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Pooled Association Tests for Rare Genetic
Variants: A Review and Some New Results
Andriy Derkach, Jerry F. Lawless and Lei Sun

Abstract. In the search for genetic factors that are associated with complex
heritable human traits, considerable attention is now being focused on rare
variants that individually have small effects. In response, numerous recent
papers have proposed testing strategies to assess association between a group
of rare variants and a trait, with competing claims about the performance
of various tests. The power of a given test in fact depends on the nature of
any association and on the rareness of the variants in question. We review
such tests within a general framework that covers a wide range of genetic
models and types of data. We study the performance of specific tests through
exact or asymptotic power formulas and through novel simulation studies of
over 10,000 different models. The tests considered are also applied to real
sequence data from the 1000 Genomes project and provided by the GAW17.
We recommend a testing strategy, but our results show that power to detect
association in plausible genetic scenarios is low for studies of medium size
unless a high proportion of the chosen variants are causal. Consequently,
considerable attention must be given to relevant biological information that
can guide the selection of variants for testing.

Key words and phrases: Linear statistics, quadratic statistics, score tests,
weighting, power, next generation sequencing, complex traits.

1. INTRODUCTION

Genome-wide association studies (GWAS) have
identified numerous genetic variants (single nucleotide
polymorphisms, or SNPs) that are associated with
complex human traits [e.g., Manolio, Brooks and
Collins (2008), Hindorff et al. (2009)]. However, be-
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cause of their limited sample sizes, such studies are
effective only at identifying common variants, that is,
for which the minor allele frequency (MAF) is not
too small (e.g., MAF ≥5% for sample size ∼2000).
In addition, variants that have been identified through
GWAS explain only small fractions of the estimated
trait heritabilities. There is now much interest in un-
derstanding the role of rare variants (as represented by
SNPs with small MAFs), but because they are rare it is
difficult to detect associations with specific traits [e.g.,
Bansal et al. (2010); Asimit and Zeggini (2010)]. Next
generation sequencing (NGS) can produce detailed in-
formation on rare variants but studies involving large
numbers of individuals are not yet practical due to cost,
heterogeneity and other concerns. Attention has conse-
quently focused on methods that combine information
across multiple rare SNPs in a genomic region (see
Section 6 for discussion on the practical choice of a
genomic region and SNPs within the region for anal-
ysis and its impact on the statistical inference). This
area is the focus of our article. Our purpose is to re-
view methods of testing for association between rare
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variants and a trait, unify the different methods, and
give some new results.

To motivate our discussion, we refer to data from
the Genetic Analysis Workshop 17 (GAW 17) [Almasy
et al. (2011), 1000 Genomes Project Consortium
(2010)]. These data include real sequence data (SNP
genotypes) obtained from the 1000 Genomes Project,
and simulated phenotype data (trait values) simulated
by the GAW 17 committee. We focus here on a single
quantitative trait, Q2. The values of Q2 and other traits
were simulated for each person using normal linear
regression models that included the SNP effects and,
in some cases, additional covariates. Details concern-
ing the simulation of trait values are given by Almasy
et al. (2011). For Q2 the regression model involved ef-
fects for 72 SNPs within 13 genes, with MAFs ranging
from 0.07% to 17.07%. Our objective is to look for
evidence of associations between rare variants and Q2.

Papers that propose pooled association testing strate-
gies for rare variants include Morgenthaler and Thilly
(2007), Li and Leal (2008), Madsen and Browning
(2009), Bansal et al. (2010), Han and Pan (2010),
Hoffmann, Marini and Witte (2010), Morris and Zeg-
gini (2010), Price et al. (2010), Yi and Zhi (2011),
Neale et al. (2011), Wu et al. (2011), Sul, Buhm and
Eleazar (2011) and Lee, Wu and Lin (2012). This pre-
vious work has provided many tests but insight into
settings when a method will perform well, indiffer-
ently or poorly is still limited. Recently, Basu and
Pan (2011) and Ladouceur et al. (2012) conducted ex-
tensive empirical evaluation (simulation) studies and
reached a similar conclusion that “the power of re-
cently proposed statistical methods depend strongly on
the underlying hypotheses concerning the relationship
of phenotypes with each of these three factors”: pro-
portions of causal variants, directions of the associa-
tions (deleterious, protective or both), and the relation-
ship between variant frequencies and genetic effects
[Ladouceur et al. (2012)]. However, the joint effects
of these factors have not been quantified analytically.
Moreover, the test procedures assume that SNPs have
been placed in groups, with pooling and testing carried
out for SNPs within a given group. There are various
ways SNPs might be grouped and this will affect the
three factors mentioned. Ways of grouping SNPs are
currently being studied in connection with the recent
Genetic Analysis Workshop 18 (GAW 18) and else-
where.

In this paper we consider tests for genotype–
phenotype association within a unified framework.
Most existing test statistics are either linear statistics

that are powerful against specific association alterna-
tives [e.g., Morgenthaler and Thilly (2007), Li and
Leal (2008), Morris and Zeggini (2010), Madsen and
Browning (2009) and Price et al. (2010)] or quadratic
statistics that have reasonable power across a wide
range of alternatives [e.g., Neale et al. (2011), Wu
et al. (2011), Lee, Wu and Lin (2012)]. We study both
classes of statistics theoretically and empirically and
provide several new insights. In particular, we exam-
ine the (asymptotic or exact) powers of various tests
as a function of the three factors above. We deal with
both categorical and quantitative traits, and allow trait-
dependent selection of individuals in a study as well as
nonindependent SNPs. We conduct novel simulation
studies that complement other recent empirical inves-
tigations and shed new light on methods’ comparison.
We also discuss so-called optimality of tests and indi-
cate what this means in practical settings.

A feature of many of the linear statistics and of
the quadratic statistics of Wu et al. (2011) and Lee,
Wu and Lin (2012) is the use of weights associated
with individual SNPs, because of the suggestion that
rarer variants tend to have larger genetic effects. We
demonstrate that even if this assumption is true, using
weights inversely proportional to MAFs can in some
cases have an adverse effect. We also show that for lin-
ear statistics, methods of weight selection based on es-
timated effects [e.g., Han and Pan (2010), Yi and Zhi
(2011), Hoffmann, Marini and Witte (2010), Lin and
Tang (2011)] are similar to using quadratic statistics.

A referee has stressed the importance of several
caveats concerning the type of data considered in the
paper, and hence the “success” of testing procedures
such as discussed here. First, errors in sequencing data
commonly occur. Methods for addressing this have not
yet been well studied in the present context, and we
assume that genotypes are as given. Methods used in
other contexts [Daye, Li and Wei (2012), Skotte, Kor-
neliussen and Albrechtsen (2012)] are typically based
on estimated sequencing error probabilities, but we
note that their accuracy is not well established in spe-
cific settings. A second caveat is that the identifica-
tion of rare variants is difficult because of their low
frequency, and because sequencing errors can substan-
tially affect the estimation of small MAFs. They can
also lead to a SNP that is actually monomorphic be-
ing identified as a rare polymorphic SNP in some in-
stances. Finally, the nature and level of heritability ex-
plained by rare variants is at this point speculative and
it is unclear whether major successes will occur from
the approaches considered here. We take pains in the
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paper to consider a broad range of genetic models but
we cannot of course answer questions about the scien-
tific fundamentals.

The remainder of the paper is organized as follows.
Section 2 introduces the framework for testing the as-
sociation between a group of rare variants and a gen-
eral trait, reviews tests that have been proposed along
with analytical results relating the power of linear and
quadratic statistics to the various factors, and considers
adjustment for covariates. Section 3 presents theoret-
ical power calculations for normally distributed traits
that clarify when various methods will do well and the
effects of using weights. Section 4 gives numerical re-
sults based on large-scale simulation studies of over
10,000 different models for both quantitative and bi-
nary traits. Section 5 examines the GAW17 quantita-
tive trait Q2 and sequence data from the 1000 Genomes
Project. Section 6 concludes with some recommenda-
tions for pooled testing. Online supplementary materi-
als [Derkach, Lawless and Sun (2013a)] include details
specific about test statistics and additional tables and
figures for the power comparison studies.

2. SCORE TESTS FOR ASSOCIATION

2.1 No Covariate Adjustment

We assume that a group of J SNPs and a trait Y are
under consideration. The objective is to test whether
there is association between Y and one or more of
the SNPs. For a set of n unrelated individuals, let
Yi be the measured trait value for individual i and
Y = (Y1, . . . , Yn)

′. Let Xij denote the SNP genotype
for individual i, i = 1, . . . , n and j = 1, . . . , J ; for sim-
plicity we assume that Xij denotes whether the rare al-
lele is present (Xij = 1) or absent (Xij = 0) and let
Xi = (Xi1, . . . ,XiJ )′. It is straightforward to consider
the case where Xij is the number of copies (0, 1 or 2)
of the rare allele for SNP j , but there will be no or very
few individuals with two rare alleles in a study of cur-
rent typical size. We assume for now that there is no
adjustment for covariates, since many papers address
only this case. However, covariate adjustment is often
important and we consider it in Section 2.4.

Our interoest is in testing the null hypothesis

H0 : Y and X are independent.(2.1)

Most proposed methods for testing H0 are based on
statistics that are (weighted) linear or quadratic combi-
nations of statistics Sj which measure association be-
tween Y and SNP j , j = 1, . . . , J . Without loss of gen-
erality, we assume that Sj is such that under the null

E[Sj ] = 0 and Var(Sj ) = σ 2
0j , and under alternatives

E[Sj ] = μj and Var(Sj ) = σ 2
j . To facilitate further dis-

cussion, we assume that Y is defined so that a SNP with
μj > 0 is termed deleterious, with μj < 0 is protective,
and with μj = 0 is neutral; both deleterious and pro-
tective SNPs are causal variants. Let S = (S1, . . . , SJ )′
and E[S] = μ = (μ1, . . . ,μJ )′, and assume for sim-
plicity that the hypothesis of no association (2.1) is
equivalent to the null hypothesis

H0 :μ = 0.(2.2)

There are various options for Sj , but the approaches
referred to in Section 1 can almost all be expressed in
terms of statistics of the form

Sj =
n∑

i=1

(Yi − Y)Xij , j = 1, . . . , J,(2.3)

where Y = ∑n
i=1 Yi/n [e.g., see Lin and Tang (2011);

Basu and Pan (2011)]. The Sj arise as score statis-
tics in regression models for the two important cases
where Yi is normally distributed and binary, respec-
tively. They also arise from Poisson models for counts
and for other models in the linear exponential family
[e.g., Lee, Wu and Lin (2012)]. For completeness, we
outline this for the binary case in the supplementary
materials [Derkach, Lawless and Sun (2013a)]. Other
statistics, for example, Wald or likelihood ratio statis-
tics, could be used (see Section 2.4), but score statistics
are almost universally used in this area, and we focus
on them. We note that the score statistics have the ad-
vantage of requiring only estimates obtained under the
null hypothesis. In some contexts it is also useful to re-
place Yi −Y in (2.3) with some other function αi of ei-
ther Yi or its rank, with

∑n
i=1 αi = 0. It should be noted

that genotypes Xij , j = 1, . . . , J , are not assumed to be
mutually independent in the subsequent development.

Many authors have considered linear test statistics
for H0 (2.2) of the form

WL =
J∑

j=1

wjSj = w′S,(2.4)

where the weights wj s are specified nonnegative val-
ues and w = (w1, . . . ,wJ )′. Basu and Pan (2011) pro-
vided a review, and we note two important cases:
Morgenthaler and Thilly (2007) considered the “co-
hort allelic sums test” (CAST) where each wj = 1,
and Madsen and Browning (2009) based wj on the
(estimated) MAF, with larger weights for SNPs with
smaller MAF. The rationale for the latter weights is
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that causative SNPs would be subject to “purifying se-
lection” and so be rarer in the population than neutral
SNPs, but evidence for this so far seems slight. We
also note that because the MAFs have to be estimated,
sequencing errors as discussed in Section 1 can have
an effect; we assume (idealistically) that such errors
have not occurred. Price et al. (2010) also considered
“threshold” versions in which wj > 0 only if the es-
timated MAF is below a specified threshold (e.g., 1%
or 5%). Such linear composite statistics can have good
power against association alternatives where μj ≥ 0,
with μj > 0 for some subset of {j = 1, . . . , J }. How-
ever, their power may be poor for alternatives where
both positive and negative values of μj are possible,
and when only a small proportion of the J SNPs are
causal and have μj > 0 [Neale et al. (2011), Basu and
Pan (2011)]. The effects of association direction on dif-
ferent statistics are studied in Sections 3 and 4.

Many authors have also considered quadratic statis-
tics,

WQ = S′AS,(2.5)

where A is a positive definite (or semi-definite) sym-
metric matrix. One common choice is A = �−1

0 , where
�0 is a known or estimated covariance matrix for S un-
der H0; this gives a Hotelling statistic,

WH = S′�−1
0 S.(2.6)

Other quadratic statistics include the “SSU” statistic of
Pan (2009) and the “C-alpha” statistic of Neale et al.
(2011) which are based on A = I , the J × J identity
matrix; the “SKAT” statistic of Wu et al. (2011) uses
A = diag{a1, . . . , aJ }, where the aj s are weights that
depend on the MAFs via a Beta function. The linear
statistic WL in (2.4) can also be expressed in quadratic
form, since W 2

L is equivalent to (2.5) with A = ww′.
However, note that A is no longer positive definite in
this case. Quadratic statistics arise naturally from re-
gression models relating Y and Xj as we discus below.
Finally, we remark that recent work has considered
combining evidence from linear and quadratic statis-
tics [e.g., Lee, Wu and Lin (2012) and Derkach, Law-
less and Sun (2013b)]. We discuss this in Section 6, but
focus on individual linear and quadratic statistics here
(Table 1).

2.2 Distributions of Linear and Quadratic Statistics
Under Normality

It is instructive to consider the case where S is
normally distributed. For both binary and quantita-
tive traits, the vectors S are all at least asymptotically
normal, and analytical derivations of power and dis-
cussions of optimality rely on this assumption [e.g.,
Lin and Tang (2011); Lee, Wu and Lin (2012)]. The

TABLE 1
Summary of different association tests for analyzing rare variants. This is not an exhaustive list of all existing tests (see Sections 2 and 6 for
additional examples). Tests derived from random effect models and adaptive linear models are operationally similar to quadratic tests (see
Section 2.3 for discussion). Details of the notation: see Section 2.1. Briefly, S = (S1, . . . , SJ )′ is a vector of test statistics for a group of J

rare variants, w = (w1, . . . ,wJ )′ is a vector of weights, A is a positive definite (or semi-definite) symmetric matrix, �0 is a known or
estimated covariance matrix for S, pj is the minor allele frequency (MAF) of SNP j , f (pj ) = 1/

√
pj (1 − pj ) in Weighted-sum of Madsen

and Browning (2009), f (pj ) depends on the MAF via a Beta distribution in SKAT of Wu et al. (2011), and pL and pQ are the p-values
from chosen Linear and Quadratic tests

Class of tests

Linear Quadratic Combined/Hybrid

WL = w′S WQ = S′AS H(WL,WQ)

Example of specific tests

w = 1 (CAST, WL1) A = I (SSU and C-alpha, WC ) maxw{WL} (EREC)

Morgenthaler and Thilly (2007) Pan (2009), Neale et al. (2011) Lin and Tang (2011)

wj = f (pj ) (Weighted-sum, WLp) A = diag{aj }, aj = f (pj ) (SKAT) maxρ∈[0,1](ρWL + (1 − ρ)WQ) (SKAT-O)

Madsen and Browning (2009) Wu et al. (2011) Lee, Wu and Lin (2012)

wj = 0 if pj > threshold (Threshold) A = �−1
0 (Hotelling, WH ) −2 log(pL) − 2 log(pQ) (Fisher’s method),

min(pL,pQ) (minimum-p)

Price et al. (2010) Basu and Pan (2011) Derkach, Lawless and Sun (2013b)
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case where S is normal in finite samples also is well
known in connection with tests for a multivariate nor-
mal mean μ; see, for example, Mardia, Kent and Bibby
(1979), Chapter 5.

Suppose that under H1 for which μ �= 0 the distri-
bution of S is (exactly or asymptotically) multivariate
normal with mean μ and covariance matrix �, S ∼
N(μ,�). For simplicity we assume that � is known;
this is allowable for asymptotic results which we focus
on here. In finite samples where Y given X is normal,
the effect of estimating � is to replace normal and chi-
square distributions below with t and F distributions,
respectively. With J fixed and n going to infinity, these
converge to the normal and chi-square distributions we
consider.

Let λ1, . . . , λJ be the eigenvalues of �1/2A�1/2 and
P be the J × J orthogonal matrix whose columns
are the corresponding eigenvectors. Then the follow-
ing distributional results hold [e.g., Rao (1973), Sec-
tion 3b.4]:

(i) WQ is distributed as a linear combination of in-
dependent noncentral χ2

1 random variables,

WQ ∼
J∑

j=1

λjχ
2
1,ncj

,(2.7)

where χ2
k,r denotes a noncentral χ2 random variable

with k degrees of freedom and noncentrality parameter
r , and ncj = ({P ′�−1/2μ}j )2.

(ii) If A = �−1, then WQ ∼ χ2
J,nc with nc =

μ′�−1μ. If � = �0, then WQ is the Hotelling statis-
tic (2.6).

(iii) Z2
L = W 2

L/(w′�w) = (w′S)2/(w′�w) ∼ χ2
1,nc

with nc = (w′μ)2/(w′�w) when � = �0. When this
is not true, then the distribution of Z2 is a multiple of
the noncentral χ2

1 random variable.
(iv) Under the null hypothesis H0: μ = 0, W 2

L/

(w′�0w) is a χ2
1 random variable; WQ is a linear com-

bination of independent χ2
1 random variables with each

ncj = 0 in (2.7).

It should be noted that no adjustment is needed to
reflect the fact that w may involve estimated MAFs.
This is because the distributional results are based on
the sampling distribution of Y given Xij , where esti-
mates of MAFs are functions of X alone and so are
treated as fixed in this section. We return to this point
in Section 4.1, and we also note in Section 4.2 that
complications arise when retrospective (case–control)
studies are used with binary responses. These results

allow the power against a simple alternative hypoth-
esis H1 with a specified μ �= 0 to be calculated for
any linear test statistic (2.4) or quadratic test statistic
(2.5). Critical values for a test of H0: μ = 0 are ob-
tained according to (iv). Software exists for the compu-
tation of probabilities associated with linear combina-
tions of central or noncentral χ2

1 random variables, for
example, the CompQuadForm package in R [Duchesne
and Lafaye de Micheaux (2010)]. In particular, we note
that:

(a) For a size α test using the linear statistic WL in
(2.4) or, equivalently, Z2

L in (iii) above, the α critical
value is χ2

1 (1 − α), the 1 − α quantile for the χ2
1 dis-

tribution. (The test is two-sided to allow for either pos-
itive or negative WL under H1.) The power against H1
when � = �0 is

P
(
χ2

1,ncL
> χ2

1 (1 − α)
)

(2.8)
where ncL = (

w′μ
)2

/
(
w′�w

)
.

(b) For a size α test using the Hotelling statistic WH

in (2.6), the α critical value is χ2
J (1 − α). The power

against H1 in the case where � = �0 is

P
(
χ2

J,ncH
> χ2

J (1 − α)
)

(2.9)
where ncH = μ′�−1μ.

The specific power of both statistics depends on μ
and on the distribution of S under H1, however, some
general features can be seen. For simplicity, suppose
� = �0 and that � is diagonal (SNPs are indepen-
dent). The quadratic statistic WH (2.6) is a reasonable
choice when both deleterious (μj > 0) and protective
(μj < 0) SNPs are plausible, because ncH is a func-
tion of the μ2

j . The statistic WH can be decomposed

as WH = Z2
L + R, where ZL and R are independent

under H1, and R ∼ χ2
J−1,ncR

with ncR = ncH − ncL =
μ′�−1μ − (w′μ)2/(w′�w). The linear statistic WL is
optimal when ncR = 0, but the advantage of WL over
the quadratic statistic WH disappears as ncR increases.
We will discuss this in Sections 3 and 4.

2.3 Additional Considerations: Optimality,
Random Effect Models, Adaptive Linear
Models, p-Values and Permutation Distribution

A number of authors [e.g., Lee, Wu and Lin (2012),
Neale et al. (2011), Lin and Tang (2011)] have claimed
to obtain “optimal” tests. This is theoretically possible
if we specify a suitable family of test statistics, but for
this to be of practical use we must have strong prior
knowledge about the alternative hypothesis. For exam-
ple, among the class of linear statistics (2.4), maximal
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power is obtained when w = �−1μ. When the Sj s are
independent so that � = diag{σ 2

1 , . . . , σ 2
J }, this gives

wj = μj/σ
2
j . This linear statistic is (asymptotically)

optimal among all tests of fixed size based on S, assum-
ing μ is known. Quadratic statistics (2.5) for which A

has rank 2 or more can never be optimal against a spe-
cific alternative (μ,�). However, quadratic tests can
maintain reasonable power over wide ranges of alter-
natives, whereas a linear statistic’s power can be poor
except near a specific alternative. Goeman, van de Geer
and van Houwelingen (2006) and other authors have
discussed optimality of score statistics coming from
random effects models, but these results are also based
on averaging over a family of alternatives, which may
or may not be plausible in a given setting. For exam-
ple, quadratic statistics (2.5) can be obtained from ran-
dom effect regression models in which Y is related to
X through a linear function β ′X and the J × 1 regres-
sion coefficient β is a random vector with mean 0 and
covariance matrix τA. The hypothesis τ = 0 then cor-
responds to H0 in (2.1) and a score statistic for testing it
is [Goeman, van de Geer and van Houwelingen (2006),
Basu and Pan (2011)]

W ′
Q = 1

2S′AS − 1
2 trace(A�0).(2.10)

Using W ′
Q is equivalent to using WQ in (2.5) when �0

is known. The first term in (2.10) also arises from other
score tests in generalized linear models [Lee, Wu and
Lin (2012)]. In general, �0 (and A) involve estimates
and asymptotic distributions for WQ are used to get
p-values. The asymptotic distributions are typically of
the form (2.7), but with the λj involving estimates. We
comment further on the calculation of p-values at the
end of this section.

Some authors [e.g., Han and Pan (2010), Hoffmann,
Marini and Witte (2010), Lin and Tang (2011)] have
proposed two-stage or other adaptive approaches in
which the weighting vector w for WL in (2.4) is cho-
sen after preliminary examination of the direction of Sj

or an estimate of its effect based on the observed data,
in a hope of choosing an “optimal” weight. However,
such an approach cannot on its own (i.e., without the
use of additional information from other sources) im-
prove globally the linear statistics. In fact, if we choose
the w that maximizes the standardized linear test statis-
tic (2.4), then we end up with the quadratic statis-
tic (2.6). In particular [e.g., Mardia, Kent and Bibby
(1979), page 127, or Li and Lagakos (2006), Section 3],

sup
w

{
W 2

L

Var(WL)

}
= sup

w

{
(w′S)2

w′�w

}
= S′�−1S = WH,

where the maximizing vector is w = �−1S. This helps
explain why Basu and Pan (2011) found that adaptive
procedures did not perform as well as one might have
hoped.

Lin and Tang (2011) have proposed a test statis-
tic Tmax based on the maximum of a specified set of
K linear statistics, each with different weights, T 2

k =
(w′

kS)2/(w′
k�wk). We do not consider such statistics

here, but it is clear that their performance will depend
on the choice of “appropriate” weighting vectors wk .
When there is little prior information and the wks are
selected to cover a wide range of alternatives, it seems
likely that max(T 2

k ) would be similar to WH . A simi-
lar suggestion involving quadratic statistics is made by
Lee, Wu and Lin (2012). In practice, there is often very
limited prior information about the nature of μ, espe-
cially concerning which SNPs might be causal, so one
cannot be confident that a linear test statistic will be
effective, nor which quadratic statistics might be the
best. Sections 3 and 4 investigate situations in which
specific statistics will be more powerful.

To achieve reasonable power, sample sizes have to
be rather large, as we discuss in Section 4. The calcula-
tion of p-values, critical values or power is often based
on large sample approximations given by normal and
chi-square distributions in Section 2.2. In general, this
requires estimation of matrices �0 and A (as do test
statistics themselves) but with consistent estimators the
limiting distributions provide adequate approximation
for sufficiently large samples. In general, a consistent
estimator of �0 for S given by (2.3) is

�̂0 =
∑n

i=1(Yi − Y )2

n − 1
X′

cXc,(2.11)

where X′
c has (i, j) entry Xij − Xj (where Xj =∑n

i=1 Xij/n). However, because events with Xij = 1
are rare, the distribution of S can be quite nonnormal
even in rather large samples, and more accurate ways to
calculate p-values and critical values are needed, espe-
cially for quadratic statistics. Some authors [e.g., Lee,
Wu and Lin (2012)] have given skewness or kurtosis
adjustments that seem to improve accuracy in certain
settings. More generally, however, we can obtain p-
values (and study power) by simulation. When there
is no adjustment for covariates, the permutation distri-
bution of S = (S1, . . . , SJ )′ is typically used [e.g., Basu
and Pan (2011)]; this is the distribution that arises from
randomly permuting the Yis and assigning them to the
Xis. This also applies when Y is a discrete variable,
when Xij s are correlated within individuals (e.g., due
to linkage disequilibrium, LD) and when sampling of
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the individuals is Y -dependent. More generally, when
there are covariates present, we may need to rely on
bootstrap simulations. We comment on this in the fol-
lowing section.

2.4 Adjustment for Covariates

Lin and Tang (2011) and Wu et al. (2011) have
stressed that adjustment for covariates and population
stratification will be important in many contexts in-
volving rare variants. In this case we use regression
models; for illustration, we consider the case of a bi-
nary trait. Suppose that in addition to the genotype vec-
tor Xi there is a vector vi of covariates that may be
related to a binary trait Yi . Then a logistic regression
model

Pr(Yi = 1|Xi ,vi )
(2.12)

= exp(β0 + β ′Xi + γ ′vi )

1 + exp(β0 + β ′Xi + γ ′vi )
= μi

might be considered, and a test of H0 :β = 0 can
be carried out. For testing rare variants some authors
have replaced the term β ′Xi in (2.12) with βri , where
ri = ∑J

j=1 Xij is the total number of rare variants per
individual [e.g., Morris and Zeggini (2010); Yilmaz
and Bull (2011)], but this corresponds to using a linear
statistic in previous sections and can be ineffective. We
consider the case where β = (β1, . . . , βJ )′ in order to
examine settings for which causal SNPs may be either
deleterious or beneficial. Consideration of the power
of alternative tests in large samples parallels the dis-
cussion in Section 2.2, as follows.

Let β̂ be the estimator of β based on the model in
question and assume that under H0 :β = 0, the asymp-
totic distribution of

√
nβ̂ is multivariate normal with

mean 0 and covariance matrix �. Following Li and
Lagakos (2006), we consider a sequence of contiguous
alternatives

H
(n)
1 :β = b/

√
n,(2.13)

where b = (b1, . . . , bJ )′ is a specified vector. Under
this sequence as n → ∞ the distribution of

√
nβ̂ ap-

proaches a multivariate normal distribution with mean
b and covariance matrix �. Thus, asymptotic power
for a test statistic can be computed in the same way
as in Section 2.3. Li and Lagakos (2006) compare the
quadratic Wald test statistic W = β̂ ′�̂−1β̂ , where �̂ is
a consistent estimate of � under H0, with linear statis-
tics Z = a′β̂ . These are analogous to (2.6) and (2.4),
respectively. The likelihood score statistic for testing

β = 0 is an alternative to the Wald statistic; it is easily
found as [e.g., Lin and Tang (2011)]

U =
n∑

i=1

(Yi − μ̂i)Xi ,(2.14)

where μ̂i = eβ̂0+γ̂ ′vi /(1 + eβ̂0+γ̂ ′vi ) and β̂0, γ̂ are es-
timated from (2.12) when β = 0. It also follows from
standard maximum likelihood large sample theory that
the covariance matrix of U under H0 is estimated con-
sistently by

�̂U = V̂ar(U) =
(

n∑
i=1

σ̂ 2
i XiX′

i

)

−
(

n∑
i=1

σ̂ 2
i Xi ṽ′

i

)(
n∑

i=1

σ̂ 2
i ṽi ṽ′

i

)−1

(2.15)

·
(

n∑
i=1

σ̂ 2
i ṽiX′

i

)
,

where σ̂ 2
i = μ̂i(1 − μ̂i) and ṽi = (1,v′

i )
′. These cor-

respond to results given by Lin and Tang (2011), who
consider linear statistics based on linear combinations
of the elements U1, . . . ,UJ of U. The statistic (2.14)
and variance estimate (2.15) are given here for prospec-
tive sampling but can be shown to apply under case–
control sampling. As in Sections 2.1–2.3, test statistics
such as W ∗

H = U′�̂−1
U U and W ∗

L = (w′U)/(w′�̂−1
U w),

which correspond to WH and WL in preceding sec-
tions, can be used. When there are no covariates vi ,
it is readily seen that (2.14) reduces to (2.3) and that
(2.15) equals (n−1)/n times (2.11). It should be noted
that when covariates vi are present, the normal approx-
imations considered earlier apply, but the permutation
distribution p-values do not unless the Xis are indepen-
dent of the vi . Lin and Tang (2011) suggest a paramet-
ric bootstrap as an alternative, based on randomly gen-
erating response Yis from the fitted null model based
on β̂0, γ̂ .

Normal linear regression models for quantitative
variables Y also produce score statistics of the form
(2.14) with μ̂i = β̂0 + γ̂ ′vi , as do certain other gen-
eralized linear models [Lee, Wu and Lin (2012)]. It
should be mentioned that in the case of quantitative Y -
dependent sampling and models with supplementary
covariates vi as in (2.12), adjustments to estimating
functions [e.g., Huang and Lin (2007); Yilmaz and Bull
(2011)] are needed; this is beyond our present scope,
but we note that statistics like (2.14) arise once again
[Barnett, Lee and Lin (2013)].
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3. NORMALLY DISTRIBUTED TRAITS

3.1 Distributions of the Linear and Quadratic
Statistics

To provide more insights on the effects of the choice
of linear vs. quadratic statistics and the use of weights
on power, it is helpful to consider genetic scenarios de-
scribed by a normal linear model,

Yi = β0 + β1Xi1 + · · · + β1XiJ + ei
(3.1)

for i = 1, . . . , n,

with ei ∼ N(0, σ 2) and the Xij s mutually independent
Bernoulli variables with P(Xij = 1) = pj , approxi-
mately twice the MAF of SNP j , j = 1, . . . , J . The
score statistic S = (S1, . . . , SJ )′ with

Sj =
n∑

i=1

(Yi − Y)Xij =
n∑

i=1

(Xij − Xj)Yi(3.2)

arises from maximum likelihood theory for testing
H0 :β = (β1, . . . , βJ )′ = 0, as noted in Section 2.4.
Normal models are widely used for quantitative traits
such as blood pressure or lipid levels. Due to the nor-
mality of Y , the distribution of Sj given the geno-
types is Sj ∼ N(mj(1 − mj/n)βj ,mj (1 − mj/n)σ 2),
where mj = ∑n

i=1 Xij . For any given sample the mj

are treated as fixed values, and for simplicity we con-
sider the case where mj is equal to its expected value
npj so that

S ∼ N(μ,�),(3.3)

where μ = (np1(1 − p1)β1, . . . , npJ (1 − pJ )βJ )′ and
� = diag{np1(1−p1)σ

2, . . . , npJ (1−pJ )σ 2}. As ear-
lier, we ignore the small effects due to the need to esti-
mate σ 2 in large samples.

Here and in simulations below, we consider settings
according to the variation of Y explained by the set of
SNPs. Under model (3.1), the total phenotypic varia-
tion explained by the J SNPs is

EV = Var(E[Y |X])
Var(Y )

=
∑J

j=1 pj (1 − pj )β
2
j∑J

j=1 pj (1 − pj )β
2
j + σ 2

≈
J∑

j=1

pj (1 − pj )β
2
j /σ 2(3.4)

=
J∑

j=1

EVj ,

where EVj = pj (1−pj )β
2
j /σ 2 is the “Explained Vari-

ation” by SNP j . The approximation assumes that the

phenotypic variation explained by genetic factors is
small, which is in agreement with current data. The dis-
tribution of WL = w′S is N(n

∑J
j=1 wjpj (1 − pj )βj ,

n
∑J

j=1 w2
jpj (1 − pj )σ

2), and

W 2
L

/(
J∑

j=1

w2
jpj (1 − pj )σ

2

)
∼ χ2

1,ncL
,(3.5)

where

ncL = n
(
∑J

j=1 wjpj (1 − pj )βj/σ )2∑J
j=1 w2

jpj (1 − pj )
(3.6)

= n
(
∑J

j=1 wj sign(βj )
√

pj (1 − pj )
√

EVj )
2∑J

j=1 w2
jpj (1 − pj )

.

Similarly, assuming A = diag{a1, . . . , aJ } where the
aj s can also be interpreted as weights for quadratic
statistics WQ = S′AS, we have

WQ ∼
J∑

j=1

λjχ
2
1,ncj

,(3.7)

where

λj = ajnpj (1 − pj )σ
2 and

(3.8)
ncj = npj (1 − pj )β

2
j /σ 2 = nEVj .

3.2 Effects of Weights and Genetic Factors on
Power

We consider for discussion two linear statistics
WL = w′S: WL1 with wj ≡ 1 [Morgenthaler and Thilly

(2007)] and WLp with wj = 1/
√

pj (1 − pj ) [Madsen
and Browning (2009)]. We also consider two quadratic
statistics WQ = S′AS: WC with A = I (aj ≡ 1) (C-
alpha) and the Hotelling WH with A = �−1 (aj =
1/(npj (1 − pj )σ

2)). We note that the pj are actually
the values p̂j = mj/n, but p̂j = pj here since we are
considering the situation where the values of mj are
equal to their expected values npj . From (3.5)–(3.8)
we then have

W 2
L1

/(
J∑

j=1

pj (1 − pj )σ
2

)
∼ χ2

1,ncL1
,

where

ncL1 = n
(
∑J

j=1 pj (1 − pj )βj/σ )2∑J
j=1 pj (1 − pj )

(3.9)

= n
(
∑J

j=1 sign(βj )
√

pj (1 − pj )
√

EVj )
2∑J

j=1 pj (1 − pj )
,
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W 2
Lp/

(
Jσ 2) ∼ χ2

1,ncLp
,

where

ncLp = n
(
∑J

j=1

√
pj (1 − pj )βj/σ )2

J
(3.10)

= n
(
∑J

j=1 sign(βj )
√

EVj )
2

J
,

WC ∼
J∑

j=1

(
npj (1 − pj )σ

2)
χ2

1,ncj
,

where ncj = npj (1 − pj )β
2
j /σ 2 = nEVj as in equa-

tion (3.8), and

WH ∼ χ2
J,nc,

where nc = ∑J
j=1 ncj = n

∑J
j=1 EVj ≈ nEV .

The above results show that the power of WH de-
pends (approximately) just on the total explained vari-
ation EV and sample size n, and it is not sensitive to the
direction of the SNP effects [sign(βj )] nor the MAF
pj . Although the C-alpha statistic WC uses “equal”
weights for all SNPs, its power depends not only on
the EVj s and n but also on the pj s, because the cor-
responding coefficients for the linear combination of
independent χ2

1,ncj
are proportional to pj (1 − pj ), es-

sentially giving smaller weight to rarer variants. The
test statistic WC has been found powerful in a wide
range of settings for binary phenotypes [e.g., Neale
et al. (2011), Basu and Pan (2011)]. For the most part,
the settings investigated were ones where the regres-
sion coefficients βj s in a model for Y given X were
unrelated to the pj s. In that case EVj and ncj tend to
be smaller for rarer variants and a smaller weight is
preferred. However, if larger |βj |s are more likely to
be found among rarer variants, then WH could be more
powerful than WC . Simulations in Section 4 confirm
this.

Powers of the linear statistics depend on the ef-
fect directions and on the weights. The effect of using
weights inversely proportional to pj [e.g., WLp = w′S
with wj = 1/

√
pj (1 − pj )] is unclear, because ncLp

in (3.10) is not necessarily bigger than ncL1 in (3.10)
for WL1 with equal weights, even if rarer variants tend
to have bigger genetic effects in terms of larger |β|
values. We provide numerical results on the power of
WL1, WLp , WC and WH under various conditions in
Section 4 for studies of both quantitative and binary
traits.

3.3 Additional Theoretical Results with More
General Settings

Here we investigate the effects of dependency be-
tween genotypes. Due to genetic linkage, rate of re-
combination, genetic selection and other factors, geno-
types of SNPs from the same chromosomal region may
not be independent of each other at the population
level, that is, P(XijXij ′) �= P(Xij )P (Xij ′). This phe-
nomenon is also known as linkage disequilibrium [e.g.,
Reich et al. (2001)]. Similar to the previous section, we
discuss results based on linear normal model (3.1) and
score statistic S = (S1, . . . , SJ )′ in (3.2). This statistic
can be rewritten in vector form as

S = X′
cY,(3.11)

where Xc has (i, j) entry Xij − Xj (where Xj =∑n
i=1 Xij/n). Due to normality of Y , the distribution

of S given genotypes X is multivariate normal,

S ∼ N(μ,�),(3.12)

where μ = E(S) = X′Xcβ = X′
cXcβ and Var(S) =

� = σ 2X′
cXc. We denote n�̂X = X′

cXc, an estimate
of the covariance matrix of genotypes X and so μ =
n�̂Xβ and � = σ 2n�̂X . Under mutually indepen-
dent genotypes, matrix �X is approximately diagonal,
n�̂X = diag{m1(1 − m1/n), . . . ,mJ (1 − mJ /n)}, and
we provided insights on the effect of the choice of lin-
ear and quadratic statistics for this covariance struc-
ture in Section 3.2. Here we give additional results for
the general covariance structure. Similar to the previ-
ous sections, mj and mlj = ∑n

i=1 XilXij are treated as
fixed values, and for simplicity we consider the case
where mj is equal to its expected value npj and mlj is
equal to its expected value nplj , where plj = P(Xil =
1,Xij = 1).

Similar to the previous section, we consider settings
according to the variation of Y explained by the set of
SNPs. Under model (3.1) and covariance structure �X ,
the total phenotypic variation explained by the J SNPs
is

EV = Var(E[Y |X])
Var(Y )

= β ′�Xβ

β ′�Xβ + σ 2

(3.13)

≈ β ′�Xβ

σ 2

when explained variation is small. One should note that
when genotypes are not mutually independent, the total
explained variation by J SNPs is not approximately
equal to the sum of the individual explained variations
as in (3.4).
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Again we consider the two linear statistics WL1 =
w′S with wj = 1, WLp with wj = 1/

√
pj (1 − pj ) and

two quadratic statistic WQ = S′AS: WC with A = I

(C-alpha) and Hotelling WH with A = �. We note
again that we are considering the situation where the
values of mj and mlj are equal to their expected values
npj and nplj , respectively, thus, p̂j = pj and �̂X =
�X . Let U�U′ be the eigendecomposition of matrix
�X , where � = diag{λ1, . . . , λJ } consists of the eigen-
values of �X and U = {u1, . . . ,uJ } is an orthogonal
matrix constructed from corresponding eigenvectors
u1, . . . ,uJ . Based on the derivations in Section 2.2, the
following distributional results hold:

(i) W 2
L1/(σ

21′�X1) ∼ χ2
1,nc, with noncentrality

parameter nc = n
(1′�Xβ)2

σ 21′�X1
.

(ii) W 2
Lp/(σ 2w′�Xw) ∼ χ2

1,nc, with noncentrality

parameter nc = n
(w′�Xβ)2

σ 2w′�Xw
and w = (1/

√
p1(1 − p1),

. . . ,1/
√

pJ (1 − pJ ))′.
(iii) WC ∼ ∑J

j=1 λjχ
2
1,ncj

, with ncj = nλj (u′
jβ)2/

σ 2.
(iv) WH ∼ χ2

rank(�X),nc = ∑J
j=1 I (λj > 0)χ2

1,ncj
,

with ncj = nλj (u′
jβ)2 and nc = ∑J

j=1 nλj (u′
jβ)2/

σ 2 = nβ ′�Xβ/σ 2 ≈ nEV .

The power of the Hotelling statistic WH again de-
pends solely on (approximate) explained variation by
the J SNPs and rank(�X) = ∑J

j=1 I (λj > 0). If two
different sets of J SNPs explain the same total phe-
notypic variation, then the power for WH is the same
for those two sets regardless of the correlation structure
between SNPs, provided the corresponding �Xs have
the same rank. This also implies that when two sets of
J SNPs explain the same total phenotypic variation,
the Hotelling statistic is more powerful for the set of
SNPs where �X has lower rank. A second conclusion
is that power of the other three statistics depends on
the covariance structure of the SNPs, �̂X , and their ef-
fects β . In fact, when two sets of J SNPs explain the
same total phenotypic variation and one of the sets con-
sists of mutually independent SNPs, the power of these
three tests for the set of independent SNPs is not neces-
sary larger than the power for another set of SNPs with
a different covariance structure. This is confirmed by
our empirical evaluations presented in supplementary
materials [Derkach, Lawless and Sun (2013a)].

4. NUMERICAL POWER COMPARISONS

We conducted extensive and novel simulation stud-
ies to examine the finite sample performance of lin-

ear and quadratic statistics. Since there is little back-
ground information suggesting what genetic scenar-
ios are most plausible, we generated data from over
10,000 different genetic models that involve varying
proportions of protective, deleterious and neutral vari-
ants, variant frequencies, effect sizes, and relationships
between variant frequencies and effect sizes. Careful
analysis of the results provides considerable insight
into the performance of different statistics. The statis-
tics considered here are the two linear statistics, WL1 =
1′S, WLp = w′S, where wj = 1/

√
pj (1 − pj ), and two

quadratic statistics WC = S′IS and WH = S′�−1S, as
discussed in Section 3.2 and Table 1. Estimation of the
pj is discussed in Sections 4.1 and 4.2 below.

We studied both quantitative and binary traits. Ta-
ble 2 describes the simulation models considered.
For each type of trait, we considered two types of
scenarios, S1 (“MAF-effect independent”) assumes
that |βj | (the size of the genetic effect) of a causal
SNP j is unrelated to pj (approximately twice the
MAF), and S2 (“MAF-effect dependent”) assumes
that |βj | is inversely related to pj . For normally
distributed quantitative traits, the MAF-effect depen-
dent models were simulated by directly specifying
the phenotypic variance explained by SNP j , EVj =
(βj

√
pj (1 − pj ))

2/σ 2, and without loss of generality

we take σ 2 = 1. We did not restrict all causal variants
to have the same direction of effect, but assumed that
the majority of the causal variants have the same di-
rection with pD = JD/JC ranging from 75% to 100%,
a reasonable assumption based on what has been re-
ported in the literature. (We also simulated models
where pC ranges from 50% to 75%; the linear statistics
performed poorly and were dominated by the quadratic
statistics, as one would expect.) Here we assume that
the genotypes of different SNPs are mutually indepen-
dent, but Section 5 considers possibly nonindependent
genotypes obtained from sequence data of the 1000
Genomes Project [1000 Genomes Project Consortium
(2010)]. We also conducted additional simulation stud-
ies examining the effect of dependency between SNPs
on power, supporting conclusions made in Section 3.3
above.

4.1 Quantitative Traits

We first considered the normal linear model in (3.1)
for which results in Section 3.2 give the power of the
different statistics. Results presentation and discussion
focus on n = 1000 and type 1 error α = 10−4. (Other
n and α values were also considered, but results are
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TABLE 2
Parameters and parameter values of simulated models for studies of quantitative or binary traits. Scenario S1 (MAF-effect independent)
assumes MAFs and effect sizes are mutually independent. Scenario S2 (MAF-effect dependent) assumes that variants with smaller MAFs

tend to have bigger effect sizes

Parameters Parameter values

n Sample size (ncase = ncontrol = n/2 for binary traits) 500, 1000 or 2000
J Total number of SNPs Unif{10,20,30,40,50}
pC Proportion of the causal SNPs Unif(0.1,1)

JC Number of the causal SNPs, an integer closest to J · pC

pD Proportion of the deleterious SNPs among the causal ones Unif(0.75,1)

JD Number of the deleterious SNPs, an integer closest to JC · pD

pP Proportion of the protective SNPs among the casual ones, 1 − pD

JP Number of the protective SNPs, JC − JD

pN Proportion of the neutral SNPs, 1 − pC

JN Number of the neutral SNPs, J − JD − JP

Quantitative traits under scenario S1 (MAF-effect independent); 10,000 independently simulated models
pj Approximately twice the MAF of SNP j Unif(0.005,0.02)

βj Regression coefficient in (3.1) of SNP j

for neutral SNPs 0
for causal SNPs Unif(0.45,0.5) or Unif(−0.5,−0.45)

(The resulting EVj s in the range 0.001 to 0.0049)

Quantitative traits under scenario S2 (MAF-effect dependent); 10,000 independently simulated models
EVj The variance explained by SNP j (EVj = β2

j pj (1 − pj ))
for neutral SNPs 0
for causal SNPs Unif(0.001,0.0025)

Binary traits under scenario S1 (MAF-effect independent); 500 independently simulated models
pj Approximately twice the MAF of SNP j Unif(0.005,0.02)

e
β
j OR of SNP j

for neutral SNPs 1
for causal SNPs Unif(2,4) or Unif(1/2,1/4)

Binary traits under scenario S2 (MAF-effect dependent); 500 independently simulated models
pj Approximately twice the MAF of SNP j Unif(0.005,0.02)

e
β
j OR of SNP j

for neutral SNPs 1

for causal SNPs C/
√

pj (1 − pj ),C = 4
√

0.005(1 − 0.005)

(The resulting ORs in the range 2 (or 1/2) to 4 (or 1/4)

qualitatively similar across tests.) The choice of α =
10−4 is to reflect the fact that testing would typically be
conducted for multiple genetic regions. Table 2 shows
the combination of factors and indicates how data from
10,000 different models were generated.

For each of the 10,000 randomly generated genetic
models we used critical values according to the exact
distributions in Section 3.1 to compute power. Specif-
ically, for each model we considered a sample of size
n = 1000 for which the mj equaled their expected val-
ues npj . Thus, p̂j = pj for each SNP and the J by
J covariance matrix � in (3.3) equals diag{npj (1 −
pj )σ

2} under both the null (β = 0) and alternative hy-
pothesis represented by the genetic model. Since n is

large, we ignored the effect of estimating σ 2 (as in
Section 3.1) and used the true value σ 2 = 1; this has
a negligible effect on power. The use of p̂j = pj de-
serves discussion, since in practice the value p̂j will
vary from sample to sample. However, they are func-
tions only of the covariates Xij and so no adjustments
to the distribution in Section 3.1 are needed. However,
the power provided by using (3.5) or (3.7) with the
pj estimated with p̂j are conditional, that is, they ap-
ply to samples with the described set of values mj .
Unconditional power is also of interest; this reflects
sampling variation in the mj (and p̂j ). Unconditional
power is calculated (or estimated) by averaging condi-
tional powers for the case where mj = npj in this sec-
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tion. In the supplementary materials [Derkach, Law-
less and Sun (2013a)] we provide some unconditional
power values. We find that differences with the condi-
tional powers are small (see Figures S6 and S7).

For visual display, Figure 1 shows the within-class
power comparisons (linear WLp vs. linear WL1, and
quadratic WH vs. quadratic WC ) of the four tests for
1000 models randomly selected from the 10,000 inde-
pendently generated models. In view of the wide vari-
ations in model parameters, powers of the tests vary
widely across the 1000 models. For each model, pow-
ers of the two linear statistics are similar and like-
wise for powers of the two quadratic statistics. More-
over, under scenario S1 [Figure 1(a)] neither statistic
within each class dominates the other across the 1000

models. However, under scenario S2 [Figure 1(b)], the
Hotelling statistic performs better than the C-alpha
statistic for almost all models, as our earlier comments
in Section 3.2 suggest. In this case, we also see that
the linear statistic using weights inversely proportional
to MAFs does not always lead to a better power even
when the assumption that rarer variants have bigger ef-
fects is in fact true here [Figure 1(b)].

We also considered simulations with sample sizes
n = 500 and 2000, to see the effect on the linear ver-
sus quadratic statistic comparison. For simplicity we
show plots for WL1 and WH ; plots for WLp and WC

are very similar. Figure 2 and Table 3 show that which
type of statistic is better depends on the sample size
and the model parameters. When n = 500, both the

FIG. 1. Within-class power comparison of the four statistics for 1000 independently generated models for studies of QUANTITATIVE
traits under (a) scenario S1 (MAF-effect independent) and (b) scenario S2 (MAF-effect dependent) as described in Table 2. The four statis-
tics are the two linear statistics WL = (w1, . . . ,wJ )′S in (2.4): “without weights” WL1 where wj ≡ 1 and “with weights” WLp where

wj = 1/
√

pj (1 − pj ), and two quadratic statistics WQ = S′AS in (2.5): the C-alpha statistic WC where A = I and the Hotelling statistic

WH where A = �−1
S . Sample size n = 1000 and type 1 error α = 10−4. The set of 1000 models presented here is a random subset of all the

10,000 models independently generated.
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FIG. 2. Between-class power comparison of the linear statistic WL1 vs. the quadratic Hotelling statistic WH for studies of QUANTITATIVE
traits under scenario S1 (MAF-effect independent). Other details see Figure 1.

linear and quadratic statistics have low power (more
than 65% of the 1000 models have power <20%; Ta-
ble 3). In that case, good power (80%) is achieved only
for those models with high proportions of causal SNPs
(among which the proportion of deleterious SNPs is
at least 75% by study design); the linear statistic is bet-
ter than the quadratic statistic. However, as n increases,
the quadratic statistic displays good power across many
models and by n = 2000 dominates the linear statis-
tic for most of the models. Similar conclusions can be
made based on results from the models simulated un-
der scenario S2 (see supplementary materials Figure
S1 [Derkach, Lawless and Sun (2013a)]).

To better understand the impact of the various model
parameters on different statistics, Figure 3 presents
power from a different perspective showing the indi-
vidual power of the linear statistic WL1 [Figure 3(a)]

and the quadratic statistic WH [Figure 3(b)] as a func-
tion of the number of causal variants JC (large scale
of the X-axis) and the number of deleterious variants
JD (small scale of the X-axis), when the total num-
ber of rare variants is J = 30 under the scenario S1.
Results for scenario S2 are in supplementary materi-
als Figure S2; results for J = 10, 20, 40 and 50 are
qualitatively similar and not shown. It is clear that the
power of both tests depends highly on the percentage of
causal SNPs in the group of SNPs investigated. For ex-
ample, among the 10,000 models giving power of 50%
or greater, the average proportion of causal SNPs (pC)
is 81% (SE = 13% and min = 42%) for the linear test
and 81% (SE = 12% and min = 50%) for the quadratic
test. The powers for the quadratic statistics vary much
less than those for the linear statistics; this is due to
the latter’s need for both pC and pD (the proportion of

TABLE 3
Breakdown of the power of the linear statistic WL1 and the quadratic Hotelling statistic WH under scenario S1 (MAF-effect independent).

Proportions of the 1000 models in Figure 2 that have power in the specified ranges. For other details see Figures 1 and 2 legends

Power range

Sample size 0–20% 20–40% 40–60% 60–80% 80–100%

Proportion of the models in power range; WL1
n = 500 0.66 0.11 0.06 0.06 0.11
n = 1000 0.46 0.11 0.08 0.07 0.28
n = 2000 0.30 0.08 0.06 0.07 0.49

Proportion of the models in power range; WH

n = 500 0.68 0.14 0.09 0.07 0.02
n = 1000 0.32 0.13 0.10 0.10 0.35
n = 2000 0.10 0.07 0.06 0.07 0.70
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FIG. 3. Individual power of (a) the linear statistic WL1 and (b) the quadratic Hotelling statistic WH for studies of QUANTITATIVE traits
under scenario S1 (MAF-effect independent) for models with J = 30 total number of rare variants. The large scale of the X-axis shows the
number of causal variants in the range of JC = J · pc = 30 · 10% = 3 to JC = 30 · 100% = 30. The small scale of the X-axis shows the
number of deleterious variants in the range of JD = JC · pD = JC · 75% to JD = JC · 100%, depending on the actual number of causal
variants in a model. The 2005 models shown here are the models with J = 30 among the 10,000 models generated as described in Table 2.
Sample size n = 1000 and type 1 error α = 10−4.

deleterious SNPs among the causal ones) being close
to 1 in order to achieve high power.

To examine the effect of correlation between SNPs
on power, we conducted additional simulation studies.
Briefly, we considered two types of correlation scenar-
ios (D1: correlation among casual variants and D2: cor-
relation between causal and neutral variants) and com-
pared power of the four tests (WL1,WLp,WC,WH ) to
the independence case, under two different assump-
tions of the corresponding genetic effects (E1: total
explained variation by all causal variants is fixed and
E2: the regression coefficient βj s are fixed). Under
E1, neither correlation structure affects power of WH ;

however, D1 increases power of the other three tests
while D2 can increase or decrease power. Under E2,
D1 increases power of all four tests; D2 once again
can increase or decrease power. Details of the simu-
lation study design and results (Figures S8–S11) are in
the supplementary material [Derkach, Lawless and Sun
(2013a)].

4.2 Binary Traits

Here, we provide detailed numerical results for case–
control studies involving a binary trait Y , where a nor-
mal approximation for S might not be adequate. As
in Section 4.1, we examine the performance of WL1,
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WLp , WC and WH . We assume that the distribution of
Yi given Xi = (Xi1, . . . ,XiJ )′ is Bernoulli with

Prob(Yi = 1|Xi ) = exp(β0 + ∑
βjXij )

1 + exp(β0 + ∑
βjXij )

,(4.1)

and that the Xij s in the population are mutually in-
dependent Bernoulli variables with P(Xij = 1) = pj

for j = 1, . . . , J . We first used asymptotic distributions
for the linear and quadratic statistics provided in Sec-
tion 2.3 to obtain p-values, and we evaluated type I er-
ror rate and obtained empirical critical values for each
of the four tests (supplementary materials Table S1). In
this case the test statistics are based on (2.3) with the
covariance matrix given by (A.3) in the supplementary
materials [Derkach, Lawless and Sun (2013a)]. Un-
like the quantitative traits above, the SNP genotypes

Xij here vary from sample to sample and thus so do
the values p̂j (j = 1, . . . , J ). Supplementary Table S1
shows that normal approximations are satisfactory for
the linear statistics but chi-square approximations for
the quadratic statistic produce p-values (and thus crit-
ical values) that are much too conservative. We con-
ducted simulations to assess power under different sce-
narios, using empirical critical values for the quadratic
statistics. The simulation of case–control data is dis-
cussed in the supplemetary materials [Derkach, Law-
less and Sun (2013a)]. Given the amount of compu-
tation required, we considered 500 models randomly
generated under each of the two MAF-effect scenarios
described in Table 2.

Results in Figure 4 are slightly different from those
in Figure 1 for quantitative traits. Under scenario S1

FIG. 4. Within-class power comparison of the four statistics for 500 independently generated models for studies of BINARY traits under (a)
scenario S1 (MAF-effect independent) and (b) scenario S2 (MAF-effect dependent) as described in Table 2. The four statistics are the two lin-
ear statistics WL = (w1, . . . ,wJ )′S in (2.4): “without weights” WL1 where wj ≡ 1 and “with weights” WLp where wj = 1/

√
pj (1 − pj ),

and two quadratic statistics WQ = S′AS in (2.5): the C-alpha statistic WC where A = I and the Hotelling statistic WH where A = �−1
S .

Sample size n = 1000 and type 1 error α = 10−4.
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FIG. 5. Between-class power comparison of the two statistics for 500 independently generated models for studies of BINARY traits under
(a) scenario S1 (MAF-effect independent) and (b) scenario S2 (MAF-effect dependent) as described in Table 2. The linear statistic is WL1
and the quadratic statistic is C-alpha statistic WC . For other details see Figure 4 legends.

[Figure 4(a), left panel], neither of the two linear statis-
tics dominates the other, which is similar to the case
for quantitative traits [Figure 1(a), left panel]. Between
the two quadratic statistics [Figure 4(a), right panel],
WC is more powerful than WH ; this is consistent with
the findings of Basu and Pan (2011) discussed in Sec-
tion 3.2. However, the systematic power difference be-
tween WC and WH is absent under scenario S2 [Fig-
ure 4(b), right panel]. This supplements the picture pro-
vided by Basu and Pan (2011), who did not consider
cases where genetic effects are inversely proportional
to MAFs, and it supports our earlier comment that the
relative performance of WC and WH depends on the
relationship between SNP effects and MAFs.

Under the MAF-effect dependent assumption, the
linear statistic WLp appears to be consistently better
than WL1 across the 500 models [Figure 4(b), left
panel]. However, we emphasize that the apparent bet-
ter power for WLp is mainly driven by the use of true
variant frequency pj values in the weight specification,

wj = 1/
√

pj (1 − pj ). These would be unavailable to
us in a real situation. In practice, how to estimate pj

can have major impacts on the validity of the test as
well as on power. Some authors have suggested using
the control sample only [e.g., Madsen and Browning
(2009)], but it is not clear if the standard permutation-
based approach for p-value estimation as used here
is still valid. An additional concern for this approach
is the possibility of a deleterious effect. In that case,
which subsample is the proper “control” sample is not
clear. If both cases and controls were used to estimate
pj , p̂j would tend to be bigger than pj for a causal
SNP j because of the oversampling of cases, while

p̂j ′ is expected to be pj ′ for a neutral SNP j ′. Con-

sequently, using wj = 1/
√

p̂j (1 − p̂j ) downweights a
causal SNP compared to a neutral one with the same
frequency, resulting in loss of power. This is clear from
the results shown in supplementary materials Figure S3
for both the MAF-effect independent and dependent
scenarios. The practical use of weights, particularly for
linear statistics, therefore, must be carefully considered
in the case–control setting.

Figure 5 compares the power of WL1 and WC across
the 500 models. Under scenario S1 [Figure 5(a)], the
quadratic statistic has better power than the linear
statistic for the majority of the models. Under scenario
S2 [Figure 5(b)], among the models with power less
than 50%, the quadratic statistic has better power, but
among the models with higher power, the linear statis-
tic is more often better.

5. APPLICATION TO THE GAW17 DATA

The numerical studies in the previous section fo-
cused on mutually independent SNPs, although the
tests themselves do not require this [see supplemen-
tary materials (Derkach, Lawless and Sun (2013a)] for
additional simulation studies on dependent SNPs). To
consider settings where this might not be so along with
real sequence data, we examined real human sequence
data [1000 Genomes Project Consortium (2010)] that
were used to generate the GAW17 phenotype data
[Almasy et al. (2011)] introduced in Section 1.

We consider here quantitative trait Q2 which is influ-
enced by 72 SNPs in 13 genes but not by other covari-
ates; recall from Section 1 that traits were simulated,
so it is known which SNPs are causal. To assess the
performance of association statistics, we carried out
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“pseudo power” comparisons by determining the p-
values for each of four test statistics, across each of
the 13 genes, using the 200 replicate samples avail-
able (same genotype data but different phenotype data,
independently simulated, based on the true genotype–
phenotype association model).

We used data from the n = 321 unrelated Asian sub-
jects (Han Chinese, Denver Chinese and Japanese) and
excluded SNPs that had MAF >5% or were monomor-
phic within the Asian sample. Gene VNN1 had no
causal rare variant but it was kept in the analysis to
serve as a negative control. The threshold MAF ≤5%
does not reduce the number of causal SNPs much (70
of the 72 causal SNPs have MAF ≤5%), but it reduces
the number of neutral SNPs in a gene and therefore in-
creases power.

For each of the 200 replicates, we calculated
permutation-based p-values for the four statistics,
WL1, WLp , WC and WH (see Table 1). We estimated
power for α = 0.05 by the proportion of the 200 repli-
cates for which the empirical p-values were ≤ 0.05 for
each test. For each sample, gene and statistic combi-
nation, the p-value for the null hypothesis of no asso-
ciation was obtained from the permutation distribution

by randomly generating 10,000 permutations of each
replicate sample.

The choice of the liberal type 1 error α = 0.05 was
based on the low power of detecting genetic effects
of sizes represented by the simulation models, with
a sample of 321 people. Table 4 summarizes the rare
variants for the 13 genes and gives the empirical power
for each statistic. Only the first group of 9 genes have
maximum power above 10%.

Results in Table 4 are consistent with our previous
conclusions: (i) linear tests with and without weights
based on MAF vary in relative power but not substan-
tially; (ii) quadratic statistics WC and WH also have
slightly variable relative power; (iii) between-class per-
formance is highly variable. As expected, linear statis-
tics outperform quadratic statistics if the proportion of
causal variants is not too low (e.g., genes SIRT1 and
SREBF1), but the pattern can be reversed if this is not
the case, even when the effects in this data are all in the
same direction (e.g., BCHE and RARB).

6. DISCUSSION AND RECOMMENDATIONS

We have reviewed and studied tests of association
between rare variants and phenotypes within a unified

TABLE 4
Power of the four test statistics applied to the GAW17 sequence data provided by the 1000 Genomes Project. The 13 genes presented here

are all the causal genes for simulated quantitative trait Q2. VNN1 does not have causal variants because one of the two causal variants has
MAF 26% and the other is not polymorphic within the Asian sample (n = 321). VNN1 is kept in the analysis to serve as a negative control.

All causal variants were designed by GAW17 to have the same direction of effects (minor alleles were associated with higher Q2 values). The
average genetic effect is the average of regression coefficient β values of the causal variants used to simulate Q2 (effects are independent of

populations by the GAW17 design). Genes are ordered according to the maximum power of the four tests which is bolded. Powers shown
vary considerably due to inherent factors and estimation based only on 200 replicates, and the 13 genes are separated into different groups

SNP distribution Ave. MAF of Avg. effect of Power

Gene JC,JN JC,JN JC Linear WLp Linear WL1 Quadratic WC Quadratic WH

9 genes for which the maximum power is 10% or more
SIRT1 4, 7 0.27%, 0.22% 0.71 0.44 0.40 0.25 0.39
BCHE 5, 10 0.22%, 0.19% 0.72 0.29 0.35 0.43 0.39
PDGFD 3, 6 0.78%, 0.65% 0.74 0.29 0.43 0.45 0.35
SREBF1 4, 5 0.39%, 0.40% 0.52 0.49 0.47 0.18 0.28
GCKR 1, 0 1.21%, NA 0.38 0.25 0.25 0.25 0.25
RARB 1, 5 0.78%, 0.90% 0.64 0.06 0.03 0.07 0.14
PLAT 4, 7 0.39%, 0.49% 0.68 0.13 0.13 0.06 0.13
VLDLR 4, 6 0.19%, 1.64% 0.75 0.12 0.08 0.06 0.09
VNN3 2, 2 0.16%, 2.57% 0.37 0.03 0.10 0.06 0.04

3 genes for which the maximum power is 10% or less
INSIG1 3, 1 0.16%, 3.42% 0.20 0.06 0.06 0.04 0.03
LPL 1, 4 0.16%, 0.23% 0.73 0.02 0.03 0.06 0.05
VWF 1, 3 0.16%, 1.90% 0.34 0.02 0.01 0.03 0.01

1 gene for which there is no polymorphic rare causal variants in the Asian sample

VNN1 0, 3 NA, 0.31% NA 0.02 0.02 0.04 0.05
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framework which gives theoretical insights about the
performance of the methods (Table 1). Tests can have
greatly varying power depending on the total number
of rare variants, the numbers of deleterious, protec-
tive and neutral variants, the effect directions and the
relationship between the effect sizes and the MAFs
of causal variants. When substantial numbers of both
deleterious and protective SNPs are present, quadratic
test statistics are much better. They can also outper-
form linear statistics in settings where causal SNPs are
all deleterious (or all protective), but a substantial frac-
tion of the SNPs are not associated with the pheno-
type. However, our results also indicate that power to
detect moderate levels of association is not high un-
less sample sizes are very large or a high proportion
of the chosen SNPs are causal. Sequencing errors and
other caveats concerning the data will further decrease
power. Cases where power is substantial for smaller
studies are predominantly ones where SNPs are almost
all deleterious or all beneficial, and it is the linear test
statistics that achieve highest power. Consequently, the
definition of a chromosomal region and selection of
SNPs within the region are critical to statistical infer-
ence regardless of the specific test used. In practice, a
chromosomal region can be a gene, coding region of
a gene or other types of genetic unit (e.g., a group of
SNPs that are in moderate or strong linkage disequilib-
rium of each other); selection of SNPs within a region
can be also based on relevant biological information
since not all SNPs are equal a priori (e.g., some SNPs
are believed to be more important than others based
on functional genomic annotation). Different choices
could lead to different statistical power [e.g., King,
Rathouz and Nicolae (2010), Derkach et al. (2014)].

Our work complements that of Basu and Pan (2011),
and a brief comparison is useful. They found similar
results to ours in simulation studies for case–control
scenarios, concerning the performance of linear statis-
tics. Among the quadratic statistics, they found that
the C-alpha/SSU type statistic WC = S′IS was gen-
erally the best and superior to the Hotelling statistics
S′�−1S. However, their simulation scenarios did not
include cases where larger causal effects are associated
with SNPs having smaller MAFs. Our numerical stud-
ies [scenario S2 under the MAF-effect dependent as-
sumption in Table 2; Figure 1(b) for quantitative traits
and Figure 4(b) for binary traits] and investigation of
GAW17 data (Table 4) indicate the importance of the
MAF-effect independent or nonindependent assump-
tion on the choice of a good test statistic.

As an approach to rare variant testing in the ab-
sence of strong prior information, we support the rec-
ommendation of Basu and Pan (2011) to perform tests
using both linear and quadratic statistics. In Derkach,
Lawless and Sun (2013b) we investigated tests based
on Fisher’s method and the minimum-p method [e.g.,
Owen (2009)] for combing p-values from linear and
quadratic statistics. Such tests were shown to be robust
across the wide range of models considered here, in the
sense of achieving power that is close to that of the bet-
ter of a linear and quadratic statistic in a given setting.
Comparisons were also made with the recent SKAT-O
statistic of Lee, Wu and Lin (2012), which considers
the minimum p-value across a class of statistics. The
overall conclusion is that the Fisher’s method outper-
forms the individual linear and quadratic tests as well
as the minimum p-value approach, when the majority
of the causal variants has the same direction of effect;
however, the minimum p-value is better if (approxi-
mately) half of the causal variants are deleterious and
the other half are protective.

It is beyond our scope here, but an empirical assess-
ment of test statistics that involve covariate adjustment
would be valuable. In addition, accurate and compu-
tationally efficient methods of obtaining p-values de-
serve attention. Parametric bootstrap simulation [e.g.,
Lin and Tang (2011)] can be used when sampling of
individuals is random, but when it is trait-dependent
matters are more complicated. In the case–control sim-
ulation for binary traits, for example, the sampling is
effectively for Xi and other covariates vi given Yi .
Methods that avoid detailed modeling of the distribu-
tion of (Xi, vi ) are desired. Empirical assessment is
also difficult for family based association studies when
samples are correlated. We hope to report on this in a
future communication.

Finally, we reiterate our remarks made in Section 1
concerning the potential effects of sequencing errors.
A realistic assessment of their scope and impact is
called for.

ACKNOWLEDGMENTS

The authors would like to thank the Genetic Anal-
ysis Workshop 17 (GAW17) committee and the 1000
Genomes Project for providing the GAW17 applica-
tion data, and Dr. Andrew Paterson for insightful dis-
cussions. This work was supported by the Natural Sci-
ences and Engineering Research Council of Canada
(NSERC) and the Canadian Institutes of Health Re-
search (CIHR) grants to LS, NSERC to JFL, the



320 A. DERKACH, J. F. LAWLESS AND L. SUN

Ontario Graduate Scholarship (OGS) and the CIHR
Strategic Training for Advanced Genetic Epidemiol-
ogy (STAGE) fellowship to AD, University of Toronto.
Conflict of Interest: None declared.

SUPPLEMENTARY MATERIAL

Pooled Association Tests for Rare Genetic Vari-
ants: A Review and Some New Results (DOI: 10.
1214/13-STS456SUPP; .pdf). The supplementary ma-
terials include derivation of the permutation distribu-
tion of S for general traits, analytical results and simu-
lation details for study of binary traits, simulation de-
tails for study of the effect of correlation between SNPs
on power, and an additional 1 table and 11 figures for
the studies of type 1 error rates and power for both
quantitative and binary traits, for both MAF-effect in-
dependent and dependent scenarios, and for both inde-
pendent and dependent rare variants.
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