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Comments on the Neyman–Fisher
Controversy and Its Consequences
Arman Sabbaghi and Donald B. Rubin

Abstract. The Neyman–Fisher controversy considered here originated with
the 1935 presentation of Jerzy Neyman’s Statistical Problems in Agricul-
tural Experimentation to the Royal Statistical Society. Neyman asserted that
the standard ANOVA F-test for randomized complete block designs is valid,
whereas the analogous test for Latin squares is invalid in the sense of detect-
ing differentiation among the treatments, when none existed on average, more
often than desired (i.e., having a higher Type I error than advertised). How-
ever, Neyman’s expressions for the expected mean residual sum of squares,
for both designs, are generally incorrect. Furthermore, Neyman’s belief that
the Type I error (when testing the null hypothesis of zero average treatment
effects) is higher than desired, whenever the expected mean treatment sum
of squares is greater than the expected mean residual sum of squares, is gen-
erally incorrect. Simple examples show that, without further assumptions on
the potential outcomes, one cannot determine the Type I error of the F-test
from expected sums of squares. Ultimately, we believe that the Neyman–
Fisher controversy had a deleterious impact on the development of statistics,
with a major consequence being that potential outcomes were ignored in fa-
vor of linear models and classical statistical procedures that are imprecise
without applied contexts.

Key words and phrases: Analysis of variance, Latin squares, nonadditivity,
randomization tests, randomized complete blocks.

1. CONFLICT AND CONTROVERSY

Prior to the presentation of Statistical Problems in
Agricultural Experimentation to the Royal Statistical
Society in 1935 (Neyman, 1935), Jerzy Neyman and
Ronald Aylmer Fisher were on fairly good terms, both
professionally and personally. Joan Fisher Box’s bi-
ography of her father (Box, 1978, pages 262–263,
451) and Neyman’s oral autobiography (Reid, 1982,
pages 102, 114–117) describe two scientists who re-
spected each other during this time. However, Ney-
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man’s study of randomized complete block (RCB) and
Latin square (LS) designs sparked Fisher’s legendary
temper (Reid, 1982, pages 121–124; Box, 1978, pages
262–266; Lehmann, 2011, pages 58–59), with the re-
sulting heated debate recorded in the discussion. The
relationship between Fisher and Neyman became ac-
rimonious, with no reconciliation ever being reached
(Reid, 1982, pages 124–128, 143, 183–184, 225–226,
257; Lehmann, 2011, Chapter 4).

The source of this conflict was Neyman’s sugges-
tion that RCBs were a more valid experimental de-
sign than LSs, for both hypothesis testing and precision
of estimates. He reached this conclusion using poten-
tial outcomes, which he introduced in 1923 as part of
his doctoral dissertation (Splawa-Neyman, 1990), the
first place formalizing, explicitly, the notation of po-
tential outcomes for completely randomized (CR) ex-
periments. Neyman (1935) extended this framework in
a natural way from CR designs to RCBs and LSs, and
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calculated the expected mean residual sum of squares
and expected mean treatment sum of squares for both.

Neyman (1935) stated that, under the null hypothesis
of zero average treatment effects (Neyman’s null hy-
pothesis), the expected mean residual sum of squares
equals the expected mean treatment sum of squares
for RCBs, whereas the expected mean residual sum of
squares is less than or equal to the expected mean treat-
ment sum of squares for LSs, with equality holding un-
der special cases, such as Fisher’s sharp null hypothe-
sis of no individual treatment effects. From this com-
parison of the expected mean residual and treatment
sums of squares, Neyman concluded that the standard
ANOVA F-test for RCBs was “unbiased,” whereas the
corresponding test for LSs was “biased,” potentially
detecting differentiation among the treatments, when
none existed on average, more often than desired (i.e.,
having a higher Type I error than advertised under Ney-
man’s null):

In the case of the Randomized Blocks the
position is somewhat more favourable to the
z test [i.e., the F-test], while in the case of
the Latin Square this test seems to be biased,
showing the tendency to discover differenti-
ation when it does not exist. It is probable
that the disturbances mentioned are not im-
portant from the point of view of practical
applications. (Neyman, 1935, page 114)

Fisher’s fury at Neyman’s assertions is evident in his
transcribed response:

Professor R. A. Fisher, in opening the dis-
cussion, said he had hoped that Dr. Ney-
man’s paper would be on a subject with
which the author was fully acquainted, and
on which he could speak with authority . . . .
Since seeing the paper, he had come to
the conclusion that Dr. Neyman had been
somewhat unwise in his choice of topics.
. . . Apart from its theoretical defects, Dr.
Neyman appears also to have discovered
that it [the LS] was, contrary to general be-
lief, a less precise method of experimen-
tation than was supplied by Randomized
Blocks, even in those cases in which it had
hitherto been regarded as the more precise
design. It appeared, too, that they had to
thank him, not only for bringing these dis-
coveries to their notice, but also for con-
cealing them from public knowledge until

such time as the method should be widely
adopted in practice! . . . I think it is clear to
everyone present that Dr. Neyman has mis-
understood the intention . . . of the z test and
of the Latin Square and other techniques de-
signed to be used with that test. Dr. Neyman
thinks that another test would be more im-
portant. I am not going to argue that point.
It may be that the question which Dr. Ney-
man thinks should be answered is more im-
portant than the one I have proposed and
attempted to answer. I suggest that before
criticizing previous work it is always wise
to give enough study to the subject to un-
derstand its purpose. Failing that it is surely
quite unusual to claim to understand the
purpose of previous work better than its au-
thor. (Fisher, 1935, pages 154, 155, 173)

Although Fisher reacted in an intemperate manner,
his discussion nevertheless hints at errors in Neyman’s
calculations. In fact, Fisher was the sole discussant
who identified an incorrect equation (27), in Neyman’s
appendix:

Then how had Dr. Neyman been led by his
symbolism to deceive himself on so sim-
ple a question? . . . Equations (13) and (27)
of his appendix showed that the quantity
which Dr. Neyman had chosen to call σ 2 did
not contain the same components of error
as those which affected the actual treatment
means, or as those which contributed to the
estimate of error. (Fisher, 1935, page 156)

Neyman in fact made a crucial algebraic mistake
in his appendix, and his expressions for the expected
mean residual sum of squares for both designs are gen-
erally incorrect. We present the correct expressions in
Sections 2.1 and 2.3, and provide an interpretation of
these formulae in Section 2.5. As we shall see, if one
subscribes to Neyman’s suggestion that a comparison
of expected mean sums of squares determines Type I
errors when testing Neyman’s null, then the F-test for
RCBs is predictably wrong, whereas the F-test for LSs
is unpredictably wrong.

However, Neyman’s suggestion is generally incor-
rect. We present in Section 3.2 simple examples of LSs
for which Neyman’s null holds and the expected mean
residual sum of squares equals the expected mean treat-
ment sum of squares, yet the Type I error of the F-test is
smaller than nominal. Such examples lead to the gen-
eral result that, for any size RCB or LS, Type I errors
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are not dictated by a simple comparison of expected
sums of squares without further conditions.

A cacophony of commentary on this controversy ex-
ists in the literature, and we compiled the most rel-
evant articles in Sections 2.2, 2.4 and 3.1. Our re-
sults agree with similar calculations made by Wilk
(1955) and Wilk and Kempthorne (1957). A major dif-
ference is that we work in a more general setting of
Neyman’s framework, whereas others [especially Wilk
(1955)] tend to make further assumptions on the po-
tential outcomes, albeit assumptions possibly justified
by applied considerations. Furthermore, although Wilk
and Kempthorne (1957) extend Neyman’s framework
to consider random sampling of rows, columns and
treatment levels from some larger population for LSs,
their ultimate suggestion that the expected mean resid-
ual sum of squares is larger than the expected mean
treatment sum of squares is not generally true. A differ-
ent parametrization of similar quantities, used in Sec-
tion 2.5, reveals how the inequality could go in either
direction.

This controversy had substantial consequences for
the subsequent development of statistics for experi-
mental design. As we discuss in Section 4.1, deep is-
sues arising from this disagreement led to a shift from
potential outcomes to additive models for observed
outcomes in experiments, seriously limiting the scope
of inferential tools and reasoning. Our ultimate goal in
this historical study is not simply to correct Neyman’s
algebra. Instead, we wish to highlight the genesis of
the current approach to experimental design resulting
from this controversy, which is based on linear models
and other simple regularity conditions on the potential
outcomes that are imprecise without applied contexts.

2. CONTROVERSIAL CALCULATIONS

2.1 Randomized Complete Block Designs: Theory

We first consider RCBs with N blocks, indexed by i,
and T treatments, indexed by t , with each block having
T experimental units, indexed by j = 1, . . . , T . Treat-
ments are assigned randomly to units in a block, and
are applied independently across blocks (Hinkelmann
and Kempthorne, 2008, Chapter 9). Although our re-
sults hold for general RCB designs, we adopt the same
context as Neyman: blocks represent physical blocks
of land on a certain field, and we compare agricultural
treatments that may affect crop yield, for example, fer-
tilizers.

We explicitly define treatment indicators W =
{Wij (t)} as

Wij (t)

=
{

1, if unit j in block i is assigned treatment t,

0, otherwise.

Neyman (1935) specified the potential outcomes as

xij (t) = Xij (t) + εij (t),

where Xij (t) ∈ R are unknown constants represent-
ing the “mean yield” of unit j in block i under treat-
ment t , and εij (t) ∼ [0, σ 2

ε ] are mutually independent
and identically distributed (i.i.d.) “technical errors,” in-
dependent of the random variables W. This framework
for the potential outcomes, excluding the εij (t), is sim-
ilar to that presented in Neyman’s 1923 dissertation
(Splawa-Neyman, 1990).

Neyman [(1935), pages 110, 114, 145] stated that
technical errors represent inaccuracies in the experi-
mental technique, for example, inaccuracies in measur-
ing crop yield, and assumed that technical errors are
Normal random variables. We find these technical er-
rors rather obscure, but their inclusion does not alter
our conclusions. To summarize, in Neyman’s specifi-
cation there are two sources of randomness: the uncon-
founded assignment mechanism (Rubin, 1990), that is,
the random assignment of treatments to plots speci-
fied by the distribution on W, and the technical errors
εij (t).

Potential outcomes are decomposed by Neyman
[(1935), page 111] into

xij (t) = X̄··(t) + Bi(t) + ηij (t) + εij (t),(2.1)

where

X̄··(t) = 1

NT

N∑
i=1

T∑
j=1

Xij (t),

Bi(t) = X̄i·(t) − X̄··(t),
ηij (t) = Xij (t) − X̄i·(t),

with

X̄i·(t) = 1

T

T∑
j=1

Xij (t).

Neyman describes Bi(t) as a correction for the spe-
cific fertility of the ith block, and ηij (t) as a correc-
tion for fertility variation within the block or, alter-
natively, the soil error. Hinkelmann and Kempthorne
[(2008), page 300] refer to terms such as ηij (t) as unit-
treatment interactions, but they distinguish between
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strict unit-treatment interactions and block-treatment
interactions. For strict unit-treatment interaction, treat-
ment effects depend on the experimental unit, in the
sense that for two treatments t, t ′ and experimental
units j, j ′ in a block i,

Xij (t) − Xij

(
t ′

) �= Xij ′(t) − Xij ′
(
t ′

)
.

Block-treatment interactions are characterized by treat-
ment effects depending on the block, in the sense that
for two treatments t, t ′, experimental units j, j ′, j ′′,
j ′′′, and blocks i, i′,

Xij (t) − Xij ′
(
t ′

) �= Xi′j ′′(t) − Xi′j ′′′′
(
t ′

)
.

As pointed out by a referee, allowing fertility variation
to depend on treatment t was a unique contribution by
Neyman and was never recognized in the discussion
by Fisher, who focused on his sharp null hypothesis
(described next), under which the corrections do not
depend on t .

The purpose of the local field experiment, as de-
scribed by Neyman [(1935), page 111] is to compare
the X̄··(t) for t = 1, . . . , T , each of which represents
the average mean yield when one treatment t is ap-
plied to all plots in the field, a conceptual experiment.
As stated in the discussion, and later by Welch [(1937),
page 23] Neyman does not test Fisher’s sharp null hy-
pothesis of zero individual treatment effects, that is
(when excluding technical errors),

H #
0 :Xij (t) = Xij

(
t ′

)
∀i = 1, . . . ,N; j = 1, . . . , T ; t �= t ′.

Instead, Neyman sought to test the more general null
hypothesis

H0 : X̄··(1) = · · · = X̄··(T ),

referred to throughout as Neyman’s null hypothesis:

I am considering problems which are impor-
tant from the point of view of agriculture.
And from this viewpoint it is immaterial
whether any two varieties react a little dif-
ferently to the local differences in the soil.
What is important is whether on a larger
field they are able to give equal or different
yields. (Neyman, 1935, page 173)

If the treatment effects are additive across all units, that
is,

Xij (t) = Uij + τ(t)

∀i = 1, . . . ,N; j = 1, . . . , T ; t = 1, . . . , T ,

then testing Neyman’s null is equivalent to testing
Fisher’s sharp null.

The observed yield of the plot assigned treatment t

in block i is

yi(t) =
T∑

j=1

Wij (t)xij (t),

and the observed average yield for all plots assigned
treatment t is

ȳ·(t) = 1

N

N∑
i=1

yi(t).

Neyman [(1935), page 112] noted that an unbiased es-
timator for the difference between average treatment
means, X̄··(t) − X̄··(t ′), is ȳ·(t) − ȳ·(t ′), and correctly
calculated its sampling variance over its randomization
distribution as

Var
{
ȳ·(t) − ȳ·

(
t ′

)} = 2σ 2
ε

N
+ σ 2

η (t) + σ 2
η (t ′)

N

+
2r(t, t ′)

√
σ 2

η (t)σ 2
η (t ′)

N(T − 1)
,

where

σ 2
η (t) = 1

NT

N∑
i=1

T∑
j=1

ηij (t)
2,

r
(
t, t ′

) =
∑N

i=1
∑T

j=1 ηij (t)ηij (t
′)

NT
√

σ 2
η (t)σ 2

η (t ′)
.

Neyman [(1935), page 145] assumed that σ 2
η (t) and

r(t, t ′) are constant functions of t, t ′ only to save space
and simplify later expressions; this particular set of
assumptions appears to have been made purely for
mathematical simplicity, and is not driven by any ap-
plied considerations, unlike assumptions made by Wilk
(1955) and Wilk and Kempthorne (1957) (described in
Sections 2.2 and 2.4).

Neyman then calculated expectations of mean resid-
ual sum of squares and mean treatment sum of squares,
expressed in our notation as (resp.)

S2
0 = 1

(N − 1)(T − 1)

×
N∑

i=1

T∑
t=1

{
yi(t) − ȳ·(t) − ȳi(·) + ȳ·(·)}2

and

S2
1 = N

T − 1

T∑
t=1

{
ȳ·(t) − ȳ·(·)}2

.
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As proven in our appendix (Sabbaghi and Rubin,
2014), the expectations are

E
(
S2

0
) = σ 2

ε + 1

T

T∑
t=1

σ 2
η (t)

+ 1

T (T − 1)2

∑
t �=t ′

r
(
t, t ′

)√
σ 2

η (t)σ 2
η

(
t ′

)

+ 1

(N − 1)(T − 1)

N∑
i=1

T∑
t=1

{
Bi(t) − B̄i(·)}2

and

E
(
S2

1
) = σ 2

ε + 1

T

T∑
t=1

σ 2
η (t)

+ 1

T (T − 1)2

∑
t �=t ′

r
(
t, t ′

)√
σ 2

η (t)σ 2
η

(
t ′

)

+ N

T − 1

T∑
t=1

{
X̄··(t) − X̄··(·)}2

.

Neyman [(1935), pages 147–150] correctly calcu-
lated the expected mean treatment sum of squares, but
made a mistake when calculating the expected mean
residual sum of squares. His incorrect expression is
equation (27) on page 148. Sukhatme [(1935), page
166] his Ph.D. student at the University of London, in-
correctly calculated the expectation for the general case
when σ 2

η (t) and r(t, t ′) are not constant in t, t ′, and the
corresponding incorrect expression is his equation (3):

σ 2
ε + 1

T

T∑
t=1

σ 2
η (t)

+ 1

T (T − 1)2

∑
t �=t ′

r
(
t, t ′

)√
σ 2

η (t)ση

(
t ′

)
.

To see why the last term in E(S2
0) is missing in these

equations, note that the expression within the brackets
of S2

0 can be written as the sum of the three terms

Bi(t) − B̄i(·),
T∑

j=1

Wij (t)ηij (t) − 1

N

N∑
i=1

T∑
j=1

Wij (t)ηij (t)

− 1

T

T∑
t=1

T∑
j=1

Wij (t)ηij (t)

+ 1

NT

N∑
i=1

T∑
t=1

T∑
j=1

Wij (t)ηij (t)

TABLE 1
Table of potential outcomes for a RCB with E(S2

0 ) > E(S2
1 )

Treatment 1 Treatment 2

Block 1, Plot 1 10 15
Block 1, Plot 2 10 2
Block 2, Plot 1 20 3
Block 2, Plot 2 30 50

and
T∑

j=1

Wij (t)εij (t) − 1

N

N∑
i=1

T∑
j=1

Wij (t)εij (t)

− 1

T

T∑
t=1

T∑
j=1

Wij (t)εij (t)

+ 1

NT

N∑
i=1

T∑
t=1

T∑
j=1

Wij (t)εij (t).

Neyman’s equation (17) is missing the first term
Bi(t) − B̄i(·), which is not necessarily equal to zero,
and was never explicitly declared to be zero by Ney-
man.

Consequently, under Neyman’s null, the expected
mean residual sum of squares is greater than or equal
to the expected mean treatment sum of squares, with
equality holding if and only if for each block i, Bi(t)

is constant across treatments t . Alternatively, equality
holds under Fisher’s sharp null. If one accepts Ney-
man’s logic regarding “unbiased tests” (discussed in
Section 3.1), then the correct expressions for the ex-
pectations of mean squares suggest that the standard
ANOVA F-test for RCBs has a Type I error bounded
above by its nominal level.

A simple example makes this concrete. Suppose
N = T = 2 and σ 2

ε = 0, with the potential outcomes in
Table 1. Note that X̄··(1) = X̄··(2), so Neyman’s null
is satisfied. We calculate E(S2

0) = 215.875,E(S2
1) =

213.625, and

E
(
S2

0
) −E

(
S2

1
) = 2.25 =

2∑
i=1

2∑
t=1

{
Bi(t) − B̄i(·)}2

.

2.2 Randomized Complete Block Designs: After
the Controversy

Neyman’s potential outcomes framework is simi-
lar to the “conceptual yield” framework developed
by Kempthorne (1952, 1955). Certain features of
these two are only cosmetically different: for example,
Kempthorne [(1952), page 137] and later Hinkelmann
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and Kempthorne [(2008), page 280] represent treat-
ment indicators by δk

ij (with k denoting treatment level)
and potential outcomes as yijk . As emphasized by a
referee, using treatment indicators as random variables
provides a mathematical foundation for the random-
ization theory of Fisher (1971), connecting potential
outcomes with observed responses.

An important difference between Neyman and
Kempthorne concerns the notion of technical errors.
Hinkelmann and Kempthorne [(2008), page 161] make
a distinction between experimental and observational
errors, and include separate terms for each, allowing
them to depend on treatment. Neyman effectively only
considers their sum when defining technical errors,
which may be a source of confusion. Of course, Ney-
man’s results were for local field experiments, in which
case he might not have considered it necessary to in-
troduce observational errors arising from random sam-
pling of experimental units from some larger popula-
tion.

Kempthorne (1952) made an interesting comment
relating to Fisher’s sharp null, Neyman’s null and Ney-
man’s notation for technical errors:

If the experimenter is interested in the more
fundamental research work, Fisher’s null
hypothesis is more satisfactory, for one
should be interested in discovering the fact
that treatments have different effects on dif-
ferent plots and in trying to explain why
such differences exist. It is only in techno-
logical experiments designed to answer spe-
cific questions about a particular batch of
materials which is later to be used for pro-
duction of some sort that Neyman’s null hy-
pothesis appears satisfactory . . . Neyman’s
hypothesis appears artificial in this respect,
that a series of repetitions is envisaged,
the experimental conditions remaining the
same but the technical errors being differ-
ent. (Kempthorne, 1952, page 133)

Furthermore, Kempthorne [(1952), pages 145–151]
correctly noted (in agreement with our results in Sec-
tion 2.5) that block-treatment interactions must be zero
in order for E(S2

0) = E(S2
1) under Neyman’s null, also

known as unbiasedness of a design in the Yates (1939)
sense. As Kempthorne stated in a later article:

For the case of randomized blocks it is
found that block treatment interactions must
be zero in order that the design be unbi-
ased in Yates’s sense. . . . It does not ap-

pear to be at all desirable to section the ex-
perimental material into ordinary random-
ized blocks, of . . . highly different fertili-
ties (or basal yields) because this procedure
is likely to lead to block treatment interac-
tions. (Kempthorne, 1955, page 964)

Additivity of treatment effects was not invoked by
Neyman, and nonadditivity for RCBs was investi-
gated later (Tukey, 1949; Kempthorne, 1955; Wilk,
1955; Mandel, 1961). Perhaps the most substantial
work, in the same direction as Neyman, was done by
Wilk (1955), who extended the results of Kempthorne
[(1952), pages 145–151] for RCBs to the case of gen-
eralized randomized blocks. Wilk studied randomiza-
tion moments of mean sums of squares, estimation of
various finite-population estimands and Normal theory
approximations for testing Fisher’s sharp null and Ney-
man’s null. He also distinguished between experimen-
tal error, that is, the failure of different experimental
units treated alike to respond identically, and technical
error, or limitations on experimental technique that pre-
vent the exact reproduction of an applied treatment. To
us, this use of notation confuses mathematical deriva-
tions and practical interpretations of symbols.

More importantly, although Wilk made assumptions
on the potential outcomes (consequently not work-
ing in our more general setting), he attempted to jus-
tify them as physically relevant, as opposed to Ney-
man, who only made assumptions to facilitate calcu-
lations. For example, when translating Wilk’s notation
into Neyman’s, we see that Wilk [(1955), page 72] ex-
plicitly considered the physical situation that, if the
blocking of experimental units is successful, then the
ηij (t) − η̄ij (·) will be negligible for all i, j, t , whereas
block-treatment interactions Bi(t) − B̄i(·) would be
important, in the sense of varying with t . When units in
a block are as homogeneous as possible with respect to
background covariates, the assumption of no strict unit-
treatment interactions becomes more plausible, simi-
lar to the plausibility of zero partial correlation among
potential outcomes given all measured covariates. Ac-
cordingly, block-treatment interactions become more
important. A referee made a similar comment, remark-
ing that for agronomic experiments, it is reasonable to
assume that the ηij (t) are negligible, whereas in situ-
ations such as medical experiments involving human
subjects, this may no longer be true.

Wilk’s explicit physical consideration is used to jus-
tify his assumption (stated without further explanation
by Hinkelmann and Kempthorne [(2008), page 301] in
their description of the general model for RCBs) that
treatments react additively within a block but can react
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nonadditively from block-to-block, that is,{
Xij (t) − X̄ij (·)} − {

X̄i·(t) − X̄i·(·)} = ηij (t) − η̄ij (·)
= 0

for all i, j, t , even though

Bi(t) − B̄i(·) �= 0

for at least one pair (i, t). Wilk [(1955), page 73] then
stated that, if

ηij (t) − η̄ij (·) �= 0

for at least one triple (i, j, t), then the expected mean
treatment sum of squares is not equal to the expected
mean residual sum of squares under Neyman’s null.
Hinkelmann and Kempthorne [(2008), page 301] when
summarizing Wilk’s work, noted that the expected
mean residual sum of squares for RCB designs con-
tains the interaction between blocking and treatment
factors, similar to our result.

2.3 Latin Square Designs: Theory

It was in his treatment of LSs that Neyman’s error
substantially changes conclusions. We consider T × T

LSs with rows and columns denoting levels of two
blocking factors, for example, north–south and east–
west. Our treatment indicators are

Wij (t) =
⎧⎨
⎩

1, if the unit in row i, column j,

is assigned treatment t ,
0, otherwise.

Neyman specified the potential outcomes as

xij (t) = Xij (t) + εij (t),

with Xij (t) ∈ R unknown constants representing the
“mean yield” of the unit in cell (i, j) under treatment t ,
and εij (t) ∼ [0, σ 2

ε ] technical errors that are i.i.d. and
independent of W. Potential outcomes were then de-
composed into

xij (t) = X̄··(t) + Ri(t) + Cj(t)
(2.2)

+ ηij (t) + εij (t),

where

Ri(t) = X̄i·(t) − X̄··(t),
Cj (t) = X̄·j (t) − X̄··(t),
ηij (t) = Xij (t) − X̄i·(t) − X̄·j (t) + X̄··(t).

Similar to RCBs, Neyman described Ri(t) and Cj(t) as
corrections for specific soil fertility of the ith row and
j th column, respectively, and ηij (t) as the soil error for
plot (i, j) under treatment t .

We define x̄o··(t) as the observed average yield for
plots assigned treatment t ,

x̄o··(t) = 1

T

T∑
i=1

T∑
j=1

Wij (t)xij (t).

Neyman (1935) correctly noted that E{x̄o··(t) −
x̄o··(t ′)} = X̄··(t) − X̄··(t ′) and that

Var
{
x̄o··(t) − x̄o··

(
t ′

)}
= 2σ 2

ε

T
+ σ 2

η (t) + σ 2
η (t ′)

T − 1

+
2r(t, t ′)

√
σ 2

η (t)σ 2
η (t ′)

(T − 1)2 .

Neyman then calculated the expected mean sums of
squares. The mean residual and treatment sums of
squares are defined as (resp.)

S2
0 = 1

(T − 1)(T − 2)

×
T∑

i=1

T∑
j=1

{
yij − ȳi· − ȳ·j

−
T∑

t=1

Wij (t)x̄
o··(t) + 2ȳ··

}2

and

S2
1 = T

T − 1

T∑
t=1

{
x̄o··(t) − ȳ··

}2
,

with yij = ∑T
t=1 Wij (t)xij (t) the observed response of

cell (i, j), and

ȳi· = 1

T

T∑
j=1

yij ,

ȳ·j = 1

T

T∑
i=1

yij ,

ȳ·· = 1

T

T∑
j=1

ȳ·j = 1

T

T∑
i=1

ȳi·

We prove in our appendix (Sabbaghi and Rubin, 2014)
that the correct expectations are

E
(
S2

0
) = σ 2

ε + T − 2

(T − 1)2

T∑
t=1

σ 2
η (t)

+ 2

(T − 1)3

∑
t �=t ′

r
(
t, t ′

)√
σ 2

η (t)σ 2
η

(
t ′

)
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+ 1

T (T − 1)2

T∑
i=1

T∑
j=1

T∑
t=1

[{
Ri(t) − R̄i(·)}2

+ {
Cj(t) − C̄j (·)}2]

and

E
(
S2

1
) = σ 2

ε + 1

T − 1

T∑
t=1

σ 2
η (t)

+ 1

(T − 1)3

∑
t �=t ′

r
(
t, t ′

)√
σ 2

η (t)σ 2
η

(
t ′

)

+ T

T − 1

T∑
t=1

{
X̄··(t) − X̄··(·)}2

.

Neyman [(1935), page 152] made a similar mistake
as he did for RCBs, excluding

Ri(t) + Cj(t) − R̄i(·) − C̄j (·)
in a simplified expression for the term inside the brack-
ets of S2

0 in his equation (50). In effect, Neyman once
again excluded corrections for soil fertility, as it is not
necessarily true (nor stated explicitly) that Ri(t) is con-
stant in t for all rows i and that Cj(t) is constant in t

for all columns j . Sukhatme [(1935), page 167] made
a similar mistake for the case when σ 2

η (t) and r(t, t ′)
are not constant in t, t ′.

After incorrectly calculating the expected mean
residual sum of squares, Neyman stated that the ex-
pected mean residual sum of squares was less than or
equal to the expected mean treatment sum of squares
under Neyman’s null (Neyman, 1935, page 154), with
equality only under special cases, such as Fisher’s
sharp null. Based on this observation, Neyman con-
jectured that the standard ANOVA F-test for LSs is po-
tentially invalid in the sense of having a higher Type I
error than nominal, that is, rejecting more often than
desired under Neyman’s null.

However, the expected mean residual sum of squares
is not necessarily less than the expected mean treat-
ment sum of squares under Neyman’s null. In fact, the
inequality could go in either direction. We describe in
Section 2.5 how the inequality depends on interactions
between row/column blocking factors and the treat-
ment.

Two examples of LSs with T = 3, σ 2
ε = 0, and

X̄··(1) = X̄··(2) = X̄··(3) (i.e., Neyman’s null) demon-
strate this fact. In Tables 2 and 3, each unit’s poten-
tial outcomes are represented by an ordered triple, with

TABLE 2
Table of potential outcomes for a LS with E(S2

0 ) > E(S2
1 )

Column 1 Column 2 Column 3

Row 1 (3,10,15) (50,30,13) (20,20,40)

Row 2 (10,13,50) (20,40,3) (30,15,20)

Row 3 (13,3,20) (15,20,10) (40,50,30)

the t th coordinate denoting the potential outcome un-
der treatment t . For Table 2, E(S2

0) = 252.07,E(S2
1) =

172.38. From our formulae,

E
(
S2

0
) −E

(
S2

1
)

= − 1

(T − 1)2

T∑
t=1

σ 2
η (t)

+ 1

(T − 1)3

∑
t �=t ′

r
(
t, t ′

)√
σ 2

η (t)σ 2
η

(
t ′

)

+ 1

T (T − 1)2

T∑
i=1

T∑
j=1

T∑
t=1

[{
Ri(t) − R̄i(·)}2

+ {
Cj(t) − C̄j (·)}2]

.

We verify by explicit randomization that the dis-
crepancy E(S2

0) − E(S2
1) = 79.69 equals this expres-

sion, so that this is one LS for which the expected
mean residual sum of squares is greater than the ex-
pected mean treatment sum of squares. The inequal-
ity is in the other direction for Table 3, with E(S2

0) =
4.96,E(S2

1) = 6.77.

2.4 Latin Square Designs: After the Controversy

As with RCBs, no additivity assumption is made
on the potential outcomes for LSs. Nonadditivity for
LSs has been further studied in the literature (Gourlay,
1955b; Tukey, 1955; Rojas, 1973). Kempthorne rec-
ognized the issue of interactions between row/column
blocking factors and the treatment factor in a LS (dis-
cussed in the next section):

TABLE 3
Table of potential outcomes for a LS with E(S2

0 ) < E(S2
1 )

Column 1 Column 2 Column 3

Row 1 (7,4,8) (5,9,4) (6,6,5)

Row 2 (8,5,6) (3,3,3) (2,2,7)

Row 3 (1,8,2) (4,7,9) (9,1,1)
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It is clear that, if there are row-treatment
or column-treatment interactions, these will
enter into the error mean square but not
into the treatment mean square. The situa-
tion is entirely analogous to that of random-
ized blocks in that block-treatment interac-
tions enter the error mean square but not the
treatment mean square. (Kempthorne, 1952,
page 195)

Kempthorne [(1952), page 204] continued by noting a
defect of large LSs, namely, that there are more oppor-
tunities for row/column interactions with treatments.

A substantial investigation in the spirit of Neyman
was perfomed by Wilk and Kempthorne (1957), and is
briefly summarized by Hinkelmann and Kempthorne
[(2008), page 387]. Wilk and Kempthorne [(1957),
page 224] adopt the same specification of potential out-
comes as Neyman (1935), allowing technical errors to
differ based on treatment level k:

yijk = Yijk + εijk.

One difference that makes the conceptual yield frame-
work of Wilk and Kempthorne more general is that
they consider randomly sampling rows, columns and
treatments from some larger population. In any case,
Wilk and Kempthorne [(1957), page 227] reach the
reverse conclusion as Neyman, stating that, usually,
the expected mean residual sum of squares is larger
than the expected mean treatment sum of squares.
Wilk and Kempthorne [(1957), page 227] explain this
difference and the fact that Neyman did not recog-
nize interactions between row/column blocking factors
and the treatments, by noting that Neyman [(1935),
page 145] made additional homogeneity assumptions.
However, Neyman’s assumptions were invoked solely
to facilitate calculations and had no physical justifica-
tions.

Our results are in agreement with a summary of
their work in Table 3 from Wilk and Kempthorne
[(1957), page 226]. Thus, it appears that Wilk and
Kempthorne do not seriously consider the possibil-
ity that the inequality could go in the direction Ney-
man claimed. In fact, Hinkelmann and Kempthorne
[(2008), page 387] when summarizing this paper, ex-
plicitly state that the expected mean residual sum of
squares is larger than the expected mean treatment sum
of squares under Neyman’s null. A possible explana-
tion can be found in the sixth remark on page 227,
where Wilk and Kempthorne discuss how the standard
approach to designing LSs may likely result in interac-
tions of row/column blocking factors with treatments.

As explained in our next section, the magnitudes of
these interactions ultimately drive the direction of the
inequality.

Cox (1958) built on the work of Wilk and
Kempthorne, and provided a rather unique viewpoint
on this entire problem. After first summarizing Wilk
and Kempthorne’s results by stating that it is usu-
ally the case that the expected mean residual sum of
squares is larger than the expected mean treatment sum
of squares, Cox then considered the practical impor-
tance of this difference of expectations, which he cor-
rectly recognized as being related to interactions be-
tween the treatment and blocking factors. Cox [(1958),
page 73] raised the thought-provoking question of
whether, for a LS, the practical scientific interest of
the null

H0 :E
(
S2

0
) = E

(
S2

1
)

is comparable to, or greater than, Neyman’s null, es-
pecially when the difference between these expected
mean sums of squares is considered important. He con-
cluded that testing Neyman’s null when there is no
unit-treatment additivity does not seem to be help-
ful:

. . . if substantial variations in treatment ef-
fect from unit to unit do occur, one’s un-
derstanding of the experimental situation
will be very incomplete until the basis of
this variation is discovered and any exten-
sion of the conclusions to a general set of
experimental units will be hazardous. The
mean treatment effect, averaged over all
units in the experiment, or over the finite
population of units from which they are ran-
domly drawn, may in such cases not be
too helpful. Particularly if appreciable sys-
tematic treatment-unit interactions are sus-
pected, the experiment should be set out so
these may be detected and explained. (Cox,
1958, page 73)

Cox [(2012), page 3] later argued that when this
more realistic null is formulated, the biases described
earlier disappear, and so do issues surrounding the LS.
A related point for the LS design noted by Cox is
the marginalization principle, in which models hav-
ing nonzero interactions and zero main effects are
not considered sensible [similar to the effect hered-
ity principle (Wu and Hamada, 2009, page 173)]. Box
(1984), when commenting on Cox (1984), provided
an opposing view that makes such a principle context-
dependent.
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2.5 Block-Treatment Interactions and Expected
Sums of Squares

Neyman excluded the following (respective) terms in
E(S2

0) for RCBs and LSs:

1

(N − 1)(T − 1)

N∑
i=1

T∑
t=1

{
Bi(t) − B̄i(·)}2

,

1

(T − 1)2

T∑
i=1

T∑
t=1

{
Ri(t) − R̄i(·)}2

+ 1

(T − 1)2

T∑
j=1

T∑
t=1

{
Cj(t) − C̄j (·)}2

.

In each, we are adding squared differences between the
fertility correction for a specific combination of block
and treatment levels, and the average (over treatments)
fertility correction for the same block level. For the LS,
this is decomposed as a sum over the row and a sum
over the column blocking factors.

Formally, these terms gauge whether, for each level
of a blocking factor, the fertility corrections are con-
stant over the treatments, and represent interactions be-
tween blocking factors and treatments. For RCBs, we
have

Bi(t) − B̄i(·) = {
X̄i·(t) − X̄i·(·)} − {

X̄··(t) − X̄··(·)},
which is the interaction between the ith block and the
t th treatment in terms of potential outcomes. Similarly,
we have for LSs that

Ri(t) − R̄i(·) = {
X̄i·(t) − X̄i·(·)} − {

X̄··(t) − X̄··(·)},
Cj (t) − C̄j (·) = {

X̄·j (t) − X̄·j (·)} − {
X̄··(t) − X̄··(·)},

which are the interactions between the ith row and t th
treatment, and the j th column and the t th treatment,
respectively, in terms of potential outcomes.

Intuitively, these interactions, which are functions of
potential outcomes, should reside within the expecta-
tion of the mean residual sum of squares. Without in-
voking additivity on the potential outcomes, these in-
teractions are not necessarily zero and, because we lack
replications within blocks for either RCB or LS de-
signs, we cannot form an interaction sum of squares
from the observed data, so that the potential outcome
interactions will instead be included in the expecta-
tion of the mean residual sum of squares (Fisher, 1971,
Chapters IV, V). In contrast, for randomized block de-
signs that include replications within each block, this
interaction term is no longer present in the expected
mean residual sum of squares.

To better understand the expected mean sums of
squares for LSs, consider their difference under Ney-
man’s simplifying assumption that σ 2

η (t) and r(t, t ′)
are constant, so that σ 2

η (t) = σ 2
η and r(t, t ′) = r for all

treatments t, t ′. Then the difference between E(S2
0) and

E(S2
1) under Neyman’s null is

T∑
i=1

T∑
t=1

{
Ri(t) − R̄i(·)}2

+
T∑

j=1

T∑
t=1

{
Cj(t) − C̄j (·)}2 − T σ 2

η (1 − r),

and this expression, in some sense, measures the dif-
ference between row/column interactions with treat-
ment and the variance of the potential outcome residual
terms (scaled by the number of treatments, T , times
one minus the correlation between potential outcome
residual terms for different pairs of treatments). Note
that 0 ≤ 1 − r ≤ 2, so 0 ≤ T σ 2

η (1 − r) ≤ 2T σ 2
η .

To interpret the difference in expectations for the
general case, first note that

T∑
i=1

T∑
j=1

η̄ij (·)2 ≥ 0 ⇒

T∑
t=1

σ 2
η (t) ≥ − ∑

t �=t ′
r
(
t, t ′

)√
σ 2

η (t)σ 2
η

(
t ′

)
.

As such, E(S2
0) − E(S2

1) under Neyman’s null is
bounded from below by

1

(T − 1)2

T∑
i=1

T∑
t=1

{
Ri(t) − R̄i(·)}2

+ 1

(T − 1)2

T∑
j=1

T∑
t=1

{
Cj(t) − C̄j (·)}2

− T

(T − 1)3

T∑
t=1

σ 2
η (t),

so that, if

T∑
i=1

T∑
t=1

{
Ri(t) − R̄i(·)}2 +

T∑
j=1

T∑
t=1

{
Cj(t) − C̄j (·)}2

− T

T − 1

T∑
t=1

σ 2
η (t) ≥ 0,

then E(S2
0) ≥ E(S2

1). Even in the most general case for
LSs, E(S2

0) − E(S2
1) can still be interpreted as a com-
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parison between row/column interactions with treat-
ment and the (scaled) sum of variances of residual po-
tential outcomes ηij (t).

In the context of an agricultural experiment, we ob-
tain a more meaningful interpretation for this differ-
ence. Latin squares are implemented to block on fertil-
ity gradients in two direction (Neyman, 1935; Fisher,
1971, Chapter V; Hinkelmann and Kempthorne, 2008,
Chapter 10). If the variability of specific soil fertil-
ity corrections across rows and columns (i.e., interac-
tions between rows/columns and treatments) are sub-
stantially larger than the residual variability of the po-
tential outcomes [i.e., the variability of the ηij (t)], then
E(S2

0) − E(S2
1) is larger than zero. An example was

given in Table 2, where

T∑
i=1

T∑
t=1

{
Ri(t) − R̄i(·)}2 +

T∑
j=1

T∑
t=1

{
Cj(t) − C̄j (·)}2

= 569.93,

−
T∑

t=1

σ 2
η (t) = −313.56,

1

T − 1

∑
t �=t ′

r
(
t, t ′

)√
σ 2

η (t)σ 2
η

(
t ′

) = 62.41.

The interaction is nearly twice the variability of the
residual potential outcomes, and so the difference
E(S2

0) −E(S2
1) is greater than zero. For Table 3,

T∑
i=1

T∑
t=1

{
Ri(t) − R̄i(·)}2 +

T∑
j=1

T∑
t=1

{
Cj(t) − C̄j (·)}2

= 9.48,

−
T∑

t=1

σ 2
η (t) = −14.59,

1

T − 1

∑
t �=t ′

r
(
t, t ′

)√
σ 2

η (t)σ 2
η

(
t ′

) = −2.11,

and the variance of the residuals completely dominates
the interaction.

Hence, E(S2
0) > E(S2

1) in the presence of a strong
fertility gradient, with the interaction between row/
column blocking factors and treatment greater than the
variance of the residual potential outcomes or, alterna-
tively, when the unit-treatment interactions are negligi-
ble. Similarly, E(S2

0) < E(S2
1) in cases where no strong

interaction exists between row/column blocking fac-
tors and the treatment when compared to the variabil-
ity of the residual potential outcomes or, alternatively,

when the unit-treatment interactions are substantial. It
is important to recognize that such important interac-
tions can never be assessed without replication, which
is not available in the original LS design.

3. CONTROVERSIAL CONNECTIONS

3.1 Connecting Expected Mean Sums of Squares
with Type I Error

Neyman (1935) calculated expectations of mean
sums of squares to argue that the standard ANOVA F-
test for RCB designs is valid and the test for LS designs
is invalid when testing Neyman’s null: a test was said to
be “unbiased” if E(S2

0) = E(S2
1) under Neyman’s null

(Neyman, 1935, page 144). The reasoning behind this
definition is not discussed at all and, given our current
understanding of hypothesis testing, seems somewhat
crude. After all, to determine whether a particular test-
ing procedure is “biased,” one typically calculates the
probability of rejecting a true null hypothesis, which
generally depends on the test statistic’s distribution,
not just its expectation.

To better understand the logic potentially driving
Neyman’s reasoning, it is useful to review the testing of
Fisher’s sharp null. A randomization test that uses any
a priori defined test statistic automatically yields the
correct Type I error under Fisher’s sharp null and regu-
larity conditions on the potential outcomes and number
of randomizations. Furthermore, when using the statis-
tic F = S2

1/S2
0 , this randomization distribution is well

approximated by the F-distribution, for both RCB and
LS designs. Welch (1937) calculated the first two mo-
ments of

df1S
2
1

df1S
2
1 + df0S

2
0

= df1F

df1F + df0
,(3.1)

where df1 denotes the degrees of freedom for treat-
ment sum of squares, and df0 the degrees of freedom
for residual sum of squares. Pitman (1938) calculated
the first four moments of this statistic. For both RCB
and LS designs, df1S

2
1 + df0S

2
0 remains constant over

the randomizations under Fisher’s sharp null, making
calculation of the moments of (3.1) much easier than
of F itself. Furthermore, under regularity conditions
on the potential outcomes, it was shown that these
moments are approximately equal to the correspond-
ing moments of a Beta distribution. In this respect,
the standard ANOVA F-test that uses rejection cutoffs
based on the F-distribution has approximately the cor-
rect Type I error, and the F-distribution can be viewed
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as a simple approximation to the randomization distri-
bution of the F-test statistic when testing Fisher’s sharp
null (Kempthorne, 1952, pages 172, 193). Indeed, as
stated by Wilk [(1955), page 77] the amount of com-
putation to perform a randomization test could be pro-
hibitive, and statisticians had little recourse except to
use such approximations. Kempthorne made a similar
remark:

It should be realized that the analysis of
variance test with the F distribution has a
fair basis apart from normal law theory and
is probably in most cases a good approxima-
tion to the randomization analysis of vari-
ance test, which is a nonparametric test.
(Kempthorne, 1955, page 966)

Kempthorne earlier stated that for LSs:

The randomization test for the Latin Square
or for any randomized design is entirely
valid in the sense of controlling Type I er-
rors, but the approximation to this test by
the F-distribution when there is nonaddi-
tivity is apparently completely unknown.
(Kempthorne, 1955, page 965)

As Neyman did not invoke additivity or any other regu-
larity conditions on the potential outcomes, the reason-
ing outlined in the previous paragraph that establishes
the F-distribution as an approximation to the true dis-
tribution of the F-test statistic is no longer valid when
testing Neyman’s null: for example, df1S

2
1 + df0S

2
0

is generally no longer constant over the randomiza-
tions, and calculating moments of equation (3.1) gen-
erally becomes very difficult. Wilk [(1955), page 79]
realized this, remarking that the standard ANOVA F-
test for testing Neyman’s null in RCBs depends on the
assumption that block-treatment interactions are zero.
Wilk and Kempthorne [(1957), page 228] also stated
that the effect of nonadditivity on the Type I error of
the standard ANOVA F-test for a LS is unknown.

Bearing these facts in mind, a comparison of ex-
pected mean residual and treatment sums of squares
could be viewed as a crude way of assessing whether
the Type I error is correct when testing Neyman’s
null using the standard ANOVA F-test. Neyman (1935)
himself may have realized this:

. . . in the case of the Randomized Blocks
the z test may be considered as unbiased in
the sense that the expectations of S2

0 and S2
1

have a common value . . . On the other hand,

by the arrangement in Latin Square the ex-
pectation of S2

1 is equal to 1
2n′σ 2

d , while that
of S2

0 is generally smaller. This suggests, al-
though it does not prove, that by the Latin
Square arrangement the z test may have the
tendency to detect differentiation when it
does not exist. (Neyman, 1935, page 144)

After calculating expected mean sums of squares for
RCBs, Neyman states that

If there is no differentiation among the
X··(k), then E(S2

1) = E(S2
0), and we see that

the test of significance usually applied is un-
biased in the sense that if there is no differ-
entiation, then the values of S2

1 and S2
0 must

be approximately equal. This, of course,
does not prove the validity of Fisher’s z test.
(Neyman, 1935, page 150)

Furthermore, Neyman states that for LSs:

We conclude, therefore, that at present there
is no theoretical justification for the belief
that the z test is valid in the case of the ar-
rangement by the Latin Square: not only is
there the difficulty connected with the non-
normality of the distribution of the η’s, but
also the functions which are usually con-
sidered as unbiased estimates of the same
variance have generally different expecta-
tions. This may (though not necessarily so)
cause a tendency to state significant differ-
entiation when this, in fact, does not exist.
. . . These, of course, are purely theoretical
conclusions, and I am personally inclined to
think that from the practical point of view
the existing bias will prove to be negligible.
(Neyman, 1935, page 154)

This same consideration of expected mean sums of
squares for hypothesis testing continues in the present
literature on experimental design:

It is the form of the expected mean squares,
E[MS(i)], which determines, for example,
how tests of hypotheses are performed and
how error variances are estimated.
(Hinkelmann and Kempthorne, 2008,
page 37)

Also:

In this case, MS(E) is on average larger
than MS(T) under the hypothesis of no
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treatment effects and hence the usual F-
test will lead to fewer significant results. In
this case the LSD is not an unbiased de-
sign. (Hinkelmann and Kempthorne, 2008,
page 387)

It is interesting to note that the specific justification
for this last statement was never made, nor was any
attempt made to calculate explicitly the Type I error.
Even more interesting is how these statements contra-
dict Kempthorne’s earlier position on the connection
between expected mean sums of squares and hypothe-
sis testing (e.g., as given by Kempthorne [(1952), page
149]), for example:

To establish the property of unbiasedness
for this design it is . . . necessary to show that
the expectation over randomizations of the
error mean square resulting from this model
is equal to the mean square among all ob-
servations in the absence of treatment ef-
fects. . . . it should perhaps be noted that this
property has no intrinsic relation to the con-
cept of unbiasedness of a test. (Kempthorne,
1955, page 956)

Wilk and Kempthorne (1957) hold this same position,
stating that:

We accept the view that tests of significance
are evaluatory procedures leading to assess-
ments of strength of evidence against partic-
ular hypotheses, while tests of hypotheses
are decision devices. We are here concerned
with the former, and in this connection it
should be noted that (a) the expectations of
mean squares are in some degree irrelevant
to the exact (permutation) test of signifi-
cance of the null hypothesis that the treat-
ments are identical. (Wilk and Kempthorne,
1957, page 228)

3.2 Concrete Calculations

From Section 2.1, the F-test for RCBs is generally
biased in one direction under Neyman’s conception of
an unbiased test, potentially leading to fewer rejections
under Neyman’s null. Furthermore, because we do not
make any assumptions about the difference between
the interactions of rows/columns with treatment and
the residual variances in Section 2.3, we actually can-
not claim that the F-test for LSs is biased in any one
direction. A more rigorous justification for the “unbi-
asedness” of the F-test for either design would com-
pare the actual distribution of the F-test statistic to the

TABLE 4
Table of potential outcomes for a 4 × 4 LS, with E(S2

0 ) = E(S2
1 )

Column 1 Column 2 Column 3 Column 4

Row 1 (1,1,1,1) (0,0,0,0) (0,0,0,0) (0,0,0,0)

Row 2 (0,0,0,0) (1,1,1,1) (0,0,0,0) (0,0,0,0)

Row 3 (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)

Row 4 (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)

associated F-distribution. By determining whether the
distribution of F = S2

1/S2
0 is adequately approximated

by the F-distribution under Neyman’s null, one would
be able to conclude whether the Type I error is approx-
imately as advertised.

We performed this comparison for various RCBs
and LSs, and observed that Neyman’s definition of un-
biased tests fails. In particular, we can generate in-
finitely many RCBs and LSs such that (1) Neyman’s
null holds, (2) there is no interaction between blocking
factor(s) and treatment, (3) the expected mean resid-
ual sum of squares equals the expected mean treatment
sum of squares, and yet there is zero probability of re-
jecting Neyman’s null when the rejection rule is based
on a comparison of the observed value of S2

1/S2
0 with

α = 0.05 cutoffs used in the standard ANOVA F-test.
For simplicity, consider the case with no techni-

cal errors. One simple example of a 4 × 4 LS, with
σ 2

η (t), r(t, t ′) constant, E(S2
0) = E(S2

1), and no inter-
actions between row/column blocking factors and the
treatment, is presented in Table 4. Now F3,6,0.95 = 4.76
and, as we have all potential outcomes, we can cal-
culate the probability that S2

1 > kS2
0 for any positive

number k over the distribution of S2
1 and S2

0 . These
probabilities are given in the left of Figure 1, which
also displays probabilities that F3,6 > k; probabilities
from the randomization distribution of S2

1/S2
0 are plot-

ted as dots, and probabilities for the F3,6 distribution
as dashes. A horizontal line at 0.05 and a vertical line
at 4.76 were drawn to illustrate conclusions obtained at
the 0.05 significance level. The probability of rejecting
Neyman’s null when using the standard ANOVA F-test
is zero.

The crucial factor here is the structure of the poten-
tial outcomes. Fisher’s sharp null holds, so the total
sum of squares, and the sum of squares for row and
column blocking factors, remain constant over the ran-
domization. Furthermore, the treatment sum of squares
takes only two values, corresponding to whether cells
(1,1) and (2,2) receive the same treatment or not, and
similarly the residual sum of squares takes only two
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FIG. 1. Comparison of the distributions of S2
1/S2

0 and F3,6 for Table 4; the distribution of S2
1/S2

0 is represented by dots and that of F3,6
by dashes. The figure on the left is for the case with no technical errors, and the figure on the right is for technical errors with σε = 0.01.

values. Hence, the F-test statistic takes only two pos-
sible values, so that cutoffs given by consideration of
the F-distribution will not yield approximately correct
Type I errors for testing Neyman’s null.

Inclusion of technical errors does not change our
general conclusion. Suppose technical errors are Nor-
mally distributed with σε = 0.01. The corresponding
figure for the LS in Table 4 is displayed in the right of
Figure 1. We generated this figure by simulation: we
first drew εij (t), then performed the randomizations to
generate the distribution of S2

1 and S2
0 for that specific

draw of technical errors, and finally repeated this pro-
cess 2000 times to estimate the probabilities.

4. CONTROVERSIAL CONSEQUENCES AND
CONCLUSIONS

4.1 Consequences

The most immediate consequence of this entire con-
troversy was the resulting hostile relationship between
Neyman and Fisher for essentially the remainder of
their careers, with each seeking to undermine the other.
For example, Neyman was slightly critical in a discus-
sion of a paper presented by Yates (1935) on facto-
rial designs. Box [(1978), page 265] claimed that Ney-
man wanted to demonstrate his superiority by finding
flaws in Fisher’s work at this meeting. Reid [(1982),
page 126] described an interesting encounter between

Neyman and Fisher, taking place in Neyman’s room at
University College London one week after this discus-
sion. Fisher demanded that Neyman only use Fisher’s
books when lecturing on statistics at the university.
When Neyman refused to do so, Fisher openly declared
that he would oppose Neyman in all his capacities, and
banged the door when he left the room.

These skirmishes continued for some time (Reid,
1982, pages 143, 169, 183–184, 223–226, 256–257).
Neyman appears to have attempted some type of rec-
onciliation, inviting Fisher to lecture at Berkeley (Reid,
1982, page 222), and generally became more concil-
iatory toward Fisher and his contributions to statistics
(Neyman, 1976; Reid, 1982, page 45). In any case,
these passages suggest an indirect consequence of this
controversy: Neyman’s decision to depart for Amer-
ica, where he created a world-class center for statistics
at the University of California Berkeley (Reid, 1982,
page 239), established a prominent series of symposia
(Reid, 1982, pages 197–198), and helped to nurture,
through his leadership, the American Statistical Asso-
ciation and Institute of Mathematical Statistic (Reid,
1982, page 218).

Fienberg and Tanur (1996) suggest that this break
in the professional relationship between Neyman and
Fisher may have led to a sharper division between the
fields of sample surveys and experimental design:
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Because of the bitterness that grew out of
this dispute . . . Fisher and Neyman were
never able to bring their ideas together and
benefit from the fruitful interaction that
would likely have occurred had they done
so. And in the aftermath, Neyman staked
out intellectual responsibility for sampling
while Fisher did the same for experimenta-
tion. It was in part because of this rift be-
tween Fisher and Neyman that the fields of
sample surveys and experimentation drifted
apart. (Fienberg and Tanur, 1996, page 238)

Cox (2012) makes the interesting remark that more
effort was devoted to issues in randomization following
this controversy:

The general issues of the role of random-
ization were further discussed in the next
few years, mostly in Biometrika, with con-
tributions from Student, Yates, Neyman and
Pearson, and Jeffreys. With the exception of
Student’s contribution, which emphasized
the role of randomization in escaping biases
arising from personal judgement, the dis-
cussion focused largely on error estimation.
(Cox, 2012, page 3)

Another consequence was undue emphasis on lin-
ear models for analysis of experimental data. As stated
by Gourlay [(1955a), page 228] Neyman’s work in
1935 led to increased attention on models (for observed
data) that formed the basis of statistical analyses such
as ANOVA. Eisenhart (1947), for example, explicitly
laid out the four standard assumptions used to justify
ANOVA, and noted the importance of additivity. Im-
mediately following this article, Cochran (1947) ex-
plored the consequences for an analysis when addi-
tivity (and the other assumptions) were not satisfied,
and Bartlett (1947) discussed various transformations
of the data that make additivity more plausible for
ANOVA.

Accordingly, past and present books on experimen-
tal design tend to invoke additive models when test-
ing Neyman’s null using the standard ANOVA F-
test, an assumption that automatically yields a test of
Fisher’s sharp null (Kempthorne, 1952, Chapters 8, 9,
10; Hinkelmann and Kempthorne, 2008, Chapters 9,
10). When additivity is believed not to hold, one is
generally advised to search for a transformation that
yields an additive structure on the potential outcomes.
For example, Wilk and Kempthorne [(1957), page 229]

make the strong recommendation to transform to a
scale where additivity more nearly obtains for purposes
of estimation. This also reflects the motivation behind
the famous Box and Cox (1964) family of transforma-
tions.

Of course, greater emphasis on linear models with
Normal errors for observed potential outcomes can
generate doubts as to whether randomization is nec-
essary in experimental design. What is then lost is the
fact that explicit randomization, as extolled by Fisher,
provides the scientist with internally consistent statis-
tical inferences that require no standard modeling as-
sumptions, such as those required for linear regression.
It is ironic that many textbooks on experimental design
focus solely on Normal theory linear models, without
realizing that such models were originally motivated as
approximations for randomization inference.

Additivity has even been considered an essential as-
sumption for interpreting estimands. For example, Cox
[(1958), pages 16–17] states that the average difference
in observed outcomes for two treatments estimates the
difference in average potential outcomes for the two
treatments in the finite population, but that this esti-
mand of interest is “. . . rather an artificial quantity”
if additivity does not hold on the potential outcomes.
Perhaps Kempthorne [(1952), page 136] can best jus-
tify this statement with the specific example where, for
each experimental unit, the square root of the poten-
tial outcome under treatment is 5 more than the square
root of the potential outcome under control. If one ex-
perimenter has three experimental units with control
potential outcomes equal to 25,64 and 100, then the
effect of the treatment on the raw measurement scale
would range from 75 to 125. However, another ex-
perimenter working with units having control poten-
tial outcomes ranging from 9 to 16 would have treat-
ment effects ranging from 55 to 65 on the raw scale.
As Kempthorne states:

Under these circumstances both experi-
menters will agree only if they state their
results in terms of effects on the square
root of the observation. It is desirable then
to express effects on a scale of measure-
ment such that they are exactly additive.
(Kempthorne, 1952, page 136)

Thus, Kempthorne’s justification for additivity is that
it enables externally consistent conclusions to be drawn
from a particular analysis, that is, two experimenters
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working with different samples from the same popula-
tion will reach the same conclusion on the treatment ef-
fect. One could also interpret this as suggesting that ex-
perimenters should model the potential outcomes, with
additive treatment effects being one simple model for
an analysis.

Kempthorne continues to state that:

Such a procedure has its defects, for exper-
imenters prefer to state effects on a scale of
measurement that is used as a matter of cus-
tom or for convenience reasons. It is proba-
bly difficult, for instance, to communicate
to a farmer the meaning of the statement
that a certain dose of an insecticide reduces
the square root of the number of corn bor-
ers. A statement on the effect of number of
corn borers can be made but is more com-
plex. These difficulties are not, however, in
the realm of the experimenter. He should ex-
amine his data on a scale of measurement
which is such that treatment effects are ad-
ditive. The real difficulty, in general, is to
determine the scale of measurement that has
the desired property. (Kempthorne, 1952,
page 136)

We again read in this quote the perceived impor-
tance of additivity that helped motivate the Box and
Cox (1964) family of transformations. We do not be-
lieve it is necessary to study treatment effects on an
additive scale: it is arguably more important to have
an internally consistent definition and statistical proce-
dure for studying treatment effects before deciding on
externally consistent considerations. In our opinion, an
ultimate consequence of this controversy is that, by fo-
cusing almost solely on linear models, advances in ex-
perimental design have been seriously inhibited from
their original, useful and liberating formulation involv-
ing potential outcomes.

4.2 Conclusions

The Neyman–Fisher controversy arose in part be-
cause Neyman sought to determine whether Fisher’s
ANOVA F-test for RCBs and LSs would still be valid
when testing Neyman’s more general null hypothesis.
Unfortunately, Neyman’s calculations were incorrect.
In fact, under Neyman’s conception of unbiased tests,
the F-test for RCB designs potentially rejects at most
at the nominal level, yet we could never know for
any particular situation whether the F-test for LS de-
signs would reject more often than nominal or not. Fur-
thermore, Neyman’s definition of unbiased tests is too

crude, because expected mean sums of squares do not
determine the Type I error of the F-test when testing
Neyman’s null. Two of the greatest statisticians argued
over incorrect calculations and inexact measures of un-
biasedness for hypothesis tests, adding an ironic aspect
to this controversy.

What is also ironic is that apparently no statisti-
cian deigned to check Neyman’s algebra or reason-
ing; the only discussant who suggested there was a
mistake in Neyman’s algebra was Fisher, but he did
not explicitly state that Neyman was missing interac-
tions in both expected mean residual sums of squares.
Sukhatme [(1935), pages 166, 167] recalculated the ex-
pected mean sums of squares in the general case where
σ 2

η (t) and r(t, t ′) are not constant, and did not catch
Neyman’s mistake. Sukhatme also performed sampling
experiments for two examples of LSs to support Ney-
man’s claims. In both of Sukhatme’s examples, there
is no interaction between row/column blocking fac-
tors and treatment, so that E(S2

0) < E(S2
1). Neyman

[(1935), page 175] then considered his algebra correct,
because “ . . . none of my critics have attempted to chal-
lenge it.”

Fisher never referenced Neyman (1935) in his book
on experimental design and apparently ignored poten-
tial outcomes for many years (Rubin, 2005; Lehmann,
2011, page 59). Fisher’s avoidance of potential out-
comes led him to make certain oversights in causal in-
ference. In particular, as described by Rubin (2005),
Fisher never bridged his work on experimental design
and parametric modeling, and gave generally flawed
advice on the analysis of covariance to adjust for post-
treatment concomitants in randomized trials.

There is only one reference to Neyman (1935) by
Hinkelmann and Kempthorne [(2008), page 387] and
it was referred to as “. . . an interesting somewhat
different discussion . . . ”. The standard accounts of
Fisher and Neyman’s professional careers (Box, 1978;
Reid, 1982) do not mention any further work being
done on questions raised by Neyman (1935), although
Kempthorne is quoted as saying:

The allusion to agriculture is quite unneces-
sary and the discussion is relevant to exper-
imentation in any field of human enquiry.
The discussion section . . . is interesting be-
cause of the remarks of R. A. Fisher which
are informative in some respects but in other
respects exhibit Fisher at his very worst . . . .
The judgement of the future will be, I be-
lieve, that Neyman’s views were in the cor-
rect direction. (Reid, 1982, page 123)
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Even the recent account by Lehmann [(2011), Chap-
ters 4, 5] does not mention any statistician address-
ing Neyman’s claims or checking his algebra. In fact,
Lehmann ends his discussion of this controversy by re-
counting the destruction of the physical models Ney-
man used to illustrate his thoughts on RCB and LS
designs during his 1935 presentation, thought to have
been perpetrated by Fisher in a fit of anger (Reid, 1982,
page 124; Lehmann, 2011, Chapter 4).

We agree with Kempthorne’s assessment that Ney-
man’s views were in the correct direction in the fol-
lowing sense: by evaluating the frequency properties
of statistics for both designs, one can see that the F-test
is no longer precise without further assumptions on the
potential outcomes. Such evaluations serve the impor-
tant task of investigating the general properties of a de-
sign in a particular applied setting. The F-distribution
is a useful approximation to the randomization distri-
bution of the F-test statistic under Fisher’s sharp null
hypothesis and regularity conditions on the distribution
of the potential outcomes or, alternatively, for testing
Neyman’s null under additivity (Welch, 1937; Pitman,
1938).

We also agree with Cox (1958) that, if block-
treatment interactions are not negligible, then it is not
particularly useful to test Neyman’s null. More gen-
erally, we believe that one must think carefully about
the type of null hypotheses one will test, and should be
guided by an appropriate model on the potential out-
comes. At one extreme, Fisher’s sharp null hypothesis
requires no model on the potential outcomes to test a
reasonable, scientifically interesting null, with the ref-
erence distribution based solely on the randomization
actually implemented during the experiment. To test
Neyman’s null, one either needs strong regularity con-
ditions on the potential outcomes for standard proce-
dures to work or one needs to think carefully to build
and evaluate a model for the potential outcomes. In
any case, one necessarily needs to make assumptions
to assess more complicated null hypotheses, and it is
important that assumptions on the potential outcomes
are driven by actual science, routinely checked for their
approximate validity, and not chosen based on neces-
sary requirements for classical statistical procedures
that have no real scientific merit.

Therefore, a better strategy than focusing on satis-
fying additivity to use the F-test for testing Neyman’s
null, we believe, is to introduce a Bayesian framework
into the problem (Rubin, 1978). One can obtain a pos-
terior predictive distribution for the estimand of inter-
est (defined in terms of the potential outcomes) and

evaluate relevant Bayes’ rules using the same criteria
that Neyman and others have considered (e.g., con-
sistency, coverage, Type I error) (Rubin, 1984). The
Fisher randomization test can be viewed as a type of
posterior predictive check (Rubin, 1984), and it can be
more enlightening (as the example in Section 3.2 il-
lustrates) to perform explicitly the Fisher randomiza-
tion test for Fisher’s sharp null, rather than using the
F-distribution as an approximation when testing Ney-
man’s null under additivity. When additivity may not
hold, evaluating Bayes’ rules motivated by the partic-
ular applied setting of a problem appears to be a more
viable path to the solution of a specific problem than
relying on classical statistical procedures that are im-
precise without applied contexts.
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