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1. Introduction

Let Xt, t ∈ Z, be a stationary Gaussian time series with zero mean and spectral
density fo(x), x ∈ [−π, π], which takes the form

|1− eix|−2doMo(x), x ∈ [−π, π], (1.1)

where do ∈ (− 1
2 ,

1
2 ) is called the long-memory parameter, and Mo is a positive

continuous function that describes the short-memory behavior of the series. If do
is positive, this makes the autocorrelation function ρ(h) decay at rate h−(1−2do),
and the time series is said to have long-memory. When do = 0, Xt has short
memory, and the case do < 0 is referred to as intermediate or negative memory.
Long memory time series models are used in a wide range of applications, such as
hydrological or financial time series; see for example Beran (1994) or Robinson
(1994). In parametric approaches, a finite dimensional model is used for the short
memory part Mo; the most well known example is the ARFIMA(p,d,q) model.
The asymptotic properties of maximum likelihood estimators (Dahlhaus (1989)
or Lieberman et al. (2003)) and Bayesian estimators (Philippe and Rousseau
(2002)) have been established in such models. When the sample size n tends
to infinity these estimators are consistent and asymptotically normal with a
convergence rate of order

√
n. However when the model for the short memory

part is misspecified, the estimator for d can be inconsistent, calling for semi-
parametric methods for the estimation of d. A key feature of semi-parametric
estimators of the long-memory parameter is that they converge at a rate which
depends on the smoothness of the short-memory part, and apart from the case
where Mo is infinitely smooth, the convergence rate is smaller than

√
n. The

estimation of the long-memory parameter d can thus be considered as a non-
regular semi-parametric problem. In Moulines and Soulier (2003) (p. 274) it is

shown that when fo satisfies (1.4), the minimax rate for d is n− 2β−1
4β . There

are frequentist estimators for d based on the periodogram that achieve this rate
(see Hurvich et al. (2002) and Moulines and Soulier (2003)), even without the
Gaussianity assumption.

Although Bayesian methods in long-memory models have been widely used
(see for instance Ko et al. (2009), Jensen (2004) or Holan et al. (2009)), the
literature on convergence properties of non- and semi-parametric estimators is
sparse. Rousseau et al. (2012) (RCL hereafter) obtain consistency and rates for
the L2-norm of the log-spectral densities (Theorems 3.1 and 3.2), but for d they
only show consistency (Corollary 1). No results exist on the posterior concentra-
tion rate on d, and thus on the convergence rates of Bayesian semi-parametric
estimators of d. In this paper we aim to fill this gap for a specific family of
semi-parametric priors. Obtaining theoretical results on the asymptotic behav-
ior of posterior distributions in semi-parametric problems is difficult. A major
difficulty comes from the necessity to control precisely the marginal likelihood
of the parameter of interest which is an integral over an infinite dimensional
parameter space. Only few results have been obtained so far, and these only
deal with regular semi-parametric models, where a

√
n convergence rate for the
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parameter of interest can be achieved, see Castillo (2012), Bickel and Kleijn
(2012) and Rivoirard and Rousseau (2012). In regular semi-parametric models,
a generic technique can be applied based on an expansion of the log-likelihood
and the least favorable direction as developed in van der Vaart (1998). Here
the model is irregular, in the sense that the convergence rate of an estimator
of d depends on the smoothness of the nuisance parameter, which is the short
memory part of the spectral density. Consequently, the approach for regular
semi-parametric models is not feasible. In this paper we propose an alternative
approach for studying irregular semi-parametric models. Although we only con-
sider FEXP-models, we believe that this approach can be used in other contexts.
More discussion on this is provided in Section 6.

We study Bayesian estimation of d within the FEXP-model (Beran (1993),
Robinson (1995)), that contains densities of the form

fd,k,θ(x) = |1− eix|−2d exp







k
∑

j=0

θj cos(jx)







, (1.2)

where d ∈ (− 1
2 ,

1
2 ), k is a nonnegative integer and θ ∈ R

k+1. The factor

exp{∑k
j=0 θj cos(jx)} models the function Mo in (1.1). In contrast to the origi-

nal finite-dimensional FEXP-model (Beran (1993)), where k was supposed to be
known, or at least bounded, fo may have an infinite FEXP-expansion, and we
allow k to increase with the number of observations to obtain approximations f
that are increasingly close to fo. Note that the case where the true spectral den-
sity satisfies fo = fdo,ko,θo , is considered in Holan et al. (2009). In this paper we
will pursue a fully Bayesian semi-parametric estimation of d, the short memory
parameter being considered as an infinite-dimensional nuisance parameter.

The priors we consider have been implemented and used in particular by
Holan et al. (2009) and Chopin et al. (2013), where in the latter case an efficient
sequential monte carlo algorithm is proposed. Here we obtain results on the
convergence rate and asymptotic distribution of the posterior distribution for d,
which we summarize below in Section 1.1. These are to our knowledge the first
of this kind in the Bayesian literature on semi-parametric time series.

1.1. Asymptotic framework and overview

For observations X = (X1, . . . , Xn) from a Gaussian stationary time series with
spectral density f , let Tn(f) denote the associated covariance matrix and ln(f)
denote the log-likelihood

ln(f) = −n

2
log(2π)− 1

2
log det(Tn(f))−

1

2
XtT−1

n (f)X.

We consider semi-parametric priors on f based on the FEXP-model defined
by (1.2), inducing a parametrization of f in terms of (d, k, θ). Assuming priors
πd for d, and, independent of d, πk for k and πθ|k for θ|k, we study the (marginal)
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posterior for d, given by

Π(d ∈ D|X) =

∑∞
k=0 πk(k)

∫

D

∫

Rk+1 e
ln(d,k,θ)dπθ|k(θ)dπd(d)

∑∞
k=0 πk(k)

∫ 1
2

− 1
2

∫

Rk+1 eln(d,k,θ)dπθ|k(θ)dπd(d)
. (1.3)

The posterior mean or median can be taken as point-estimates for d, but we
will focus on the posterior Π(d|X) itself.

It is assumed that the true spectral density is of the form

fo(x) = |1− eix|−2do exp







∞
∑

j=0

θo,j cos(jx)







,

θo ∈ Θ(β, Lo) = {θ ∈ l2(N) :

∞
∑

j=0

θ2j (1 + j)2β ≤ Lo},
(1.4)

for some known β > 1.
In particular, we derive bounds on the rate at which Π(d ∈ D|X) concentrates

at do, together with a Bernstein-von Mises (BVM) property of this distribution.
The posterior concentration rate for d is defined as the fastest sequence αn

converging to zero such that

Π(|d− do| < Kαn|X)
Po→ 1, for a given fixed K. (1.5)

In this paper we study three types of priors for model (1.2), namely priors A,
B and C presented in Section 2.1. The priors are based on the sieve model de-
fined by (1.2), with k increasing at the rate (n/ logn)1/(2β) (prior A), k increas-
ing at rate (n/ logn)1/(2β+1) (prior B) or with random k (prior C). In Section 2
we show that the latter outperforms priors B and C for the estimation of the
long-memory parameter d and leads to minimax posterior concentration rates
(up to a logn term). We provide a lower bound for priors B and C, which shows
that they lead to suboptimal posterior concentration rates for d (Theorem 2.2).
This is not a unique phenomenon in (Bayesian) semi-parametric estimation and
is encountered for instance in the estimation of a linear functional of the signal
in white-noise models, see Li and Zhao (2002) or Arbel et al. (2013).

In addition, we derive a Bernstein-von Mises (hereafter denoted BVM) theo-
rem for the posterior distribution of d (Theorem 2.1). The BVM property means

that asymptotically the posterior distribution of d behaves like α−1
n (d − d̂) ∼

N (0, 1), where d̂ is an estimate whose frequentist distribution (associated to the
parameter d) is N (do, α

2
n). We prove such a property on the posterior distribu-

tion of d given k = kn. In regular parametric long-memory models, the BVM
property has been established by Philippe and Rousseau (2002). It is however
much more difficult to establish BVM theorems in infinite dimensional setups,
even for independent and identically distributed models; see for instance Freed-
man (1999), Castillo (2012) and Rivoirard and Rousseau (2012). In particular
it has been proved that the BVM property may not be valid, even for reason-
able priors. The BVM property is however very useful since it induces a strong
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connection between frequentist and Bayesian methods. In particular, it implies
that Bayesian credible regions are asymptotically also frequentist confidence re-
gions with the same nominal level. In section 2.3 we discuss this issue in more
detail. It is unclear whether the above results can be extended to other long
memory time series models. This generalization however seems difficult, as (to
our knowledge) there are no BVM-theorems in the literature covering broad
classes of semi-parametric models.

In section 3 we give a decomposition of Π(d ∈ D|X) defined in (1.3), and
obtain bounds for the terms in this decomposition in sections 3.2 and 3.3. Using
these results we prove Theorems 2.1 and 2.2 in respectively sections 4 and 5.
Conclusions are given in section 6. In the supplementary material (Kruijer and
Rousseau (2013)) we give the proofs of the lemmas in section 3, as well as results
on the derivatives of the log-likelihood. We conclude this introduction with an
overview of the notation.

1.2. Notation

The m-dimensional identity matrix is denoted Im. We write |A| for the Frobe-
nius or Hilbert-Schmidt norm of a matrix A, i.e. |A| =

√
trAAt, where At

denotes the transpose of A. The operator or spectral norm is denoted ‖A‖2 =
sup‖x‖=1 x

tAtAx. We also use ‖ · ‖ for the Euclidean norm on R
k or l2(N). The

inner-product is denoted | · |. We make frequent use of the relations

|AB| = |BA| ≤ ‖A‖ · |B|, ‖AB‖ ≤ ‖A‖ · ‖B‖, ‖A‖ ≤ |A| ≤ √
n‖A‖,

|tr(AB)| = |tr(BA)| ≤ |A| · |B|, |xtAx| ≤ xtx‖A‖,
(1.6)

see Dahlhaus (1989), p. 1754. For any function h ∈ L1([−π, π]), Tn(h) is the
matrix with entries

∫ π

−π
ei|l−m|xh(x)dx, l,m = 1, . . . , n. For example, Tn(f) is

the covariance matrix of observations X = (X1, . . . , Xn) from a time series with
spectral density f . If h is square integrable on [−π, π] we denote

‖h‖2 =

∫ π

−π

h2(x)dx.

The loss
√
l between spectral densities f and g is defined as

l(f, g) =
1

2π

∫ π

−π

(log f(x)− log g(x))2dx.

Unless stated otherwise, all expectations and probabilities are with respect to
Po, the law associated with the true spectral density fo. To avoid ambiguous
notation (e.g. θ0 versus θ0,0) we write θo instead of θ0. Related quantities such
as fo and do are also denoted with the o-subscript.

The symbols oP andOP have their usual meaning. We use boldface when they
are uniform over a certain parameter range. Given a probability law P , a family
of random variables {Wd}d∈A and a positive sequence an, Wd = oP(an, A)
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means that

P

(

sup
d∈A

|Wd|/an > ǫ

)

→ 0, (n → ∞).

When the parameter set is clear from the context we simply write oP(an).
In a similar fashion, we write o(an) when the sequence is deterministic. In
conjunction with the oP and OP notation we use the letters δ and ǫ as follows.
When, for some τ > 0 and a probability P we write Z = OP (n

τ+ǫ), this means
that Z = OP (n

τ+ǫ) for all ǫ > 0. When, on the other hand, Z = OP (n
τ−δ), we

mean that this is true for some δ > 0. If the value of δ is of importance it is
given a name, for example δ1 in Lemma 3.4.

The true spectral density of the process is denoted fo. We denote k-dimensional
Sobolev-balls by

Θk(β, L) =

{

θ ∈ R
k+1 :

k
∑

j=0

θ2j (1 + j)2β ≤ L

}

⊂ R
k+1. (1.7)

For any real number x, let x+ denote max(0, x). The number rk denotes the sum
∑

j≥k+1 j
−2. Let η be the sequence defined by ηj = −2/j, j ≥ 1 and η0 = 0.

For an infinite sequence u = (uj)j≥0, let u[k] denote the vector of the first k+1
elements. In particular, η[k] = (η0, . . . , ηk). The letter C denotes any generic
constant independent of Lo and L, which are the constants appearing in the
assumptions on fo and the definition of the prior.

2. Main results

Before stating Theorems 2.1 and 2.2 in section 2.3, we state the assumptions on
fo and the prior, and give examples of priors satisfying these assumptions.

2.1. Assumptions on the prior and the true spectral density

We assume observations X = (X1, . . . , Xn) from a stationary Gaussian time
series with law Po, which is a zero mean Gaussian distribution, whose covariance
structure is defined by a spectral density fo satisfying (1.4), for known β > 1.
It is assumed that for a small constant t > 0, do ∈ [− 1

2 + t, 1
2 − t].

Assumptions on Π We consider different priors, and first state the assump-
tions that are common to all these priors. The prior on the space of spectral
densities consists of independent priors πd, πk and, conditional on k, πθ|k. The
prior for d has density πd which is strictly positive on [− 1

2 + t, 1
2 − t], the interval

which is assumed to contain do, and zero elsewhere. The prior for θ given k has
a density πθ|k with respect to Lebesgue measure. This density satisfies condition
Hyp(K, c0, β,Lo), by which we mean that for a subset K of N,

min
k∈K

inf
θ∈Θk(β,Lo)

ec0k log kπθ|k(θ) > 1,

where Lo is as in (1.4). The choice of K depends on the prior for k and θ|k. We
consider the following classes of priors.
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• Prior A: k is deterministic and increasing at rate

kn = ⌊kA(n/ logn)
1
2β ⌋, (2.1)

for a constant kA > 0. The prior density for θ|k satisfies Hyp({kn}, c0, β−
1
2 ,Lo) for some c0 > 0 and has support Θk(β − 1

2 , L). In addition, for all

θ, θ′ ∈ Θk(β − 1
2 , L) such that ‖θ − θ′‖ ≤ L(n/ logn)−

2β−1
4β ,

log πθ|k(θ)− log πθ|k(θ
′) = ht

k(θ − θ′) + o(1), (2.2)

for vectors hk satisfying ‖hk‖ ≤ C(n/k)1−ρ0 , with constants C, ρ0 > 0.
Finally, it is assumed that L is sufficiently large compared to Lo.

• Prior B: k is deterministic and increasing at rate

k
′

n = ⌊kB(n/ logn)
1

1+2β ⌋,

where kB is such that k
′

n < kn for all n. The prior for θ|k has density πθ|k
with respect to Lebesgue measure which satisfies condition Hyp({k′

n}, c0,
β,Lo) for some c0 > 0 and is assumed to have support Θk(β, L). The
density also satisfies

log πθ|k(θ) − log πθ|k(θ
′) = o(1),

for all θ, θ′ ∈ Θk(β, L) such that ‖θ− θ′‖ ≤ L(n/ logn)−
β

2β+1 . This condi-
tion is similar to (2.2), but with hk = 0, and support Θk(β, L).

• Prior C: k ∼ πk on N with e−c1k log k ≤ πk(k) ≤ e−c2k log k for k
large enough, where 0 < c1 < c2 < +∞. There exists βs > 1 such
that for all β ≥ βs, the prior for θ|k has density πθ|k with respect to
Lebesgue measure which satisfies, for some c0 > 0, condition Hyp({k ≤
k0(n/ log n)

1/(2β+1)}, c0, β,Lo), for all k0 > 0 as soon as n is large enough.
It has support included in Θk(β, L) and satisfies

log πθ|k(θ) − log πθ|k(θ
′) = o(1),

for all θ, θ′ ∈ Θk(β, L) such that ‖θ − θ′‖ ≤ L(n/ logn)−
β

2β+1 .

Note that prior A is obtained when we take β′ = β − 1
2 in prior B.

2.2. Examples of priors

The Lipschitz conditions on log πθ|k considered for the three types of priors are

satisfied for instance for the uniform prior on Θk(β− 1
2 , L) (resp. Θk(β, L)), and

for the truncated multivariate Gaussian prior, where, for some constants A and
α > 0,

πθ|k(θ) ∝ IΘk(β− 1
2 ,L)(θ) exp



−A

k
∑

j=0

jαθ2j



 ,
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with IΓ denoting the indicator function of the set Γ. In the case of Prior A,
the conditions on log πθ|k and hk in (2.2) are satisfied for α < 4β − 2. To see

this, note that for all θ, θ
′ ∈ Θh(β − 1/2, L), Hölder’s inequality leads to

k
∑

j=0

jα|θ2j − (θ
′

j)
2| ≤ L1/2‖θ − θ′‖kα−β+1/2 = o((n/k)1−δ).

In the case of Prior B and and Prior C we may choose α < 2β, since for some
positive k0

k
∑

j=0

jα|θ2j − (θ
′

j)
2| ≤ L1/2‖θ − θ

′‖kα−β = o(1),

for all k ≤ k0(n/ logn)
1/(2β+1) and all θ, θ

′ ∈ Θk(β, L) such that ‖θ − θ
′‖ ≤

(n/ logn)−β/(2β+1).
Also a truncated Laplace distribution is possible, in which case

πθ|k(θ) ∝ IΘk(β− 1
2 ,L)(θ) exp



−a

k
∑

j=0

|θj |



 .

The condition on πk inPrior C is satisfied for instance by Poisson distributions.
The restriction of the prior to Sobolev balls is required to obtain a proper

concentration rate or even consistency of the posterior of the spectral density f
itself, which is a necessary step in the proof of our results. This is discussed in
more detail in section 3.1.

2.3. Convergence rates and BVM-results under different priors

Assuming a Poisson prior for k, RCL (Theorem 4.2) obtain a near-optimal
convergence rate for l(f, fo). In Corollary 3.1 below, we show that the optimal
rate for l implies that we have at least a suboptimal rate for |d− do|. Whether
this can be improved to the optimal rate critically depends on the prior on k. By
our first main result the answer is positive under prior A. The proof is given
in section 4.

Theorem 2.1. Under prior A, the posterior distribution has the asymptotic
expansion

Π

[
√

nrkn

2
(d− do − bn(do)) ≤ z|X

]

= Φ(z) + oPo
(1), (2.3)

where, for rkn
=
∑

j≥kn+1 η
2
j and some small enough δ > 0,

bn(do) =
1

rkn

∞
∑

j=kn+1

ηjθo,j + Yn + o(n−1/2−δk1/2n ), Yn =

√
2√

nrkn

Zn,

Zn being a sequence of random variables converging weakly to a Gaussian vari-
able with mean zero and variance 1.
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Corollary 2.1. Under prior A, the convergence rate for d is δn =

(n/ logn)−
2β−1
4β , i.e.

lim
n→∞

En
0 [Π(d : |d− do| > δn|X)] = 0.

Equation (2.3) is a Bernstein-von Mises type of result: the posterior distribu-
tion is asymptotically normal, centered at a point do+bn(do), whose distribution
is normal with mean do and variance 2/(nrkn

). The expressions for the posterior
mean and variance give more insight in how the prior for k affects the posterior
rate for d. The standard deviation of the limiting normal distribution (2.3) is
√

2/(nrkn
) = O(n− 2β−1

4β (log n)
1
4β ) = o(δn) and bn(do) equals

1

rkn

∞
∑

j=kn+1

ηjθo,j +OPo
(r

− 1
2

kn
n− 1

2 ) + o(n− 1
2−δ1k

1
2
n ).

From the Cauchy-Schwarz inequality, the definition of ηj , kn and rkn
and the

assumption on θo, it follows that

1

rkn

∣

∣

∣

∣

∣

∣

∞
∑

j=kn+1

ηjθo,j

∣

∣

∣

∣

∣

∣

≤ 2

rkn

√

∑

j>kn

θ2o,jj
2β

√

∑

j>kn

j−2β−2 = o(k
−β+ 1

2
n ). (2.4)

Hence,
|bn(do)| ≤ δn, (2.5)

and we obtain the δn-rate of Corollary 2.1. For smaller k, the standard deviation
is smaller but the bias bn(do) is larger. In Theorem 2.2 below it is shown that
this indeed leads to a suboptimal rate. Note that by allowing L to grow at
a rate log logn, which is possible without modifying the result, the Bayesian
procedure does not require a prior knowledge on Lo. Moreover, θo,0 plays a
special role since it is the variance of the residuals, we believe that we could
assume a Gamma prior on θo,0 and still obtain the same type of result. We have
not pursued the computations here however.

An important consequence of the BVM-result is that posterior credible re-
gions for d (HPD or equal-tails for instance) will also be asymptotic frequentist
confidence regions. Consider for instance one-sided credible intervals for d de-
fined by P π(d ≤ zn(α)|X) = α, so that zn(α) is the α-th quantile of the posterior
distribution of d. Equation (2.3) in Theorem 2.1 then implies that

zn(α) = do + bn(do) +

√

2kn
n

Φ−1(α)(1 + oPo
(1)).

As soon as
∑

j≥kn
j2βθ2o,j = o((log n)−1), we have that

zn(α) = do +
√

2/(nrkn
)Zn +

√

2/(nrkn
)Φ−1(α)(1 + oPo

(1))

and
Pn
o (do ≤ zn(α)) = P

(

Zn ≤ Φ−1(α)(1 + o(1))
)

= α+ o(1).
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Similar computations can be made on equal-tail credible intervals or HPD re-
gions for d.

Note that in this paper we assume that the smoothness β of fo is greater than
1 instead of 1/2, as is required in Moulines and Soulier (2003). This condition
is used throughout the proof. Actually had we only assumed that β > 3/2, the
proof of Theorem 2.1 would have been greatly simplified as many technicalities
in the paper come from controlling terms when 1 < β ≤ 3/2. We do not believe
that it is possible to weaken this constraint to β > 1/2 in our setup.

Our second main result states that if k is increasing at a slower rate than
kn, the posterior on d concentrates at a suboptimal rate. The proof is given in
section 5.

Theorem 2.2. Given β > 5/2, there exists θo ∈ Θ(β, Lo) and a constant kv > 0
such that under prior B and C defined above,

Π(|d− do| > kvwn(log n)
−1|X)

Po→ 1.

with wn = Cw(n/ logn)
− 2β−1

4β+2 and Cw = C1(L+ Lo)
1
4β l

2β−1
2β

0 .

The constant Cw comes from the suboptimal rate for |d − do| derived in
Corollary 3.1. Theorem 2.2 is proved by considering the vector θo defined by
θo,j = c0j

−(β+ 1
2 )(log j)−1, for j ≥ 2. This vector is close to the boundary of the

Sobolev-ball Θ(β, Lo), in the sense that for all β′ > β,
∑

j j
2β′

θ2o,j = +∞. The
proof consists in showing that conditionally on k, the posterior distribution is
asymptotically normal as in (2.3), with k replacing kn, and that the posterior
distribution concentrates on values of k smaller than O(n1/(2β+1)), so that the
bias bn(do) becomes of order wn(log n)

−1. The constraint β > 5/2 is used to
simplify the computations and is not sharp.

It is interesting to note that similar to the frequentist approach, a key issue
is a bias-variance trade-off, which is optimized when k ∼ n1/(2β). This choice
of k depends on the smoothness parameter β, and since it is not of the same
order as the optimal values of k for the loss l(f, f ′) on the spectral densities,
the adaptive (near) minimax Bayesian nonparametric procedure proposed in
Rousseau and Kruijer (2011) does not lead to optimal posterior concentration
rate for d. While it is quite natural to obtain an adaptive (nearly) minimax
Bayesian procedure under the loss l(., .) by choosing a random k, obtaining
an adaptive minimax procedure for d remains an open problem, at least in a
Bayesian context (by contrast, the frequentist estimators proposed in Iouditsky
et al. (2001) are adaptive). This dichotomy is found in other semi-parametric
Bayesian problems, see for instance Arbel et al. (2013) in the case of the white
noise model or Rivoirard and Rousseau (2012) for BVM properties.

3. Decomposing the posterior for d

To prove Theorems 2.1 and 2.2 we need to take a closer look at (1.3), to un-
derstand how the integration over Θk affects the posterior for d. We develop
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θ → ln(d, k, θ) at a point θ̄d,k defined below and decompose the likelihood as

exp{ln(d, k, θ)} = exp{ln(d, k)} exp{ln(d, k, θ)− ln(d, k)},

where ln(d, k) is short-hand notation for ln(d, k, θ̄d,k). Define

In(d, k) =

∫

Θk

eln(d,k,θ)−ln(d,k)dπθ|k(θ), (3.1)

where Θk is the generic notation for Θk(β − 1
2 , L) under prior A and Θk(β, L)

for priors B and C. The posterior for d given in (1.3) can be written as

Π(d ∈ D|X) =

∑∞
k=0 πk(k)e

ln(do,k)
∫

D
eln(d,k)−ln(do,k)In(d, k)dπd(d)

∑∞
k=0 πk(k)eln(do,k)

∫ 1
2−t

− 1
2+t

eln(d,k)−ln(do,k)In(d, k)dπd(d)
. (3.2)

The factor exp{ln(d, k)−ln(do, k)} is independent of θ, and will under certain
conditions dominate the marginal likelihood. In section 3.2 we give a Taylor-
approximation which, for given k, allows for a normal approximation to the
marginal posterior. However, to obtain the convergence rates in Theorems 2.1
and 2.2, it also needs to be shown that the integrals In(d, k) with respect to
θ do not vary too much with d. This is the most difficult part of the proof of
Theorem 2.1 and the argument is presented in section 3.3. Since Theorem 2.2
is essentially a counter-example and it is not aimed to be as general as Theo-
rem 2.1, as far as the range of β is concerned, we can restrict attention to larger
β’s, i.e. β > 5/2, for which controlling In(d, k) is much easier.

3.1. Preliminaries

First we define the point θ̄d,k at which we develop θ → ln(d, k, θ). Since the
function log(2− 2 cos(x)) has Fourier coefficients against cos jx, j ∈ N equal to
0, 2, 22 ,

2
3 , . . ., FEXP-spectral densities can be written as

|1− eix|−2d exp







∞
∑

j=0

θj cos(jx)







= exp







∞
∑

j=0

(θj + dηj) cos(jx)







.

Given f = fd,k,θ and f ′ = fd′,k′,θ′ we can therefore express the norm l(f, f ′) in
terms of (θ − θ′) and (d− d′):

l(f, f ′) =
1

2

∞
∑

j=0

((θj − θ′j) + ηj(d− d′))2, (3.3)

where θj and θ′j are understood to be zero when j is larger than k respectively
k′. Equation (3.3) implies that for given d and k, l(fo, fd,k,θ) is minimized by

θ̄d,k := argminθ∈Rk+1

∞
∑

j=0

(θj − θo,j + (d− do)ηj)
2 = θo[k] + (do − d)η[k].
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In particular, θ = θo[k] minimizes l(fo, fd,k,θ) only when d = do; when d 6= do
we need to add (do − d)η[k]. The following lemma shows that an upper bound
on l(fo, fd,k,θ) leads to upper bounds on |d− do| and ‖θ − θo‖.
Lemma 3.1. Let γ ≤ β and αn a positive sequence tending to 0. There exist
constants C1, C2 > 0 such that for all n, all θ ∈ Θk(γ, L) and all θo ∈ Θk(β, Lo),
l(fo, fd,k,θ) ≤ α2

n implies that

|d− do| ≤ C1(L+ Lo)
1
4γ α

2γ−1
2γ

n , ‖θ − θo‖ ≤ C2(L + Lo)
1
4γ α

2γ−1
2γ

n .

Proof. For all (d, k, θ) such that l(fd,k,θ, fo) ≤ αn, we have, using (3.3),

2α2
n ≥ 2l(fd,k,θ, fo) = 2(θo,0 − θ0)

2 +
∑

j≥1

((θo,j − θj) + ηj(do − d))
2

≥ (‖θ − θo‖ − |d− do|‖η‖)2 .

The inequalities remain true if we replace all sums over j ≥ 1 by sums over
j ≥ mn, for any nondecreasing sequence mn. Since ‖(ηj1j>mn

)j≥1‖2 is of order
m−1

n and ‖((θ − θo)j1j>mn
)j≥1‖2 ≤ m−2γ

n

∑

j>mn
(1 + j)2γ(θj − θo,j)

2 < 2(L +

Lo)m
−2γ
n , setting mn = (αn/

√
L+ Lo)

− 1
γ gives the desired rate for |d − do| as

well as for ‖θ − θo‖.
The convergence rate for l(fo, fd,k,θ) required in Lemma 3.1 can be found in

Rousseau and Kruijer (2011). For easy reference we restate it here. Compared
to a similar result in RCL, the power of the (logn) factor is improved.

Lemma 3.2. Under prior A, there exists a constant l0 depending only on Lo

and kA (and not on L) such that

Π((d, k, θ) : l(fd,k,θ, fo) ≥ l20δ
2
n|X)

Po→ 0,

where δn = (n/ logn)−
2β−1
4β . Under priors B and C, this statement holds with

ǫn = (n/ logn)−
β

2β+1 replacing δn.

In the proof of Theorem 2.1 (resp. 2.2), this result allows us to restrict at-
tention to the set of spectral densities f such that l(f, fo) ≤ l20δ

2
n (resp. l20ǫ

2
n).

In addition, by combination with Lemma 3.1 we can now deduce bounds on
|d− do| and ‖θ − θ̄d,k‖. These bounds, although suboptimal, will be important
in the sequel for obtaining the near-optimal rate in Theorem 2.1.

Corollary 3.1. Under the result of Lemma 3.2 and prior A, we can apply
Lemma 3.1 with α2

n = l20δ
2
n and γ = β − 1

2 , and obtain

Πd(d : |d− do| ≥ v̄n|X)
Po→ 0, Π(‖θ − θ̄d,k‖ ≥ 2l0δn|X)

Po→ 0,

where v̄n = C1(L+Lo)
1

4β−2 l
2β−2
2β−1

0 (n/ logn)−
β−1
2β . Under priors B and C we have

γ = β; the rate for |d − do| is then wn = Cw(n/ logn)
− 2β−1

4β+2 and the rate for

‖θ− θ̄d,k‖ is 2l0ǫn. The constant Cw = C1(L+Lo)
1
4β l

2β−1
2β

0 is as in Theorem 2.2.
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Proof. The rate for |d−do| follows directly from Lemma 3.1. To obtain the rate
for ‖θ − θ̄d,k‖, let αn denote either l0δn (the rate for l(fo, f) under prior A)
or l0ǫn (the rate under priors B and C). Although Lemma 3.1 suggests that
the Euclidean distance from θo to θ (contained in Θk(β, L) or Θk(β − 1

2 , L))
may be larger than αn, the distance from θ to θ̄d,k is certainly of order αn. To
see this, note that Lemma 3.2 implies the existence of d, k, θ in the model with
l(fo, fd,k,θ) ≤ α2

n. From the definition of θ̄d,k it follows that l(fo, fd,k,θ̄d,k) ≤ α2
n.

The triangle inequality gives ‖θ − θ̄d,k‖2 = l(fd,k,θ, fd,k,θ̄d,k) ≤ 4α2
n.

The rates v̄n and wn obtained in Corollary 3.1 are clearly suboptimal; their
importance however lies in the fact that they narrow down the set for which
we need to prove Theorems 2.1 and 2.2. To prove Theorem 2.2 for example it
suffices to show that the posterior mass on kvwn(logn)

−1 < |d−do| < wn tends
to zero. Note that the lower and the upper bound differ only by a factor (log n).
Hence under priors B and C, the combination of Corollary 3.1 and Theorem 2.2
characterizes the posterior concentration rate (up to a logn term) for the given
θo. Another consequence of Corollary 3.1 is that we may neglect the posterior
mass on all (d, k, θ) for which ‖θ− θ̄d,k‖ is larger than 2l0δn (under prior A) or
2l0ǫn (under priors B and C).

We conclude this section with a result on θ̄d,k and Θk(β, L). In the definition
of θ̄d,k we minimize over Rk+1, whereas the support of priors A–C is the Sobolev
ball Θk(β, L) or Θk(β − 1

2 , L). Under the assumptions of Theorems 2.1 and 2.2
however, θ̄d,k is contained in Θk(β − 1

2 , L) and Θk(β, L), respectively. Also the
l2-ball of radius 2l0δn (or 2l0ǫn) is contained in these Sobolev-balls.

Lemma 3.3. Under the assumptions of Theorem 2.1, Bk(θ̄d,k, 2l0δn) is con-
tained in Θk(β− 1

2 , L) for all d ∈ [do− v̄n, do+ v̄n], if L is large enough. In par-
ticular, θ̄d,k ∈ Θk(β − 1

2 , L). Similarly, under the assumptions of Theorem 2.2,
Bk(θ̄d,k, 2l0ǫn) ⊂ Θk(β, L), for all d ∈ [do − wn, do + wn].

Proof. Since the constant l0 is independent of L, θ ∈ Bk(θ̄d,k, 2l0δn) implies
that for n large enough,

k
∑

j=0

θ2j (j + 1)2β−1 ≤ 2
k
∑

j=0

(θ − θ̄d,k)
2
j(j + 1)2β−1 + 2

k
∑

j=0

(θ̄d,k)
2
j(j + 1)2β−1

≤ 8l20(n/ logn)
− 2β−1

2β (kn + 1)2β−1 + 4

kn
∑

j=0

θ2o,j(j + 1)2β−1

+ 16(d− do)
2

kn
∑

j=1

(j + 1)2β−3.

The first two terms on the right only depend on Lo, and are smaller than

L/4 when L is chosen sufficiently large. Because v̄n = C1(L + Lo)
1

4β−2 l
2β−2
2β−1

0 (n/

logn)−
β−1
2β , the last term in the preceding display is at most

C2
1 (L+ Lo)

1
2β−1 l

4β−4
2β−1

0 (n/ logn)−
β−1
β k2β−2

A (n/ logn)
β−1
β ,
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which, since β > 1, is smaller than L/2 when L is large enough. We conclude
that Bk(θ̄d,k, 2l0δn) is contained in Θk(β− 1

2 , L) provided L is chosen sufficiently
large. The second statement can be proved similarly.

3.2. A Taylor approximation for ln(d, k)

Provided that the integrals In(d, k) have negligible impact on the posterior for
d, the conditional distribution of d given k will only depend on exp{ln(d, k) −
ln(do, k)}. Let l

(1)
n (d, k), l

(2)
n (d, k) denote the first two derivatives of the map

d 7→ ln(d, k). There exists a d̄ between d and do such that

ln(d, k) = ln(do, k) + (d− do)l
(1)
n (do, k) +

(d− do)
2

2
l(2)n (d̄, k). (3.4)

Defining

bn(d) = − l
(1)
n (do, k)

l
(2)
n (d, k)

, (3.5)

which is the bn used in Theorem 2.1, we can rewrite (3.4) as

ln(d, k)− ln(do, k) = −1

2

(l
(1)
n (do, k))

2

l
(2)
n (d̄, k)

+
1

2
l(2)n (d̄, k)

(

d− do − bn(d̄)
)2

. (3.6)

Note that each derivative l
(i)
n (d, k), i = 1, 2, can be decomposed into a centered

quadratic form denoted S(l(i)n (d, k)) and a deterministic term D(l
(i)
n (d, k)). In

the following lemma we give expressions for l
(1)
n (do, k), l

(2)
n (d, k) and bn, making

explicit their dependence on k and θo. Since k
′

n ≤ kn and wn < v̄n (see Corol-
lary 3.1) the result is valid for all priors under consideration. The proof is given
in Section 4 of the supplementary material (Kruijer and Rousseau (2013)).

Lemma 3.4. Given β > 1, let θo ∈ Θ(β, Lo), there exists δ1 > 0 such that if
k ≤ kn and |d− do| ≤ v̄n,

l(1)n (do, k) := S(l(1)n (do, k)) +D(l(1)n (do, k))

= S(l(1)n (do, k)) +
n

2

∞
∑

j=k+1

ηjθo,j + o(nǫ(k−β+3/2 + n−1/(2β))),

l(2)n (d, k) = l(2)n (do, k)
(

1 + oPo

(

k1/2n−1/2−ǫ + |d− do|nǫ
))

= −1

2
nrk

(

1 + oPo
(n−δ1)

)

,

where S(l(1)n (do, k)) is a centered quadratic form with variance

V ar(S(l(1)n (do, k))) =
n

2





∑

j>k

η2j



 (1 + o(1)) =
nrk
2

(1 + o(1)) = O(nk−1).
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Consequently,

bn(d) = − l
(1)
n (do, k)

l
(2)
n (d, k)

=
1

rk





∞
∑

j=k+1

ηjθo,j



 (1 + oPo
(n−δ))

+
2S(l(1)n (do, k))(1 + oPo

(n−δ))

nrk
+ oPo

(nǫ−1k−β+5/2 + nǫ−1),

(3.7)

with
2S(l(1)n (do, k))

nrk
= OPo

(n− 1
2 k

1
2 ).

Remark 3.1. Recall from (2.4) that r−1
k

∑∞
j=k+1 ηjθo,j is O(k−β+1/2). The

term 2S(l(1)n (do, k))/(nrk) is OPo
(k−β+1/2) whenever k ∼ n1/(2β), which is the

case under all priors under consideration.

Substituting the above results on l
(1)
n , l

(2)
n and bn in (3.6), we can give the

following informal argument leading to Theorems 2.1 and Theorem 2.2. If we
consider k to be fixed and In(d, k) constant in d, then (3.6) implies that the
posterior distribution for d is asymptotically normal with mean do+ bn(do) and
variance of order k/n.

3.3. Integration of the short memory parameter

A key ingredient in the proofs of both Theorems 2.1 and 2.2 is the control of
the integral In(d, k) appearing in (1.3), which is proved to be almost constant
in d compared to exp{ln(d, k) − ln(do, k)}. In Lemma 3.5 below we prove this
to be the case under the assumptions of Theorems 2.1 and 2.2. For the case of
Theorem 2.2 this is fairly simple: the conditional posterior distribution of θ given
(d, k) can be proved to be asymptotically Gaussian by a Laplace-approximation.
For smaller β and larger k the control is technically more demanding. In both
cases the proof is based on the following Taylor expansion of ln(d, k, θ) around
θ̄d,k:

ln(d, k, θ)− ln(d, k) =

J
∑

j=1

(θ − θ̄d,k)
(j)∇j ln(d, k)

j!
+RJ+1,d(θ), (3.8)

where

(θ − θ̄d,k)
(j)∇j ln(d, k) =

k
∑

l1,...,lj=0

(θ − θ̄d,k)l1 . . . (θ − θ̄d,k)lj
∂j ln(d, k, θ̄d,k)

∂θl1 . . . ∂θlj
,

RJ+1,d(θ) =
1

(J + 1)!

k
∑

l1,...,lJ+1=0

(θ − θ̄d,k)l1 . . . (θ − θ̄d,k)lJ+1

∂J+1ln(d, k, θ̃)

∂θl1 . . . ∂θlJ+1

.

(3.9)
The above expressions are used to derive the following lemma, which gives con-
trol of the term In(d, k).
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Lemma 3.5. Under the conditions of Theorem 2.1, the integral In(d, k) defined
in (3.1) equals

In(do, k) exp
{

oPo
(1) + oPo

(

|d− do|n
1
2−δ2k−

1
2

)

+ oPo

(

(d− do)
2n1−δ2k−1

)

}

,

for some δ2 > 0. Under the conditions of Theorem 2.2,

In(d, k) = In(do, k) exp {oPo
(1)} .

The proof is given in Sections 5 and 6 of the supplementary material (Krui-
jer and Rousseau (2013)), and relies on expressions for the derivatives ∇j ln.
Lemma 3.5 should be seen in relation to Lemma 3.4 and the expressions for
Π(d|X) and ln(d, k) − ln(do, k) in equations (3.2) and (3.4). Lemma 3.5 then
shows that the dependence on the integrals In(d, k) on d is asymptotically neg-
ligible with respect to ln(d, k)− ln(do, k). This is made rigorous in the following
section.

4. Proof of Theorem 2.1

By Lemma 3.2 we may assume posterior convergence of l(fo, fd,k,θ) at rate l
2
0δ

2
n,

and, by Corollary 3.1, also convergence of |d − do| at rate v̄n. By Lemma 3.3,
we may restrict the integration over θ to Bk(θ̄d,k, 2l0δn) and in the definition
of In(d, k) in (3.1) the integration in θ can be restricted to Bk(θ̄d,k, 2l0δn). To
simplify notations we still denote In(d, k) the integral over the restricted space.
Let Γn(z) = {d :

√

nrk
2 (d − do − bn(do)) ≤ z}. Under prior A, it suffices to

show that for k = kn,

Nn

Dn
:=

∫

Γn(z)
eln(d,k)−ln(do,k)

∫

Bk(θ̄d,k,2l0δn)
eln(d,k,θ)−ln(d,k)dπθ|k(θ)dπd(d)

∫

|d−do|<v̄n
eln(d,k)−ln(do,k)

∫

Bk(θ̄d,k,2l0δn)
eln(d,k,θ)−ln(d,k)dπθ|k(θ)dπd(d)

=

∫

Γn(z)
exp{ln(d, k)− ln(do, k) + log In(d, k)}dπd(d)

∫

|d−do|<v̄n
exp{ln(d, k)− ln(do, k) + log In(d, k)}dπd(d)

= Φ(z) + oPo
(1).

(4.1)

Using the results for ln(d, k) − ln(do, k) and In(d, k) given by Lemmas 3.4 and
3.5, we show that for An ⊂ R

n defined below such that Pn
o (An) → 1,

Nn

Dn
≤ Φ(z) + o(1),

Nn

Dn
≥ Φ(z) + o(1), ∀X ∈ An. (4.2)

Since Pn
o (An) → 1 this implies the last equality in (4.1).

Note that Lemmas 3.4 and 3.5 also hold for all δ′1 < δ1 and δ′2 < δ2. In the
remainder of the proof, let 0 < δ ≤ min(δ1, δ2). For notational simplicity, let

D = D(l
(1)
n (do, k)), the deterministic part of l

(1)
n (do, k). For a sufficiently large

constant C1 and arbitrary ǫ1 > 0, let An be the set of X ∈ R
n such that

|log In(d, k)− log In(do, k)| ≤ ǫ1 + (d− do)
2k−1n1−δ + |d− do|k− 1

2n
1
2−δ

∣

∣

∣
l
(1)
n (do, k)−D

∣

∣

∣
≤ C1n

1
2 k−

1
2

√
logn,

∣

∣

∣
l
(2)
n (d, k) + 1

2nrk

∣

∣

∣
≤ n1−δk−1
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for all |d − do| ≤ v̄n. Since k = kn and β > 1, Lemmas 3.4 and 3.5 imply
that Pn

o (A
c
n) → 0. We prove the first inequality in (4.2); the second one can be

obtained in the same way. Using (3.4) and the definition of An, it follows that
for all X ∈ An,

ln(d, k)− ln(do, k) + log In(d, k)− log In(do, k) ≤ ǫ1 + (d− do)
2n1−δk−1

+ |d− do|n
1
2−δk−

1
2 + (d− do)l

(1)
n (do, k)−

nrk
4

(d− do)
2(1 − n−δ)

≤ 2ǫ1 −
nrk
4

(

1− 2n−δ
)

(

d− do −
2l

(1)
n (do, k)

(1− 2n−δ)nrk

)2

+ |d− do|n
1
2−δk−

1
2 +

(l
(1)
n (do, k))

2

(1− 2n−δ)nrk

≤ 3ǫ1 −
nrk
4

(

1− 2n−δ
)

(

d− do −
bn(do, k)

1− 2n−δ

)2

+

∣

∣

∣

∣

d− do −
bn(do, k)

1− 2n−δ

∣

∣

∣

∣

n
1
2−δk−

1
2 +

(l
(1)
n (do, k))

2

(1− 2n−δ)nrk
.

(4.3)

The third inequality follows from (2.5) and Remark 3.1, by which bn(do) =

O(k−β+ 1
2 ) = O(δn). This implies that |bn(do)|k−

1
2n

1
2−δ < ǫ1, again for large

enough n. Similar to the preceding display, we have the lower-bound

ln(d, k)− ln(do, k) + log In(d, k)− log In(do, k)

≥ −3ǫ1 −
nrk
4

(1 + 2n−δ)

(

d− do −
bn(do, k)

(1 + 2n−δ)

)2

−
∣

∣

∣

∣

d− do −
bn(do, k)

(1 + 2n−δ)

∣

∣

∣

∣

k−
1
2n

1
2−δ +

(l
(1)
n (do, k))

2

(1 + 2n−δ)nrk
.

(4.4)

Note that

exp

{

(l
(1)
n (do, k))

2

(1− 2n−δ)nrk
− (l

(1)
n (do, k))

2

(1 + 2n−δ)nrk

}

= exp{o(1)}, (4.5)

which follows from the expression for l
(1)
n (do, k) in Lemma 3.4, the definition of

An and the assumption that X ∈ An. Therefore, substituting (4.3) in Nn and

(4.4) in Dn, the terms
(l(1)n (do,k))

2

4nrk
cancel out and by (4.5) we can neglect the

difference between
(l(1)n (do,k))

2

(1±2n−δ )nrk
and

(l(1)n (do,k))
2

nrk
.

To conclude the proof that Nn/Dn ≤ Φ(z) + o(1) for each X ∈ An, we make
the change of variables

u =

√

nrk
2

(1± 2n−δ)

(

d− do −
bn(do)

1± 2n−δ

)

,

where we take + in the lower bound for Dn and − in the upper-bound for
Nn. Using once more that bn(do) = O(δn), we find that for large enough n,



2964 W. Kruijer and J. Rousseau

|u| ≤ v̄n
4

√
nrk implies |d− do| ≤ v̄n. Hence we may integrate over |u| ≤ v̄n

4

√
nrk

in the lower-bound for Dn. In the upper-bound for Nn we may integrate over
u ≤ z + ǫ1.

Combining (4.3)-(4.5), it follows that for all ǫ1 and all X ∈ An,

Nn

Dn
≤ e7ǫ1

(

1 + 2n−δ

1− 2n−δ

)

1
2

∫

u<z+ǫ1
exp{− 1

2u
2 + Cn−δ |u|}du

∫

|u|≤ v̄n
4

√
nrk

exp{− 1
2u

2 − Cn−δ |u|}du

≤ e8ǫ1

∫

u<z+ǫ1
exp{− 1

2u
2 + Cn−δ |u|}du

∫

|u|≤ v̄n
4

√
nrk

exp{− 1
2u

2 − Cn−δ |u|}du → Φ(z + ǫ1)e
8ǫ1 ,

since v̄n
√
nrk goes to infinity. Similarly we prove that for all ǫ1, Nn/Dn ≥ Φ(z−

ǫ1)e
−8ǫ1 , when n is large enough, which terminates the proof of Theorem 2.1.

5. Proof of Theorem 2.2

Let β > 5/2 and θo,j = c0j
−(β+ 1

2 )(log j)−1. When the constant c0 is chosen
small enough, θo ∈ Θ(β, Lo). In view of Corollary 3.1, the posterior mass on the
events {(d, k, θ) : ‖θ− θ̄d,k‖ ≥ 2l0ǫn} and {(d, k, θ) : |d−do| ≥ wn} tends to zero
in probability, and may be neglected. Moreover Lemma 3.1 applied to γ = β
and αn = (n/ logn)−β/(2β+1) implies that with posterior probability going to
1, ‖θ − θ0‖ . (n/ logn)−(β−1/2)/(2β+1). We first consider the case of Prior C.
Within the (k + 1)-dimensional FEXP-model, ‖θ − θo‖ is minimized by setting
θj = θo,j (j = 0, . . . , k), and for this choice of θ we have

‖θ − θo‖2 =
∑

l>k

θ2o,l & k−2β(log k)−2.

Consequently, the fact that ‖θ − θ0‖ . (n/ logn)−(β−1/2)/(2β+1) implies that
k > k′′n := kC(n/ logn)

(β−1/2)/(β(2β+1))(logn)−1/β , for some constant kC > 0.
We conclude that

Π (k ≤ k′′n|X) = oPo
(1),

and we can restrict our attention to k > k′′n. For a positive constant kv, we
decompose Πd(|d− do| ≤ kvwn(logn)

−1, k > k′′n|X) as

∑

m>k′′

n

Π(|d − do| ≤ kvwn(logn)
−1, k = m|X)

=
∑

m>k′′

n

Π(k = m|X)Πm(|d− do| ≤ kvwn(log n)
−1|X),

where Πm(|d− do| ≤ kvwn(logn)
−1|X) is the posterior for d within the FEXP-

model of dimension m+1, i.e. Πm(|d− do| ≤ kvwn(logn)
−1|X) := Π(|d− do| ≤

kvwn(log n)
−1|k = m,X). From Theorem 4.2 of RCL (see Appendix C of RCL),

since
πk(k ≥ B(n/ logn)1/(2β+1)) ≤ e−cBnǫ2n ,
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for n large enough and all B > 0 large enough, setting k
(3)
n = ⌊B(n/

logn)1/(2β+1)⌋+ 1, we obtain that for B large enough

Π
(

k ≥ k(3)n |X
)

= op(1).

To prove Theorem 2.2 it now suffices to show that

En
0 max

k′′

n≤k≤k
(3)
n

Πk(|d− do| ≤ kvwn(logn)
−1|X)

Po→ 0, (5.1)

In the remainder we prove (5.1). For every k ≤ k
(3)
n we can write, using the

notation of (4.1),

Πk(|d− do| < kvwn(log n)
−1|X) ≤ Nn,k

Dn,k

:=

∫

|d−do|<kvwn(logn)−1 exp{ln(d, k)− ln(do, k) + log In(d, k)}dπd(d)
∫

|d−do|<wn
exp{ln(d, k)− ln(do, k) + log In(d, k)}dπd(d)

.

(5.2)

Let δ2 > 0 and An be the set of X ∈ R
n such that for all k′′n ≤ k ≤ k

(3)
n ,

sup|d−do|≤v̄n |log In(d, k)− log In(do, k)| ≤ ǫ1,
∣

∣

∣
l
(1)
n (do, k)−D(l

(1)
n (do, k))

∣

∣

∣
≤ C1n

1
2 k−

1
2

√
logn,

sup|d−do|≤wn

∣

∣

∣l
(2)
n (d, k)− l

(2)
n (do, k)

∣

∣

∣ ≤ ǫ1n
1+ǫ1rkwn.



















Compared to the definition of An in the proof of Theorem 2.1, the constraints

on l
(2)
n (d, k) and In are different. For the latter, recall from Lemma 3.5 that

log In(d, k) = log In(do, k) + oPo
(1), uniformly over d ∈ (do − wn, do + wn).

As in the proof of Theorem 2.1, it now follows from Lemmas 3.4 and 3.5 that
Pn
o (A

c
n) → 0. We can write

En
0

[

max
k′′

n≤k≤k
(3)
n

Nn,k

Dn,k

]

≤ Pn
o (A

c
n) + En

0

[

max
k′′

n≤k≤k
(3)
n

Nn,k

Dn,k
1An

]

,

and bound Nn,k/Dn,k pointwise for X ∈ An. If ǫ1 is small enough,

(l
(1)
n (do, k))

2

2|l(2)n (do, k)|
= Opo

(k−2βn) = oPo
(n−ǫ1/wn),

uniformly over k ∈ (k′′n, k
(3)
n ). Hence, analogous to (4.3) and (4.4), we find that

for some δ2 > 0 and for all X ∈ An,

ln(d, k)− ln(do, k) + log In(d, k)− log In(do, k)

≤ 2ǫ1 −
|l(2)n (do, k)|(1 − n−δ2)

2
(d− do − bn(do))

2
+

(l
(1)
n (do, k))

2

2|l(2)n (do, k)|
ln(d, k)− ln(do, k) + log In(d, k)− log In(do, k)

≥ −2ǫ1 −
|l(2)n (do, k)|(1 + n−δ2)

2
(d− do − bn(do))

2
+

(l
(1)
n (do, k))

2

2|l(2)n (do, k)|
,
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when n is large enough since k > k′′n. This follows from the definition of bn(do)
in (3.5).

We now lower-bound bn(do) by bounding the terms on the right in (3.7) in
Lemma 3.4. Since θoj = c0j

−(β+1/2)(log j)−1, it follows that

r−1
k

∑

j>k

j−1θo,j = c0r
−1
k

∑

j>k

j−β− 3
2 /(log j) ≥ ck−β+ 1

2 (log k)−1,

for some c > 0. Since X ∈ An, 2S(l(1)n (do, k))/(nrk) ≤ 2C1

√

k/n
√
logn. Since

k ≤ k
(3)
n , this bound is o(k−β+ 1

2 (log k)−1). The last term in (3.7) is o(nǫ−1) when

β > 5/2, and hence this term is also o(k−β− 1
2 (log k)−1). Therefore, the last two

terms in (3.7) are negligible with respect to r−1
k

∑

j>k j
−1θo,j . We deduce that

bn(do) ≥ ck−β+ 1
2 (log k)−1 ≥ cn−(2β−1)/(4β+2)(logn)−(2β+3)/(4β+2) for n large

enough.
Consequently, when the constant kv is chosen sufficiently small,

√

nr
k
(3)
n
(bn(do) − kvwn(logn)

−1) ≥ (c − kv)n
1/(4β+2)(logn)−(β+1)/(2β+1) :=

zn → ∞. We now substitute the above bounds on ln(d, k)−ln(do, k)+log In(d, k)−
log In(do, k) in the right hand side of (5.2), make the change of variables u =

d− do − bn(do) and obtain uniformly over k ∈ (k′′n, k
(3)
n )

Nn,k

Dn,k
≤ e5ǫ1

∫

u≤−kvwn(log n)−1−bn(do)
exp{−nrku

2

4 }du
∫

|u|<wn/2
exp{−nrku2(1−n−δ2 )

4 }du

≤ e5ǫ1

∫

v>zn(1−n−δ2 )
exp{− v2

2 }dv
∫

|v|<wn

√
nrk/8

exp{− v2

2 }dv
= o(1).

The case of Prior B corresponds to considering k′′n = k
(3)
n and is dealt with in

the same way. This achieves the proof of Theorem 2.2.

6. Conclusion

In this paper we have derived conditions leading to a BVM type of result for
the long memory parameter d ∈ (− 1

2 ,
1
2 ) of a stationary Gaussian process, for

the class of FEXP-priors. The result implies in particular that asymptotically
credible intervals for d have good frequentist coverage. To our knowledge this is
the first result on Bernstein-von Mises theorems in non -regular semi-parametric
models and we believe that the approach we have considered can be used in
other semi-parametric non-regular models, such as models for extremes, and
with other families of priors hence completing (not exhaustively) the recent
works of Castillo (2012) and Bickel and Kleijn (2012).

Recently Hoffmann et al. (2013) have obtained a generic lower bound on the
expectation under the true model P o of posterior probability of complements
of shrinking neighbourhoods in the form : given some loss function ℓ and some
rate ǫn

Eo [Π (ℓ(fd,θ, fo) ≤ ǫn|X)] ≥ e−Cnφ2
n
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φn = inf
fo

inf{‖ log fd,θ − log fo‖2; ℓ(fd,θ, fo) ≥ ǫn, (d, θ)}.

In this paper we are interested in ℓ(fd,θ, fo) = |d − do| and d, θ, together with
do, θo vary in [−t, t] × {∑j≥1 θ

2
j (1 + j)2β ≤ L}, in which case, using the same

computations as in Section 3.1, Lemma 3.1, we have that φn .
√

logn/n. As
discussed in Hoffmann et al. (2013) this implies that the approach based on
tests proposed by Ghosal et al. (2000) and Ghosal and van der Vaart (2007)
leads to suboptimal concentration rates and cannot be applied. It thus become
necessary to have a much more involved analysis of the posterior distribution,
explaining the difficulty in studying the frequentist properties of non-regular
Bayesian semi-parametric approaches.

A by-product of our results is that the most natural prior (Prior C) from a
Bayesian perspective, which is also the prior leading to adaptive minimax rates
under the loss function l on f , leads to sub-optimal estimators in terms of d.
Prior A leads to optimal estimators for d however it is not adaptive, contrary
to the frequentist estimator proposed by Iouditsky et al. (2001). An interesting
direction for future work would be to define an adaptive minimax estimation
procedure for d. We believe this can be done using a more flexible basis for
the expansion of log f such as wavelet bases and most of the computations
considered here, but is beyond the scope of this paper.
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