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Abstract: One of the most widely used data augmentation algorithms
is Albert and Chib’s (1993) algorithm for Bayesian probit regression. Pol-
son, Scott, and Windle (2013) recently introduced an analogous algorithm
for Bayesian logistic regression. The main difference between the two is
that Albert and Chib’s (1993) truncated normals are replaced by so-called
Polya-Gamma random variables. In this note, we establish that the Markov
chain underlying Polson, Scott, and Windle’s (2013) algorithm is uniformly
ergodic. This theoretical result has important practical benefits. In partic-
ular, it guarantees the existence of central limit theorems that can be used
to make an informed decision about how long the simulation should be run.
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1. Introduction

Consider a binary regression set-up in which Y1, . . . , Yn are independent Bernoulli
random variables such that Pr(Yi = 1|β) = F (xT

i β), where xi is a p× 1 vector
of known covariates associated with Yi, β is a p × 1 vector of unknown regres-
sion coefficients, and F : R → (0, 1) is a distribution function. Two important
special cases are probit regression, where F is the standard normal distribution
function, and logistic regression, where F is the standard logistic distribution
function, that is, F (t) = et/(1 + et). In general, the joint mass function of
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Y1, . . . , Yn is given by

n
∏

i=1

Pr(Yi = yi|β) =
n
∏

i=1

[

F (xT
i β)

]yi
[

1− F (xT
i β)

]1−yi
I{0,1}(yi).

A Bayesian version of the model requires a prior distribution for the unknown
regression parameter, β. If π(β) is the prior density for β, then the posterior
density of β given the data, y = (y1, . . . , yn)

T , is defined as

π(β | y) = π(β)

c(y)

n
∏

i=1

[

F (xT
i β)

]yi
[

1− F (xT
i β)

]1−yi
,

where c(y) is the normalizing constant, that is,

c(y) :=

∫

Rp

π(β)

n
∏

i=1

[

F (xT
i β)

]yi
[

1− F (xT
i β)

]1−yi
dβ.

Regardless of the choice of F , the posterior density is intractable in the sense that
expectations with respect to π(β | y), which are required for Bayesian inference,
cannot be computed in closed form. Moreover, classical Monte Carlo methods
based on independent and identically distributed (iid) samples from π(β | y) are
problematic when the dimension, p, is large. These difficulties have spurred the
development of many Markov chain Monte Carlo methods for exploring π(β | y).
One of the most popular is a simple data augmentation (DA) algorithm for the
probit regression case that was developed by Albert and Chib (1993). Each
iteration of this algorithm has two steps, the first entails the simulation of n
independent univariate truncated normals, and the second requires a draw from
the p-variate normal distribution. A convergence rate analysis of the underlying
Markov chain can be found in Roy and Hobert (2007).

Since the publication of Albert and Chib (1993), the search has been on for an
analogous algorithm for Bayesian logistic regression. Attempts to develop such
an analogue by mimicking the missing data argument of Albert and Chib (1993)
in the logistic case have not been entirely successful. In particular, the resulting
algorithms are much more complicated than that of Albert and Chib (1993),
and simplified versions of them are inexact (see, e.g., Holmes and Held, 2006;
Frühwirth-Schnatter and Frühwirth, 2010; Marchev, 2011). Using a different
approach, Polson, Scott, and Windle (2013) (hereafter PS&W) have developed
a real analogue of Albert and Chib’s (1993) algorithm for Bayesian logistic re-
gression. The main difference between the two algorithms is that the truncated
normals in Albert and Chib’s (1993) algorithm are replaced by Polya-Gamma
random variables in PS&W’s algorithm. We now describe the new algorithm.

In the remainder of this paper, we restrict attention to the logistic regression
model with a proper Np(b, B) prior on β. As usual, let X denote the n × p
matrix whose ith row is xT

i , and let R+ = (0,∞). For fixed w ∈ R
n
+, define

Σ(w) =
(

XTΩ(w)X +B−1
)−1

and m(w) = Σ(w)
(

XT (y− 1
21n)+B−1b

)

, where
Ω(w) is the n× n diagonal matrix whose ith diagonal element is wi, and 1n is
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an n×1 vector of 1s. Finally, let PG(1, c) denote the Polya-Gamma distribution
with parameters 1 and c, which is carefully defined in Section 2. The dynamics
of PS&W’s Markov chain are defined (implicitly) through the following two-step
procedure for moving from the current state, β(m) = β, to β(m+1).

Iteration m+ 1 of PS&W’s DA algorithm:

1. Draw W1, . . . ,Wn independently with

Wi ∼ PG(1, |xT
i β|),

and call the observed value w = (w1, . . . , wn)
T

2. Draw β(m+1) ∼ Np

(

m(w),Σ(w)
)

Highly efficient methods of simulating Polya-Gamma random variables are pro-
vided by PS&W.

In this paper, we prove that PS&W’s Markov chain is uniformly ergodic. This
theoretical convergence rate result is extremely important when it comes to us-
ing PS&W’s algorithm in practice to estimate intractable posterior expectations.
Indeed, uniform ergodicity guarantees the existence of central limit theorems for
averages such as m−1

∑m−1
i=0 g

(

β(i)
)

, where g : Rp → R is square integrable with
respect to the target posterior, π(β | y) (see, e.g., Tierney, 1994; Roberts and
Rosenthal, 2004). It also allows for the computation of a consistent estimator
of the associated asymptotic variance, which can be used to make an informed
decision about how long the simulation should be run (see, e.g., Flegal, Ha-
ran, and Jones, 2008). We also establish the existence of the moment generating
function (mgf) of the posterior distribution. It follows that, if g(β1, . . . , βp) = βa

i

for some i ∈ {1, 2, . . . , p} and a > 0, then g is square integrable with respect to
the posterior.

The remainder of this paper is organized as follows. Section 2 contains a brief,
but careful development of PS&W’s DA algorithm. Section 3 contains the proof
that the Markov chain underlying this algorithm is uniformly ergodic, as well
as the proof that the posterior density, π(β|y), has an mgf.

2. Polson, Scott and Windle’s algorithm

PS&W’s DA algorithm is based on a latent data representation of the posterior
distribution. To describe it, we need to introduce what PS&W call the Polya-
Gamma distribution. Let {Ek}∞k=1 be a sequence of iid Exp(1) random variables
and define

W =
2

π2

∞
∑

k=1

Ek

(2k − 1)2
.
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It is well-known (see, e.g., Biane, Pitman and Yor, 2001) that the random
variable W has density

g(w) =

∞
∑

k=0

(−1)k
(2k + 1)√

2πw3
e−

(2k+1)2

8w I(0,∞)(w), (2.1)

and that its Laplace transform is given by

E
[

e−tW
]

= cosh−1
(
√

t/2
)

.

(Recall that cosh(z) = (ez + e−z)/2.) PS&W create the Polya-Gamma family
of densities through an exponential tilting of the density g. Indeed, consider a
parametric family of densities, indexed by c ≥ 0, that takes the form

f(x; c) = cosh(c/2) e−
c2x
2 g(x).

Of course, when c = 0, we recover the original density. A random variable
with density f(x; c) is said to have a PG(1, c) distribution. We now describe a
latent data formulation that leads to PS&W’s DA algorithm. Our development
is different, and we believe somewhat more transparent, than that given by
PS&W.

Conditional on β, let {(Yi,Wi)}ni=1 be independent random pairs such that

Yi and Wi are also independent, with Yi ∼ Bernoulli
(

ex
T
i β/(1 + ex

T
i β)
)

and
Wi ∼ PG(1, |xT

i β|). Let W = (W1, . . . ,Wn)
T and denote its density by f(w|β).

Combining this latent data model with the prior, π(β), yields the augmented

posterior density defined as

π(β,w|y) =
[
∏n

i=1 Pr(Yi = yi|β)
]

f(w|β)π(β)
c(y)

.

Clearly,
∫

R
n
+

π(β,w|y) dw = π(β|y),

which is our target posterior density. PS&W’s DA algorithm alternates between
draws from π(β|w, y) and π(w|β, y). The conditional independence of Yi and Wi

implies that π(w|β, y) = f(w|β). Thus, we can draw from π(w|β, y) by making
n independent draws from the Polya-Gamma distribution (as in the first step
of the two-step procedure described in the Introduction). The other conditional
density is multivariate normal. To see this, note that

π(β|w, y) ∝
[ n
∏

i=1

Pr(Yi = yi|β)
]

f(w|β)π(β)

=

[

n
∏

i=1

(

ex
T
i β
)yi

1 + ex
T
i
β

][

n
∏

i=1

cosh
( |xT

i β|
2

)

e−
(xT

i
β)2wi
2 g(wi)

]

π(β)
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∝ π(β)

n
∏

i=1

[

(

ex
T
i β
)yi

1 + ex
T
i
β

]

cosh
( |xT

i β|
2

)

e−
(xT

i
β)2wi
2

= 2−nπ(β)

n
∏

i=1

exp

{

yix
T
i β − xT

i β

2
− (xT

i β)
2wi

2

}

,

where the last equality follows from the fact that cosh(z) = (1 + e2z)/(2ez).
A routine Bayesian regression-type calculation then reveals that β|w, y ∼
Np(m(w),Σ(w)), where m(w) and Σ(w) are defined in the Introduction.

The Markov transition density (Mtd) of the DAMarkov chain, Φ= {β(m)}∞m=0,
is

k
(

β
∣

∣β′
)

=

∫

R
n
+

π(β|w, y)π(w|β′, y) dw. (2.2)

Of course, we do not have to perform the integration in (2.2), but we do need
to be able to simulate random vectors with density k

(

·
∣

∣β′
)

, and this is exactly
what the two-step procedure described in the Introduction does. Note that k :
R

p ×R
p → (0,∞); that is, k is strictly positive. It follows immediately that the

Markov chain Φ is irreducible, aperiodic and Harris recurrent (see, e.g., Hobert,
2011).

3. Uniform ergodicity

For m ∈ {1, 2, 3, . . .}, let km : Rp × R
p → (0,∞) denote the m-step Mtd of

PS&W’s Markov chain, where k1 ≡ k. These densities are defined inductively
as follows

km
(

β
∣

∣β′
)

=

∫

Rp

km−1
(

β
∣

∣β′′
)

k
(

β′′
∣

∣β′
)

dβ′′.

The conditional density of β(m) given β(0) = β′ is precisely km
(

·
∣

∣β′
)

. The
Markov chain Φ is geometrically ergodic if there exist M : Rp → [0,∞) and
ρ ∈ [0, 1) such that, for all m,

∫

Rp

∣

∣

∣
km
(

β
∣

∣β′
)

− π(β|y)
∣

∣

∣
dβ ≤ M(β′) ρm. (3.1)

The quantity on the left-hand side of (3.1) is the total variation distance between
the posterior distribution and the distribution of β(m) (given β(0) = β′). If the
function M(·) is bounded above, then the chain is uniformly ergodic.

One method of establishing uniform ergodicity is to construct a minorization

condition that holds on the entire state space. In particular, if we can find a
δ > 0 and a density function h : Rp → [0,∞) such that, for all β, β′ ∈ R

p,

k
(

β
∣

∣β′
)

≥ δ h(β), (3.2)

then the chain is uniformly ergodic. In fact, if (3.2) holds, then (3.1) holds with
M ≡ 1 and ρ = 1− δ (see, e.g., Jones and Hobert, 2001, Section 3.2).



Gibbs sampler for Bayesian logistic regression 2059

In order to state our main result, we need a bit more notation. Let φ(z;µ, V )
denote the multivariate normal density with mean µ and covariance matrix V
evaluated at the point z. Recall that the prior on β is Np(b, B), and define

s = B
1
2XT

(

y − 1

2
1n

)

+B− 1
2 b.

Here is our main result.

Proposition 3.1. The Mtd of Φ satisfies the following minorization condition

k
(

β
∣

∣β′
)

≥ δφ(β;m∗,Σ∗) ,

where m∗ =
(

1
2X

TX +B−1
)−1

B− 1
2 s, Σ∗ =

(

1
2X

TX +B−1
)−1

, and

δ =
|Σ∗|1/2
|B|1/2 exp

{

1

2
mT

∗ Σ
−1
∗ m∗

}

e−
n
4 2−n exp

{

−1

2
sT s

}

.

Hence, PS&W’s Markov chain is uniformly ergodic.

Remark 3.1. As discussed in the Introduction, uniform ergodicity guarantees
the existence of central limit theorems and consistent estimators of the associ-
ated asymptotic variances, and these can be used to make an informed decision
about how long the simulation should be run. While it is true that, in many
cases, δ will be so close to zero that the bound (3.1) (with M ≡ 1 and ρ = 1−δ)
will not be useful for getting a handle on the total variation distance, this does
not detract from the usefulness of the result. Moreover, it is certainly possible
that a different analysis could yield a different minorization condition with a
larger δ.

The following easily established lemmas will be used in the proof of Proposi-
tion 3.1.

Lemma 3.1. If A is a symmetric nonnegative definite matrix, then all of the

eigenvalues of (I + A)−1 are in (0, 1], and I − (I + A)−1 is also nonnegative

definite.

Lemma 3.2. For a, b ∈ R, cosh(a+ b) ≤ 2 cosh(a) cosh(b).

Proof of Proposition 3.1. Recall that Σ = Σ(w) =
(

XTΩ(w)X + B−1
)−1

and

m = m(w) = Σ(w)
(

XT (y − 1
21n) + B−1b

)

. We begin by showing that |Σ|− 1
2 ≥

|B|− 1
2 . Indeed,

|Σ| =
∣

∣(XTΩX +B−1)−1
∣

∣ =
∣

∣

(

B− 1
2B

1
2XTΩXB

1
2B− 1

2 +B− 1
2B− 1

2

)−1∣
∣

= |B|
∣

∣(X̃TΩX̃ + I)−1
∣

∣,

where X̃ = XB
1
2 . Now, since X̃TΩX̃ is nonnegative definite, Lemma 3.1 implies

that |Σ| ≤ |B|, and the result follows. Next, we show that mTΣ−1m ≤ sT s.
Letting l = y − 1

21n, we have

mTΣ−1m = (XT l +B−1b)T (XTΩX +B−1)−1(XT l +B−1b)
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= (XT l +B−1b)TB
1
2 (X̃TΩX̃ + I)−1B

1
2 (XT l +B−1b)

= (X̃T l +B− 1
2 b)T (X̃TΩX̃ + I)−1(X̃T l +B− 1

2 b)

≤ (X̃T l +B− 1
2 b)T (X̃T l +B− 1

2 b)

= sT s,

where the inequality follows from Lemma 3.1. Using these two inequalities, we
have

π(β|w, y) = (2π)−
p

2 |Σ|− 1
2 exp

{

− 1

2
(β −m)TΣ−1(β −m)

}

= (2π)−
p

2 |Σ|− 1
2 exp

{

− 1

2
βT (XTΩX)β− 1

2
βTB−1β− 1

2
mTΣ−1m+mTΣ−1β

}

≥ (2π)−
p

2 |B|− 1
2 exp

{

− 1

2
βT (XTΩX)β− 1

2
βTB−1β− 1

2
sT s+mTΣ−1β

}

= (2π)−
p

2 |B|− 1
2 exp

{

− 1

2

n
∑

i=1

wi(x
T
i β)

2 − 1

2
βTB−1β− 1

2
sT s+ sTB− 1

2β

}

= (2π)−
p

2 |B|− 1
2 exp

{

− 1

2
βTB−1β− 1

2
sT s+ sTB− 1

2β

}

[

n
∏

i=1

exp

{

− (xT
i β)

2

2
wi

}

]

.

Now since

π(w|β, y) =
n
∏

i=1

cosh

( |xT
i β|
2

)

exp

{

− (xT
i β)

2

2
wi

}

g(wi) ,

it follows that

π(β|w, y)π(w|β′, y)

≥ (2π)−
p

2 |B|− 1
2 exp

{

− 1

2
βTB−1β − 1

2
sT s+ sTB− 1

2β

}

×
[

n
∏

i=1

cosh

( |xT
i β

′|
2

)

exp

{

−
[

(xT
i β)

2 + (xT
i β

′)2

2

]

wi

}

g(wi)

]

.

Recall that k(β|β′) =
∫

R
n
+
π(β|w, y)π(w|β′, y) dw. To this end, note that

∫

R+

exp

{

−
[

(xT
i β)

2 + (xT
i β

′)2

2

]

wi

}

g(wi) dwi

=

{

cosh

(

√

(xT
i β)

2 + (xT
i β

′)2

2

)}−1

≥
{

cosh

(

|xT
i β|
2

+
|xT

i β
′|

2

)}−1
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≥
{

2 cosh

(

|xT
i β|
2

)

cosh

(

|xT
i β

′|
2

)}−1

,

where the first inequality is due to the fact that
√
a+ b ≤ √

a +
√
b for non-

negative a, b, and the second inequality is by Lemma 3.2. It follows that

∫

R
n
+

[

n
∏

i=1

cosh

( |xT
i β

′|
2

)

exp

{

− (xT
i β)

2 + (xT
i β

′)2

2
wi

}

g(wi)

]

dw

≥ 2−n

[

n
∏

i=1

cosh

( |xT
i β|
2

)

]−1

.

Moreover,

[

n
∏

i=1

cosh

( |xT
i β|
2

)

]−1

≥
[

n
∏

i=1

exp

( |xT
i β|
2

)

]−1

≥
[

n
∏

i=1

exp

(

(xT
i β)

2 + 1

4

)

]−1

= exp

{

− 1

2

n
∑

i=1

(

(xT
i β)

2

2
+

1

2

)

}

= e−
n
4 exp

{

− 1

2

(

βTXTXβ

2

)

}

,

where the second inequality holds because |a| ≤ (a2+1)/2 for any real a. Putting
all of this together, we have

k(β|β′) =

∫

R
n
+

π(β|w, y)π(w|β′, y) dw

≥ (2π)−
p

2 |B|− 1
2 exp

{

− 1

2
βTB−1β − 1

2
sT s+ sTB− 1

2 β

}

× 2−ne−
n
4 exp

{

− 1

2

(

βTXTXβ

2

)

}

= (2π)−
p

2 |B|− 1
2 exp

{

−1

2
βT
(XTX

2
+B−1

)

β + sTB− 1
2β

}

2−ne−
n
4 − sT s

2

= (2π)−
p

2 |Σ∗|−
1
2 exp

{

−1

2
(β −m∗)

TΣ−1
∗ (β −m∗)

}

× |Σ∗|
1
2 |B|− 1

2 2−ne−
n
4 − sT s

2 +
mT

∗
Σ
−1
∗

m∗

2

= δ φ(β;m∗,Σ∗),

and the proof is complete.
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Remark 3.2. It is worth pointing out that our proof circumvents the need to
deal directly with the unwieldy density of the PG(1, 0) distribution, which is
given in (2.1).

The utility of the Polya-Gamma latent data strategy extends far beyond the
basic logistic regression model. Indeed, PS&W use this technique to develop
useful Gibbs samplers for a variety of Bayesian hierarchical models in which a
logit link is employed. These include Bayesian logistic regression with random
effects and negative-binomial regression. Of course, given the results herein, it
is natural to ask whether these other Gibbs samplers are also uniformly ergodic,
and to what extent our methods could be used to answer this question. We note,
however, that the Mtd of the Polya-Gamma Gibbs sampler is relatively simple.
For example, the Gibbs sampler for the mixed effects model has more than two-
steps, so its Mtd is significantly more complex than that of the Polya-Gamma
Gibbs sampler. Thus, the development of (uniform) minorization conditions for
the other Gibbs samplers would likely entail more than just a straightforward
extension of the proof of Proposition 3.1. On the other hand, it is possible that
some of the inequalities in that proof could be recycled.

Finally, we establish that the posterior distribution of β given the data has
a moment generating function.

Proposition 3.2. For any fixed t ∈ R
p,

∫

Rp

eβ
T t π(β | y) dβ < ∞.

Hence, the moment generating function of the posterior distribution exists.

Remark 3.3. Chen and Shao (2000) develop results for Bayesian logistic re-
gression with a flat (improper) prior on β. In particular, these authors provide
conditions on X and y that guarantee the existence of the mgf of the posterior
of β given the data. Note that our result holds for all X and y

Proof. Recall that
∫

R
n
+

π(β,w|y) dw = π(β|y),

where

π(β,w|y) =
[
∏n

i=1 Pr(Yi = yi|β)
]

f(w|β)π(β)
c(y)

.

Hence, it suffices to show that

∫

R
n
+

∫

Rp

eβ
T t π(β,w|y) dβ dw < ∞.

Straightforward calculations similar to those done in Section 2 show that

π(β,w|y) = φ(β;m,Σ)

2nc(y)

|Σ| 12
|B| 12

exp

{

− 1

2
bTB−1b

}

exp

{

1

2
mTΣ−1m

} n
∏

i=1

g(wi).



Gibbs sampler for Bayesian logistic regression 2063

Then, since |Σ| ≤ |B| and mTΣ−1m ≤ sT s, we have

π(β,w|y) ≤ φ(β;m,Σ)

2nc(y)
exp

{

− 1

2
bTB−1b

}

exp

{

1

2
sT s

} n
∏

i=1

g(wi).

Now, using the formula for the multivariate normal mgf, it suffices to show that

∫

R
n
+

∫

Rp

eβ
T t φ(β;m,Σ)

[ n
∏

i=1

g(wi)

]

dβ dw

=

∫

R
n
+

exp

{

mT t+
1

2
tTΣt

}[ n
∏

i=1

g(wi)

]

dw < ∞.

We establish this by demonstrating that mT t + 1
2 t

TΣt is uniformly bounded
in w.

For a matrix A, define ‖A‖ = sup‖x‖=1 ‖Ax‖. Of course, if A is non-negative
definite, then ‖A‖ is equal to the largest eigenvalue of A. Now, using Cauchy-
Schwartz and properties of the norm, we have

|mT t|2 ≤ ‖m‖2‖t‖2 = ‖B 1
2B− 1

2m‖2‖t‖2 ≤ ‖B 1
2 ‖2‖B− 1

2m‖2‖t‖2.

Now since B− 1
2m =

(

X̃TΩX̃ + I
)−1(

X̃T (y − 1
21n) +B− 1

2 b
)

, we have

‖B− 1
2m‖2 =

∥

∥

∥

(

X̃TΩX̃ + I
)−1
(

X̃T
(

y − 1

2
1n

)

+B− 1
2 b
)∥

∥

∥

2

≤ 2
∥

∥

∥

(

X̃TΩX̃ + I
)−1

X̃T
(

y − 1

2
1n

)∥

∥

∥

2

+ 2
∥

∥

(

X̃TΩX̃ + I
)−1

B− 1
2 b
∥

∥

2

≤ 2
∥

∥

(

X̃TΩX̃ + I
)−1∥
∥

2
∥

∥

∥
X̃T
(

y − 1

2
1n

)∥

∥

∥

2

+ 2
∥

∥

(

X̃TΩX̃ + I
)−1∥
∥

2∥
∥B− 1

2 b
∥

∥

2

≤ 2
∥

∥

∥
X̃T
(

y − 1

2
1n

)
∥

∥

∥

2

+ 2
∥

∥B− 1
2 b
∥

∥

2
,

where the first inequality is due to the fact that ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2 for
any vectors a and b, and the third inequality is due to the fact that

∥

∥

(

X̃TΩX̃+

I
)−1∥
∥

2 ≤ 1 (Lemma 1). Hence, |mT t| is uniformly bounded in w. Finally, an-
other application of Lemma 1 yields

tTΣt = tT
(

XTΩX +B−1
)−1

t = tTB
1
2

(

X̃TΩX̃ + I
)−1

B
1
2 t ≤ tTBt,

so tTΣt is also uniformly bounded in w, and the result follows.
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