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Department of Mathematics
Eindhoven University of Technology

e-mail: b.szabo@tue.nl

A. W. van der Vaart

Mathematical Institute
Leiden University

e-mail: avdvaart@math.leidenuniv.nl

and

J. H. van Zanten

Korteweg-de Vries institute for Mathematics
University of Amsterdam

e-mail: j.h.vanzanten@uva.nl

Abstract: The performance of nonparametric estimators is heavily de-
pendent on a bandwidth parameter. In nonparametric Bayesian methods
this parameter can be specified as a hyperparameter of the nonparamet-
ric prior. The value of this hyperparameter may be made dependent on
the data. The empirical Bayes method is to set its value by maximizing the
marginal likelihood of the data in the Bayesian framework. In this paper we
analyze a particular version of this method, common in practice, that the
hyperparameter scales the prior variance. We characterize the behavior of
the random hyperparameter, and show that a nonparametric Bayes method
using it gives optimal recovery over a scale of regularity classes. This scale
is limited, however, by the regularity of the unscaled prior. While a prior
can be scaled up to make it appropriate for arbitrarily rough truths, scaling
cannot increase the nominal smoothness by much. Surprisingy the standard
empirical Bayes method is even more limited in this respect than an oracle,
deterministic scaling method. The same can be said for the hierarchical
Bayes method.
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1. Introduction

Recent years have seen increasing use of Bayesian methods in high-dimensional
or nonparametric statistical problems. It is known from both theory (e.g. [13,
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15, 5]) and practice that the (asymptotic) performance of such methods is sen-
sitive to the fine properties of the prior that is employed. This dependence can
be alleviated by adapting the prior to the data through one or more tuning
parameters, so-called hyperparameters. In the case of function estimation such
parameters can for instance describe the degree of regularity of a prior, a length
scale, or a bandwidth.

Two tuning methods are widely used. The first is to endow the hyperparam-
eters with a prior distribution, and leads to fully Bayesian procedures, referred
to as hierarchical Bayes. The frequentist behavior of such methods has been
studied in e.g. [2, 14, 20, 23, 27], where it was found that, if the priors are
well chosen, they can yield adaptive, rate-optimal recovery for a range of non-
parametric statistical problems. A second possible approach is to estimate the
hyperparameters from the data, e.g. by using a likelihood-based method. This
approach is not fully Bayesian, and commonly called empirical Bayes, but is
often computationally convenient and therefore commonly used in practice.

The theoretical performance of empirical Bayes methods in nonparametric
problems has been studied in only a limited number of special cases, see for in-
stance [1, 17]. Because a general understanding of such methods appears difficult
at this time, in this paper we focus on the important case that the hyperparam-
eter is a scale parameter of a Gaussian prior. This situation was first considered
in work on spline smoothing (see [29]), where the posterior mean for a (multi-
ply integrated, scaled and released) Brownian motion as a prior for an unknown
function is a penalized least squares estimator, and choosing the scale parameter
of the prior is equivalent to choosing the smoothing parameter (that multiplies
the penalty).

We consider the scaled Gaussian priors in the particular case of the Gaussian
white noise model, which allows tractable formulas. In view of the close relation
between this model and many other nonparametric models, it is expected that
our findings generalize. However, since we deliberately consider a particular
method, this does not follow from general results on equivalence of experiments
and thus will require further investigation.

The term empirical Bayes is used in various ways (see [22, 10, 30, 16] for the
original and alternative uses). In our situation it means determining a suitable
value of a (scaling) parameter of a prior from the data, which could still refer
to different methods. Specifically, we study the maximum likelihood estimator
(MLE) for the scale parameter based on the marginal Bayesian likelihood (see
(2.5) below). This is a natural method, which attempts to take the best of
both worlds. The method is also of interest by its close relation to the “full”
(hierarchical Bayes) method. These two methods differ only in that empirical
Bayes takes the MLE for the (univariate) marginal Bayesian likelihood, whereas
hierarchical Bayes equips the (univariate) parameter of this marginal likelihood
with a prior. Within our framework these methods perform equivalently, as we
show in Section 2.3.

We investigate the behavior of the empirical Bayes method in a frequentist
set-up: the method is (empirical) Bayesian, but it is evaluated under the as-
sumption that the data are generated under a given “true” parameter. In this
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situation minimax optimal rates can be used as a benchmark for performance.
However, it is not our primary aim to construct minimax estimators, or even
to exhibit priors that lead to minimax posterior means. Rather the particular
(scaled) priors and specific likelihood-based empirical Bayes method for choos-
ing the scaling parameter are the starting points. We aim at establishing their
performance, as they are natural and widely applied choices. For the aim of
minimax estimation there are various other methods (see e.g. [4, 21, 9]).

The results of this paper are a step towards a more general understanding of
empirical Bayes methods. They concern the behaviour of the empirical Bayes
scaling parameter and contraction of resulting plug-in posterior distribution.
We study contraction of the full posterior distribution rather than a summary
measure, such as a posterior mean. The full posterior is important for the use of
the Bayesian method for uncertainty quantification, for instance through credible
sets : sets of prescribed posterior probability. We hope to report on this involved
issue in a future paper. Understanding the behaviour of the empirical Bayes
scaling parameter will also be essential in this investigation.

In an earlier paper [19] we considered the performance of posterior distribu-
tions based on the same priors, but with deterministic scaling. It turned out
that for a given base prior and a given true regularity level there is an optimal
scaling rate. It is natural to compare the empirical Bayes method, which gives a
data-dependent rate, to the performance with this optimal rate, which would be
available to an oracle. Here we found the following somewhat surprising result.
While it is known that the oracle procedure fails to be minimax if the regularity
of the true parameter is higher than a level dependent on the unscaled prior
(see [25] and the next section), it turns out that the empirical Bayes method
fails to follow the oracle if the regularity of the true parameter exceeds an even
lower bound. This finding may motivate the investigation of different empiri-
cal Bayes schemes. On the positive side our results show that empirical Bayes
works adequately if the base prior does not (or only little) undersmooth the true
parameter.

In the next section we give a precise description of the problem, and state
our main findings. In Section 3 we illustrate the results with some simulations
and pictures. Sections 4 and 5 contain the proofs.

We write a . b for a ≤ Cb for a constant C that is universal or fixed in the
context, and an ≍ bn if an/bn → 1.

2. Main results

2.1. Setup

To be able to derive concrete results we consider a relatively tractable non-
parametric model: the Gaussian sequence model, or, equivalently the signal-in-
white-noise model, and sometimes called the normal means model. This model
often serves as a platform to investigate the behavior of statistical procedures,
see for instance [7, 24, 2, 5, 12, 6] for studies on various aspects of non- and
over-smoothing procedures in this setting.
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We assume we observe a sequence X = (X1, X2, . . .) satisfying

Xi = θ0,i +
1√
n
Zi, i = 1, 2, . . . , (2.1)

for θ0 = (θ0,1, θ0,2, . . .) an unknown element of ℓ2 = {θ ∈ R
∞ : ‖θ‖2 =

∑

k θ
2
k <

∞} and Z1, Z2, . . . independent, standard normal random variables. We denote
the “true” distribution of X by P0 and the corresponding expectations by E0.
All results refer to this distribution, although in the next paragraphs we adopt
a Bayesian point of view in which the parameter is random to motivate the
posterior distribution and the empirical Bayes likelihood.

This model is equivalent to the signal-in-white-noise model, in which we ob-
serve the process (Yt : 0 ≤ t ≤ 1) given by

Yt =

∫ t

0

f0(s) ds+
1√
n
Wt, t ∈ [0, 1],

with f0 ∈ L2[0, 1] an unknown function and W a standard Brownian mo-
tion. Indeed, if ei is an orthonormal basis of L2[0, 1], then the variables Xi =
∫ 1

0
ei(s) dYs satisfy (2.1), with θ0,i = 〈f0, ei〉 the Fourier coefficients of f0 rela-

tive to the basis ei. In Section 3 we illustrate our findings by simulated data in
this setting.

The variance of the errors in (2.1) is taken equal to the known value 1/n. It
is clear from the signal-in-white-noise representation that a possible parameter
σ2, changing the variance in σ2/n, would be ‘estimable’ without error from the
data, e.g. by n times the quadratic variation [Y ]1 of the signal (Yt : 0 ≤ t ≤ 1).
Thus it is no loss of generality not to introduce such an additional parameter in
the model; taking it equal to unity simplifies the notation. A different situation
would arise, were the signal observed only on a discrete time set. We guess
that similar phenomena will occur in this different model, but to verify this will
require significant additional technical work. Including an additional variance
parameter would be natural in this work.

We assume that the parameter θ0 belongs to a hyper rectangle in ℓ2, i.e.

θ20,k ≤ C2k−1−2β , (2.2)

for (unknown) constants and C, β > 0. In the case that the θ0,k’s are the Fourier
coefficients of some unknown function, this roughly means assuming that the
function has “regularity” of the order β. It is known that the minimax rate of
estimation relative to the ℓ2-norm over hyper rectangles of this form is of the
order n−β/(1+2β) (see [8]).

In the Bayesian set-up the model (2.1) is viewed as giving the conditional
distribution of X given the parameter θ0, inference on the unknown parameter
θ0 begins by postulating a prior distribution for θ0. We consider the family of
priors

Πτ =

∞
⊗

k=1

N(0, τ2k−1−2α) (2.3)
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on R
∞, where α > 0 is a fixed parameter and τ > 0 is a scaling parameter

that will be set by an empirical Bayes approach. In other words, under the
prior Πτ the coordinates θ0,k of θ0 are independent, centered Gaussian variables
with variances τ2k−1−2α. The parameter α determines the speed at which the
variances tend to zero. It can be interpreted as the baseline “regularity” of the
unscaled prior. Indeed, for fixed τ > 0 and any s < α, the prior Πτ gives full
mass to the Sobolev space Hs = {θ ∈ ℓ2 :

∑

k θ
2
kk

2s <∞}.
In this paper we stick to this prior. The fact that the prior does give mass zero

to the Sobolev space of order α motivated [31] (also see [3]) to consider various
modifications, such as block dependent priors. Another alternative would be to
mix priors of the form (2.3) over the value of α. Estimating α by empirical or
hierarchical Bayes (with τ = 1 fixed) is considered in [18].

Under the (conditional) model (2.1) and the prior (2.3) the coordinates
(θ0,k, Xk) of the vector (θ0, X) are independent, and hence the conditional
distribution of θ0 given X factorizes over the coordinates as well. Thus the
computation of the posterior distribution reduces to countably many posterior
computations in conjugate normal models. It is straightforward to verify that
the posterior distribution Πτ (· |X) is given by

Πτ (· |X) =

∞
⊗

k=1

N
( nτ2

nτ2 + k1+2α
Xk,

τ2

nτ2 + k1+2α

)

. (2.4)

In the empirical Bayes approach we subsequently replace the hyperparameter τ
by a data-driven choice τ̂n. In the Bayesian setting described by the conditional
distributions θ | τ ∼ Πτ and X | (θ, τ) ∼ ⊗kN(θk, 1/n), it holds that

X | τ ∼
∞
⊗

k=1

N(0, τ2k−1−2α + 1/n).

The corresponding log-likelihood for τ (relative to an infinite product ofN(0, 1/n)-
distributions) is given by

ℓn(τ) = −1

2

∞
∑

k=1

(

log
(

1 +
τ2n

k1+2α

)

− τ2n2

k1+2α + τ2n
X2

k

)

. (2.5)

We shall prove that with P0-probability going to one, ℓn attains a global maxi-
mum on (0,∞), and denote the point where this is attained by τ̂n. (If the point
of global maximum is not unique, any global maximum can be chosen.) Outside
the event on which ℓn has a global maximum, τ̂n can be set to an arbitrary
value.

The empirical Bayes posterior is now defined as the randommeasure Πτ̂n(·|X)
obtained by substituting τ̂n for τ in the posterior distribution (2.4), i.e.

Πτ̂n(B|X) = Πτ (B|X)
∣

∣

∣

τ=τ̂n

for measurable subsets B ⊂ ℓ2. The results presented in the next subsection
concern the rate at which the empirical Bayes posterior contracts to the true
parameter θ0. Furthermore, we characterize the behavior of τ̂n itself.
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If the true parameter satisfies next to (2.2) also the reverse inequality (with
a constant c ≤ C), then it turns out that τ̂n has a precise behavior, and the per-
formance of the posterior can be established by uniformity arguments. The more
difficult case is to consider τ̂n and Πτ̂n(·|X) under general θ0 in the rectangle
described by (2.2).

2.2. Main results

If the prior is not rescaled, i.e. we use the prior Πτ for some fixed value of τ , then
the posterior (2.4) contracts to θ0 at the optimal rate n−β/(1+2β) if and only if
α = β (cf. [26, 5, 19, 11]). That is, the Bayesian procedure performs optimally
if and only if the “regularities” of the prior and the unknown parameter match.

This relationship changes if the parameter τ = τn is chosen to tend to zero
or infinity with n. Two situations arise: if the prior does not under-smooth
the unknown parameter too much, then the optimal rate can still be attained,
whereas in the other case the posterior gives suboptimal recovery no matter the
scaling ([19, 25]). More precisely,

(i) If θ0 satisfies (2.2) for β ≤ 1+2α, then for the choice τ = τn = n(α−β)/(1+2β),
and every Mn → ∞,

Πτn(θ : ‖θ − θ0‖2 > Mnn
− β

1+2β |X)
P0→ 0.

(ii) If β > 1 + 2α, then this posterior probability tends to 1 for some θ0
satisfying (2.2).

The optimal rescaling rate τn = n(α−β)/(1+2β) in case (i) depends on the un-
known parameter β that measures the smoothness of the true parameter. We
therefore call it the oracle rescaling rate. Our aim is to compare the performance
of the empirical Bayes procedure to that of the oracle procedure.

Remarkably, the performance of the empirical Bayes procedure cuts the range
β ≤ 1+2α, where optimal deterministic scaling is possible, into two subregimes.
If β < 1/2+α, then the empirical Bayes posterior matches the oracle procedure
and contracts at the optimal rate n−β/(2β+1) to θ0. On the other hand, if 1/2+
α ≤ β < 1+2α, then the empirical Bayes procedure performs strictly worse than
the oracle. The message is that smooth priors perform well from the perspective
of contraction rates; if empirical Bayes scaling is used, then a good prior should
under-smooth the truth by at most 1/2 level of regularity.

Besides the empirical Bayes posterior, we study the empirical Bayes rescal-
ing rate τ̂n itself. In our first theorem we give upper and lower bounds for its
magnitude. For given nonzero θ0 consider the functions hn : (0,∞) → (0,∞)
defined by

hn(τ) =

∞
∑

k=1

(τ2n)
2α

1+2α k1+2αθ20,k
(k1+2α + τ2n)2

. (2.6)

For fixed n the function hn is positive on (0,∞) and tends to zero as τ → ∞,
by dominated convergence, for any nonzero θ0 ∈ ℓ2. Therefore, for positive
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constants l < L we can define

τn = sup
{

τ > 0 : hn(τ) ≥ l/n
}

, (2.7)

τn = sup
{

τ > 0 : hn(τ) ≥ L/n
}

. (2.8)

In the next theorem we show that τ̂n belongs with probability tending to one
to the interval [τn, τn], provided l is chosen sufficiently small and L sufficiently
big.

The function hn and the bounds τn ≤ τn depend on the unknown true
parameter θ0. For typical θ0 the upper and lower bounds have the same order
of magnitude. In particular, this is true for θ0 satisfying the exact asymptotic
behavior θ20,k ≍ C2k−1−2β , in which case, for some constants d depending on α,
β, C and l (see Section 4.4),

τn ≍











dn
α−β
1+2β , if β < α+ 1/2,

d n
−1

4+4α (logn)α/(4+4α), if β = α+ 1/2,

d n
−1

4+4α , if β > α+ 1/2.

(2.9)

The cut-off at β = α+ 1/2 is clearly visible in this bound.
The exact asymptotic behavior θ20,k ≍ C2k−1−2β may be considered a worst

case for θ0 belonging to the hyper rectangle (2.2). For general θ0 that are not
“in the boundary” of any rectangle (for any β), the behaviour of τ̂n, may be
complicated, but we shall see in (the proof of) Theorem 2.2 that the lower and
upper bounds τn and τn are sufficiently sharp to analyze the behaviour of the
empirical Bayes posterior distribution of θ.

Theorem 2.1. Suppose (2.2) holds. If θ0 6= 0, then the constants l and L
in (2.7) and (2.8) can be chosen such that P0(τn < τ̂n < τn) → 1. If in
addition θ20,k ≥ c2k−1−2β for some c > 0, then τn and τn are of the same order.

Moreover, if θ20,k ≍ C2k−1−2β, then τ̂n/τn tends in probability to a constant,

and τn satisfies (2.9). Finally, if θ0 = 0, then τ̂n = OP (1/
√
n).

The worst case upper bound τn in (2.9) has the same order as the optimal
rescaling rate n(α−β)/(1+2β) if β < 1/2+α, but not if β ≥ 1/2+α. The theorem
shows that the empirical Bayes procedure selects the common order whenever
the lower and upper bounds have the same order, in particular when θ20,k ≍
C2k−1−2β . Hence in the latter case the empirical Bayes procedure selects the
proper oracle scaling rate if β < α + 1/2, but not in the other case, i.e. only
if the baseline “regularity” α of the prior is sufficiently large compared to the
regularity β of the truth θ0. This suggests that the empirical Bayes posterior
will match the oracle only in the case β < α+1/2, and performs sub-optimally
if β ≥ α + 1/2. The following theorem, which is the main result of this paper,
states that this is true under the general assumption (2.2).

Theorem 2.2. If θ0 satisfies (2.2), then

Πτ̂n(θ : ‖θ − θ0‖2 ≤Mnεn,α,β |X)
P0→ 1,
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for every sequence Mn → ∞, where

εn,α,β =











n−β/(1+2β), if β < 1/2 + α,

n−β/(1+2β)(logn)(1/2)/(1+2β), if β = 1/2 + α,

n−(1/2+α)/(2+2α), if β > 1/2 + α.

Furthermore, if in addition θ20,k ≥ c2k−1−2β for some c > 0, then, for all suffi-
ciently small m > 0,

Πτ̂n(θ : ‖θ − θ0‖2 < mεn,α,β|X)
P0→ 0.

Finally, if β > 1/2 + α, this is true for any θ0 6= 0 that satisfies (2.2).

The first assertion of the theorem shows that the empirical Bayes procedure
attains the optimal rate if β < 1/2 + α, but a slower rate in the other cases.
The rate n−(1/2+α)/(2+2α) in the case that β > 1/2 + α is the optimal rate for
the value β = 1/2 + α at the cut point. If (2.2) holds for some β > 1/2 + α,
then it also holds for β = 1/2 + α. Therefore an interpretation is that the
empirical Bayes procedure with a prior of regularity α is incapable to exploit
regularity (2.2) in the true function θ0 beyond level 1/2 + α. The second and
third assertions of the theorem show that the rates are sharp. The third, final
assertion shows in a very strong sense that the deterioration of the rate in the
third case is caused completely by the prior.

The good news is that the empirical Bayes procedure repairs any amount of
prior over-smoothing, at least as far as contraction rates are concerned.

2.3. Hierarchical Bayes

Instead of substituting a random value for τ̂n into the posterior distribution for
θ, the hierarchical Bayes approach models τ with a prior distribution λ, and
next performs a full Bayes analysis with the mixture prior

∫∞
0 Πτ dλ(τ) on θ.

Here Πτ is the prior on θ with scale τ , as given in (2.3). Besides a posterior
distribution on θ, this also yields a posterior distribution for τ , which can be
written in the form

Π
(

τ ∈ B |X
)

=

∫

B e
ℓn(τ) dλ(τ)

∫

eℓn(τ) dλ(τ)
,

for ℓn the marginal log likelihood of X given τ , given in (2.5). By definition
the empirical Bayes value τ̂n is the point of maximum of the integrand in the
integrals on the right. Thus the two methods are closely related. The link is
made formal in the following theorem, which implies that the hierarchical Bayes
method copies both the good and the bad behavour (suboptimality if β ≥
α+ 1/2) of the empirical Bayes method.

We restrict to the inverse Gamma distribution as a prior for τ2. Inspection of
the proof shows that the theorem goes through for many other priors λ. Define
τn and τn as before by (2.7) and (2.8), where the constant L in (2.8) is chosen
sufficiently large.
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Fig 1. The true function, its primitive function, and the noisy observation of the primitive
function.

Theorem 2.3. If 1/τ2 ∼ Γ(a, b) for some constants a, b > 0 and θ0 6= 0 satisfies
(2.2), then, for sufficiently large M (and L in (2.8)),

Π
(

τn/2 ≤ τ ≤Mτn |X)
P0→ 1.

As a consequence the posterior distribution of θ relative to the prior
∫∞
0 Πτ dλ(τ)

has the same properties as Πτ̂n(· |X) given in Theorem 2.2.

3. Some Simulation Results

To illustrate the main results we simulated data from the signal-in-white-noise
model

dYt = f0(t) dt+
1√
n
dWt, t ∈ [0, 1],

for n = 200 and the true function f0 given by

f0(t) =
∑

k

θ0,k
√
2 sin(kπt).

The Fourier coefficients of this function are given by θ0,k = k−2.25 sin(10k),
corresponding to a true regularity level as in (2.2) given by β = 1.75. Figure 1
shows the function f0, its primitive, and the noisy observation Y .

We put the Gaussian prior (2.3) on (the Fourier coefficients of) f0, with prior
regularity level α = 1.75, and determined an appropriate scaling parameter τ̂n
by the empirical Bayes method. The left panel of Figure 2 shows the true signal
f0 (black) and the posterior mean (red). The right panel shows the empirical
log-likelihood for τ .

The empirical Bayes reconstruction is satisfying. To illustrate that the scale
parameter τ of the prior really matters, we also computed the posterior means
with scaling parameter 20 times larger and 20 times smaller than the empirical
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Fig 2. Left panel: the true signal f0 (black) and the posterior mean (red). Right panel: the
empirical log-likelihood for τ , with indicated point of maximum τ̂n. The prior smoothness
α = 1.75 is equal to the true regularity of the signal.

Fig 3. The true function (black) and empirical Bayes constructions with scaling 20 times
the maximum likelihood estimator (blue), the maximum likelihood estimator divided by 20
(green), and the maximum likelihood estimator (black). The prior smoothness α = 1.75 is
equal to the true regularity of the signal.

Bayes value. This leads to under-smoothing (blue), and over-smoothing (green),
respectively, as shown in Figure 3.

In an attempt to visualize the cut-off at β = α + 1/2 we repeated the pro-
cedure for various prior regularities α near β, every time choosing the scaling
by the empirical Bayes method. The results are shown in Figure 4. The theory
claims that big values α (i.e. over-smoothing) work fine, as they can and will be
corrected by the choice of the scale parameter τ̂n, but values α below β − 1/2
cannot be corrected, and lead to suboptimal reconstruction. This is illustrated
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Fig 4. Top panel from left to right: true signal and empirical Bayes posterior means for the
priors with regularities α = β, β + 1/2, β + 1. Bottom panel: true signal and posterior means
for the priors with regularities α = β, β − 1/2, β − 1.

in Figure 4, in which the prior smoothness increases in steps of 1/2 from β to
β + 1 in the top panels, and decreases from β to β − 1 in the top panels. The
last reconstruction, for α = β − 1, is clearly not satisfactory.

The theory says that the empirical and hierarchical Bayes methods do not
differ much. We illustrate this in Figure 5, which is the hierarchical Bayes ver-
sion of Figure 2. Instead of the likelihood for τ , the picture shows the posterior
distribution of this parameter in the right panel. We used the inverse Gamma
distribution for the square scaling parameter τ2, which is conjugate to the Gaus-
sian location family. The posterior distribution was computed by a Gibbs sam-
pler. Finally Figure 6 is the hierarchical Bayes counterpart of Figure 4. The
estimates are computed based on the same (simulated) datasets, and show the
same pattern: an undersmoothed base prior (right panels in the bottom row)
cannot be corrected by Bayesian (posterior) averaging over a scale parameter,
whereas overmoothed base priors (top row) can.
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Fig 5. Left panel: the true signal f0 black and the hierarchical Bayes posterior mean (blue).
Right panel: MCMC sample of size 2000 from the posterior distribution of τ after a burn-in
period of size 10000. The prior smoothness α = 1.75 is equal to the true regularity of the
signal.

Fig 6. Top panel from left to right: true signal and hierarchical Bayes posterior means for the
priors with regularities α = β, β + 1/2, β + 1. Bottom panel: true signal and posterior means
for the priors with regularities α = β, β − 1/2, β − 1.
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4. Proof of Theorem 2.1

Every term of the series (2.5) that defines ℓn is a smooth function of τ . With
the help of the dominated convergence theorem, it is straightforward to see that
the function ℓn is (P0-a.s.) continuously differentiable on (0,∞), with deriva-
tive given by the series of term-wise derivatives. It will be convenient first to
substitute ν1+2α = τ2n, and then differentiate with respect to ν. The resulting
derivative map Mn is given by

Mn(ν) =
1 + 2α

2

(

∞
∑

k=1

nν2αk1+2α

(k1+2α + ν1+2α)2
X2

k −
∞
∑

k=1

ν2α

k1+2α + ν1+2α

)

. (4.1)

In the new parametrization the upper and lower bounds become

νn = sup
{

ν ≥ 0 : nh(ν) ≥ L
}

,

νn = sup
{

ν ≥ 0 : nh(ν) ≥ l
}

,

for the function h : (0,∞) → (0,∞) given by

h(ν) =

∞
∑

k=1

ν2αk1+2αθ20,k
(k1+2α + ν1+2α)2

. (4.2)

In the following subsections we prove that if the constants l, L > 0 are sufficiently
small and large, respectively, then with probability tending to 1,

(i) the function Mn is strictly negative and bounded away from 0 on (νn,∞),
(ii) larger than any given constant on (νn/2, νn),
(iii) bounded below by a fixed constant on (0, νn/2).

Property (i) shows that the primitive function ofMn (and hence the log marginal
Bayesian likelihood ℓn) is decreasing on (νn,∞), whence an absolute maximum
is taken to the left of νn. The pair of properties (ii) and (iii) imply that the
primitive function of Mn increases more on (νn/2, νn) than it possibly decreases
on (0, νn/2). Thus an absolute maximum of ℓn is taken to the right of νn. We
conclude that the absolute maximum of ℓn is taken in the interval [νn, νn], which
is the first assertion of Theorem 2.1.

Because the constant in (iii) may be negative, it does not follow that Mn is
nonnegative throughout (0, νn/2). Thus our proof does not exclude additional
local maxima on this interval. In fact such local maxima may exist for irregular
θ0, as we illustrate in Section 4.6.

We consider the special cases that θ20,k ≥ c2k−1−2β for a constant c > 0,

θ20,k ≍ C2k−1−2β , or θ0 = 0, separately in Sections 4.4 and 4.5. In particular, in
Section 4.4 we derive concrete bounds on νn and νn in these cases. In particular
it is seen that νn . n1/(1+2β) under (2.2).
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4.1. Asymptotic behavior of Mn on (νn,∞)

In this section we prove that if l in the definition of νn is small enough, then

lim sup
n→∞

sup
ν≥νn

E0Mn(ν) < 0, (4.3)

sup
ν≥νn

|Mn(ν)− E0Mn(ν)| P0→ 0. (4.4)

This shows that Mn is negative throughout [νn,∞) with probability tending to
one, so that the empirical likelihood is strictly decreasing on this interval.

For the proof of (4.3) we note that, since E0X
2
k = θ20,k + 1/n,

2

1 + 2α
E0Mn(ν) = nh(ν)−

∞
∑

k=1

ν−1

(

(k/ν)1+2α + 1
)2 ,

for h defined in (4.2). By considering Riemann sums (cf. Lemma A.1 in the
appendix) we see that for ν → ∞ the second term on the right converges to the
positive constant cα :=

∫∞
0 (x1+2α + 1)−2 dx. By the definition of νn we have

nh(ν) ≤ l for ν ≥ νn. It follows that (4.3) is satisfied for l < cα.

For the proof of (4.4) it suffices, by Corollary 2.2.5 in [28] applied with ψ(x) =
x2, to show that Var0 Mn(νn) → 0 and

∫ diamn

0

√

N(ε, (νn,∞), dn) dε→ 0,

where dn is the semi-metric defined by d2n(ν1, ν2) = Var0(Mn(ν1) − Mn(ν2)),
diamn is the diameter of (νn,∞) relative to dn, and N(ε,B, d) is the minimal
number of d-balls of radius ε needed to cover the set B.

The random variables X2
k are independent and Var0X

2
k = 2/n2 + 4θ20,k/n.

Hence, by (2.2),

Var0 Mn(ν) .

∞
∑

k=1

ν4αk2+4α(1 + nθ20,k)

(k1+2α + ν1+2α)4
.

(

1 + nh(ν)
) 1

ν
. (4.5)

(The first part can be handled by splitting the sum in the parts k ≤ ν and
k > ν and bound k1+2α + ν1+2α below by ν1+2α and k1+2α, respectively; for
the second part we use the inequality xy/(x+ y)2 ≤ 1, valid for xy > 0, and the
definition of h.) For ν ≥ νn we have that nh(ν) is bounded by l, and hence the
right side is bounded by a multiple of 1/ν.

It follows that Var0 Mn(νn) → 0 as required. Furthermore, combination with
the triangle inequality shows that the dn-diameter of the set [νn,∞) is bounded
by a multiple of 1/

√
νn.

Next we consider the covering number N(ε, [νn,∞), dn). Because the dn-
diameter of the set [ν,∞) is bounded above by a multiple of 1/

√
ν, for a large
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enough constant A the interval [A/ε2,∞) is included in a single dn-ball of radius
ε. For the remaining interval we have

[νn, A/ε
2] ⊂

K
⋃

k=0

[A/(2k+1ε2), A/(2kε2)]

for K . 1 + (log(A/(ε2νn)))+. By Lemma 4.1 (below) on each of the relevant
intervals [A/(2k+1ε2), A/(2kε2)] appearing on the right:

dn(ν1, ν2) . 2kε2|ν1 − ν2|.

It follows that N(ε, [A/(2k+1ε2), A/(2kε2)], dn) . 1/ε. Putting things together
we obtain

N(ε, [νn,∞), dn) .
1

ε

(

1 +
(

log
1

ε2νn

)

+

)

and hence
∫ diamn

0

√

N(ε, (νn,∞), dn) dε . (νn)
−1/4 → 0.

This concludes the proof of (4.4).

Lemma 4.1. For any 0 < ν1 < ν2 <∞,

Var0(Mn(ν1)−Mn(ν2)) .
1

ν31

(

1 +
ν2
ν1

)4α−2
(

1 + nh(ν1)
)

|ν1 − ν2|2.

Proof. The random variablesX2
k are independent and Var0X

2
k = 2/n2+4θ20,k/n.

Hence, by (2.2), the left hand side is bounded by a constant times

∞
∑

k=1

( ν2α1
(k1+2α + ν1+2α

1 )2
− ν2α2

(k1+2α + ν1+2α
2 )2

)2

k2+4α(1 + nθ20,k). (4.6)

The function fk : (0,∞) → (0,∞) defined by fk(ν) = ν2α/(k1+2α + ν1+2α)2

has derivative satisfying |f ′
k(ν)| . ν2α−1/(k1+2α + ν1+2α)2, which is bounded

above by (ν1 ∨ ν2)2α−1/(k1+2α + ν1+2α
1 )2 on the interval [ν1, ν2]. Therefore, by

the mean value theorem,

d2n(ν1, ν2) . |ν1 − ν2|2(ν1 ∨ ν2)4α−2
∑

k

k2+4α(1 + nθ20,k)

(k1+2α + ν1+2α
1 )4

.

We can bound this in the same way as (4.5).

4.2. Asymptotic behavior of Mn on (0, n1/(3+6α)]

In this section we show that if θ0 6= 0, then there exists a constant K > 0
such that with P0-probability tending to 1, it holds that Mn(ν) ≥ Kν2αn1/3 on
(0, n1/(3+6α)].
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For ν1+2α ≤ n1/3 we have

2

(1 + 2α)ν2α
Mn(ν) ≥

∞
∑

k=1

nk1+2α

(k1+2α + n1/3)2
X2

k −
∞
∑

k=1

1

k1+2α
.

Since E0X
2
k = 1/n + θ20,k and 2xy ≥ x + y for x, y ≥ 1, the expected value of

the right-hand side is bounded below by

∞
∑

k=1

k1+2α

(k1+2α + n1/3)2
+

1

4
n1/3

∞
∑

k=1

θ20,k
k1+2α

−
∞
∑

k=1

1

k1+2α
,

which, for n large enough, is bounded below by a constant times n1/3 if θ0 6= 0.
Since Var0X

2
k = 2/n2 + θ20,k . 1/n2 + 1/(nk1+2β), the variance is bounded by

a constant times

∞
∑

k=1

k2+4α

(k1+2α + n1/3)4
+ n

∞
∑

k=1

k1+4α−2β

(k1+2α + n1/3)4
,

which is (easily) bounded by n1/3 for n large enough. The proof of the statement
is now completed by an application of Chebychev’s inequality.

4.3. Asymptotic behavior of Mn on (n1/(3+6α), νn)

In this section we show that if the constant L in the definition of νn is chosen
large enough, then Mn is bounded uniformly below by a fixed (negative) con-
stant on (n1/(3+6α), νn) and by an arbitrarily large constant on (νn/2, νn), with
probability tending to 1.

Since X2
k ≥ θ20,k + 2θ0,kZk/

√
n, we have

2

1 + 2α
Mn(ν) ≥ nh(ν) + 2

√
nH(ν)−

∞
∑

k=1

ν2α

k1+2α + ν1+2α
,

for h given in (4.2) and

H(ν) =

∞
∑

k=1

ν2αk1+2αθ0,k
(k1+2α + ν1+2α)2

Zk. (4.7)

The last term on the right tends to −
∫∞
0

(x1+2α+1)−1 dx, as ν → ∞. It suffices
to prove that the sum nh(ν)+ 2

√
nH(ν) of the remaining terms has the desired

properties.
We have that

Var0 H(ν) =

∞
∑

k=1

ν4αk2+4αθ20,k
(k1+2α + ν1+2α)4

.
1

ν
h(ν). (4.8)
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We shall show that the sequence of random variables

Gn :=
1

n1/(6+12α)
sup

n1/(3+6α)≤ν≤νn

|H(ν)|
√

h(ν)/ν

tends in probability to zero. Then for every ν ≥ n1/(3+6α),

nh(ν) + 2
√
nH(ν) ≥ nh(ν)− 2

√

nh(ν)Gn ≥
{

−G2
n, ν > 0,

nh(ν)/2, nh(ν) ≥ 16G2
n,

because f(x) = x−2
√
xg possesses minimal value −g2 on (0,∞) and is bounded

below by x/2 for x ≥ 16g2. It follows that the left side is bounded below on
(n1/(3+6α), νn) by a negative constant that tends to zero, and is “big” whenever
nh(ν) is big.

The definition of νn implies that nh(νn) ≥ L. Furthermore, for any ν in
[νn/2, νn],

h(ν) =

∞
∑

k=1

ν2αk1+2αθ20,k
(k1+2α + ν1+2α)2

≥
∞
∑

k=1

(νn/2)
2αk1+2αθ20,k

(k1+2α + ν1+2α
n )2

= 2−2αh(νn).

It follows that nh(ν) ≥ 2−2αL for any ν in [νn/2, νn], whence nh(ν) ≥ 16G2
n

with probability tending to 1, and hence nh(ν) + 2
√
nH(ν) ≥ nh(ν)/2 ≥

2−2αL/2. This can be made arbitrarily large by choice of L.
Finally we prove that Gn → 0 in probability. The process H(ν)/

√

h(ν)/ν
is Gaussian. Lemma 4.2 (below) shows that on the interval [ν, 2ν] its intrinsic
metric is bounded above by a multiple of | · |/ν. It follows that the covering
number of this interval relative to the Gaussian metric is bounded above by a
multiple of 1/ε. Since νn is bounded by a power of n, the interval (1, νn] can
be covered with O(logn) intervals of this type, and hence has covering number
bounded above by a multiple of logn/ε. By Corollary 2.2.5 in [28], applied with

ψ(x) = ex
2 − 1, it follows that

E0 sup
1<ν<νn

∣

∣

∣

∣

∣

H(ν)
√

h(ν)/ν
− H(νn)

√

h(νn)/νn

∣

∣

∣

∣

∣

.
√

log logn.

Together with the fact that Var0 H(ν) . h(ν)/ν, this shows that Gn is of the
order OP (n

−1/(6+12α)
√
log logn).

Lemma 4.2. For any 0 < ν1 < ν2 <∞,

Var0

(

H(ν1)
√

h(ν1)/ν1
− H(ν2)

√

h(ν2)/ν2

)

.
1

ν21

(ν2
ν1

)2+6α

|ν1 − ν2|2.

Proof. The left side of the lemma is equal to

∞
∑

k=1

( ν
1/2+2α
1

√

h(ν1)(k1+2α + ν1+2α
1 )2

− ν
1/2+2α
2

√

h(ν2)(k1+2α + ν1+2α
2 )2

)2

k2+4αθ20,k.
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The function gk defined by gk(ν) = ν1/2+2αh(ν)−1/2(k1+2α + ν1+2α)−2 has
derivative satisfying |g′k(ν)| . ν2α−1/2h(ν)−1/2(k1+2α+ν1+2α)−2

[

1+ν|h′/h(ν)|
]

.
Since it can be checked that |h′(ν)| ≤ h(ν)/ν, the factor 1 + ν|h′/h(ν)| is uni-
formly bounded. Therefore, by the mean value theorem the left side of the lemma
is bounded by

|ν1 − ν2|2
∑

k

sup
ν1≤ν≤ν2

ν4α−1

h(ν)(k1+2α + ν1+2α)4
θ20,kk

2+4α.

The sum is bounded by

∑

k supν1≤ν≤ν2

ν4α−1θ2
0,kk

2+4α

(k1+2α+ν1+2α)4

infν1≤ν≤ν2 h(ν)
≤

∑

k

(ν1∨ν2)
2α−2θ2

0,kk
1+2α

(k1+2α+ν1+2α
1 )2

∑

k

ν2α
1 k1+2αθ2

0,k

(k1+2α+ν1+2α
2 )2

.

Because (C + x2)/(C + x1) ≤ x2/x1 if x2 ≥ x1 and C > 0, we can replace the
denominator (k1+2α+ν1+2α

1 )2 in the series in the numerator by the denominator
of the series in the denominator at the cost of a factor (ν2/ν1)

2+4α, after which
the two series cancel.

4.4. Asymptotic behavior for special choices of θ0

For θ20,k = C2k−1−2β the function h given by (4.2) satisfies, as ν → ∞,

h(ν) = C2
∞
∑

k=1

nν2αk2(α−β)

(

k1+2α + ν1+2α
)2 ≍ C2











ν−1−2βcα,β , β < 1/2 + α,

ν−1−2β log ν, β = 1/2 + α,

ν−2−2αcα,β, β > 1/2 + α,

(4.9)

(cf. Lemma A.1) for the constants cα,β defined by

cα,β =

{

∫∞
0

x2(α−β)

(x1+2α+1)2 dx, β < 1/2 + α,
∑∞

k=1 k
2α−2β , β > 1/2 + α.

In this case the definition of νn readily gives that

νn ≍











(C2cα,βn/l)
1

1+2β , if β < 1/2 + α,

(C2n logn/l)
1

1+2β , if β = 1/2 + α,

(C2cα,βn/l)
1

2+2α , if β > 1/2 + α.

(4.10)

Furthermore, by its definition νn satisfies the same equation with L instead of l.
If θ0 satisfies the one-sided inequality θ20,k ≤ C2k−1−2β (or θ20,k ≥ c2k−1−2β),

then the function h can be upper bounded as previously (or lower bounded with
c instead of C, respectively). By its definition the upper bound νn can then be
upper bounded by the right side of (4.10) (or νn can be lower bounded by this
expression with c replacing C, respectively). Thus given both the upper and
lower bound on θ0, the two quantities νn and νn have the same order.
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Finally assume again that θ20,k ≍ C2k−1−2β . Relation (4.4) is then valid also
with νn replacing νn: supν≥νn

|Mn(ν) − E0Mn(ν)| → 0 in probability, in all

three cases. Since ν̂n is a zero of Mn and is contained in [νn, νn], it follows that
E0Mn(ν)|ν=ν̂n → 0 in probability. Again employing (4.9), we conclude that

C2nν̂−1−2β
n cα,β − cα or C2nν̂−1−2β

n log ν̂n − cα or C2nν̂−2−2α
n cα,β − cα tends to

zero in probability in the three cases, respectively, for the constants cα,β defined
previously and

cα =

∫ ∞

0

1

(x1+2α + 1)2
dx.

This readily gives that τ̂n/τn tends to a constant in probability.

4.5. The special case θ0 = 0

If θ0 = 0, then the expected value E0Mn(ν), given at the beginning of Sec-
tion 4.1, tends to a negative constant as ν → ∞, and is 0 only at ν = 0. Thus
it is negative and bounded away from zero on every interval [ν,∞) for ν > 0.

Furthermore, in this case the function h vanishes and hence the computations
in Section 4.1 show that Var0 Mn(ν) . 1/ν for every ν > 0, and that the upper
bound on Var0(Mn(ν1)−Mn(ν2)) given by Lemma 4.1 is valid without the factor
(1+nh(ν1)) in its right side. Similar arguments as in Section 4.1 then show that
Mn tends to its expectation uniformly on every sequence of intervals [νn,∞)
with νn → ∞.

Combination of these findings shows that P0(ν̂n ≤ νn) → 1 for every νn → ∞.
This is equivalent to nτ̂2n being bounded in probability.

4.6. Example: multiple local maxima

We construct a fixed parameter θ0 and a subsequence nj → ∞ such that, with
probability tending to 1, the random map Mnj is strictly negative somewhere
in the interval [0, νnj

]. We fix 0 < β < α+1/2 and for (large) positive constants

A, B and C to be determined later and j ∈ N,we set νj = Aj and nj = Bν1+2β
j

and define θ0 by

θ0,k =

{

k−1/2−β if νj ≤ k ≤ 2νj for some j ∈ N,

0 otherwise.

We shall show that by choosing the constants A, B and C sufficiently large, we
can ensure that njh(νj/C) becomes arbitrarily small (positive) and njh(νj) > L
for j large enough. The latter implies that νj/C < νj < νnj

, and the former
that E0Mnj (νj/C) is smaller than a negative constant. Using (4.5) we then also
get that Var0 Mnj (νj/C) . 1/νj → 0, and the claim follows by Chebychev’s
inequality.
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To upper bound njh(νj/C) we split the sum in the definition of h into three
parts. The sum over the indices k < 2νj−1 is bounded by

nj

(νj
C

)−2−2α
2νj−1
∑

k=1

k2α−2β . nj

(νj
C

)−2−2α

ν1+2α−2β
j−1 = A−1−2α+2βBC2+2α.

The second sum is over the indices νj < k < 2νj and is bounded by

nj

(νj
C

)2α
2νj
∑

k=νj

k−2−2α−2β . nj

(νj
C

)2α

ν−1−2α−2β
j = BC−2α.

Finally, since νj < νj+1, we have the same bound for the sum over k > νj + 1:

nj

(νj
C

)2α ∞
∑

k=νj+1

k−2−2α−2β . nj

(νj
C

)2α

ν−1−2α−2β
j+1 = BC−2α.

We conclude that njh(νj/C) . A−1−2α+2βBC2+2α + BC−2α. For the lower
bound we note that

njh(νj) ≥ nj

2νj
∑

k=νj

ν2αj k2(α−β)

(k1+2α + ν1+2α
j )2

≥ 1

4
njν

2α
j

2νj
∑

k=νj

k−2−2α−2β & njν
2α
j ν−1−2α−2β

j = B.

To complete the construction, observe that by choosing B large enough we can
ensure that njh(νj) > L. By next choosing C large enough and then A large
enough we can make njh(νj/C) arbitrarily small.

5. Proof of Theorem 2.2

It is convenient to continue to work with the parametrization ν1+2α = τ2n.
Slightly abusing notation we denote by Πν the same prior as Πτ for ν1+2α = τ2n
and similarly for the posterior, so

Πν(· |X) =

∞
⊗

k=1

N
( ν1+2α

k1+2α + ν1+2α
Xk,

ν1+2α/n

k1+2α + ν1+2α

)

.

In this notation the empirical Bayes posterior is

Πν̂n(· |X) = Πν(· |X)
∣

∣

∣

ν=ν̂n
,

where ν̂n is the (or rather a) zero of the random function Mn on (0,∞) defined
by (4.1).
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Because ‖θ − θ0‖2 =
∑

(θk − θk,0)
2, we have, with θ̂ν,k = ν1+2α(k1+2α +

ν1+2α)−1Xk the posterior mean,

∫

‖θ − θ0‖2 Πν(dθ |X) =
∑

k

(θ̂ν,k − θ0,k)
2 +

1

n

∞
∑

k=1

ν1+2α

k1+2α + ν1+2α
. (5.1)

By Markov’s inequality the left side divided by (Mnεn)
2 is an upper bound

on Πν(θ : ‖θ − θ0‖ ≥ Mnεn|X), for any Mnεn > 0. We like to show that the
latter probability evaluated at ν = ν̂n tends to zero for the appropriate rate
εn = εn,α,β and any Mn → ∞. By Theorem 2.1 with probability going to 1, the
empirical Bayes rescaling rate ν̂n belongs to the interval [νn, νn]. Therefore, to
prove Theorem 2.2 it suffices to show that the expectation of the supremum of
this expression over ν ∈ [νn, νn] is of the appropriate order ε2n. We shall first
show that the supremum of the expectations has the right order, and next that
the expectation of the supremum has the same order.

5.1. Posterior risk for scaling in [νn, νn]

The second term of (5.1) is deterministic. The expectation of the first term can
be split in square bias and variance terms. We find that the expectation of (5.1)
is given by

∞
∑

k=1

k2+4αθ20,k
(k1+2α + ν1+2α)2

+
1

n

∞
∑

k=1

ν2+4α

(k1+2α + ν1+2α)2
+

1

n

∞
∑

k=1

ν1+2α

k1+2α + ν1+2α
.

In this section we prove that the supremum of this expression over ν ∈ [νn, νn] is
bounded by a constant times n−2β/(1+2β)+νn/n. In Section 4.4 it was seen that
under (2.2) the upper bound νn is bounded above by the right side of (4.10),
which shows that νn/n ≍ ε2n,α,β, the (square) order claimed in Theorem 2.2.

The first term n−2β/(1+2β) is smaller than this order, in all three cases.
The series in the second and third terms are bounded by a multiple of ν (and

asymptotic to ν times a constant as ν → ∞), and hence the suprema of these
terms over ν ∈ [νn, νn] are bounded by a multiple of νn/n.

The first series is decreasing in ν and hence it suffices to consider it at ν = νn.
Its terms are bounded above by θ20,k. Therefore, in view of (2.2), we have for

N ∼ n1/(1+2β),

∑

k>N

k2+4αθ20,k

(k1+2α + ν1+2α
n )2

≤
∑

k>N

θ20,k . C2n−2β/(1+2β).

By the definition of νn (and continuity of the series) we have, for ν ≥ νn,

νh(ν) ≡
∞
∑

k=1

ν1+2αk1+2αθ20,k
(k1+2α + ν1+2α)2

≤ L

n
ν. (5.2)
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(The function h is as in (4.2).) As a first consequence we have

∑

k≤νn

k2+4αθ20,k

(k1+2α + ν1+2α
n )2

≤
∑

k≤νn

ν1+2α
n k1+2αθ20,k

(k1+2α + ν1+2α
n )2

≤ L

n
νn ≤ L

n
νn,

It remains to consider the terms between νn and N . For ν ≤ k ≤ 2ν and any
ν > 0 we have that ν1+2αk1+2α/(k1+2α + ν1+2α)2 ≥ 1/(21+2α + 3). Therefore,
as a second consequence of (5.2),

1

21+2α + 3

∑

ν<k≤2ν

θ20,k ≤
∑

k

ν1+2αk1+2αθ20,k
(k1+2α + ν1+2α)2

≤ L

n
ν,

for ν ≥ νn. For L large enough that νn2
L ≥ N we have

∑

νn<k≤N

k2+4αθ20,k

(k1+2α + ν1+2α
n )2

≤
L
∑

l=1

∑

νn2
l−1<k≤νn2

l

θ20,k .

L
∑

l=1

L

n
νn2

l−1.

For νn2
L ∼ N this is bounded above by a multiple of LN/n . n−2β/(1+2β).

5.2. Uniform result for the posterior risk

In this section we bound the quantity

E0 sup
ν∈[νn,νn]

∣

∣

∣

∑

k

(θ̂ν,k − θ0,k)
2 − E0

∑

k

(θ̂ν,k − θ0,k)
2
∣

∣

∣
.

Using the explicit expressions for the θ̂ν,k we see that the random variable in
the supremum is the absolute value of V(ν)/n− 2W(ν)/

√
n, where

V(ν) =
∑

k

ν2+4α

(k1+2α + ν1+2α)2
(Z2

k − 1), W(ν) =
∑ ν1+2αk1+2αθ0,k

(k1+2α + ν1+2α)2
Zk.

We deal with the two processes separately.
By comparison with Riemann sums (cf. Lemma A.1) we see that Var0 V(ν) ≍

ν
∫∞
0

(x1+2α + 1)−4 dx as ν → ∞. By Lemma 5.1 below the standard deviation
metric of V is bounded above by a multiple of | · |/√ν on the interval [ν, 2ν].
Therefore the covering number of this interval relative to the standard deviation
metric is bounded above by a multiple of

√
ν/ε. Covering the interval [νn, νn]

with the intervals (2−m−1νn, 2
−mνn], form = 0, 1, 2, . . ., we see that its covering

number is bounded above by
∑

m

√
2−mνn/ε .

√
νn/ε. By Corollary 2.2.5 in

[28] applied with ψ(x) = x2, it follows that

E0 sup
νn≤ν≤νn

|V(ν)| .
√
νn +

∫

√
νn

0

√√
νn/ε dε .

√
νn.
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Divided by n this yields
√
νn/n ≤ νn/n.

It remains to deal with the process W. Because W(ν) = νH(ν) for H given
in (4.7), we have by (4.8) that Var0 W(ν) = νh(ν), for h given in (4.2). By
(5.2) we have that Var0 W(ν) ≤ νL/n for ν ≥ νn. Furthermore, by Lemma 5.1
(below) the standard deviation metric of W is bounded above by a multiple of
|·|h(ν)/ν . |·|/√νn on an interval [ν, 2ν] with ν ≥ νn. By the same reasoning as
in the preceding paragraph this shows that the covering number of the interval
[νn, νn] relative to the standard deviation metric is bounded above by

√

νn/n/ε.

By Corollary 2.2.5 in [28] applied with ψ(x) = ex
2 − 1, it follows that

E0 sup
νn≤ν≤νn

|W(µ)| .
√

νn
n

+

∫

√
νn/n

0

√

log

√

νn
n

1

ε
dε .

√

logn

√

νn
n
.

Divided by
√
n this yields the order

√
νn logn/n ≤ νn/n.

Lemma 5.1. For any 0 < ν1 < ν2 <∞,

Var0(V(ν1)− V(ν2)) ≤
1

ν1

(ν2
ν1

)2+8α

|ν1 − ν2|2,

Var0(W(ν1)−W(ν2)) ≤
1

ν1

(ν2
ν1

)4α

h(ν1)|ν1 − ν2|2,

where h is given by (4.2).

Proof. The left side of the first inequality of the lemma takes the form
∑

k(hk(ν1)−
hk(ν2))

2, for the function hk equal to hk(ν) =
√
2ν2+4α/(k1+2α + ν1+2α)2. The

derivative of this function satisfies |h′k(ν)| . ν1+4α/(k1+2α + ν1+2α)2. The as-
sertion follows by similar, but simpler, arguments as in the proof of Lemma 4.1.

The left side of the second inequality of the lemma can be written in the form
∑

k(hk(ν1)− hk(ν2))
2k2+4αθ20,k, this time for the function hk given by hk(ν) =

ν1+2α/(k1+2α + ν1+2α)2. The derivative of this function satisfies |h′k(ν)| .
ν2α/(k1+2α + ν1+2α)2. By the mean value theorem the left side of the lemma is
bounded by a multiple of

|ν1 − ν2|2
∑

k

sup
ν1<ν<ν2

ν4αk2+4αθ20,k
(k1+2α + ν1+2α)4

≤ |ν1 − ν2|2
(ν2
ν1

)4α ∑

k

ν4α1 k2+4αθ20,k

(k1+2α + ν1+2α
1 )4

.

The series in the right side is bounded by ν−1
1 h(ν1).

5.3. Proof that the rates in Theorem 2.2 are sharp

If θ1, θ2, . . . are independent Gaussian variables with means µk and variances
σ2
k, then Chebychev’s inequality shows that ‖θ − µ‖22 =

∑

k(θk − µk)
2 satisfies,



1014 B. T. Szabó et al.

for any c > 0,

Pr
(

‖θ − µ‖22 ≤
∑

k

σ2
k − c

√

2
∑

k

σ4
k

)

≤ 1

c2
.

Because a Gaussian distribution gives most probability to a ball of given radius
if this is centered at its mean (by Anderson’s lemma), this inequality remains
true if µ is replaced by a different element of ℓ2.

Under the posterior distribution Πν(·|X) the coordinates θ1, θ2, . . . are in-
dependent Gaussian variables with variances σ2

k = n−1ν1+2α/(k1+2α + ν1+2α),
and, for positive constants dα, cα, as ν → ∞,

∑

k

σ2
k =

1

n

∑

k

ν1+2α

(k1+2α + ν1+2α)
≍ dα

ν

n
,

∑

k

σ4
k =

1

n2

∑

k

ν2+4α

(k1+2α + ν1+2α)2
≍ cα

ν

n2
.

It follows that, for d < dα, uniformly in ν ≥ νn, for any c > 0,

Πν

(

θ : ‖θ − θ0‖22 ≤ dν

n
− c

√
cαν

n

)

≤ 1

c2
.

For ν ≥ νn and c = (d/
√
cα)

√
νn/2 we have dν − c

√
cαν ≥ dνn/2, and hence

sup
ν≥νn

Πν

(

θ : ‖θ − θ0‖22 ≤ dνn/(2n)
)

.
1

νn
. (5.3)

Because P0(ν̂n ≥ νn) → 1, the empirical Bayes posterior probability of the event
in the left side is with probability tending to one bounded by the supremum,
and hence tends to zero.

Under the assumption that θ20,k ≥ c2k−1−2β the sequence νn/n was seen to

be of the order νn in Section 4.4. Because νn/n ≍ ε2n,α,β, the second assertion
of Theorem 2.2 follows by (5.3).

If θ0 6= 0, then there exists k ∈ N such that

h(ν) ≥ ν2αk1+2α

(k1+2α + ν1+2α)2
≍ k1+2α

ν2+2α
, (5.4)

as ν → ∞. In view of its definition it follows that νn & n1/(2+2α). Again
using (5.3) we obtain a lower bound on the order of the square rate equal to
νn/n ≍ n(1+2α)/(2+2α). For β > 1/2+α this rate is equal to ε2n,α,β. (In the other

case it is a valid lower bound, but strictly smaller than ε2n,α,β and hence of less
interest.)

6. Proof of Theorem 2.3

As noted following (5.4), if θ0 6= 0, then νn ≥ νn tends to infinity as n → ∞
at least at the rate n1/(2+2α). (The corresponding sequences τn ≥ τn can tend
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both to zero or infinity, depending on α and θ0.) Let τn(ν) be the solution to
ν1+2α = nτ2, and let Ln(τ) = exp ℓn(τ) be the marginal likelihood.

In Section 4 (see (i)–(iii) in its introduction) it was seen that Mn(ν) =
(d/dν)ℓn

(

τn(ν)
)

satisfies, for positive constants c1, c2, c3,

Mn(ν)











≤ −c1, for ν ≥ νn,

≥ c2, for ν ∈ [νn/2, νn],

≥ −c3, for ν ∈ [0, νn/2].

Furthermore, the constant c2 can be chosen arbitrarily large by choosing L in
(2.8) large enough, while the constant c3 is fixed.

For τn(ν) ≥ Mτn and τn(ν1) = 2τn, we have ν ≥ M2/(1+2α)νn and ν1 =
22/(1+2α)νn. Choose M ≥ 2. Since both are greater than νn, it follows that

ℓn
(

τn(ν)
)

− ℓn
(

τn(ν1)
)

≤ −c1(ν − ν1) ≤ −c4νn,

for c4 = c1(M
2/(1+2α) − 22/(1+2α)). Consequently Ln(τ) ≤ Ln(2τn)e

−c4νn for
τ ≥Mτn. Since also Ln(τ) ≥ Ln(2τn), for τ ∈ [τn, 2τn], we find

Π(τ ≥Mτn |X) ≤
∫∞
Mτn

Ln(τ) dλ(τ)
∫ 2τn

τn
Ln(τ) dλ(τ)

≤ λ(Mτn,∞)e−c4νn

λ(τn, 2τn)
.

Here c4 can be made arbitrarily large by choice of a large M , and νnτ
2
n =

ν2+2α
n /n is bounded away from 0. If Γ := 1/τ2 possesses a Gamma distribution

with shape a and rate b, then

λ(τn, 2τn) = Pr
( 1

4τ2n
≤ Γ ≤ 1

τ2n

)

≍















(

1
τ2
n

)a

, if τn → ∞,
(

1
τ2
n

)a−1

e−b/(4τ2
n), if τn → 0,

1, if 0 ≪ τn ≪ ∞.

In all cases this is much bigger than e−c4νn if M and hence c4 is chosen big
enough. Arguing, if necessary, along subsequences, we conclude that the right
side of the second last display tends to zero.

The analysis of the left tail is similar, but slightly more complicated, because
the different lower bounds on Mn on the two subintervals of [0, τn]. The differ-
ence ℓn

(

τn(ν1)
)

− ℓn
(

τn(ν)
)

is bounded below by c2(ν1 − ν) if νn/2 ≤ ν ≤ ν1 ≤
νn, and bounded below by c2(ν1 − νn/2)− (νn/2− ν)c3 if ν ≤ νn/2 ≤ ν1 ≤ νn.
If c2 > 2c3 the difference can be seen to be bounded below by c5νn if both
3νn/4 ≤ ν1 ≤ νn and ν1 − ν ≥ c6νn, for c5 = (c2/4 − c3/2) ∧ c2c6. Let ν̃n =
(1/4)1/(1+2α)νn, so that τn(ν̃n) = τn/2, and ν1 =

(

(3/4)1/(1+2α) ∨ (3/4)
)

νn.

Then for ν ≤ ν̃n we have ν1 − ν ≥ c6νn, for c6 = (3/4)1/(1+2α) − (1/4)1/(1+2α)

and ν1 ≥ 3νn/4 and hence ℓn
(

τn(ν1)
)

−ℓn
(

τn(ν)
)

≥ c5νn. Consequently Ln(τ) ≤
Ln

(

τn(ν1)
)

e−c5νn for τ ≤ τn/2. Since τn/2 ≤ τn(ν1) ≤ τn, we also have that

Ln(τ) ≥ Ln

(

τn(ν1)
)

on
[

τn(ν1), τn
]

. It follows that

Π(τ ≤ τn/2 |X) ≤
∫ τn/2

0
Ln(τ) dλ(τ)

∫ τn

τn(ν1)
Ln(τ) dλ(τ)

≤ λ(0, τn/2)e
−c5νn

λ(τn(ν1), τn)
.
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Here τn(ν1) = τn(c7νn) = c8τn, for constants c7, c8 ∈ (0, 1). The right side tends
to zero by the same arguments as before, provided that c5 is sufficiently big.
This can be achieved by choosing L and hence c2 sufficiently big.

The final assertion of the theorem follows by the arguments in Section 5.
These show that the posterior distributions Πτ (· |X) have the desired properties
uniformly for τ ∈ [τn, τn]. The latter interval can be stretched to [τn/2,Mτn]
by merely notational changes to the arguments as given.

Appendix

Lemma A.1. For r, s, t ≥ 0 with st > 1 consider f(x) = x−r(xs +1)−t and set
fν =

∑∞
k=1 ν

−1f(k/ν). Then as ν → ∞,

(i) if r < 1, then fν ≍
∫∞
0
f(x) dx.

(ii) if r = 1, then fν ≍ log ν.
(iii) if r > 1, then fν ≍ νr−1

∑∞
k=1 k

−r.

Proof. Assertion (iii) is an immediate consequence of the fact that
∑∞

k=1 k
−r ×

((k/ν)s +1)−t →
∑∞

k=1 k
−r, by the dominated convergence theorem. For asser-

tions (i) and (ii) we note that, since f is decreasing,
∫ ∞

1/ν

f(x) dx ≤ fν ≤ 1

ν
f(1/ν) +

∫ ∞

1/ν

f(x) dx.

The integral converges at ∞ by the assumption that st > 1. In case (i) it also
converges at 0, while ν−1f(1/ν) ≍ νr−1 → 0 as ν → ∞. In case (ii), we have

for every ε > 0, since
∫ b

a
x−1 dx = log(b/a),

log(εν)

(εs + 1)t
≤

∫ ε

1/ν

f(x) dx ≤ log(εν).

This shows that
∫∞
1/ν

f(x) dx ≍ log ν. Finally ν−1f(1/ν) → 1 in this case.
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