, w(x)]) =1 for the geometric ergodicity of pseudo-marginal algorithms to
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hold. Assuming that Q, has positive mass in any neighbourhood of w(x), we
show through specific examples that sup, .« w(x) < 0o may in some cases be a
necessary condition for geometric ergodicity of a pseudo-marginal algorithm to
hold (second part of Remark 34) while in other situations the existence of such
a uniform upper bound is not a requirement (Remark 26 and the first part of Re-
mark 34). Intuitively, the latter will correspond to situations where the marginal
algorithm possesses some robustness properties which allow it to counter, up to a
limit, the perturbations brought in by the pseudo-marginal approximation.

In Section 5 we consider the particular case where the pseudo-marginal algo-
rithm is an independent Metropolis—Hastings (IMH) algorithm. The primary in-
terest of this example is pedagogical, since the corresponding pseudo-marginal
implementation is also an IMH, which lends itself to a straightforward, yet very
instructive, analysis. For example it allows us to establish that the existence of
(not necessarily uniformly bounded) moments for the weights leads to polyno-
mial convergence rates, while the existence of exponential moments leads to sub-
exponential rates.

In the light of this pedagogical example, we pursue our analysis by considering
more general scenarios where the supports of the weight distributions may be un-
bounded, that is, such that on some set of positive m-probability Qy ([0, w]) < 1
for any w < oo, implying that the corresponding pseudo-marginal algorithms can-
not be geometric.

In Section 6, we only assume that the marginal algorithm is uniformly ergodic
(together with a mild additional condition) and that the weight distributions are
uniformly integrable. We establish the existence of a Lyapunov function satisfying
a sub-geometric drift condition toward a small set (Proposition 30 and Lemma 32).
In particular, if the weight distributions possess finite power moments, we establish
polynomial ergodicity (Corollary 31).

In Section 7 we consider the popular random-walk Metropolis (RWM). Assum-
ing standard tail conditions on 7w which ensure the geometric ergodicity of the
RWM [16] and the existence of uniformly bounded moments we show that the
corresponding pseudo-marginal algorithm is polynomially ergodic (Theorem 38).
We extend this result to the situation where moments of the weights are assumed to
exist but are not necessarily uniformly bounded in x (i.e., we allow them to grow
in the tails of 7) in Theorem 45. We note in Remark 34 that one of the interme-
diate results (Lemma 34) in fact implies the existence of a geometric drift when
0, ([0, w(x)]) = 1 for some appropriate function w, possibly divergent in the tails
of 7, which is a consequence of the fast vanishing assumptions on the tails of .

Asymptotic variance. It is natural to compare the asymptotic performance of
ergodic averages obtained from a marginal algorithm and its pseudo-marginal
counterpart. One can in fact ask a more general question of practical relevance.
In practice, it is often possible to choose the weight distributions Q, from a family
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{Qi\’ }nen indexed by an accuracy parameter N, as for example in (5). In such situ-
ations JT;V (dw) = Q)]CV (dw)w converge weakly to §;(dw) as N — oo, and one may
wonder if the asymptotic variance of the corresponding ergodic averages converge
to that of the marginal algorithm.

In Section 2 we first show that the pseudo-marginal and marginal algorithms
are ordered both in terms of the mean acceptance probability (Corollary 4) and
the asymptotic variance (Theorem 7). The latter result relies on a generalisation of
the argument due to Peskun [29, 34], which may be of independent interest. This
supports and generalises the empirical observation on examples that the pseudo-
marginal algorithm cannot be more efficient than its marginal version.

When the weights are uniformly bounded in x, we start Section 4 with a simple
upper bound on the asymptotic variance of the pseudo-marginal algorithm (Corol-
lary 11) from which it is straightforward to deduce that it converges to that of the
marginal when the weight upper bound goes to one. We generalise this result to
the situation where the weights are unbounded, but 7Y (dw) converges weakly to
81(dw) as N — oo (Theorem 21). We also show how the sub-geometric ergodic-
ity results proved earlier are essential to establish the conditions of this theorem in
practice (Proposition 25).

We conclude in Section 8 where we briefly discuss additional implications of
our results such as the existence of central limit theorems, the possibility to com-
pute quantitative expressions for the asymptotic variance, and the analysis of gen-
eralisations of pseudo-marginal algorithms.

2. Ordering of the marginal and pseudo-marginal algorithms. We first in-
troduce some standard notation related to probability measures and Markov transi-
tion probabilities. For IT a Markov kernel and p a probability measure defined on
some measurable space (E, B(E)) and f a measurable real-valued function on E,
we let for any x € E, Hof(x) = f(x),

w(f) = f Fu@dy) and T f(x) = / M, d)IT f () forn> 1.

We will also denote the inner product between two real-valued functions f and g

onEas (f, g)u =/ f(x)g(x)u(dx) and the associated norm || f|,, := (f, f),l/z.
We start by a simple lemma, which plays a key role in the ordering of the
marginal and the pseudo-marginal algorithms.

LEMMA 1. Forany x,y € X, we have

// Qx(dw)wa(du)min{l,r(x, y)%} <min{1, r(x, y)}.

PROOF. Notice that ¢ — min{1, ¢t} is a concave function. Therefore, one can
apply Jensen’s inequality, with the probability measure Q,(dw)w Qy(du), to get
the desired inequality. [J
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In order to facilitate the comparison of P and P we follow [4] and introduce
an auxiliary transition probability P which is defined on the same space as the
pseudo-marginal kernel P and is reversible with respect to 77,

6) P(x,w;dy,du) :=q(x,dy)my(du) min{1, r(x, y)} + 8x.u(dy, du)p(x).

Application of Lemma 1 leads to the generic result below, which in turn implies
an order between the expected acceptance rates (Corollary 4) and the asymptotic
variances (Theorem 7) of the marginal and pseudo-marginal algorithms.

PROPOSITION 2. Let g:X*> — [0, 00) be a symmetric measurable function,
that is, such that g(x,y) = g(y, x) forall x, y € X. Define

Aj(g) ::/ﬁ(dx,dw)/q(x,dy)rry(du)min{l,r(x,y)}g(x,y),

Ap(g) ::/ﬁ(dx,dw)/q(x,dy)Qy(du)min{l,r(x,y)%}g(x,y).

Then we have A 5(g) > A 5(g) and whenever these quantities are finite,
Ap(g) —Ap(g) < /Jr(dx)Qx(dw)lw — ll/q(x,dy)min{l,r(x,y)}g(x,y).

PROOF. Denote a(x, y,u,w) := min{l, r(x, y)} — min{l, r(x, y)%}. Since
[my(du) =1= [ Q,(du), we may write for a bounded function g

As(g) — As(g) =/n<dx>q<x,dy)g(x,y>f 0 ([w)w 0, (du)alx, y, u, w)
Z 07

where the inequality is a consequence of Lemma 1. The general case follows by a
truncation argument.

For the second bound, note that min{1, r(x, y)y} > min{1, r(x, y)} min{1, ;*}
and 2min{u, w} = u +w — |u — w|, and observe that A 5(g) can be lower bounded
by

/n(dX)q(x, dy) Q. (dw) Qy(du) min{1, r(x, y)} min{u, w}g(x, y)
=Ap(g)

1
— = | w(dx)g(x,dy) Qx(dw) Qy(du) min{1, r(x, y) }ju — wlg(x, y)

> As(g) —/n(dx)mew)u —w|fq(x,dwmin{l,r(x,y>}g<x,y>,

where the last inequality follows by the bound |u — w| < |1 — u| + |1 — w|, the
symmetry of g(x, y) and because

7(dx)g(x,dy)min{l, r(x, y)} =7 (dy)q(y,dx) min{1, r(y, x)}. O
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REMARK 3. The upper bound |u —w| < |1 —w|+ |1 —u]| used in Proposition 2
adds at most a factor of two, because [ Qx(dw)|u — w| > |1 — w|.

COROLLARY 4. Let us denote the expected acceptance rates of the marginal
and the pseudo-marginal algorithms as

api= [ 7@ [ gt dyymin{1,rer, ),

ap ::/ﬁ(dx,dw)/q(x,dy)Qy(du)min{l,r(x,y)%},

respectively. Then we have
0<ap—ap < / lw — 1|7 (dx)(1 — p(x)) Qx(dw) < / |lw — 1] (dx) O (dw).

PROOF. Observe first that
op ::/ﬁ(dx, dw)fq(x, dy) Qy(du) min{1, r(x, y)} = ap.
Applying then Proposition 2 with g = 1 implies
0<ap—ap < [ o= 17@0(1 = p(0)Qx(du).

The last inequality follows because p(x) € [0, 1] forall x e X. [

REMARK 5. Corollary 4 implies also the following bounds:

ap(sup Qx(dw)|1—w|>,
xeX
ap—dp <

a}o/"(/n(dx)Qx(dw)u - w|">1/q,

where p,g > 1with1/p+1/g =1.

We now define the notion of asymptotic variance for scaled ergodic averages of
a Markov chain.

DEFINITION 6. Let IT be a reversible Markov kernel with invariant distribu-
tion p defined on some measurable space (E, B(E)), and denote by (X)r>0 the
corresponding Markov chain at stationarity, that is, such that Xo ~ . Suppose
f:E — R satisfies u(f2) < oo. The asymptotic variance of f under IT is defined
as

2
1 n
) var(f.T1) = lim_ ;E(Z FX0) - M(f)) € [0, 0.

k=1
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Whenever the integrated autocorrelation time

_ 2
t(f, 1) _1+2ZE[f(XO)f(Xk)] 7(f)

] var, (f)

with var, (f) = u(f — ()’
exists and is finite, then var(f, IT) = ©(f, IT) var, (f) € [0, 00).

Lemma 52 in Appendix A shows that the limit in (7) always exists (but may be
infinite) and proves the relation between t (f, [1) and var(f, [1). We now show that
a pseudo-marginal algorithm is always dominated by its associated marginal algo-
rithm in terms of asymptotic variance. The result can be regarded as an extension
of Peskun’s approach [29, 34]. We point out in the proof what makes the result not
straightforward.

THEOREM 7. ~Assume f: X — R satisfies 7T(f2) < 00. Denote var(f, 15) =
var(f, P) where f(x,-) = f(x).

(i) Then var(f, P) > var(f, P).
(i1) More specifically,

var(f, P) = var(f, P) +liminf[A p(g:) — A 5 (8],

where A p(g;) and A 5(gy) are defined in Proposition 2 and g, (x, y) := [¢x(x) —
& (NI with ¢, (x) := 3720 M [PF f (x) — ()] for & €0, 1).

PROOF. Our proof is inspired by the proof of Tierney [34], Theorem 4, but we
cannot use his argument directly because Proposition 2 does not apply to functions
depending also on u and w. Observe first from the definition of P that a Markov
chain ()_( P Wn)nzo with the kernel P and with ()_(0, Wo) ~ 7 coincides marginally
with the marginal chain; that is, (X,),>0 following P with Xo ~ 7 and (X >0
have the same distribution. Therefore, var( f, P) = var( f, P). We denote

fx) = f(x) —m(f) e LX) :={f:X—>R:7(f) =0,7(f?) < oo},

and with a slight abuse of notation define f(x,w) = f(x)forall (x,w) eXxW.
Notice that f eL? oXx W, ). For A € [0, 1), we define the auxiliary quantities

var (f, H) = (f, (I = AH)~'(I + 1H) f);,

for any Markov kernel H reversible with respect to 77, where I stands for the
identity operator. We note that from Lemma 51 in Appendix A, the quantity
var; ( f H) is well defined and that from Lemma 52, it is sufficient to show that
var; (f, P) <var,(f, P) holds for all A € [0, 1) in order to establish (i).
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Using the notation of Lemma 51 with P; = Pand P, = 13, we can write
vary (f, P) —vanu(f, P) =(f, Ax(1) f); — (f. Ax(0) f);
) = / F. A58 )y 4B

r Vi r 1 r / r
- /0 /O (F. AL ) dy dB + /O (. AL(0) ), dB.

Note that if P and P would satisfy Peskun’s order, then the second line is sufficient
to conclude [34]. We show now that both terms on the right-hand side of the last
line are nonnegative.

First observe that by Lemma 51,

(f, A50) )z =2x(f, (I —2P)""(P — PY(U —AP)"' f).
= 2M{¢s, (P — P)¢y)-,

due to the reversibility of P, where = — )Js)_lf =Y AKPE f is well
defined by Lemma 51. We notice that P* f(x, w) = P* f(x) implying ¢ (x, w) =
¢,.(x), and a straightforward calculation [cf. (9)] shows that

(p2, (P — P)¢y)-

=/ﬁ(dx, dw) s (0)ba. () (P (e, ws dy, due) — P, ws dy, du))
1 _ -
=5 /(mx) — ¢x(y))2ﬁ(dx, dw)(P(x, w;dy,du) — P(x, w;dy, du))

= E[A[—,(gx) — Ap(gn)],

with g; (x, y) = (¢ (x) — ¢2(»))?, and Proposition 2 yields ( £, A} (0) f)7 > 0. We
therefore turn our attention to

(f AL () f)z
=422f, (I —rH,) (P — P)Y(I — 7 H))""(P — PY(I — xH,) "' f);
=422(p, (I = 2Hy) ' 9);,
where ¢ := (P —P)I — )LH},)_1 £, by the reversibility of P and P and the inter-
polated kernel H, = P+ y(P — P). Ttis possible to check that ¢ € L(Z)(X x W, 7T),
so we may conclude (i) by applying Lemma 52 implying (¢, (I — AHV)_lw)ﬁ > 0.

The specific lower bound (ii) follows from (8) because the first term is always
nonnegative. L[]
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3. Inheritance of the spectral gaps when the weights are uniformly
bounded. We consider now an order between the spectral gaps of the pseudo-
marginal kernel P and the auxiliary kernel P defined in (6). In particular, we find
that if w is always bounded from above by w € [1, 00), that is, W = (0, w], and
P has a nonzero (right) spectral gap (i.e., P is variance bounding; see [30], The-
orem 14), then P has a nonzero spectral gap as well. We will also examine the
asymptotic variance constants using the spectral gap bound, and conclude the sec-
tion by a discussion on how our results on the spectral gap can imply geometric
ergodicity of P.

Suppose f: X x W — Ris integrable with respect to 7. We denote in this section
the function centred with respect to w as

Fl,w) = fx,w) — folx)
with fy(x) := nx(f(x, -)) :/Ooof(x,w)nx(dw).

The Dirichlet form related to a Markov kernel IT with invariant distribution u and
a function g is given as

1 2
© @ i=(e, (1~ M), =3 [ nE@oNex,dnlge) - gT
where [ is the identity operator. The spectral gap is defined through

&n(g)

10 Gap(Il) := in = inf
(10) p(ID gvary (9)>0 vary, (8)  g:u(9)=0.lgllu=1

&n(g),
where var,, (g) is given in Definition 6.

PROPOSITION 8.  The spectral gap of P defined in (6) satisfies
Gap(P) A (1 - es;s;pp(x)) < Gap(P) < Gap(P),
where the essential supremum is with respect to .
PROOF. Let f:XxW— Rwith7(f)=0and | f|lz =1, and compute
E5(N) ~Ep o) = 5 [ m@0m@w)g(x, dyymy @y min{ 1 r(x, )
x ([, w) = Fw] = [fo) = foT)
= [ 7@ dwig e, dyymin{ 1 rGe )2 w) = )]

- f () dw)[ £ (. w) — fo) (1 — ).
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In other words,
(11) Ep(f)=Ep(fo)+ / 7 (dx)my (dw) (1 — p(x)) f2(x, w).

If var, (fp) > 0, then we have by (11),

Ep(f) = Gap(P) vary (fo) + / 7 (dx) e (dw) (1 — p(x)) f2(x, w)
(12) _

> Gap(P)(1 — fr(fz)) + (1 —ess sup,o(x))fr(fz),

xeX

where we have used that 1 = var; (f) = vary (fo) + 7(f?) by the variance de-
composition identity. We notice that (12) holds also when vary ( fop) = 0. We con-
clude with the bound £ (f) > Gap(P) A (1 —esssup, cx p(x)) which holds for all
| fll#z =1 with 7 (f) =0, implying the first inequality.

For the second inequality, note that if f(x,w) = fop(x) for all (x,w) € X x
W, then 7 (fo) =0 and 7 ( foz) = 1. Consequently, £5(f) = Ep(fo). Therefore,
Gap(IS) <Gap(P). O

REMARK 9. In the case where m is not concentrated on points, tha_t is,
m({x}) =0 for all x € X, the statement of Proposition 8 simplifies to Gap(P) =

Gap(P), because then 1 — esssup,x p(x) > Gap(P) by Lemma 54(ii) in Ap-
pendix B.

PROPOSITION 10. Suppose that there exists a constant w € [1, 00) such that
(13) 0:([0,w]) =1 for w-almost every x € X.
Then, the Dirichlet form of the pseudo-marginal algorithm satisfies
Ep(f)=w ' Ep(f),

for any function with 7 (f2) < oo, implying Gap(P) > w~! Gap(P).

PROOF. Because min{l, ab} > min{1l, a} min{1, b} for all a, b > 0, we have,
denoting A% f (x, w: y, u) :=[f(x,w) — f(y,u)]?

25};(]‘)=/ﬁ(dx,dw)q(x,dy)Qy(du)min{l,r(x,y)%}Azf(x,w;y,u)
2/ Ofr(dx,dw)q(x,dy)ny(du)min{l,r(x,y)}
(1 1) .,
xmm{—,—}A fx,w;y,u)
u w

> 2w E5( ). O
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COROLLARY 11. Assume Gap(P) > 0, and there exists some w € [1, 00) such
that (13) holds. Let g:X — R satisfy 7(g%) < 0o. Then the asymptotic variances
(Definition 6) satisfy

var(g, P) < var(g, 13) <wvar(g, P)+ (w — 1) var; (g),
where var(g, P):= var(g, P) with g(x, ) =g).

PROOF. Proposition 10 implies (f, (I — P) f)z > (f, w~'(I — P) f)5 for all
functions 7 ( f?) < oo, and Lemma 53 in Appendix B implies

(&, —P)'g). <wlg,d — P)'g);.

Now note that var; (g) = var; (g) and var(g, P) = var(g, P) hold because P and
P coincide marginally; see the proof of Theorem 7. The above, together with The-
orem 7, imply

vary (g) + var(g, P) < varz () + var(g, P) < w(varz (g) + var(g, P)),

and allows us to conclude. [

REMARK 12. From the proof of Proposition 10, one observes that in fact
Gap(P) = Gap(P) = ™' Gap(P),

where P is the Markov kernel with the proposal g (x,dy)Qy(du) and the accep-
tance probability min{1, r(x, y)} min{l1, u/w} reversible with respect to 7. This
implies, repeating the arguments in the proof of Corollary 11, that var(f, P) <
var( f, P) for all 7 (f2) < oo.

We also note that in our follow-up work [5], we upper bound the spectral gap of
the pseudo-marginal algorithm by that of the marginal, Gap(ﬁ) < Gap(P).

Next we show that the boundedness of the support of the weight distributions
Q; for essentially all x € X is a necessary condition for the spectral gap of the
pseudo-marginal algorithm. The result is similar to Theorem 8 in [4], but its proof
is different and the statement more explicit.

PROPOSITION 13. If the pseudo-marginal kernel P has a nonzero spectral
gap, then there exists a function w:X — [1, 00) such that Q. ([0, w(x)]) =1 for
w-a.e. x € X.

PROOF. We prove the claim by contradiction. Assume that there exists a set
A € B(X) with w(A) > 0 such that Q,(([0,w]) <1 for all x € A and all w €
[1, 00). Fix &€ > 0 and define a measurable function w.(x) ;= inflw e N: 1 —
p(x, w) < ¢}, which is finite everywhere, because the term p(x, w) — 1 as w —
oo (monotonically) for all x € X. Observe that fr(fie) > 0 where Ag ={(x,w) e
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A X W :w > w.(x)}. Because w, increases to infinity as ¢ — 0, we have ft(Ag) €
(0,1/2) for small enough ¢ > 0. For such & > 0, we may apply Lemma 54(1) in
Appendix B with the set Ag, to conclude that Gap(P) < (1 — 7T(A N~ e < 2e.

O

REMARK 14. Proposition 13 implies the necessity of the existence of w : X —
[1, oo) for spectral gap and consequently geometric ergodicity to hold, but does not
require the existence of a uniform upper bound w as in Proposition 10. Uniformity
is indeed not necessary as illustrated in Remarks 26 and 34 with the independent
MH and random walk MH algorithms, respectively; see also [21], Remark 1. How-
ever, the second part of Remark 34 implies that in some cases the existence of a
uniform upper bound w is indeed necessary.

The above results are statements on the (right) spectral gap of P only, which is
equivalent to variance bounding property of P [31]. In some applications, geomet-
ric ergodicity may be more desirable than variance boundedness. We first note that
in general, geometricity can be enforced by a slight algorithmic modification.

REMARK 15. Suppose that P is variance bourlding. Then, for any € € O, 1),
the lazy version of the pseudo-marginal algorithm P, := ¢l 4 (1 —¢) P is geomet-
rically ergodic [31], Theorem 2.

In many cases, however, such a modification is unnecessary, because the
pseudo-marginal algorithm can be shown to exhibit also a nonzero left spectral
gap, defined using the notation in (10)

Gfp(n) ' g:u(g)zlgﬁ|g||u=1(2+ én(e) =1 +g:u<g>=18,f||gnu=1<g’ el
Nonzero left and right spectral gaps, or in other words the existence of an absolute
spectral gap, is equivalent to geometric ergodicity of a reversible chain (e.g., [30],
Theorem 2.1).

Of particular interest are positive Markov operators IT which satisfy (g, I1g), >
0 for all functions g with ||g||,, < oo. For positive II, clearly Gap, (IT) > 1 and
establishing geometric ergodicity only requires focusing on the right spectral gap.
We record the following easy proposition summarising two situations where the
pseudo-marginal algorithm inherits the positivity of the marginal algorithm.

PROPOSITION 16. The pseudo-marginal Markov operator is positive and
therefore admits a left spectral gap in the following cases:

(a) if the marginal algorithm is an independent Metropolis—Hastings (IMH);
(b) if the marginal algorithm is a random-walk Metropolis (RWM) with a pro-
posal distribution, which can be written in the form

(14) q(x,y>=/n<z,x>n<z,y>dz.



CONVERGENCE PROPERTIES OF PSEUDO-MARGINAL MCMC 1043

PROOF. Case (a) holds because the pseudo-marginal version of an IMH is
also an IMH (see also Section 5), which is positive (e.g., [14]). Case (b) follows
by using an argument of Baxendale [8], Lemma 3.1, by writing for f : X x W — R
with || f{lz < oo,

5 . T u
(P 1)s = [ @ dwge, ) @@ minf 1720 f e w) £

T(x)w
_ /¢2(t,z)dtdz >0,
where ¢ (1, z) := [ f(x, w)[{r <7 (x)win(z,x)Qx(dw)dx. O

REMARK 17. Condition (14) holds, in particular, with g(x, y) = g(y — x)
where ¢ is “divisible;” that is, it is the density of the sum of two independent
random variables sharing the same symmetric density gg. Indeed, in such a sce-
nario §(y —x) = [ qo(u)qo(y —x —u)du = [ qo(z — x)qo(y — z) dz, and we may
take 1(z, x) = qo(z — x) = qo(x — z). This covers the case where ¢ is a (possibly
multivariate) Gaussian or Student.

We conjecture that geometric ergodicity is inherited in general as soon as the
weights are uniformly bounded. More precisely, we believe that if the marginal
algorithm is geometrically ergodic (admits a nonzero absolute spectral gap) and
the weights are uniformly bounded, then the pseudo-marginal algorithm is also
geometrically ergodic. We have not been able to prove this in general, but we have
not found counter-examples either.

For completeness, we, however, provide the following counter-example which
shows that the left spectral gap of the marginal algorithm may not be inherited by
the pseudo-marginal algorithm without the uniform upper bound assumption on
the weights.

EXAMPLE 18. LetX=N,7(x)=2""landg(x,x+1) =g, x—1)=1/2
for all x € X. Direct calculation yields a geometric drift with function V(x) =
(3/2)* toward an atom {0}, which shows that P is geometrically ergodic.

Let us then consider P with the weight distributions {Q, },ex defined for x =
105 4+ n with k > 1 and n € [1, 10¥] by

Ox(w) := (1 — &x)bak,n) (W) + exdp(k,n) (W),

and O, (w) := 8; (w) otherwise, where & := 10~ and a(k, n) := 2~19+" and the
constants b(k, n) € (1, co) are chosen so that O, (w) have expectation one. Define
the functions
+1, if x = 10f +n with n € [1, 10f] odd and w = a(k, n),
Jfe(e,w) =1 —1,  ifx =10% +n with n € [1, 10¥] even and w = a(k, n),
0, otherwise.
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A straightforward calculation shows that limg—, oo { f%, P fi)q7 /1 fr ||2ﬁ = —1, which
shows that there is no left spectral gap. See [6], Appendix E, for details.

4. Convergence of the asymptotic variance. In standard applications of the
pseudo-marginal algorithm, one typically selects Q, from a family of possible
proposal distributions QY indexed by some precision parameter N which reflects
the concentration of W on 1. In most relevant scenarios we are aware of, N € N
corresponds to the number of samples, particles or iterates of an algorithm used to
compute an unbiased estimator of the density value, as exemplified in (5). It should
be clear that this is not a restriction. Hereafter, we denote the pseudo-marginal
kernels and the invariant measures associated with Q i\’ as Py and 7y, respectively.

It is easy to see that if for all x € X, in (dw)w — §;(dw) as N — oo weakly,
then 7x (dx, dw) — 7 (dx)d1(dw) weakly, suggesting that a pseudo-marginal al-
gorithm with invariant distribution 7y may become similar to the marginal algo-
rithm with invariant distribution 7 as N — oo. As pointed out earlier, whenever
W, is not bounded uniformly, a pseudo-marginal algorithm cannot be geometric,
although its marginal algorithm may be. In fact it was shown in [4], Remark 1,
that even in situations where the weights are uniformly bounded and the pseudo-
marginal algorithm is uniformly ergodic, increasing N may not improve the rate
of convergence of the algorithm, that is, there is not convergence in terms of rate
of convergence.

In this section we, however, show that in many situations such a convergence
takes place in terms of the asymptotic variance, or equivalently, the integrated
autocorrelation time; see Definition 6. More precisely, we show here that under
simple conditions var(g, Py) — var(g, P) as N — oo. We start with a very simple
result, which is a direct consequence of Corollary 11.

PROPOSITION 19. Suppose that the marginal kernel P has a nonzero spectral
gap and the weight distributions are bounded uniformly in x € X by w" € (1, 00),
that is, Qi\’([O, IZ)N]) =1 for all x €e X and N > Ny for some Nog € N, and
limy_ oo WN = 1. Then, imy_ oo var(g, ISN) =var(g, P) for any g: X — R with
7T(g2) < 0.

PROOF. The result is direct consequence of Corollary 11. [

We now extend this result to situations where the distributions {in }NeN may
have an unbounded support, and therefore { Py} yen may not be geometrically er-
godic. We formulate our result in terms of the following technical condition assum-
ing uniform convergence of the integrated autocorrelation series. We will return to
this assumption toward the end of this section and show that it can be checked in
practice with for example Lyapunov type drift conditions; see Proposition 25.
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CONDITION 20. For g:X — R, suppose that the integrated autocorrelation
time 7(g, P) (Definition 6) is well defined and finite. Denote by (5( ,]CV )ik>0 the
Markov chain with initial distribution 77 and kernel ﬁN. Assume that there exists
a constant Ng < oo such that

o0

lim sup Z
n—00 N> N —

E[g(xwgozm] S0 whereg=g— (o).

The main result of this section is the following:

THEOREM 21. Assume that g : X — R satisfies n(|g|2+5) < 00, and Condi-
tion 20 holds for g. Suppose also that

(15) lim /in(dw)|1—w|=0 forall x € X.
N—o0
Then, limy_, o var(g, Py) = var(g, P).

PROOF. If var; (g) =0, the claim is trivial. If var; (g) > 0, our conditions im-
ply that the autocorrelation times exist and are finite for both the marginal kernel P
and the pseudo-marginal kernels Py for N > N; this follows from the finiteness of
the terms in the autocorrelation series ensured by the Cauchy—Schwarz inequality
and Condition 20. Therefore, without loss of generality, we prove the claim for au-
tocorrelation times t(g, ISN) — 1(g, P) for a function g with 7y(g) =7(g) =0
and 7y (g% =7(g?) = 1.

Consider the Markov kernels Py defined as in (6) with chv and njﬁv (dw) :=
chv (dw)w. Denote by (X ]1(\/ , W,fv )ik>0 the corresponding stationary Markov chain
with ()_(6" , Wé\' ) ~ 7n. Denote similarly ()~( ,iv , WkN )i>0 the stationary Markov
chain corresponding to the kernel f’N with (f( N Wév ) ~ 7. Notice that Py and
7y coincide marginally with P and 7, respectively; that is, ()_( ,ﬂv k>0 has the same
distribution as that of the stationary marginal chain (Xy)r>0 with kernel P and
such that X ~ 7.

Choose € € (0, 1) and let ng = ng(e) < oo be such that for all N > Ny,

> E[g(X0)g(Xx)]

k=ny

(16) i E[g(Xy)e(X})]

k=ng

<& and <e,

where the existence of ng follows from Condition 20. We have for N > Ny,

2(g. P) — (g, Py)| <4e +2| > E[g(X))g(XY)] — E[g(X0)g(Xp)]

no—1 ‘
k=1

In order to control the last term, we consider a coupling argument. Denote g :=
(2+8)/8 € (1,00). Lemma 22 applied with & = en,, g-1 /2 implies the existence
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of N| < oo and a set C € B(X) x B(W) such that for all N > Ny,
#n(CY) < eng 72,
| Py (x, w; ) — Py (x, w; )| < snaq_l/Z for all (x,w) € C.
Lemma 55 in Appendix C applied to (f(,[{\', W,fv)ofkfno_l and (}_(,iv, W,ﬁv)ofkfno_l

with the set C shows that the laws of these processes, fi and fi, respectively, satisfy
the following total variation inequality for all N > Ny,

I = il < 2n07tw (CY) + o sup | AN (o wi ) — PV (x,wi )| < 2eng?.
(x,w)eC_‘
Therefore, for all N > Ny, there exists a probability space (2w, Py, .7:"N) where
both (X,iv, W,fv)oskgno_l and (X,’(V, ngv)oikino_l are defined, and the set
Ay = (XY, W)= (XY, WN),0 <k <ng—1)

satisfies I_P’N(AEIV) = %H,EL — | < enaq (e.g., [22], Theorem 5.2). Denote p =1 +
/2, and note that p~! + ¢! = 1. Now for N > Ny,

no—1

3 Els(%))g (k)] - Elg(X))e (X))
k=1

— [z S (XN)8(RY) - go‘(éV)g(iéV)”
k=1

3 o(®)e(RY) — s (XD)s(RD)
k=1

A

@N(A%»W{(EN

< (Bn(A%) (0 = 1)

x max [(Elg(X)g(XN)")"" + (Elg(Xo)g(Xi)|")!7]

1<k<ngp—1
< 28]/q (n(|g|2+8))1/(2p)’
by the Holder, Minkowski and Cauchy—Schwarz inequalities. [

Let n1 and wp be two probability distributions on the space (E, B(E)). We
define the total variation distance |[lu1 — pall := sup ¢<; [1(f) — p2(f)l =

2supo< <y [1(f) = m2(F)l =25UppepE) [1(A) — 12 (A)].

LEMMA 22. Assume that (15) is satisfied. Then, for any & > O there exists a
Ny < o0 and a set C € B(X) x B(W) such that for all N > N,

n(C) <,

||ﬁN(X,w;')—PN(x,w;-)||55 forall (x,w) € C.
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PROOF. Choose & > 0, and let w := 1 + £/8. It is not difficult to see that
assumption (15) implies for all x € X,

(17) lim 7N ([w™!, w])=1.

X
N—o0

Because [ ijv (du)|1 — u| < 2, the dominated convergence theorem together
with (15) implies for all x € X,

(18) ngnoofq(x,dy>Q§V<du>|1 —ul=0.

By Egorov’s theorem, there exists a set C € B(X) such that JT(CE) < £/2 and the
convergence in both (17) and (18) is uniform in x.
For any x € X, any w > 0 and any set A € B(X) x B(W),

| Py (x, w; A) — Py (x, w; A)|

< 2/q(x, dy)Q]yV(du) min{1, r(x, y)}u —min{l,r(x, y)%”

<2 [ g a0 0) @)

1—ul+ ‘min{l,r(x,)’)} _min{l,r(x,y)%}ﬂ

52/q<x,dy>Q’yV<du)_|1 —u|+‘1_ %H

1
<2fi- 44 [ gtean @) @l ~ ul
where the third inequality follows because
|min{1, ab} — min{1, a}| < min{1, a}|1 — b| for any a, b > 0.

Therefore, letting C:=Cx [w~!, w], we can bound the total variation by

- _ 3
sup | Py(x, w;-) — Py(x,w; )| < 3 + 8sup q(x,dy)Q]yv(du)H —ul.
(x,w)eC xeC

Because limy _, o0 TN (éE) = n(CE), we may conclude by choosing N1 < 0o such
that sup,.. [ g (x, dy)ijV(du)H —u| <¢&/16 and ﬁ’N(CC) <éforall N > N;. O

REMARK 23. With additional assumptions in Condition 20 and (15) on the
rates of convergence, one could obtain a rate of convergence in Theorem 21, that
is find {r (n)},en such that

|var(g, Py) — var(g, P)| <r(N) = 0 as N — oo,
by going through the proofs of Theorem 21 and Lemma 22.
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We now provide sufficient conditions implying the conditions of Theorem 21.
Condition 20 which essentially require quantitative bounds on the ergodic be-
haviour of the pseudo-marginal Markov chains. Our results rely on polynomial
drift conditions which we establish for some standard algorithms in Sections 5
and 7. Weaker drift conditions can be shown to imply Condition 20 (e.g., [2, 3]),
but we do not detail this here in order to keep presentation simple.

CONDITION 24. There exists a function V:X x W — [1,00), a set C €
B(X) x B(W) with sup, ,,ec V (x, w) < 00, constants « € (0, 1], by € [0, 00),
ey € (0, 00) and Ny < o0, such that for all N > Ny

PyV(x,w) < V(x,w)—eyVx, w) +byI{(x,w) € C} VxeX,weW,

and for any v € [1, 00), there exists probability measures {v"} > N, and a constant
&y € (0, 1], such that for all N > N,

Py(x,w;)>e,vV () forall (x, w) € X x W such that V (x, w) < v.
PROPOSITION 25.  Assume Condition 24 holds for the pseudo-marginal ker-
nels Py, and that for some A € [0, 1) and k € [0, 1),
|g(x)]

lgllyexs =  sup —————— <00,
(x,w)eXxW Vei(x, w)

sup 7y ((lg] +1)VI7) < oo,
N>Ny

where oy := ko (l — A). Then Condition 20 holds.
PROOF. From the assumptions, there exists a finite constant R such that for
all N > Ny and any (x, w), (x’, w’) € X x W,

Zr(k)|15]]f,g(x, w) — Phe(x’, w')|
k>0
< Rlgllyeer (V740 w) + VT2, w') = 1),
where r(k) 1= (k + 1)*I-PU=0/(0=0) _ o5 a5 k — oo [3], Corollary 8; see
also [2], Proposition 3.4. Note that we may write

e [3(XY)] = 1P§g<x, w) ~ [ Ay v do Pg(r,

< /ﬁzv(dy,du)}lsz’ég(x,w) — Plg(y,u)|.

Therefore, we have for n > 0,

3R )R] < 2| 18O 3B iy (B

_ lglyens

ron v (slV ) £ (lghFN (V)] g
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5. Sub-geometric ergodicity with an IMH as marginal algorithm. The
independent Metropolis—Hastings (IMH) algorithm is a specific case of the
Metropolis—Hastings in (1) corresponding to a proposal g(x, dy) = ¢g(dy) for all
x € X, such that m < ¢. It is straightforward to check that a pseudo-marginal
implementation of this algorithm is also an IMH. This fact allows for the easy ex-
ploration of conditions which ensure uniform and sub-geometric ergodicity of the
pseudo-marginal IMH, and are illustrative of the general ideas we develop later in
the paper. We note that these results may be relevant, for example, to the analysis
of the Particle IMH-EM algorithm presented in [7].

REMARK 26. It is now well known that the IMH is uniformly (and ge-
ometrically) ergodic if and only if 7(dx)/q(dx) is bounded [23]. In the case
of the pseudo-marginal IMH, this is equivalent to assuming that the ratio
7 (dx, dw)/g(dx, dw) = wrr (dx) /g (dx) is bounded; in other words, assuming that
there exists a constant ¢ € (0, 0o) such that Q, ([0, w(x)]) = 1 for w-almost every
x € X, where w(x) :=cq(dx)/m(dx).

We then give two conditions which ensure sub-geometric ergodicity of the
pseudo-marginal IMH. Our results rely on Lemma 56 in Appendix C, which is in-
spired by [17], which established polynomial ergodicity and [13], which explored
more general sub-geometric rates for the IMH.

COROLLARY 27. Suppose either of the following holds:

(a) for some y >0, [7(dx,dw)exp[(wm(dx)/q(dx))"] < oo,
(b) for some B> 1, [7(dx, du))(wn(dx)/q(dx))fj < 00.

Then, there exist constants M, c, cy € (0, 00) such that for wr(dx)/q(dx) > M,
the following drift inequalities hold:

PV (x, w) < Vigy(x, w) — ek (Vg (x, w)),
~ 1-1
PV (x, w) < Vi) (x, w) —cV, P (x, w),

respectively, where V(gy(x, w) = exp((wm (dx)/q(dx))"), k(t) = t(logt)_l/y and
Vipy (x, w) = (wrr (dx)/q(dx))P + 1.

PROOF. Lemma 56 applied with (a) ¢(r) = exp(t¥) and (b) ¢ (¢) = P+ 1.
O

The type of drift in Corollary 27(a) implies faster than polynomial sub-
geometric rates of convergence (cf. [12]), whereas Corollary 27(b) implies poly-
nomial rates of convergence (cf. [17]). We notice that the result suggests that the
pseudo-marginal algorithm may have a similar rate of convergence as that of the
marginal algorithm.
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6. Sub-geometric ergodicity with uniformly ergodic marginal algorithm.
We consider next the situation where the marginal algorithm is uniformly ergodic.
This often corresponds to scenarios where the state space X C R? is compact. It
turns out that when the weight distributions { Q }xex do not have bounded supports
but are uniformly integrable, then the corresponding pseudo-marginal algorithm
satisfies a sub-geometric drift condition toward a set C := X x (0, w] for some
w € (1, 00). Provided the marginal algorithm satisfies a practically mild additional
condition in (19), the set C is guaranteed to be small for the pseudo-marginal chain.

We start by assuming uniform integrability in a form given by the de la Vallée—
Poussin theorem (e.g., [25], page 19 T22). This allows us to quantify the strength of
the sub-geometric drift in a convenient way, for example, indicating that moment
conditions imply polynomial drifts and consequently polynomial ergodicity.

CONDITION 28. There exists a nondecreasing convex function ¢ : [0, co) —
[1, co) satisfying

t
liminfw =00 and My :=sup [ ¢(w)Q,(dw) < 0.
11— 00 t xeX

We record a simple implication of Condition 28.

LEMMA 29. Assume Condition 28 holds. Then, there exists a function
a(w):[0, co) — [0, 00) depending only on My and ¢ such that

sup uQy(du) <a(w) and lim a(w)=0.
yex Juz=w w— 00

PROOF. For any function f:[0, co) — [0, o0) nondecreasing in [w, 00), we
have

J @)
f(w)

The function f(w) := ¢ (w)/w is nondecreasing for w sufficiently large, therefore

[ woy@o = [ut 0, @,

w w— 00
su uQy(du) < My——=:a(w) — 0.
vex Juzu 2 Y s w) 0

The next result establishes a drift away from large values of w for the pseudo-
marginal chain, given that the marginal algorithm has an acceptance probability
uniformly bounded away from zero. All uniformly (and geometrically) ergodic
Markov chains satisfy this property [32], Proposition 5.1.

PROPOSITION 30. Suppose that the one-step expected acceptance probability
of the marginal algorithm is bounded away from zero,

Q) = inf/q(x, dy)min{1, r(x,y)} >0,
xeX
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and Condition 28 holds.
Then, there exist constants § > 0 and w € (1, 00) such that
- |%
PV(x,w)<V(w)— SMH{U) elw, oo)} + MW]I{w € (0, u'))},
w

where V (x, w) := V(w) := ¢ (w). The constants 5 and w can be chosen to depend
on g, ¢ and My only.

PROOF. We can estimate
PV(x,w)— V(w)

=//q(x,dy)Qy(du)min{l,V(X,y)%}[cb(u) — ¢ (w)]

<M~ [[atx dy)Qy<du>min{1, r, y)%}ﬂ{u < w)[pw) — )]

~ c/)(w/z)}

¢(w) I’
because min{1, ab} > min{1, a} min{1, b} for all a, b > 0. The convexity of ¢ im-
plies 2¢(w/2) <1 + ¢ (w), and therefore limsup,,_, ., ¢ (w/2)/p(w) < 1/2. Be-
cause [, 0 Qy(duu =1— [, » Oy(du)u, we may apply Lemma 29. Now,
for any 8¢ € (0, xp/2), there exists wg € (1, 0o) such that

b (w)
w
The claim follows by taking w € [wg, co) sufficiently large such that ¢ (w)/w >

My /89 for all w € [w, 00). [

< My — 9 () [ g0x dyymin{l, rx. )} [ ; Qy(du)%[l

<w

PV (x,w)— V(w) <My — 8 for all w € [Wo, 00).

In practice, Condition 28 is often verified for moments, that is, ¢ (w) = wP. We
record the following corollary to highlight the straightforward connection of § to
the polynomial drift rate.

COROLLARY 31. Suppose the conditions of Proposition 30 hold with ¢ (w) =
wP + 1 for some B > 1. Then, the pseudo-marginal kernel satisfies the drift condi-
tion

PV (x,w) < V(w) —8VED/Bw) +byT{w e (0, w)},
where V(w) := wP + 1 and by := My + §VFE-D/Bw).

PROOF. Follows from Proposition 30 observing that w < (1 + wf)!/f =
Vw)'/f. O

Proposition 30 and Corollary 31 establish a drift toward the set X x (0, w]. They
imply sub-geometric convergence of the Markov chain, with the following lemma
showing that the set X x (0, w] is small.
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LEMMA 32. Denote the (sub-probability) kernel Pycc(x, A) := [, q(x,dy) X
min{1, 7(x, y)}. Suppose there exists ¢ > 0, an integer n € [1, 00) and a probability
measure v on (X, B(X)) such that for any A € B(X),

(19) Pl (x, A) > ev(A) forall x € X.

Then, there exists wo € (1,00), € > 0 and a probability measure v on (X X
W, B(X) x B(W)) such that for all w € [wg, 00),

P'(x,w;)>—=0()  forall (x,w)e€Xx (0, w].

1| =

PROOF. Choose wg > 1 sufficiently large so that ey := infyex [ Qy(du) x
min{wg, u} > 0; such wq exists due to Lemma 29 because

o,@u=1-[ 0,

uz=wo

f 0, (du) min{io, u) 2/

u<wo

We may write for A x B € B(X) x B(W) and for w € (0, w],

P(x,w: A, B) Z/AQ(X’dy)./B Qy(du)min{l,r(x,y)%}

Sl =

Z/ q(x,dy)min{l,r(x,y)}/ Qy(du)min{l,
A B
1 R
> = [ Puctx.dn) Puy. B
where 13W (v, B) = [ Oy (du) min{wo, u}. We deduce recursively that

P"(x,w; A, B) > L[mf Pw(y, (O, w] / Pl (x,dy)Pw(y, B)

-1 —1

WL vanPur By = W50 x B).

=

We may take V(A x B) = 19(A X B)/Vp(X x W) and € = evp(X x W) > 0. O

REMARK 33. The condition in (19) is more stringent than assuming P uni-
formly ergodic. However, it is the most common way to establish the n-step mi-
norisation condition P"(x,-) > ev(-) in practice, which holds if and only if P is
uniformly ergodic. In the case of a continuous state-space X where g (x, {y}) =0
and v({y}) =0forall x, y € Xand n = 1, the condition in (19) is in fact equivalent
to P(x,-) >¢ev(-).
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7. Polynomial ergodicity with a RWM as marginal algorithm. We con-
sider next conditions which allow us to establish a polynomial drift condition
for the pseudo-marginal algorithm in the case where the marginal algorithm
is a geometrically ergodic random-walk Metropolis (RWM) targeting a super-
exponentially decaying target with regular contours [16]. The existence of such
a drift, together with additional simple assumptions, imply polynomial rates of
ergodicity, but also Condition 20 (essential for the convergence of the pseudo-
marginal asymptotic variance to that of the marginal algorithm) and a central limit
theorem for example.

Our results rely on moment conditions on the distributions Q,(dw). In Sec-
tion 7.1 we assume the moments to be (essentially) uniform in x, while in Sec-
tion 7.2 we consider the case where the behaviour of Q,(dw) can get worse as
|x| — oo. Note that the conditions in Section 7.2 may appear more general, but
that they do not include all the cases covered by those of Section 7.1. This can be
seen, for example, by comparing Conditions 37 and 46 and the admissible values
of 1 in Theorem 38 and Corollary 47.

It is possible to extend our results beyond the polynomial case. For example one
may assume the existence of exponential moment conditions; see Remark 39. For
the sake of clarity and brevity, we have opted to detail here the polynomial case
only.

REMARK 34. While our main focus here is on unbounded weight distribu-
tions, we will see that Lemma 49 suggests that geometric ergodicity is still pos-
sible when Q,((0, w(x)]) = 1 for all x € RY, where w:RY — [1, 00) tends to
infinity as |x| — oo. This is, however, a consequence of the strong assumption
properties on the tails of 7 which confer the algorithm with a robustness property
with respect to perturbations. Indeed, consider now the RWM on a compact subset
X c R? with 7 bounded away from zero and infinity on X. It is not difficult to
establish that if there does not exist w < oo such that Q. ([0, w]) = 1 for 7 -almost
every x € X, then the chain cannot be geometrically ergodic; see, for example, the
proof of Proposition 13.

Throughout this section, we denote the regions of almost sure acceptance and
possible rejection for the marginal and pseudo-marginal and algorithms as

Ax:={zex:wz1}, Ry = AL,

m(x)

Ax,w:z{(z,u)ewa:Mﬁzl}, Ryw:=AC .
w(x) w ’

respectively, for all x € X and w € W.
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7.1. Uniform moment bounds. Consider the following moment condition on
the distributions {Qy}cex where X = R?.

CONDITION 35. Suppose there exist constants &’ > 0 and 8’ > 1 such that

(20) My :=esssup | (w™ v wf)Q,(dw) < oo,

xeX
where a Vv b := max{a, b} and the essential supremum is taken with respect to the
Lebesgue measure.

We first establish the following simple lemma, used throughout this section,
which guarantees that the moment condition above holds also for any intermediate
exponents.

LEMMA 36. Given (20), then for all o € [0,a'] and B € [0, '] and any y €
[—o', Bl

€ss sup (w_“\/wﬂ)Qx(dw)sMW and esssup | w” Q,(dw) < My.

PROOF. The first inequality follows by observing that w™* v wf < w v
w?’ for all w > 0. For the second one, suppose first that y € [0, 8’]. Then w? <
w~ v w?, and the result follows from the first inequality. The case y € [—d/, 0]
is similar. [J

The following condition for the target density = was introduced in [16].

CONDITION 37. The target distribution 7 has a density with respect to the
Lebesgue measure (also denoted ) which is continuously differentiable and sup-
ported on R?. The tails of 7 are super-exponentially decaying and have regular
contours, that is,

x Va(x)

lim i-Vlogrr(x):—oo and limsup — - <0,
lx|—>o0 |x| l|l—oo X[ [V (x)]

respectively, where |x| denotes the Euclidean norm of x € R?. Moreover, the pro-
posal distribution satisfies ¢ (x, A) = g(A —x) = [, ¢(y — x) dy with a symmetric
density ¢ bounded away from zero in some neighbourhood of the origin.

The following theorem establishes a polynomial drift given the conditions
above.

THEOREM 38. Suppose P is a pseudo-marginal kernel with distributions
Qx (dw) satisfying Condition 35 with some constants o' > 0 and B’ > 1, and that
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the corresponding marginal algorithm is a random walk Metropolis with invariant
density w and proposal density q satisfying Condition 37.
Define V: X x W — [1, 00) as follows:

21 Vix,w):=cla T(x)(w™*Vv wﬂ) where ¢y :=supm(z),
zeX

for some constants n € (0,a’ A1), € (n,a’] and B € (0, B’ — n).
Then, there exists constants w, M, b € [1,00), w € (0, 1] and 5y > 0 such that

Vx,w)—38yVB=D/B(x w),  forall (x,w)¢C,

22) P
(22) PV(x,w) < {b, forall (x,w) €C,

where C:={(x,w) eXxW:|x|<M,welw,w]}.
Moreover, b, §y and C depend only on the marginal algorithm, the constants
o', B’ and My in Condition 35 and the chosen constants o, 8, 1.

PROOF. Letw €[1, 00) and S’V > 0 be as in Lemma 41, so that 13V(x, w) <
Vix,w)— (YVV(ﬁ_l)/ﬂ(x, w) for all x € X and all w > w. Then apply Lemma 42
with the fixed value of w to obtain a M € [1, c0) and A € [0, 1) such that

(23) I3V(x,w)§AV(x,w):V(x,w)—(l—k)V(x,w),

for all w € (0, w] and |x| > M. Lemma 43 implies that (23) holds with all x € X

and w € (0, w], with some X’ € [0,1). Because V > 1, we conclude the claim

for (x,w) ¢ C with 8y := min{8},, 1 — A, 1 — A'}. Lemma 43 implies the case
(x,w) € C.

The dependence on b, §y and C is clear from the proofs of Lemmas 42 and 43.

O

REMARK 39. Itis possible to generalise Theorem 38 for nonpolynomial mo-
ments. In particular, we may let V(x, w) = crm~1(x)¢(w) where ¢ : (0, 00) —
[1, 00) is defined by

a(w), w € (0, 1],
pw) =
b(w), w € (1, 00),
with nonincreasing a: (0, 1] — [1, 0o) and nondecreasing b: (1, 0c0) — [1, 00)
satisfying

li - = d Ilim b =
wg{)ler a(w) =00 an Jim (w)/w = o0,

and for some y >

1 o0
esssup | a(w)Qy(dw) <oco and esssup b(w)w” Oy (dw) < oo.
xex JO xex J1
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Note that a(w) and b(w) must grow at least polynomially as w — 0+ and w —
oo, respectively. For example, b(w) = exp(cpw) allows one to establish the claim
with the stronger drift condition

Vix,w)

PV(x,w)<V(x,w)—dy——F"
(o, w) < Vix, w) VlogoV(x,w)

(x,w) ¢C,
instead of the polynomial drift in (21).

We conjecture that the negative moment condition and the presence of w™* in
the drift function are not necessary in order to establish polynomial ergodicity in
general. It seems, however, difficult to establish a one-step drift condition without
any control of the behaviour of the distributions Q near zero.

We first consider a simple result which is auxiliary to the other lemmas.

. LEMMA 40. We have the following bounds for all x,z € X, w > 0, & > 0, and
B> 1:

@ [minft. 2o @z (1o — [P o.aw)
w

.. & 7 (x) @ &
(i) /{uz(z’u)eAx‘w}QHz(du)z1—w (—m +Z)) [ut0uctao.

PROOF. The bound (i) follows by writing

/min{l, %}Qx(du) _ %(1 - /z;zw(u - w)Qx(d”))

z%(l—/bpqux(du)),

and using the estimate I{u > w} < (u/w)f}_l. For (ii), similarly

f Orpo(du)=1— / Orp-(du)
{u:(z,u)eAx v} {u<w(m(x)/(w(x+2)))}

and use Iu < w0} <y~ ZWHd O

We next consider the case where w is large, and establish a polynomial drift in
this case.

LEMMA 41. Suppose the conditions of Theorem 38 hold. Then, there exist
constants dy > 0 and w € [1, o0) such that

PV(x,w)<V(x,w)—8syVE VB w)y  forallx e Xand w € [w, 00).
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PROOF. We may write for w > w > 1
PV (x,w)

o / /A y0(2, ) Qrz (du)g (d2)

4 / /R o0 Qs (d)g(62),

where

Q4)  aru(eu)i= (

’

7 (x) )’7 u v ub
7(x+2)

r(x+ )\ Tul " vulth m(x+2)u
25 bunlzou)i= ) (1-72 228,
(@) brw(e,u) 7 (x) wlt+h T(x) w
We now estimate both integrals by partitioning their integration domains into their
intersections with the acceptance and the rejection sets of the marginal algorithm.

For notational simplicity we denote Ay ,, N Ry = Ay, N (Ry x W) etc.
The bound for the first integral is straightforward,

My
/[ @g@n <
Ax,wNAy w

wh

For the second one, observe that 1 < (% )" on A, ), implying

/ / (20 1) O (du)g (d2)
x,mex

1 M
n—a ., ,ntp w
= wht //Ax,wrmx VT QgD =

because 8 + 1 < B’. Similarly, because (% %)1—;7 <1 on Ry, we have
rx 4+ )\ U vl +h
// ( (x) ) wl+h QO+ (du)g(dz)

1 M
n—a ., n+p w
= W //qu Vu Ox4-(du)g(dz) < WETE

We now turn to the crucial remainder, which approaches unity as w grows.

/ / ( HS(;Z) Z,)Qx+z(du)q(dz)

_ ) n(x+2)u
=1 [ mm{l, W—}Qﬁz(du)q(dz)

<1 [[ min { T +2) } min{l, %}Qmmu)q(dz)

(x)

My
<1_—/ (1—w>q(dz),
W Hz:(w(x+2) /7 (x))=v} w
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by Lemma 40(i), where v € (0, 1). Lemma 58(ii) in Appendix D implies the exis-
tence of a v > 0 such that inf,cx g ({z : ﬂxﬂ)} > v) > 0. Therefore, there exists a
V2 € (0, v), such that whenever w is sufﬁ01ently large

f/xu,( N(X+Z)Z}>Qx+z(du)q(dz)<1_5

(x)

Because 8 > 1, the terms of the order w™# or w7~ vanish faster than w~! when
w increases. Consequently, we have for any v3 € (0, v2), by further assuming w
sufficiently large, that

~ U3
PV(x,w) < (1 — —)V(x, w)
w

= V(. w) — v3VE (o, w) (erm 7(0) T S Vi w) — v VE G, w),
where k = Z51 € (0,1). O

Next we deduce that in the regime where w is bounded, we have a geometric
drift.

LEMMA 42. Assume the conditions of Theorem 38 hold, and let w € [1, 00).

Then, there exist constants A € [0, 1) and M € [1, 00) such that
PV(x,w)<AV(x,w) forallwe (0,d], |x| > M.

PROOF. We may write
PV (x,w)

Vow / /AW ax,w(2, ) Qrtz(du)g (dz)

+ f /R a0 Q@ ),

where
(26)  dew(zu) ( udSd )n w v
a L) = -1,

%wil 7(x+272)) w*vwh
Q) bew(zou)= (WC +Z)>l_"£[ wvub (”(x +Z))”]

LR (x) wlwvwh (x) )

Fix a constant ¢ > 1 and define the following subsets: A, := {z : % > c}

and R, : ={z: % < %}, and the annulus between these two sets as D, :=
(A, UR)C = (z: 1 < 24D _ (1, Compute

(x)

/ _/ &X’W(Z’ u)Qxz(du)g(dz)
(z,u)€Ax
(28) o
= m/ /u“" VP 0y (du)g(dz) < Myc"q(Dy)
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and

/ / by (2 ) Qx4 (i) (d2)
(z,u)ERy w
(29)

-\, B
<CI 7]/Dx /u<cw( ) o vu5Qx+Z(du)Q(dZ) <MWC q(DX)'

Letthen y € (n, @ A1) such that y + 8 < B’ and observe that (”(X+Z) U )1 r <1
on Ry 4, and thereby

/_ f by (2. 1) Q= (du)q (d2)
Ry J(z,u)eRy

T(x+2)\ 7" u¥ v urtP
(30) S ‘/_x /;Z M)ERx w( n(x) ) wV*“ V u)y+:3 Qx+Z(du)q(dZ)

< Myc~ =0,

Tx) w
w(x+z) u

Similarly, observe that ( )Y <1lon Ay, and so

/_ f (20 1) Q- (du)q (d2)
Ry J(z,u)eAxw

c—v=m

31) f f( WO @0 @)
x Y(Z,U)EAx w

T wy—evywrth
< Myc~ =,

It holds that 1 < (ﬂ’{x(fz) %) on Ry y, so we have

/_ / by (2. 1) Q= (du)q (d2)
(z M)eRx w

+

< MWc_n.

We are left with the term that will yield the geometric drift when |x| is large,

//( a0 Qe (@g ()
x Y (Z,U)EAx w

< Mwe™ / (dz) f Q12 (du)
w— ¢V U)'B Ax q {u:(z,u)eAy w} e

< Myc ™ — q<Ax>(1 - MW(%))

by Lemma 40(ii). Lemma 58(iii) implies that § := liminf|y|_ o q(A ) >0.
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Let 8’ € (0,8) and fix & > O sufficiently small so that 6¢ — §(1 — 8)2 <-¥,
and let ¢ > 1 be sufficiently large so that My c™"7 < & and MW( )”‘ <e¢g, and
also that all (30), (31) and (32) are bounded by ¢. Condition 37 implies that
limsup|,|_, o ¢(Dx) = 0, and therefore there exists M = M(c, &) > 0 such that
(28) + (29) < ¢ for all |x| > M. By possibly increasing the bound M to ensure
that g(Ax) > §(1 — &), we have that the claim holds for all |x| > M with the con-
stantA=1-—¢". O

We complete the results above by considering in particular very small values
of w.

LEMMA 43. Suppose the conditions of Theorem 38 hold, and let w, M €
[1, 00). Then, there exist constants w € (0,1), A € (0, 1) and b € [1, 00) such that

(33) PV(x,w)<b,  for|x|<M andw € [w, W],
(34) PV(x,w) <AV(x,w), forxeXandw € (0, w].

PROOF. From the proof of Lemma 42, we have

1~’V(x, w) ) 3
Toew == ([, rraa0) 4w s b

. 7(x) \"u"*vub
o = .// - (n(x + Z)) B Qxt (g (d2),

/f (n(x + z)) u % Q42 (du)g (dz).
R]C w v

(x)

where

Because (an(i)z) )T <1on A, , and (% %)1_’7 <1lon Ry,

u=\ yth My
axw+bxw_// DI—a ﬁ+an+z(du)Q(dZ)§m-

This is enough to show that PV(x, w) < (1+Mwy)V(x,w)forall (x,w) e XxW.
Because V is bounded on {|x| < M, w € [w, w]}, this implies the existence of
b=b(w,w, M) < oo such that (33) holds.

Consider then (34). Let § > 0 be small enough so that inf,cx q(AfC) >e>0,

where Af( ={z: % > §}. Then

/ / 0. +-(du)g(dz) > f g(dz) f{ e,y Q@)

=, ()1 - MW(%)) =

for w € (0, w] if w is small enough. We may further decrease w to ensure that
Ay w+ bx w < ¢&/4 for all w € (0, w] and conclude (34) withA =1 —¢/4. [
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7.2. Nonuniform moment bounds. We replace the uniform moments in Con-
dition 35 here with the following assumption, which allows the moments of the
distributions { QO }rex to grow in the tails of 7.

CONDITION 44. Let w:X — [1, 00) be a function bounded on compact sets
and tending to infinity as |x| — oo. Let ¥ : (0, o0) — [1, 00) be a nonincreasing
function such that () — oo as t — 0, and define g(x) := ¥ (7 (x)).

(i) There exist constants o’ > 0 and B’ > 1 such that

ess supg_l(x)/u_"‘/ v uﬂ,Qx(du) <1,

xeX

where the essential supremum is taken with respect to the Lebesgue measure.
(ii) There exist constants &, € (0,8 — 1) and &; € (0, 8/ — 1 — &),

g(x) up [<n<x + z))fﬂ g(x +z)} e

35
©53) rox 0ET (1) rek L\ 7(x) 2(0)

where R, :={z: % < 1} is the set of possible rejection for the marginal

random-walk Metropolis algorithm.
(iii) For any constant b > 1, one must have

My (b v
(36) W(A(|x| )
rex W (x)
where My : (0, 00) — (0, 00) is defined as follows:
My (r) ;= esssup u= v uf Q. (du) <esssupg(x),

lx|<r [x|<r

where the essential supremum is taken with respect to the Lebesgue measure.

The assumptions in Condition 44 may appear rather implicit and technical at
first. However they, together with additional assumptions required in Theorem 45
below, are implied by the more meaningful assumptions in Condition 46 and
Corollary 47, whose proof may help the reader gain some intuition.

THEOREM 45. Suppose Pisa pseudo-marginal kernel corresponding to a
random walk Metropolis with invariant density w and increment proposal density q
satisfying Condition 37. Suppose Condition 44 holds with some o' > 0 and B’ > 1.
Define V: X x W — [1,00) as in (21), where the constant exponents satisfy

776(0,0//\(5/—1—5:0)/\(1—571)), ae(’?’a/]’ﬂe(l-i-gw—’?,ﬁ/—ﬂ)
andn < (B’ = B) A1 —&;.
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Furthermore, suppose that there exists a function ¢:X — [1, 00) bounded on
compact sets such that imsupy,|_, , c(x)e™™ < 00 and

W (x)
(37) limsup =
|x]—o00 che (x)

0 where §. € (0,[(8'— B) Aa A l] —n— &),

and that for any constant b € [1, 00)

(38) li M (b| |) { (Dy) L <12)(x)>a/}_0
Nap MW R ma 480 ooy Uy ) 170
where Dy = {z: -L- < T8+ < ()1,

(x) = m(x)
Then, there exiivt constants w, M, b € [1,00), w € (0, 1] and Sy > 0 such that

the polynomial drift inequality (22) holds. Furthermore, the constants depend only
on those of the marginal algorithm, the quantities ', B/, &y, Ex, ¥, W involved in
Condition 44, including the upper bounds in (35) and (36) (as a function of b), the
chosen n, «, B, ¢ and &., and the upper bounds (37) and (38).

PROOF. The proof follows by applying Lemma 48 below and then Lemma 49
with ¢, from Lemma 48, similarly to the proof of Theorem 38 by setting w :=
sup|y|<y w(x), and observing that V is bounded on C. The dependence on the
various quantities is clear from the proofs of Lemmas 48 and 49. [J

Before proving Lemmas 48 and 49, we give sufficient conditions to establish
the conditions of Theorem 45.

CONDITION 46. Suppose Condition 37 holds and additionally there exists a
constant p > 1 such that

m L Vlogm(x) = —o0.
[x]—>o0 |x|p

Moreover, the increment proposal density ¢ satisfies g(x) < g(|x|) for some
bounded differentiable nonincreasing function ¢q:[0,00) — [0, 00) such that
Jxq(x|)dx < oo.

COROLLARY 47. Suppose Condition 46 is satisfied, and that
(39) [ v Qo < et v jxl)”
with some constants ¢ < oo and p' € [0, p — 1). Then, for any

ne(0,d' A —1)Al), ae(md],pe(l—np —n)

and V defined in (21), the drift inequality (22) holds, with constants w, M,b €
[1,00), w € (0, 1], and 3y > 0 only depending on the marginal algorithm and
o, B, ¢, p'in (39) and the chosen a, B, and 7.
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PROOF. Choose the constants &,, and &, sufficiently small so that the condi-
tions on 7, &, and B in Theorem 45 are satisfied.
Fix a unit vector u € R, and define the function v : R, — [1, oo) such that

N _ r, I’ZR(),
V() = { Ro.  rel0, Ry,

where Rg € [1, 00); this is always possible because the function r — w(ru) is
bounded away from zero on compact sets and monotone decreasing on the tail.

Define then g(x) = cgw”/ (7 (x)), where the value of the constant ¢, > 1 will
be fixed later. In order to guarantee that Condition 44(i) is satisfied for sufficiently
large cg, it is sufficient to show that

(40) limsup g~ (x)|x|*" < oco.
[x]—o00

Due to Lemma 57 in Appendix D, if | x| is sufficiently large, then g(x) = g(&x|x|u)
for some g“/x € [b~!, b], where b € [1,00) is a constant. Therefore, g_l(x) <
(b~ |x])~"", implying (40).

Define then W (x) := g% (x), where &, = Sﬂ_l véujl € (1, 00). Itis easy to check
similarly to (40) that
§x) | Mw®(x[vD) _ c'(b|x)”

1+ sup —
e T (x)

Sllp = =
xex Wh (x) whw (x)

It is also easy to check that

[(n(x + z))s’f gx + z)} [(n(x + z))f’r (@(n(x + Z)))p,]
sup = sup =
zer, L\ m(x) g(x) zer, L\ m(x) W (m(x))
is uniformly bounded in x € X. This is because it is sufficient to check the condition
in the tails along a ray, that is, only for z = r|x|, r > 1. We conclude about the
existence of a constant ¢, € [1, 00) such that Condition 44 holds.

Choose . € (0, p — 1 — p’), and let c(x) = exp(|x|%). It is easy to check that

there exists &, such that (37) and (38) hold, using Lemma 59 in Appendix D to
estimate g (D). O

We start by establishing a polynomial drift when w is large.

LEMMA 48. Suppose the conditions of Theorem 45 hold. Then there exist con-
stants ¢y, € [1, 00) and 8y > 0 such that letting w(x) := cyw(x),
ISV(x, w) < V(x,w)—3¥8y V(ﬂ_l)/ﬂ(x, w) forall x € R? and w € [u')(x), 00).

PROOF. We may write
PV (x, w)

ot = / fA (@ Qg (d)

+ / /R (o) Qe (62,
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where a, 4, and by, are defined in (24) and (25), respectively.

In what follows, for any v > 0, we will denote by b, € (0, c0) a constant chosen
so that forall x € X, {x +z: %j;) > v} C B(0, by(|x| v 1)); see Lemma 58(i) in
Appendix D. We also denote by ¢ € [1, co) a constant whose value may change
upon each appearance.

For the first integral, note that on Ay ,, 1 <(

B —1—§&, >0, we have for w > w(x),

f / (20 1) Q2 (du)q (d2)
Ax wNAy

T(x+z) u
T(x) w

)", so denoting 8 :=n +

TG RVTURY:
: //Ax,wrmx —ip Qrte(du)g(d2)
L (Mw®Bi(xlv1)) _ e
= w1+5 wgw(x) — w1+8’

by Condition 44(iii). For the second one, let y € (n + &, 8" — B], ¥ < 1, and
observe that 1 < (F&H24)Y on A, ,,, implying that with 8’ :=y + 8 — 1 =& > 0

/ / (20 1) Q- (du)q (d2)
Ax,wNRy

- —a +8
<[ (”(”Z))y VT g (d2)

7 (x) wY+h

1 Tx+2)\"g(x+2)7 gk) c
=i /RK ) ) 20 ]@sn(x)Q(dZ)f—wH&’

whenever w > w(x), by Condition 44(i) and (ii). Similarly, because
(Fat2 uyl-y <1 op R we have for w > w(x),

T(x) w
T(x+ )\ Tule vyl tP
/fR AR < 7(x) ) NE Qx+-(du)q(dz)

1 T(x+2)\7g(x +2)] gx)
5w1+5//x[( 7(x) ) 2(x) ]wéﬂ(x)q(dZ)

c
=1
wlts

w(x+2) u\l—
7'[()() %) K S 1’

+ 1—n l—otv 1+8
/-/Ie nA (n(;(x)Z)) : w1+b,; Qx+2(du)g(dz)

1 (Mw(bl(IXIV1)))< ¢

< .
= pl+s Wéw (x) = it

and similarly, because (
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As in the proof of Lemma 41, we may apply Lemma 40(i) to obtain

/l ( ”(”Z)”)Qx+z<du>q(dz>
RXIU 7-[‘('x) w

1% 1 !
< 1 — —/ (1 - B—1 /uﬁ QX+Z(du))q(dZ)
W Nz (x+z) /7 (x))>v) w

1 My (b Va!
51_1/ q(dz)(l— , ( W(Av(|x| ))))
W J(zi(w(x+2) /7 (x)2v) wh' —1-&w whw (x)

v c
<1-2f q(dz)(l—f),
W J{z:(rw (x+2) /7 (x))>v} wh' —1-&w

w(x+z)
(x)

where we may choose v € (0, 1) such that infycx g (z :
ma 58(i1) ensures the existence of such a v.

The terms of the order w=1%9 or w1+ yvanish faster than w=! as w in-
creases. Consequently, we can choose ¢, € [1, 00) sufficiently large so that there
exists a v’ > 0 such that for all x € X and w > w(x),

> v) > 0; Lem-

/
PV(x,w) < (1 — v—)V(x,w)
w
= V(x,w) — 8y V¥ (e, w)(eln () ™ < Vi, w) — 8y VE(x, w),
where c = 251 € (0,1). O

Our last lemma concentrates on the cases where either |x| is large and w
bounded, or w is small.

LEMMA 49. Assume the conditions of Theorem 45 hold and let w(x) :=
cpW(x) for some constant c,, € [1,00). Then, there exist constants A € (0, 1),
we (0,1), M e[l,o0), and cy €1, 00) such that

41) PV(x,w) <AV (x,w) for|x| =M, w e (w, w(x)],
(42) PV(x,w) <AV(x,w) forxeX, we 0, uw],
43) 15V(x,w) <cyVix,w) Sfor (x,w) e X x W.

PROOF. We may write

PV (x,w)

Vonw f fA e (2, 1) Q2 (di)g (d2)

+ / fR (a0 Qg @),

where ay ,, and Ex,w are given as in (26) and (27).
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Define the subsets {z: % > c(x)}, Ry == {z: ”(%jf) < ﬁ} and

Dy = (A, UR)C = (2 ﬁ < HJ(T’C&“)Z) < ¢(x)}. Lemma 57 in Appendix D im-

plies the existence of by € [1,00) and My € [1, o0) such that A, UD, +xC
B(0, b1 (x| v 1)) for all x € X. We decompose the two sums above into sub-sums
on A, and R,, with again an obvious abuse of notation.

Observe that 1 < (Ml)’7 on Ay, and (% %)1_'7 < 1on Ry ), implying

/ / iy (20 10) Q2 (du)q (d2) + / / by (2. 1) O sz (dit)q (d2)
DxNAy DyNRy

n—a n+p
@ =[] Qe g @)

n—a \,
- Mw (b1(1x] Vv 1))g(Dx)
- wh—a v whth

9

because n < (B’ — B) A «.
Let then y :=n + &, + & < (B — B) A a A1 and notice again that

(FEEDL)1=Y < on Ry, and (F352)Y < 1 on Ay . Therefore,

/ f iy (z 1) Q2 (i) (d2) + / / bz 1) Q2 (di)q (d2)
RxﬂAx,w Rmex,w

y—n —a +8
< (M) / WV (i)

7(x) wy = v wrt+h
1 wh (x) Tx+2)\"g(x+2)7 gkx)
- , _ - q(dz),
w? =« v wr TP\ cde(x) /R, 7 (x) gx) Jwbr(x)
because ”(X(JF)Z) <c¢ 1(x) on R,.
It holds that 1 < (ﬂj&(i)z) Y) on Ry, y, s0 we have

f/ o w000 @)

a(x) \” u=%vub
< /A <7ﬂ o +Z)> /(Z e iy g e (@)

MW(b1(|x| \4 1))6‘_"()6)
w=e v wh

Similarly,

/_ / iy (20 1) Q2 (du)q (d2)
x (Z M)EAvw

Mw(b1(IXI V1) (x) /

w—e v wh Ox1;(du)g(dz).
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Now, by Lemma 40(ii),

[ ovntang)

ANAy

> [ (1 - (%) / u—“’Qx+z<du>)q<dz)

> q(/iﬂ[l = M (bi{lx] v 1))"5’(?(?)))&/]’

for all w € (0, ¢, w(x)]. B
Lemma 58(iii) in Appendix D implies that § := liminf|y|— s g (Ax) > 0. Con-
dition 44 together with (37) and (38) imply

. PV (x,w)
45) limsuyp ——— <

= 1-— 57
|x|— 00 Vix, w)

and we may conclude (41), by choosing any A € (1 —4, 1) and finding a sufficiently
large M € [1, 0o) such that the claim holds.

Consider then (42) and assume |x| < M. It is easy to verify that (45) holds with
some 8’ > 0 when taking limsup,,_, o, in the terms of the earlier decomposition.
Finally, it is easy to check that (43) holds for |x| < M similarly as (44), and the
general case follows from (41) and Lemma 48. [J

8. Concluding remarks. Our convergence rate results in Sections 3 and 5—
7 allow one to establish central limit theorems. In the case where the pseudo-
marginal kernel is variance bounding, that is, P admits a spectral gap as discussed
in Section 3, the central limit theorem (CLT) holds for all functions f: X x W — R
such that 77 ( f2) < oo [31], Theorem 7. Specifically, we have for all g : X — R with
m(g?) < oo,

n—1
(46) L Z[g(ffk) — ()] =3 N(0, var(g, P)) in distribution,
Vi

where var(g, P) € [0, 00) is given in Definition 6. It is possible to deduce up-
per bounds for the asymptotic variance var(g, P). Namely, Corollary 11 relates
var(g, P) to var(g, P), and from Lemma 52, (49),

14 (1 — Gap(P)) _ 2 — Gap(P)
var(g, P) < = (1= Gap(P)) eg_n(g),p(dx) = ——————vary(g),

Gap(P)

where e (g), p 1S @ positive measure on [—1, 1]; see Lemma 52 in Appendix A.
If the spectral gap of the marginal algorithm is not directly accessible, it can be
bounded by the drift constants; see [8] and references therein, and also [19], The-
orem 4.2(ii).
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When P is polynomially ergodic, the class of functions g for which the
CLT (46) holds is related to the exponent in the polynomial drift. For the conve-
nience of the reader, we reformulate here a result due to Jarner and Roberts [17].

THEOREM 50. Suppose P is irreducible and aperiodic. Assume there exists
V XxW-—=[1,00),x€[0,1),b€][0,00),ce(0,00),a petite set (e.g., [16, 26])
C € B(X) x B(W) such that

(47) PV (x,w) < V(x,w) —cV%x, w) + bl{(x, w) € C},
and that there exists n € [1 — «, 1] with 7 (V) < 00 and

sup lg(x)]
(x,w)EXXW vern=l(x, w)

then var(g, 15) € [0, 00) and the CLT (46) holds.

Theorem 50 is a restatement of [17], Theorem 4.2, because the pseudo-marginal
kernel P is also irreducible and aperiodic if the marginal kernel P is. The asymp-
totic variance can also be upper bounded in the polynomial case; see [3] and [19],
Theorem 5.2(ii) and Remark 5.3. It is also possible to deduce nonasymptotic mean
square error bounds [19].

Finally some of our results apply directly to extensions of pseudo-marginal al-
gorithms which directly make use of noisy estimates of the marginal’s acceptance
ratio [18, 27]. However, despite some similitudes and simplifications, the corre-
sponding processes differ fundamentally in that (X )0 is a Markov chain in this
case (as opposed to the pseudo-marginal scenario), and we are currently investi-
gating these differences.

APPENDIX A: LEMMAS FOR SECTION 2

In this section, (X, B(X)) is a generic measurable space, and w is a probability
measure on X. We consider the Hilbert space

LoX, ) == {f : X = R: u(f) =0, u(f?) < o0},
equipped with the inner product (f, g), := [y f(x)g(x)u(dx). We denote the cor-

responding norm by || f|, := (f, f)}/z and the operator norm for A : L%(X, w) —
LEX, ) as Al == sup{|Af [l : [ fll,e = 1}.

LEMMA 51. Let Py and P, be two Markov kernels on space X reversible with
respect to 1, and define the family of interpolated kernels Hg := Py + B(P> — P1)
for B €10, 1] also reversible with respect to ju. Then

An(B) = (I —xHp)~'(I +AHp) =1+2) 2 Hj
k=1
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is a well-defined operator on L%(X, w) forall & €10,1) and B € [0, 1] as well as
the right-hand derivatives, with limits taken with respect to the operator norm

A, = lim h™H(AL(B+h) — Ax(B)

= 2A(I — AHg) "' (Py — P1)(I — AHp)™ !,
AL(B) = lim hH (AL (B +h) — AL(B)

= 2A(I — AHg) "' (P, — P)AL(B),

forall x €[0,1)and B € [0, 1).
PROOF. The expression for A, (8) follows by the Neumann series representa-
tion (I — AHg) ™' = Y22, (AHg)* which is well defined because ||(AHpg)*|| < A¥.

Let us check that g +— A, (B) is right differentiable on [0, 1). Write for any
he@,1—-58)

Ax(B+h) — A, (B) = Ah(I — AHp) ' (Py — P1) + Ay g n (I + AHp)
+ARA; ga (P2 — P1),

where Ay g = (I — AHgyp)~! — (I — AHp)~!. The differentiability follows as
soon as we show limy,_, ¢ h_l(Ax, g,h) exists. By the Neumann series represen-
tation, it is sufficient to show that limj,_, o hY(H g w—H é‘) exists for all £ > 0.
The claim is trivial with £ = 0, and the cases k > 1 follow inductively by writing

Hp,, — Hf =hHg ™ (Py— P\) + (Hj . — Hy ™) Hp
+h(Hg o — Hy™')(P2— P).
Because (I — AHg)A;(B) =1 + AHg, we may write
A (Py — Py) = (I = AHp1p) (A5 (B +h) — Ax(B)) — Ah(P2 — P) A (B),
from which, multiplying with =" and taking limit as # — 0+, we obtain
(48) APy — P1) = (I — LHp) A} (B) — A(P2 — P1) Ay(B).

The desired expression for A’A (B) follows by observing that I + A, (8) =2 —
AHﬁ)_l. Consider then A’ (B). From (48), we obtain

(I —AHg)h ™' (AL (B + 1) — AL(B))
=A(Py — P)AL(B+h) + A(Py — PDR™ (A (B+ 1) — Au(B)).

We conclude by taking limits as 4 — 0+. [
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LEMMA 52. Suppose Il is a Markov kernel reversible with respect to ., and
(Xn)n>0 is a Markov chain corresponding to the transition I1 with Xo ~ w. Then,
for a function f € L(Z)(X, 7))

2
o1 " 1+x
(49)  var(f,ID) = lim ;E(l;f(xl-)) = / .

ef,n(dx) € [0, oo],

— X

where ey is a positive measure on S C [—1, 1] satisfying e s n(S) = ||f||i.
Forany f € L%(X, W), whenever the series below is convergent, then the follow-
ing equality holds:

(50) var, (f) +2 ) E[f(Xo) f (Xp)] = var(f, TT) < oo.
k=1
Moreover,
var, (f, T) :=(f, (I = A\TD ™' (I 4+ ATD) f), € [0, 00)
is well defined for all A € [0, 1) and satisfies lim, __, | var, ( f, I1) = var(f, I1) and
(f.(I =2~ f) > 0.

The results in Lemma 52 are well known; a full proof is given in [6].

APPENDIX B: LEMMAS FOR SECTION 3

We include the statement of [11], Theorem A.2, for the sake of self-
containedness.

LEMMA 53. Let A and B be self-adjoint operators on a Hilbert space H
satisfying 0 < (f, Af) < (f, Bf) for all f € H, and the inverses A~! and B~}
exist. Then 0 < (f, B~ f) < (f, A~V f) forall f €.

LEMMA 54. Suppose P is a Metropolis—Hastings kernel given in (1), and
p(x) is given in (2). Then the spectral gap of P defined in (10) satisfies:

(i) for any set A € B(X) with w(A) € (0, 1),
P)<(1—m(A) (1 - inf ;
Gap(P) < (1 —m(4)™' (1~ inf p()):
(1) if m does not have point masses, that is, Tt ({x}) = 0 for all x € X, then

Gap(P)<1—p(x) for w-almost every x € X.
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PROOF. We first check (i). Denote p = P(A) € (0,1) and define f(x) =
al{x € A} — bl{x ¢ A} where the constants a,b € (0, 00) are chosen so that
a(f)=ap— b(l — p)=0and 7(f?) =a’p + b*(1 — p) = 1. We may compute

Ep(f) = / 7 (dx)g (x. dy)y min{1, r(x, [ £ () — FO)T
:(a+b)2[4n(dx)Acq(x,dy)min{l,r(x,y)}

<(a+ b)2/ m(dx)(1— p(x)) < (a+ b)2p<1 — inf ,o(x)).
A xX€A
Now, according to our choice of a and b,
@+b)?p=(1-b*0=p)+26°(1 = p)+b’p=1+b"=(1-p)~".
Consider then (ii). The case Gap(P) = 0 is trivial, so assume Gap(P) > 0 and
assume the claim does not hold. Then there exists an € > 0 and a set A € B(X)
with p :=P(A) € (0, 1) such that 1 — p(x) < Gap(P) — ¢ for all x € A. From (i),

Gap(P) < (1 - p)_l(Gap(P) — ¢€). Because 7 is not concentrated on points, we
may choose p as small as we want, which leads to a contradiction. [J

APPENDIX C: LEMMAS FOR SECTIONS 4 AND 5

LEMMA 55. Suppose X = (X1,...,X,) and Y = (Yy,...,Y,) are Markov
chains on a common state space (X, B(X)) with kernels P and Q, and initial
distributions w and @ , respectively, which are invariant such that 71 P = 7 and
@ Q = w. Then, the distributions of X and Y denoted as (ux and ny satisfy the
following inequality for any C € B(X):

lux —pyll<lw -l + 20— 1)JT(CE) +n—-1 SngHP(x, )=
xXe

where ||ux — iyl := SUp| £|<i lux (f) — uy (f)| denotes the total variation.

PROOF. Let A € B(X). We shall use the shorthand notation x = xy,; =
(x1, ..., x,) and denote g(l ")(x) =1I{x € A},
2 (e —fP<xk,dxk+1) [ P dxlivea), 2<ksn-1,

and g<1 D= gful), and deﬁne gQ similarly using the kernel Q.

Note that g P ) and g Q ) take values between zero and one and the total variation
satisfies |7 — @ || = 25upg< < 17(f) — @ (/)] = 25Up s 17T (A) — @ (A)].

x(A) — py(A)] = |7 (g5) — @ (g9))]
<|7(gy)) — w(gx)| + |7 (g5 — 83)]

1
<slm -l +|7(gp’ - £0))l.
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showing the claim for n = 1. Assume then n > 2 and observe that we can write
m(gh) — g = [Elgh’ (X1) — g’ (X1)]]. We may continue inductively

|E[( (I:n—1) g(ln 1))(X1n 1):”

< [E[(¢p™ — 2™ ) (X1)] H‘ UA(Xn L dx)gy™ (Xin- 1,xn)”

where A(x,dy) := P(x,dy) — Q(x, dy), and observe that

’E[/ A(Xp—1, dxn)g(Qlin)(Xl:n—l, xn):|

=PX,-1¢C)+ sup sup

Xp_n€XN=2xy_1€C

/ A(xn—la dxn)g(len)(xl:n)

C 1
=7(C7) + S sup|| P(x, ) —
2x€C
because | [ A(Xn—1,dx)gp™ (Xim-1, x| < Tand 0= g™ < 1. [

LEMMA 56. Assume q > m and denote pu(x) := n(dx)/q(dx). Suppose that
there exists a strictly increasing ¢ : (0, 00) — [1, 00) with liminf;_, o ¢ (¢)/t > 0,
such that

(5D /n(dx)qﬁ(u(x)) < 00.

Then, there exist constants M,c,e € (0,00) and a probability measure v on
(X, B(X)) such that for the independent Metropolis—Hastings P,

(52) PV() s V@) —cV0)/¢~ (V) ifux) > M,
(53) P(x;-) = ev() if p(x) <M,
and v(V) < 0o, where V (x) := ¢ (u(x)).

PROOF. Denote A, :={y e X: “(y) > 1} and R, := AB and write

V(y) (y) n(y)
PV = d 1% d
(x) = f oy + [ e+ <xw)/( ())(y)

Ry
n(dy>V(y)+V(x)( (%) )

1

1(x) p=1(V(x) /)
because ((y) > (x) on Ay 4. The first term on the right vanishes and 7 (Ry) — 1
as u(x) — oo, and liminf,_, u/qb*l(u) > 0, implying (52). For (53), observe
that for u(x) < M,

P(x,B) > /Bmin{i

, —— dy) =:v(B),
M u(y)}n( V) =v(B)
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and we can take ¢ = D(X) and v = ¢~ !9, for which (51) implies v(V) < co. [

APPENDIX D: LEMMAS FOR SECTION 7

We denote by n(x) := x/|x| the unit vector pointing in the direction of x # 0
and by B(x,r) :={y € R?: |x — y| <r} the (closed) Euclidean ball.

LEMMA 57. Assume m satisfies Condition 37, and that c: X — [1, 00) satis-
fies lim SUP|y|— 00 c(x)e"x‘ < 0. Then, there exist constants M, b € [1, 00) such
that for all |x| > M,

1 () _
D, = {y eRd:rx) < % < c(x)} C B(0,blx]) \ B(0, b~ |x]).

PROOF. Let ¢’ > limsup|,|_ c(x)e ! Choose any C € (4c’, o0) and let
My € [1 Vv logc', o0) be sufficiently large so that there exists a 8, € (0, 1] such
that for all |x| > My,

c(x) <c'e™!, n(x)-Vlogn(x) <—C and n(x) -n(Vr(x)) < —Bx.
Let 8 € (0, 1). Then for any |x| > My(1 —8)~! and all z = tn(x) with || <, we
have
7(x+2)

m(x)
Now, if |x| > aMy where a := exp(2r tan(arccos(Bx))), then [33], Lemma 22,
implies

(55) [yeRY:w(y) =n(x)} € B(0,alx|)\ B(0,a"|x]).

1
(54) ‘log :|t|/ In(x +Az) - Vlogm(x + Az)|dr > Clz|.
0

Take any M > 4aMj, and choose |x| > M. Then, condition (54) implies that any
z =Ax € D,, where A > 0 satisfies

|(x = Dx|| < ¢ oge(x) < € Hlog(c) + |x]) < 2C x|

We deduce that |A — 1| < 1/2. Again, using (55), we deduce that the claim holds
with b =2a. O

LEMMA 58. Assume m satisfies Condition 37.

(i) Then, for any constant v € (0, 00), there exists a constant b,, € [1, 00) such
that for all x e X, {x + z: % >v} C B@,b,(|x| Vv 1)). Assume also that q
satisfies Condition 37.

(i1) There exists a constant v € (0, 00) such that inf,ex g ({z : % >v}) > 0.

(iii)) For any constant v € (0, 00), there exists a constant M = M (v) € [1, 00)

such that infiy)>y g ({z : %jf) >}) > 0.



1074 C. ANDRIEU AND M. VIHOLA

PROOF. Consider first (i). The existence of such a finite constant follows for
X in compact sets by the continuity of 7 and in the tails by Lemma 57.

The claim (ii) follows on compact sets by the continuity of logs, and in the
tails as in [16], proof of Theorem 4.3; the last claim (iii) follows similarly. [J

When the target and the proposal distributions satisfy also Condition 46, we
have a decay rate for g(Dy).

LEMMA 59.  Assume Condition 46, and assume limsup,|_, o, c(x)e M < co.
Then, for any &' > 0 there exists a constant My € [M, o0) such that for all |x| >
My,

Jog(c(x))
lx|p—1

1 <7r(x+z)

q(Dy) <e¢ cx) - 7

where Dy := {zeRd: §c(x)}.

PROOF. Lemma 57 implies b € [1, c0) and M’ € [1, 00) such that for all |x| >
M’ the annulus D, C B(0, b|x]|) \ B(0, b1 |x]). This implies that for any constant
c¢ € [1, 00) one can choose My € [M’, o) such that

n(x+z)-Vlogn(x +2z) < —celx +z|°~'  forall |x| > My, z € D,.
Denoting £(x) :=logm(x), we write
D,={ze RY [¢(x +z) — £(x)| <logec(x)}.
Define the contour surface set Sy (y) :={y € R : m(y) =n(x)}and
Cn(x)(a) = {y +in(y):ye Sﬂ(x)» 7] < 8}-

We will now check that with our conditions, for |x| > Mb,
b*~1 loge(x)

co Ixpl
Because Dy + x = Dy + y whenever m(x) = m(y), it is sufficient to consider
z € Dy such that z =tn(x) As in the proof of Lemma 57,

(56) Dy +x C Crx)(8x) where §, :=

p—1

1
0(x +2) — L(x)| = |z /0 In(x +Az) - VE(x 4 Az)|dA
1
T+ —|  dt>cb™ P Dx)P ).

1
—1
> |t]celx|? f
0 x|

Now |€(x 4 z) — £(x)| <logc(x) implies (56).
Write then, by Fubini’s theorem,

q(Dx) S/ q(z)dz

Cr (x) (6x)—x

a0 4
=/O LYzeR:q(lz]) > 1,z € Cr(x)(8x) — x) dt

00
:/0 ﬁd(ZERdi|Z| SM’ZECTL’(X)((SX)_x)|é,(u)|du'
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Now, [16], proof of Theorem 4.1, shows that for u < |x|/2,

x| + M>d_1£d(B(X, 3u)) < 32d-1,
x| —u

£9(Crer (52) N B(x, ) < ax( 8eud,

u
where ¢; = £4(B(0, 1)). By polar integration,

d e
LYCrx)(8x)) < ca sup FA=1 4,
YESa(x) [y]—dx

< 2¢4b47 18, x| < degb? s ud T

where the latter inequality holds for u > |x|/2. We obtain

o0
4(Dy) SC/5x<1 +f0 ud|é’(u)|du),

and because ¢ is monotone decreasing, integration by substitution yields
M M |
f u|§’ ()| du = df w1 (u)du — MYG(M) < dc; /c}(x)dx < o0.
0 0
We deduce g(Dy) < ¢”8, and conclude by choosing ¢, sufficiently large. [
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