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Abstract: This paper discusses a parameter estimation method that em-
ploys an unusual estimator called the Dual estimator. For a linear regression
model, we obtain two alternative estimators by subtracting or adding a cer-
tain vector to the vector of the Ordinary Least Squares Estimator (OLSE).
One of them strictly dominates the latter. Moreover, under the normality
assumption this estimator is unbiased, and consistent, and has significantly
smaller variance than the OLSE. The use of a priori information is a uni-
versal way to choose a better alternative. An important property of the
proposed method is the possibility of using the strict inequalities as a priori
information. In particular, if the external information is that the L2-norm
of the OLS estimate exceeds the same norm of a vector of true coefficients,
one can choose a better alternative without additional parameters. If it is
known that the parameter is restricted by a linear non-strict inequality,
the method has a smaller Mean Squared Error than a Constrained Least
Squares technique. Finally, a priori information on two possible parameter
values can be successfully used for the experimental confirmation of one of
two alternative theories, which is illustrated by a verification of the General
Theory of Relativity based upon astronomical data.
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1. Introduction

Let us consider the problem of parameters estimation for the following linear
regression model:

Y = Xβ + ǫ, (1)

where Y, ǫ ∈ R
n, E(ǫ) = 0, cov(ǫ) = σ2In, σ2 is the variance of ǫ, known X ∈

R
n×k of rank k, and β ∈ R

k is unknown. The above stated conditions correspond
fully with the premises of the Gauss-Markov theorem [31]. According to the
theorem, the Ordinary Least Squares Estimator (OLS estimator), defined as

b = (X ′X)−1X ′Y (2)

is unbiased and has the smallest variance in the class of unbiased estimators that
are linear relative to Y . Under conditions of normality the estimator properties
are improved.

However, the fact that the estimator is optimal in one sense does not yet guar-
antee that it is good enough for practical purposes. Input data multicollinearity
is one of the most important and well-known problems. Let us use quadratic
risk as a criterion for quality of the regression parameters estimation

L2 = E((b − β)′(b− β)). (3)

From the known relation [32]

L2 = σ2Tr ((X ′X)−1) = σ2
k∑

i=1

λ i, (4)

where Tr is the trace, and λ i are the eigenvalues of the inverse matrix, it is
easy to see that when input data has multicollinearity, the quadratic risk (4)
can dramatically increase.

However, despite all the importance of decreasing the effect of multicollinear-
ity, resolving this issue does not remove all the problems of regression param-
eters estimation. There are many problems with orthogonal or almost orthog-
onal columns of the design matrix X (i.e. without multicollinearity) for which,
considering the available characteristics of the data, the least squares method
cannot provide the estimation quality required for the task. These include one-
dimensional problems of measurement processing, such as evaluation of funda-
mental constants in physics and astrophysics [35, 30], many problems in biology,
medical and technical diagnostics, analytical chemistry, quality control, etc. In
particular, orthogonal problems arising in experimental design fall into this cat-
egory. It can be assumed that, as scientific and technical problems to be solved
become more complex, the need for better quality regression estimates will still
be preserved and will even increase. As an example of a strict requirement for
estimation accuracy of regression model parameters, let us consider the develop-
ment of a regression model for diagnostics of a powerful steam turbine condition.
In [12] it was shown that for a reliable detection of a stage failure, the regression
model must have a multiple correlation coefficient R ≥ 0.995.

In the past decades, there have been hundreds of studies on improving the
quality of regression estimation (1), and we shall refer only to selected ones.
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Shrinkage and therefore biased estimators of different types were proposed and
investigated: examples include the James-Stein estimator [19, 26, 3], Ridge Re-
gression [17, 27], Principal Component Regression (PCR) [14, 3, 22], Least Ab-
solute Shrinkage and Selection Operator (LASSO) [37, 15], and their variants.
A Bayesian approach to regression estimation was developed and studied in
[11, 4, 34], as well as the extremely flexible Constrained Least Squares Method
(CLS) [23, 33, 28, 25]. These approaches share the use of a priori information
presented as assumptions about the norm of the sought-for (true) vector, the
existence of the region in which it is located, the possibility of excluding the
components corresponding to small eigenvalues of the matrix X ′X in PCR, a
priori distribution of the parameter, etc. However, the abundance of methods
and studies on their development indicates that each of them has its own area
of suitable applications, and there is no superior method. This well-known fact
is based primarily on numerous studies by simulation and analysis of the esti-
mators under different conditions [29, 9, 21, 38, 14, 20].

To illustrate this situation, we shall consider the possibilities and limitations
of some classical methods, namely, Ridge Regression, Principal Component Re-
gression (PCR), James-Stein Regression, and Constrained Least Squares (CLS).

The first and the second methods can be effective in the presence of multi-
collinearity while they are nearly useless otherwise [38]. If bs is the OLS estimate
calculated for the given sample X,Y , then the inequality bs

′bs > β′β is a nec-
essary condition for their applicability. The validity of this inequality in the
literature is usually based on the fact that the mathematical expectation of the
left side is greater than β′β. However, this does not mean that the inequality will
be true in a specific case. Moreover, under certain conditions, the probability
that the inequality is true could be close to 0.5. Therefore, this property must
be based on a priori information. This is exactly the view that is substantiated
in [6]. However, for Ridge Regression the mentioned a priori information is not
sufficient, and a certain parameter must be set. There are dozens of ways to
do that [5]. Whichever way it is done, the specified parameter depends on the
sought-for vector β and the unknown σ, which creates serious difficulties. The
main one is the estimation of the real mean squares error (MSE).

For PCR it is necessary to choose the number of components, which can be
vital for the regression coefficient estimating problem. As far back as 1982, in
[21] it was indicated that components with low variance can be just as important
as components having large variance. The same warning is contained in [32, 14].
In addition, as the study of shrinkage estimators using the Monte Carlo method
has shown [38], PCR is an unstable estimator. In a regression model with three
variables, the sum of squares of the preset positive factors was constant, but the
values of these factors varied. Thus, depending on these values and the standard
deviation, PCR could give an 8 times smaller or a 15 times larger MSE than the
variance of the OLS estimator. In these circumstances, evaluation of the actual
MSE is a hard problem.

The James-Stein estimator does not require any parameter setting, always has
a lower MSE than the OLS estimator variance, and allows analytical evaluation
of its value (see, e.g., [26]). These are its undoubted advantages. However, this
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estimator has significant limitations as well. The first is that this method only
works if k ≥ 3; therefore, it cannot be used to solve such important problems
as direct measurements processing, estimation of a line slope, or numerous two-
dimensional problems. The second and very significant drawback of the James-
Stein estimator is that it does not fully correct the distortion of the regression
coefficients caused by multicollinearity, and, in particular, incorrect signs of
these coefficients [1]. Finally, the same work presents the James-Stein estimator
in the following form:

bJS =

[
1− (k − 2)(n− k − 1)(1−R2)

n(n− k + 2)R2

]
b, (5)

where R2 is the coefficient of determination.
To obtain useful results in real life applications the regression model should be

adequate, and the significance of the coefficient of determination is the essential
condition of its adequacy. In many cases this leads to the fact that bJS differs
little from b. Indeed, if, for example, R2 = 0.8, k = 5, and, as recommended
in the literature, n/k = 15, we get bJS = 0.9904b. Accordingly, the decrease in
MSE and the usefulness of the approach will be very small.

The Constrained Least Squares Method is a universal method applicable
to the problems of any dimension and any conditionality – orthogonal, mul-
ticollinear, intermediate. However, this method also has limitations. First, it
cannot be used with constraints that have the form of strict inequalities. Sec-
ond, even if the inequalities are not strict, the method does not allow using a
priori relationships for the desired parameters regarding an OLS estimate, such
as the inequality bs

′bs > β′β. In such cases, it gives the OLS estimate. Finally,
the distribution of the estimate obtained by this method may be unfavourable
for the meaningful interpretation of the results. For example, if it is known that
in the one-dimensional regression the true coefficient is positive, then in all cases
where bs < 0 we derive the CLS estimate bs = 0.

All of the above confirms that the development and improvement of estimation
methods is still very relevant.

This article presents a method of parameter estimation that is based on an
unusual estimator that we called a Dual estimator. This approach has been par-
tially described in the preprint [13]. Here we present an in-depth study of the
method, and simultaneously change the name of the Quasi-estimator for Dual
estimator, believing that the latter is more appropriate. We shall show that for a
linear regression model we can obtain two alternative estimators by subtracting
or adding a certain vector to the OLS estimator vector. One of them strictly
dominates the OLS estimator (2). Moreover, under the normality assumptions
this estimator is unbiased, and consistent, and has significantly smaller variance
than the OLS estimator. Furthermore, it is robust with respect to deviations
from initial preconditions, relative to both the distribution and the properties
of the variance-covariance matrix of the error ǫ. Use of a priori information is
a universal way to choose the better alternative. An important difference of
the proposed method from the known ones is the possibility of using strict in-
equalities as a priori information. In particular, if it is known that the L2-norm
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of the OLS estimate calculated for the given sample of X,Y exceeds the same
norm of a vector of true coefficients, one can choose a better alternative with-
out additional parameters. When a priori constraints in the form of non-strict
linear inequalities are used, the method under consideration has a smaller mean
squared error, averaged on a priori interval, than the CLS approach, and a more
favourable distribution of the resulting estimates. Finally, a priori information
on two possible parameter values is successfully used for experimental confirma-
tion of one of the two competing theories, which is illustrated by a verification
of the General Theory of Relativity based upon astronomical data.

2. The Dual estimator and its properties

Consider two non-linear estimators, non-homogeneous in Y :

b1 = b+ c
√
e′e q, (6)

b2 = b− c
√
e′e q, (7)

where b is an OLS-estimate (2), e is the n × 1 vector of the known regression
residuals:

e = Y −Xb, (8)

q is an arbitrary, normalized (q′q = 1), k × 1 vector, and c is a constant, as yet
unknown, that we will subsequently define.

The estimators (6) and (7) differ only in the sign of the additive correction
to the vector of the OLS-estimator.

Let us define the random error of the OLS estimator as

δ = b− β (9)

and stipulate that, in every application, we choose, out of the two estimators
(6) and (7), the one whose correction sign is equal to sign(−q′δ), where the
sign-function is defined by the rule: sign(x) = 1, if x ≥ 0, and sign(x) = −1,
if x < 0. Then we derive the following Dual estimator:

b̃ = b− sign(q′δ) c
√
e′e q. (10)

The term “Dual estimator” is used because the last expression (10) involves a
discrete random variable sign(q′δ), which receives just two values: +1 or −1. Let
us define the constant c in such a way that the average square of the distance be-
tween the Dual estimator (10) and β is minimized for any q. The aforementioned
mean square of the distance, for b̃, is equal to:

L̃2 = E((b̃− β)′(b̃ − β)). (11)

Substituting the value b̃ from (10) and b from (9) into (11), taking the derivative
with respect to c, and then equating the result to zero, we obtain the following:

c̃ = arg min
c∈R1

L̃2 = E(
√
(q′δ)2e′e )/E(e′e). (12)
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Now the Dual estimator with the minimal L̃2 will have the following form:

b̃ = b− sign(q′δ) c̃
√
e′e q, (13)

where c̃ is taken from (12). Note that when n = k the residual sum of squares
e′e = 0 and, as follows from (13), b̃ = b. Thus, hereafter we shall restrict
ourselves to the case n > k. The aforementioned is already sufficient to prove
the following:

Proposition 1. Let E(ǫ) = 0, cov(ǫ) = σ2In, n > k, and q be an arbitrary,

normalized k × 1 vector. Then L̃2 < L2, for the Dual estimator (13).

Proof. Substitute (12) into (13), and the result obtained into (11). After trans-
formations, writing sign(q′δ) q′δ = |q′δ| =

√
(q′δ)2 and using (9), we derive:

L̃2 = L2 − [E(
√
(q′δ)2e′e)]2/E(e′e) (14)

Since the value subtracted from L2 is positive, the proposition is proven.

Up to this point, we did not consider the distribution of the error ǫ. Assume
now that ǫ is normally distributed, i.e. that ǫ ∼ N(0, σ), maintaining all our
previous stipulations. In that case we can, first of all, determine what the vector
q should be in order to minimize the value L̃2 from (14).

Proposition 2. Let ǫ ∼ N(0, σ2 In), n > k. Then the minimum of L̃2 is
achieved when the vector q from (13) is equal to the normalized eigenvector
z1 (z′1z1 = 1) which corresponds to the maximal eigenvalue of the inverse ma-

trix (X ′X)−1 : z1 = argminq∈Sk L̃
2, where the unit sphere of order k is denoted

as S
k.

Proof. Let us consider (14) and, first, prove the independence of the quadratic
forms (q′δ)2 and e′e. From (1), (2), (9) we obtain

δ = (X ′X)−1X ′ǫ. (15)

Further, using (2), (8), (14) and, taking into account that q′δ is a scalar, let us
represent these forms as ǫ′T ǫ, and ǫ′B ǫ, where the matrices T and B are equal,
correspondingly, to:

T = X(X ′X)−1qq′(X ′X)−1X ′, (16)

B = In −X(X ′X)−1X ′ (17)

By direct verification we ascertain that TB = BT = 0. This is a necessary and
sufficient condition for independence of the quadratic forms from the normal
random variables ǫ being considered [36].

It follows from the independence that the numerator of the second term in
the right hand side of equation (14) can be represented as a product:

[
E(

√
(q′δ)2e′e)

]2
=

[
E(

√
(q′δ)2)

]2 [
E(

√
e′e)

]2
=

[
E(| q′δ |)

]2 [
E(

√
e′e)

]2
.
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In order to minimize L̃2, one needs to maximize the first multiplicand of the
above product. The scalar q′δ is a normal random variable with expectation
zero.

The modulus of such a variable has a half-normal distribution. Its mathe-
matical expectation is given by [10]:

E(|q′δ|) =
√

2

π
D(q′δ) ⇒ [E(|q′δ|)]2 =

2

π
D (q′δ),

where D denotes its variance. It is well known [36] that the variance is

D(q′δ) = σ2(q′(X ′X)−1q)

where, as designated above, σ is the standard deviation of ǫ.
To finish the proof of the proposition, we are left to find out what should

be the value of the normalized vector q in order to maximize the value of the
obtained scalar. The answer is given by the Rayleigh-Ritz theorem [18], ac-
cording to which this maximum is equal to the maximal eigenvalue λ1 of the
matrix (X ′X)−1 and is obtained at the normalized eigenvector of this matrix
corresponding to such a maximal eigenvalue. The proposition is proven.

Now the Dual estimator gets the following form:

b̃ = b− sign(z′1δ) · c̃
√
e′e · z1. (18)

Normality of ǫ and the above result allow us to define concretely the expression
c̃ in (18) and, eventually, derive the final form for the optimal Dual estimator.

Proposition 3. Let ǫ ∼ N(0, σ2 In), n > k. Then the Dual estimator (18) has
the form:

b̃o = b− sign(z′1δ)

√
λ1

π

Γ((n− k + 1)/2)

Γ((n− k + 2)/2)

√
e′e z1, (19)

where Γ(x) is the gamma-function, and λ1, z1, as noted above, are the maximal
eigenvalue of the matrix (X ′X)−1 and the normalized eigenvector corresponding
to it, respectively.

Proof. Let us find c̃ from (12) and substitute the derived result into (18). First
we find the numerator in (12). As is shown in the proof of Proposition 2, the
random variables q′δ and e′e are independent. Hence, this numerator is equal
to E(|q′δ|)E(

√
e′e). It is also established in the proof of Proposition 2 that

E(|q′δ|) = σ
√

2
π q

′(X ′X)−1q. If q = z1, we obtain E(|q′δ|) = σ
√

2
πλ1. Since

e′e/σ2 ∼ χ2
n−k the mathematical expectation of

√
e′e is known [8] and is equal

to σ
√
2 Γ((n−k+1)/2)

Γ((n−k)/2) . Substituting the mathematical expectation e′e into the

denominator in expression (12), specifically, E(e′e) = (n− k)σ2, and using the
property Γ(x + 1) = xΓ(x) of the gamma-function [2], we obtain Γ((n − k +
2)/2) = ((n− k)/2)Γ((n− k)/2) and

c̃ =

√
λ1

π

Γ((n− k + 1)/2)

Γ((n− k + 2)/2)
(20)



Dual estimator 2379

We are left to substitute this expression for c̃ in equation (18), and Proposition 3
has been proven.

Corollary 1. Let some components of the vector q be equal to zero. That is, we
only improve regression coefficients with numbers from m which is an arbitrary
subset of the set 1, 2, . . . , k. Let (X ′X)−1

mm be a part of the matrix (X ′X)−1 cor-
responding to the subset m, bm be a subvector of the OLS-vector b corresponding
to the subset m, and λm, zm be the maximal eigenvalue and its eigenvector of
the matrix (X ′X)−1

mm. Then the optimal Dual estimator is

b̃mo = bm − sign(z′mδm)

√
λm

π

Γ((n− k + 1)/2)

Γ((n− k + 2)/2)

√
e′e zm. (21)

The considered Corollary gives us a convenient tool in cases when there is no
necessity to correct all regression coefficients. An obvious example is a situation
when variances of these coefficients differ markedly from each other. In this case,
it is reasonable to improve the coefficients with large variance. A second example
is an event when in the multivariate regression there exists a priori information
relative to only one coefficient. This case will be discussed in Section 4.

Now let us consider the ratio of the L̃2
o for the optimal Dual estimator to

the L2 of the OLS-estimator. Possessing the definitions and the results (4), (14)
and using the expression for E(

√
(z′1δ)

2e′e) from the proofs of Propositions 2,
and 3, we can compute the mentioned ratio as follows:

L̃2
o/L

2 = 1− n− k

π

Γ2((n− k + 1)/2)

Γ2((n− k + 2)/2)

λ1∑k
i=1 λi

. (22)

Using the ratio from [2]:

Γ(α+ p)/Γ(α+ h) = αp−h

(
1 +

1

2α
(p− h)(p+ h− 1)

)
+O(1/α2),

we can obtain an approximate but more obvious expression:

if (n− k)2/4 ≫ 1

L̃2
o/L

2 ∼= 1− 2

π

(
1− 0.25

n− k

)2
λ1∑k
i=1 λi

. (23)

As can be seen from (22) and (23), the relative gain for the Dual estimator
depends mainly on the distribution of the eigenvalues λi of the matrix (X ′X)−1

and can be quite substantial. Thus, in the one-dimensional case, when λ1 =∑k
i=1 λi, the ratio L̃2

o/L
2 is close to 0.4, i.e. the Dual estimator has L̃2

o smaller
than the OLS-estimator L2 by the ratio of 2.5. This fact can have a great
significance, in particular, when processing direct measurements.

In the case of multicollinearity, when λ1
∼=

∑k
i=1 λi, we obtain approximately

the same result.
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When processing orthogonal data, the effect will naturally be smaller and
will substantially depend on the number of variables k. But if we only correct
some of the coefficients, as is shown in Corollary 1, the situation improves.

Let us establish some additional properties of the optimal Dual estima-
tor (19). When the property under consideration holds for the original Dual
estimator (10), with an arbitrary vector q, we shall mention this in our remarks.

Proposition 4. Let ǫ ∼ N(0, σ2 In), n > k. Then the optimal Dual estimator
b̃o from (19) is unbiased, i.e. E(b̃o) = β.

Proof. Let us compute the mathematical expectations of both sides of equa-
tion (19), taking into account the independence of z′1δ from e′e proved above
and therefore of their functions:

E(b̃o) = E(b)− E(sign(z′1δ))E(
√
e′e)

√
λ1

π

Γ((n− k + 1)/2)

Γ((n− k + 1)/2)
z1.

Using (15) and the defining property of the eigenvector, we obtain:

z′1δ ∼ N(0,
√
λ1 σ), (24)

that is, the random variable z′1δ has normal distribution with expectation zero
and variance λ1σ

2. The expectation of the function sign(z′1δ) is equal to:

E(sign(z′1δ)) =
∫∞
−∞ sign(x)f(x) dx,

where f(x), the distribution density of the normally distributed variable in (24),
is continuous, symmetrical and bounded above.

In view of our definition of the sign-function (sign(x) = 1 when x ≥ 0 and
sign(x) = −1 when x < 0), the given integral is equal to zero due to the
symmetry of the integrand function for all x 6= 0 and its boundedness at the
point x = 0.

From this, since E(sign(z′1δ)) = 0 and, because of the unbiasedness of the
OLS-estimator E(b) = β, we get E(b̃o) = β.

Remark 1. We shall obtain the same result for any continuous, symmetric,
and bounded above distribution of the error ǫ, for which the mathematical
expectation exists.

Remark 2. The unbiasedness property, under conditions of Remark 1, applies
also to the estimator (10).

Proposition 5. Let ǫ ∼ N(0, σ2 In), n > k. Then the variance-covariance ma-
trix for the optimal Dual estimator (19) is equal to:

Q = E((b̃o−Eb̃o)(b̃o−Eb̃o)
′) = σ2

[
(X ′X)−1−(n−k)

λ1

π

Γ2((n− k + 1)/2)

Γ2((n− k + 2)/2)
z1z

′
1

]
.

(25)
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Proof. Proceeding from the definition of the variance-covariance matrix given
on the left side of (25), and taking into account the unbiasedness of the estimator
b̃o, and also the relations (9), (12), (19), after some transformations, we obtain:

Q = E(δδ′ − c̃ sign(z′1δ)z1δ
′√ǫ′Bǫ− c̃ sign(z′1δ)δz

′
1

√
ǫ′Bǫ+ c̃2ǫ′Bǫ z1z

′
1) (26)

Using (15), the well known expansion (X ′X)−1 =
∑k

i=1 λiziz
′
i and a property

of the scalar ǫ′Xz1, after certain transformations we derive:

Q = E

[
δδ′ − 2c̃sign(z′1δ)z

′
1δ
√
e′e z1z

′
1 + c̃2e′e z1z

′

+ c̃sign(z′1δ)
√
e′e

( k∑

i=2

λiz
′
iX

′ǫz1z
′
i +

k∑

i=2

λiziX
′ǫziz

′
1

)]
.

(27)

The expectation of the fourth summand is equal to zero. This follows from the
pairwise and, therefore, mutual independence [36] of the three random scalars
z′1δ, ǫ

′Xzi,
√
ǫ′Bǫ and the zero expectation of two of them. Substituting the

earlier obtained results into the first three summands of expression (27) we
derive (25).

Let us present also the following facts regarding the variance-covariance ma-
trix Q. Denote

Q̆ = Q/σ2. (28)

We ascertain by checking that the maximal eigenvalue of the matrix Q̆ is equal
to:

λQ̆ = λ1

(
1− n− k

π

Γ2((n− k + 1)/2)

Γ2((n− k + 2)/2)

)
, (29)

and that all other eigenvalues are equal to the corresponding eigenvalues of the
matrix (X ′X)−1. In addition, obviously, the matrix Q̆ is positively defined.

Let us establish yet another property of the optimal Dual estimator (19).

Proposition 6. If the OLS-estimator is consistent in the mean–square sense,
then the optimal Dual estimator (19) is also consistent in the same sense.

Proof. Suppose that limn→∞(X ′X)−1
n = 0, i.e. that the OLS-estimator is quad-

ratic mean consistent [36]. Consider the variance-covariance matrix (25) for the
optimal Dual estimator b̃o as a function of n.

We substitute (X ′X)−1
n z1n instead of λ1nz1n and take out (X ′X)−1

n :

Qn = σ2(X ′X)−1
n

(
Ik −

n− k

π

Γ2((n− k + 1)/2)

Γ2((n− k + 2)/2)
z1nz

′
1n

)
.

Using the relation for the gamma-function first used in the derivation of (23),
we obtain:

lim
n→∞

(
(n− k)

Γ2((n− k + 1)/2)

Γ2((n− k + 2)/2)

)
= 2.

Taking into account that z1nz
′
1n is bounded, since the eigenvector z1n is nor-

malized, we finally derive limn→∞ Q n = 0.
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Let us now consider questions related to confidence intervals for the optimal
Dual estimator (19). Taking into account its unbiasedness, we represent the
estimator in the following form: b̃o = β+ δ̃, where, in view of (9), (19), and (20),

δ̃ = δ − sign(z′1δ)c̃z1
√
e′e. (30)

Let us consider the central moments of the i-th component δ̃i of the vector δ̃.
The odd moments are equal to zero, as shown earlier. The second moment is
equal to the corresponding diagonal element of the matrix Q from (25). Let
us evaluate the kurtosis of δ̃i. If its value is only slightly different from three,
the distribution of the δ̃i can be considered as approximately normal with zero
expectation and the variance shown above. To obtain an upper bound of the
kurtosis, we use the fact that the greatest distortion of the initial normal dis-
tribution of δi takes place under the greatest improvement of the estimator, i.e.
when the value of the L̃2

o/L
2 from (22) is minimal. We can see from (22) and (23)

that this index decreases as the ratio of the largest eigenvalue λ1 to the sum of all
eigenvalues increases. This ratio is maximal and equals 1 in the one-dimensional
case. Thus, it is sufficient to consider the one-dimensional case to find the max-
imum of the kurtosis. Without loss of generality, let us assume that the X is an
n-dimensional vector of ones and take into account that in this case z1 = 1 and
λ1 = 1/n. Then, using the standard procedure for kurtosis calculation as well
as the known relationships for moments about the origin of the half-normal and
chi-squares distributions [8], we derive from (30) the kurtosis Ku:

Ku =

3
n2 − 2c̃2 n−1

n − 16 c̃3√
πn

Γ(1.5+(n−1)/2)
Γ((n−1)/2) + 4c̃4 Γ(2+(n−1)/2)

Γ((n−1)/2)

(1/n− (n− 1) c̃2)
2 , (31)

where c̃ is calculated by (20).
One can compute using (31) that for n < 6, Ku < 4.017, and for n ≥ 6,

Ku < 4. Moreover, Monte-Carlo simulation shows that, in particular, the quan-
tile of the probability density function of δ̃1 at the significance level of 0.05
equals 1.923, i.e. it is smaller than the one for normal distribution. Hence, it is
reasonable to present approximately

b̃o ∼= N(β, Q). (32)

And now we can extend known results from the theory of regression analysis [32,
36] to the optimal Dual estimator (19). In particular, the individual confidence
interval for the j-th component of the vector of the Dual estimator is computed
with the help of the expression:

b̃o (j)± t(n− k, 1− α/2)

√
Q̆j,j s, (33)

where t(n−k, 1−α/2) is the 1−α/2 point of the Student distribution with n−k
degrees of freedom, Q̆j,j is the corresponding diagonal element of the matrix Q̆
from (28), and s is the standard deviation estimate:

s =
√
e′e/(n− k). (34)
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Table 1

One–dimensional problem

Theoretical value Experimental value

L̃2
o/L

2 L̃2/L2

Normal distribution N(0, 1) 0.39772 0.39472
Uniform distribution in interval [−2, 2] – 0.41328
Mixture N(0, 1)–80% and N(0, 10)–20% – 0.25025

Exponential autocorrelation σ = 1, q = 0.3 – 0.65405

Table 2

Two–dimensional problem

Theoretical value Experimental value

L̃2
o/L

2 L̃2/L2

Normal distribution N(0, 1) 0.40319 0.40535
Uniform distribution in interval [−2, 2] – 0.41470
Mixture N(0, 1)–80% and N(0, 10)–20% – 0.39195

Exponential autocorrelation σ = 1, q = 0.3 – 0.51469

Finishing our consideration of the basic properties of the optimal Dual esti-
mator (19), let us answer the following important question: how does the effi-
ciency index (22) change when the original assumptions are violated, namely,
if the error distribution ǫ is symmetrical, but differs from the normal one, and
the error covariance matrix is not the identity matrix. An answer to this ques-
tion was obtained with the help of statistical modeling using Statistics Toolbox
from the Matlab package. Errors with the normal distributionN(0, 1), uniformly
distributed in the interval [−2, 2], a mixture of the normal distributions N(0, 1)–
80% and N(0, 10)–20%, and also the errors representing a time series with the
exponential autocorrelation function R(τ) = σ2e−q|τ | with σ2=1 and q=0.3 were
modeled. The number of tests was 10, 000. As data, the vector of ones X10,1 has
been used (i.e. the one-dimensional problem of direct measurements Y = β + ǫ
was modeled), as well as the matrixX10,2 with a significant linear contingency of
its columns (i.e. a two-dimensional problem Y = X1β1 +X2β2 + ǫ was modeled
under conditions of multicollinearity). The degree of multicollinearity is char-
acterized by the ratio of the maximal eigenvalue of the matrix (X ′X)−1 to the
minimal one, and is equal to 448.8. The data for the two-dimensional problem
were centered. We have taken β = 2 in the first case and β =

[
14
6

]
in the second

one. For each test, computing b by (2) and knowing β we can find: b̃o by (19),
(b − β)′(b − β), and (b̃o − β)′(b̃o − β). The averages of the last two values pro-

vides a close approximation to the required L2 and L̃2
o. The modeling results

are further presented in the Tables 1 and 2. One can see from Tables 1 and 2
that the optimal Dual estimator shows a high degree of robustness, i.e. the in-
dex L̃2/L2 stability in the presence of deviations from the original assumptions
regarding the error ǫ. A visible reduction in efficiency is observed only in the
one-dimensional problem with the autocorrelated errors ǫ, which is explained by
the absence of centered data in the one-dimensional case. On the other hand,
in the one-dimensional case, and with very heavy characteristics of the mixture
of the distributions, one observes an increase in efficiency, i.e. in this case the
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robustness of the Dual estimator is increased. For the two-dimensional problem,
almost the same pattern is typical, but with smaller scatter for the efficiency
criterion L̃2/L2.

Now we shall consider the use of various kinds of a priori information to
choose the better estimate.

Let us formulate the general principle of the use of the extra information,
keeping in mind that, as it is defined above in the introduction, bs is the OLS
estimate computed for the given sample (X,Y ). To choose a better estimate one
must know the sign of the scalar q′(bs − β) in the general case, or z1

′(bs − β)
for the optimal vector. The first product is known. If there exists a constraint
directly on the scalar q′β or on the vector β, one can derive the constraint on
the difference. The simplest rule is as follows. If for a specified constraint the
difference can be only positive or, on the contrary, only negative, one has the
correct estimate (note, that there are also the more complicated rules as it will
be shown later). If it is impossible to recognize the sign of the difference, the
estimate remains as the OLS estimate bs.

3. The use of a priori information in the form of strict inequalities

As follows from previously obtained outcomes, a priori information in the form
of q′(bs − β) > 0 or q′(bs − β) < 0 is naturally used in the proposed method.
The method provides the maximal effect, corresponding to (22) or, approxi-
mately, (23). Besides, one can use the indirect extra information relative to β.
Let us see how that works in several examples.

The first example relates to a one-dimensional problem. Suppose we know
that a1 < β < a2 and bs is calculated. Then, taking into account that in this
case q = z1 = 1, we obtain q′(bs−β) > 0 when bs−a2 > 0 or q′(bs−β) < 0 when
bs − a1 < 0 as well as the required estimates from (19). Further, our estimate
remains as bs when the above inequalities are not satisfied.

In the second example, we consider the situation when a priori information
in some sense is qualitative. Suppose that we have a two-dimensional regression,
and the external information is the fact that β1 > β2 where β1, β2 are compo-
nents of the vector β. Let the signs of corresponding components of the vector
q be positive and negative respectively. Then for all samples of X,Y in which
the inequality q′bs < 0 is true we obtain q′(bs − β) < 0. Under opposite signs of
components of the vector q we obtain q′(bs − β) > 0.

In the third example we turn to the non-linear case and show how a priori
information in the form of β′β < bs

′bs can be used to obtain the sign of q′(bs−β).
In what follows, let us rename b̃ to bq and b to bs in order to emphasize that we
are dealing with the sample but not with the general population. Let us show
that with the given a priori information the estimator is of the form:

bq = bs − sign(q′bs)

√
λ1

π

Γ((n− k + 1)/2)

Γ((n− k + 2)/2)

√
e′e q. (35)
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Indeed, one can obtain from (13), replacing b by bs and b̃ by bq: bq
′bq = bs

′bs −
2q′bssign(q′δ)c̃

√
e′e + c̃2e′e. If bq

′bq < bs
′bs, sign(q′δ) = sign(q′bs).

But in some samples we can derive that bs
′bs < bq

′bq. This situation usually
arises when the vector bs is close to the vector β. It is obvious that our estimate
should be bs in such a case. Thus, the result of (35) can be strengthened in the
following manner:

bqf =

{
bq, if bq

′bq ≤ bs
′bs

bs, if bq
′bq > bs

′bs
(36)

An application of the rule (35) will now be demonstrated on the problem
reviewed in Hoerl’s first publication dedicated to ridge regression [16]. This
problem is characterized by multicollinearity as seen from the the eigenvalues of
the correlation matrix, which are [0.0137 0.0985 2.8878]. To exclude the intercept
we have centered the data. Then the vector of remaining coefficients given by

A. Hoerl is β =
(

2
3
5

)
. The standard deviation and coefficient of determination

respectively are 0.915 and 0.956. Let us use the estimator (35) replacing the

vector q by the optimal vector z1. This vector is equal to z1 =
(−0.7520

0.6539
0.0834

)
. Let us

find the OLS estimate using (2): bs =
( 8.1837

−4.2694
4.9864

)
. One can see that this estimate

is strongly distorted by comparison with the true coefficients. The estimate bq

calculated by (35) is equal to: bq =
( 4.4576

−1.0292
5.3996

)
. For this estimate, the index

L̃2
o/L

2 equals 0.246 while the theoretical index (22) equals 0.4733, and it is easy
to see that the estimate bq is better than the OLS estimate. Unfortunately, the
sign of the second coefficient remains incorrect, but the direction of its change
is accurate.

In summary, let us compare the capabilities of the proposed method with the
possibilities of the classical techniques. As is known, strict linear and non-linear
inequalities cannot be used in the regression analysis under a priori parame-
ter constraints, and only non-strict inequalities are available [25]. Regarding
shrinkage (biased) estimators, their features have been briefly discussed in the
Introduction section. To this we can add that in the literature the application of
only one type of strict inequalities is mentioned, namely the inequality relative
to norms examined above. However, in this case the specified inequality is a
preliminary condition which is not sufficient to obtain the estimate. The excep-
tion is the James-Stein estimator, but it has restrictions considered above in
the Introduction. In particular, in our third example the James-Stein estimate
differs very little from the OLS estimate bs, i.e., it is useless.

4. The use of a priori information in the form of linear non-strict

inequalities

We shall begin with the one-dimensional problem and consider two cases: y =
xβ + ǫ and y = β0 + xβ + ǫ, where, in the first case, x is a vector of ones, in
the second case, x is an arbitrary vector with unequal elements, and β0, β are
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scalars. After centering of the second equation, β0 disappears. Assume that the
true coefficient is constrained by the linear non-strict inequality a1 ≤ β ≤ a2.
This extra information is also used in the Constrained Least Squares technique.
Of course, to find a better alternative of the Dual estimator we could apply
an approach considered in the first example of the previous Section. But the
estimation algorithm has to be more sophisticated, if we aim to compete with
the Constrained Least Squares method. Indeed, if, for example, the mentioned
better alternative is less than a1, it is reasonable to take a1 as the estimate. Next
we give the estimation algorithm which takes into account a number of similar
situations, and then we investigate its properties. But we stress in advance the
following. A priori inequalities considered in this section do not include the OLS
estimator b. On the other hand, we will study the behaviour of the proposed
estimator in the general population. Therefore in the given section we express
our estimator through b. Thus, we present the estimator bq in the following
form:

bq =






b, if a1 ≤ b ≤ a2
b+ p, if a1 − p < b < a1
b− p, if a2 < b < a2 + p
a1, if b < a1 − p
a2, if b > a2 + p

, (37)

where p is obtained from (19), (34) and is equal to

p =

√
n− 1

x′xπ

Γ(n/2)

Γ((n+ 1)/2)
s. (38)

Setting p = 0 in (37) we obtain the obvious rule for Constrained Least Squares
(CLS) in the one-dimensional case:

bcls =






bs, if a1 ≤ b ≤ a2
a1, if b < a1
a2, if b > a1

(39)

It is known that b ∼ N(β, σ̂), where σ̂ is calculated as

σ̂ = σ/
√
x′x. (40)

Now it is possible to establish the following.

Proposition 7. Suppose in one-dimensional linear regression, a priori infor-
mation in the form a1 ≤ β ≤ a2 is symmetric about β, that is (a1 + a2)/2 = β.
Suppose also that a2 − a1 < ϑασ̂, where ϑα is the (1 − α)100% quantile of the
standard normal distribution, α > 0 and p < a2 − a1. Then for an arbitrary σ̂
the Mean Squares Error (MSE) of the estimator bq (37) is less than the MSE
of the estimator bcls (39).

Proof. Estimators bq and bcls are functions of b ∼ N(β, σ̂). Hence, the MSE of
our estimators are:

MSEq =
1

σ̂
√
2π

∞∫

−∞

(bq − β)
2
e−(b− β)

2
/2σ̂2

db
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MSEcls =
1

σ̂
√
2π

∞∫

−∞

(bcls − β)
2
e−(b− β)2/2σ̂2

db

One can see from (37), (39) that the integrands of the derived expressions differ
from each other only in the intervals (a1 − p, a1) and (a2, a2 + p). In these
intervals bcls is equal to a1 and a2 respectively, i.e. the values of bcls are on the
bounds of a priori interval. On the other hand, under accepted assumptions, the
values of bq always lie within this interval. Therefore, (bq − β)2 < (bcls − β)2

together with the corresponding integrands.

Proposition 8. Suppose in one-dimensional linear regression a priori infor-
mation in the form a1 ≤ β ≤ a2 is asymmetric about β. Then under conditions
a2 − a1 < ϑασ̂, where ϑα is the (1 − α)100% quantile of the standard normal
distribution, α > 0, p < a2 − a1, a1 < β − p, a2 > β + p, then for an arbitrary
σ̂ the Mean Squares Error (MSE) of the estimator bq (37) is less than the MSE
of the estimator bcls (39).

Proof. We can prove this proposition in the same way as the previous proposi-
tion.

Remark 3. We have proven the given propositions for any value of p which is
within the interval a2 − a1. It is obvious, that the propositions are fair, also for
a value of p, calculated by (38), that lies inside the specified interval.

The last result shows that the algorithm (37) based on the Dual estimator
has a definite potential advantage over the Constrained Least Squares approach.
However, we should establish the quantitative characteristics of the method in
order to evaluate its usefulness in practical application. For this purpose, we
provide the following result

Proposition 9. Suppose in one-dimensional regression the sought-for coeffi-
cient β is subject to the linear non-strict inequality a1 ≤ β ≤ a2, p is a positive
constant such that p < a2−a1, and σ̂ is defined by (40). Then the Mean Squares
Error of the estimator (37) can be found from the equations

MSEq = Vq + (Eq − β)2, (41)

where Eq, the mathematical expectation of bq, and its variance Vq are defined
as follows:

Eq =
a1 + a2

2
+

a1 − β − p

2
erf

(
a1 − β − p

σ̂
√
2

)

− a2 − β + p

2
erf

(
a2 − β + p

σ̂
√
2

)
+

p

2

[
erf

(
a1 − β

σ̂
√
2

)

+ erf

(
a2 − β

σ̂
√
2

)]
+

σ̂√
2π

(
e−

(a1−β−p)2

2σ̂2 − e−
(a2−β+p)2

2σ̂2

)
,

(42)
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Vq =
1

2
[(a1 − Eq)

2 + (a2 − Eq)
2]

+

√
2

π
σ̂

[(
Eq −

1

2
(a2 − p+ β)

)
e−

(a2+p−β)2

2σ̂2

−
(
Eq −

1

2
(a1 + p+ β)

)
e−

(a1−p−β)2

2σ̂2 − p
(
e−

(a1−β)2

2σ̂2 + e−
(a2−β)2

2σ̂2

)]

+
1

2

[
((a1 − Eq)

2 − (Eq − p− β)2 − σ̂2) erf

(
a1 − p− β√

2 σ̂

)

+ ((Eq + p− β)2 + σ̂2 − (a2 − Eq)
2) erf

(
a2 + p− β√

2 σ̂

)

+ ((Eq − p− β)2 − (Eq − β)2) erf

(
a1 − β√

2 σ̂

)
+ ((Eq − β)2

− (Eq + p− β)2) erf

(
a2 − β√

2 σ̂

)]
. (43)

Proof. Here we give the sketch of a proof to avoid cumbersome mathematical
operations. Let us use well-known relationships for the mathematical expec-
tation and variance of a function of random variables [10]. In our case, the
piecewise function has the form (37). The domain of integration is divided into
five intervals corresponding to the definition of the function.

Corollary 2. If we set p = 0 in (42) and (43), we will get the MSE for Con-
strained Least Squares (39) in the one-dimensional case:

MSEcls = Vcls + (Ecls − β)2, (44)

Ecls =
a1 + a2

2
+

a1 − β

2
erf

(
a1 − β

σ̂
√
2

)
− a2 − β

2
erf

(
a2 − β

σ̂
√
2

)

+
σ̂√
2π

(
e−

(a1−β)2

2σ̂2 − e−
(a2−β)2

2σ̂2

)
,

(45)

Vcls =
1

2

(
(a1 − Ecls)

2
+ (a2 − Ecls)

2
)

+

√
2

π
σ̂

((
Ecls −

a2 + β

2

)
e−

(a2−β)2

2σ̂2 −
(
Ecls −

a1 + β

2

)
e−

(a1−β)2

2σ̂2

)

+
1

2

(
(a1 − Ecls)

2 − (Ecls − β)2 − σ̂2
)
erf

(
a1 − β

σ̂
√
2

)

− 1

2

(
(a2 − Ecls)

2 − (Ecls − β)
2 − σ̂2

)
erf

(
a2 − β

σ̂
√
2

)
. (46)

The formulas (41)–(46) allow us to calculate and compare MSEq and MSEcls

for known a1, a2, and σ̂ when β is given, in other words, to simulate the various
situations. But in solving actual problems, the coefficient β is unknown, and
therefore we must suppose that its value is arbitrary within the interval [a1, a2].
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Table 3

Outcome of the numerical investigation of the one-dimensional task

a2 − a1

σ̂
0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3

MIcls/L
2 0.092 0.18 0.27 0.36 0.44 0.50 0.56 0.61 0.64 0.68

MIq/L2 0.071 0.13 0.19 0.27 0.34 0.41 0.48 0.53 0.57 0.61

In this situation it is perfectly natural to use the next two integrals as criteria
of the quality of estimation :

MIq =
1

a2 − a1

a2∫

a1

MSEq dβ, (47)

MIcls =
1

a2 − a1

a2∫

a1

MSEcls dβ. (48)

Now, to obtain the all-round tool for investigation of the properties of the algo-
rithms (37), and (39) we should concretize the calculation of p in (42), and (43).
Obviously, for this purpose it is necessary to use the formula (38). But the
Proposition 9 stipulates that must be p < a2 − a1, and this condition can not
be fulfilled for a small difference a2 − a1. It is possible to solve this problem in
the obvious way, if to find the optimal value of p, having used (41)–(48):

po = argmin
p∈u

(MIq/MIcls) (49)

where u is the interval [0, a2 − a1] when a2 − a1 < p. On such an interval one
should use po instead of p from (38).

Let us examine the numerical performance of the estimators in question,
using equations (40)–(49). Doing so, we consider that there is a good reason to
normalize the functions (47), and (48) by the variance of the OLS estimator L2.
Without reducing the generality of results, we will model the case when x is the
vector of ones. Here it turns out that the final result depends only on the ratio
(a2−a1)/σ̂. Varying this ratio and setting s = σ we obtain the results presented
in Table 3. This table represents the results for those ratios (a2−a1)/σ̂ that are
interesting in a practice. But the calculation in the range 0 < (a2 − a1)/σ̂ < ∞
shows that for the accepted index of the quality of the estimation, algorithm
(37) is uniformly better than algorithm (39).

At the end of this section, we will discuss one of the possibilities of using the
Dual estimator in multidimensional cases for which a priori information in the
form a1 ≤ βi ≤ a2 exists. We should note that this is the most available con-
straint in many applications, because, if we have a system of a priori inequalities
for several coefficients, then a complicated question of its consistency arises. The
technique based on Corollary 1 of Proposition 3 will be applied. Let us denote
the OLS estimate of βi as bi, and the estimate for this coefficient obtained using
rule (37) as bqi. We obtain the value of pi from the formula (21). In this case,



2390 A. Gordinsky

Table 4

Outcome of the simulation for Hald’s problem

a2 − a1

σ̂
1 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

MIcls 0.23 0.29 0.34 0.40 0.45 0.49 0.53 0.56 0.59 0.62 0.64
MIq 0.18 0.22 0.27 0.33 0.37 0.42 0.46 0.50 0.53 0.56 0.59

Table 5

Outcome of the simulation for Hoerl’s problem

a2 − a1

σ̂
1 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

MIcls 0.33 0.38 0.43 0.48 0.52 0.55 0.59 0.62 0.64 0.67 0.69
MIq 0.29 0.33 0.37 0.42 0.46 0.50 0.53 0.56 0.59 0.62 0.64

zp = 1, and the λp is equal to the i-th diagonal element of the inverse matrix,
λp = (X ′X)−1

ii , and therefore

pi =

√
(X ′X)−1

ii

π

Γ((n− k + 1)/2)

Γ((n− k + 2)/2)

√
e′e. (50)

Having found bqi, we can obtain the remaining coefficients using the known
expression for the LS estimator with restrictions in the form of equalities [36]:

⌣

b = b+ (X ′X)−1H ′(H(X ′X)−1H ′)−1(bqi −Hb), (51)

in which H is a row vector of size k that contains 1 in the i-th position and zeroes
in all the remaining positions. The comparison of the MSIq of the proposed
technique with the MSIcls of the CLS estimator was performed by Monte-Carlo
simulation using the lsqlin program of the Matlab package on the two problems.
The first is the A. Hald problem, with four variables, presented in [6], and the
second one is the A. Hoerl problem considered in Section 3. In both cases we
used a priori constraints for the second coefficient, and σ̂ was calculated using
the formula

σ̂ =
√
(X ′X)−1

2,2s. (52)

In the lsqlin program, the following parameters were used: A = [0 1 0 0; 0−1 0 0],
and c =

[ a2

−a1

]
for the first example, and A = [0 1 0; 0−1 0] with the same c for

the second example. The number of tests for each case was 1500. The results
for the above mentioned problems are presented in Tables 4 and 5 respectively.

As one can see from the tables, in both cases the proposed method is prefer-
able.

5. Confirmation of one of two competing theories with the help of

an experiment

As an example, let us consider the widely known experiment conducted by as-
tronomers Dyson, F.W., Eddington, A.S., and Davidson, C.R. in the year of 1919
(cf. [7]). The purpose of the experiment was to determine the deflection of a ray
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of light in the gravitational field of the sun. Here they considered three possi-
bilities: the deflection is absent; the deflection conforms to Newton’s theory and
is equal to 0.87′′; the deflection conforms to the General Theory of Relativity
of A. Einstein and is equal to 1.75′′. The experiment was performed in three
countries by different groups. As the outcome of the experiment, there were
obtained three independent values: 1.98±0.12, 1.61±0.3, and 0.93. For the first
two values, after the symbol ±, the probable error is shown, which is equal, as
it is known, to 0.6745σ. For the third value, the authors did not give the value
of the probable error. Noting that it is too big, they discarded this value. Sub-
sequently, this fact led to doubts and prolonged discussions, and only a double
checking, conducted in 1979, showed that the error in the third measurement
was indeed big (cf. [24]). We will process these data without discarding the third
measurement 0.93 and assuming that its probable error is big and equals to 0.6,
i.e. five times greater than for the first measurement. Note also that this figure
is consistent with the results of the analysis carried out later in 1979. Doing so,

we use the model (1), where X =
(

1
1
1

)
, Y =

(
1.98
1.61
0.93

)
, but with the difference that

we have cov(ǫ) = V , where V is the non-identity diagonal matrix. Using known
probable errors we execute the obvious calculations and obtain the following
matrix of variances:

V =




0.03165 0 0

0 0.19782 0
0 0 0.79129



 .

Let us transform the initial variables X,Y, ǫ as follows: Xt = V −0,5X,Yt =
V −0,5Y, ǫt = V −0,5ǫ. And now, as is well known (see e.g. [6]), the model

Yt = Xtβ + ǫt, (53)

where

Xt =




5.675
2.248
1.124


 , Yt =




11.237
3.620
1.046


 ,

has uncorrelated errors and completely corresponds to model (1). Then we ob-
tain, using (2), the OLS estimate bs = 1.897. Next, since the possible values of
β are 0.87 or 1.75, it is easy to see that δ = bs − β is positive. Considering that
for the one-dimensional task z1 = 1, we obtain sign(z′1δ) = 1. Now we obtain
from (19) b̃o = 1.788, which is close to 1.75. In addition, taking into account
the importance of the problem being studied, let us accept a significance level
α = 0.02. Then, in accordance with (33), under the normality assumption, we
derive the confidence interval of b̃o as [1.030 2.545]. We see that it only covers
one of the possible theoretical values, namely 1.75. Thus, under the assump-
tions accepted, there are strong reasons to accept the outcome obtained with
the Dual estimator as the final estimate and to confirm the General Theory of
Relativity.
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6. Conclusion

The article has demonstrated that for the linear regression model we can obtain
two alternative estimators by subtracting or adding a certain vector to the Or-
dinary Least Squares Estimator (OLSE) vector. One of them strictly dominates
the latter. Moreover, if errors are normally distributed, this estimator is unbi-
ased, and consistent, and has significantly smaller variance than the OLSE. In
general, the use of a priori information is a natural way to choose a better alter-
native. The article discusses several types, traditional and nontraditional, of this
information, and shows the advantage of the proposed method over the biased
estimators and the Constrained Least Squares technique. Also, it was demon-
strated that in the proposed method a priori information on two possible values
of the parameter being sought can be successfully used, which is characteristic
for the problem of confirming one of the two alternative theories. The example
of verification of the General Theory of Relativity based on astronomical data
is examined. It should be noted that there are many other types of constraints,
both with respect to the parameters being estimated and with respect to the
regression response, which can be used for the purpose of selecting a better al-
ternative. However, as can be seen from the article’s material, for each kind of
a priori information a rule (algorithm) of its efficient use must be found, which
is not trivial and deserves special consideration.
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