
Electronic Journal of Statistics

Vol. 7 (2013) 533–561
ISSN: 1935-7524
DOI: 10.1214/13-EJS783

Noise recovery for Lévy-driven CARMA
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of Brockwell et al. [11] is given.
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1. Introduction

The constantly increasing availability of high-frequency data in finance and sci-
ences in general has sparked in the last decade a great deal of attention about
the asymptotic behaviour of high-frequency sampled processes, especially con-
cerning the estimation of multi-power variations of Itō semimartingales (see,
e.g., [2, 3]), employing their realised counterparts. These quantities are of pri-
mary importance to practitioners, since they embody the deviation of data from
a Brownian motion. Such methods are summarised in the book of [23], which
represents the most recent review on the subject.

In many areas of application Lévy-driven processes are used for modelling
time series. An ample class within this group are continuous-time moving aver-
age (CMA) processes

Yt =

∫ ∞

−∞

g(t− s)dLs, t ∈ R,

where g is the so-called kernel function and L = {Lt}t∈R is said to be the
driving Lévy process (see, e.g., [28] for a detailed introduction). They cover,
for instance, Ornstein-Uhlenbeck and continuous-time autoregressive moving
average (CARMA) processes. The latter are the continuous-time analogue of
the well-known ARMA models (see, e.g., [9]) and have extensively been studied
over the recent years (cf. [7, 8, 13, 32]). Originally, driving processes of CARMA
models were restricted to Brownian motion (see [16], and also [17]). However,
[7] allowed for Lévy processes with a finite rth moment for some r > 0.

Lévy-driven CARMA models are widely used in various areas of application
like signal processing and control (cf. [20, 25]), high-frequency financial econo-
metrics (cf. [31]), and financial mathematics (cf. [5, 6, 22, 32]). Stable CARMA
processes can be relevant in modelling energy markets (cf. [4, 19]). Very often,
a correct specification of the driving Lévy process is of primary importance in
all these applications.

In this paper we are concerned with a high-frequency sampled CARMA pro-
cess driven by a second-order zero-mean Lévy process. Under the assumption
of invertibility of the CARMA model, we present an L2-consistent estimator
for the increments of the driving Lévy process, employing standard time series
techniques. It is remarkable that the proposed procedure works for arbitrary au-
toregressive and moving average orders, i.e. there is no need for order selection
in advance. In the light of the results in [11] and the flexibility of CARMA pro-
cesses, the method might apply to a wider class of CMA models, too. Moreover,
since the proof employes only the fact that the increments of the Lévy process
are orthogonal rather than independent, the result holds for a much broader
class of driving processes. Notable examples are COGARCH processes [6, 24]
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or time-changed Lévy processes [15], which are often used to model volatility
clustering in finance and intermittency in turbulence.

This noise recovery result gives rise to the conjecture that the sampled
CARMA process behaves on a high-frequency time grid approximately like a
suitable MA(∞) model that we call approximating Riemann sum process. By
comparing the asymptotic properties of the autocovariance structure of high-
frequency sampled CARMA models with the one of their approximation Rie-
mann sum processes, it will turn out that the so-called rule of the Riemann sums
plays a crucial role if the difference between the autoregressive and moving av-
erage order is greater than one. On the one hand, this gives new insight into
the kernel estimation procedure studied in [11] and explains at which points the
kernel is indeed estimated. On the other hand, this has obvious consequences for
simulation purposes. Riemann sum approximations are an easy tool to simulate
CMA processes. However, our results show that one has to be careful with the
chosen rule of integration in the context of certain CARMA processes.

The outline of the paper is as follows. In Section 2 we recall the definition
of finite-variance CARMA models and summarise important properties of high-
frequency sampled CARMA processes. In particular, we fix a global assumption
that guarantees causality and invertibility for the sampled sequence. In the third
section we then derive an L2-consistent estimator for the increments of the driv-
ing Lévy process starting from the Wold representation of the sampled process.
It will turn out that invertibility of the original continuous-time model is suffi-
cient and necessary for the recovery result to hold. Section 3 is completed by an
illustrating example for CAR(2) and CARMA(2, 1) processes. Thereafter, the
high-frequency behaviour of approximating Riemann sum processes is studied in
Section 4. First, an ARMA representation for the Riemann sum approximation
is established in general and then the role of the rule of integration is anal-
ysed by matching the asymptotic autocovariance structure of sampled CARMA
processes and their Riemann sum approximations in the cases where the au-
toregressive order is less or equal to three. The connection between the Wold
representation and the approximating Riemann sum yields a deeper insight into
the kernel estimation procedure introduced in [11]. The proof of Theorem 3.2
and some auxiliary results can be found in the appendix.

2. Preliminaries

2.1. Finite-variance CARMA processes

Throughout this paper we are concerned with a CARMA process driven by a
second-order zero-mean Lévy process L = {Lt}t∈R with E[L1] = 0 and E[L2

1] =
1. It is defined as follows.

For non-negative integers p and q such that q < p, a CARMA(p, q) process
Y = {Yt}t∈R with real coefficients a1, . . . , ap, b0, . . . , bq and driving Lévy process
L is defined to be a strictly stationary solution of the suitably interpreted formal
equation

a(D)Yt = σb(D)DLt, t ∈ R, (1)
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where D denotes differentiation with respect to t, a(·) and b(·) are the charac-
teristic polynomials,

a(z) := zp + a1z
p−1 + · · ·+ ap and b(z) := b0 + b1z + · · ·+ bp−1z

p−1,

the coefficients bj satisfy bq = 1 and bj = 0 for q < j < p, and σ is a positive
constant. The polynomials a(·) and b(·) are assumed to have no common zeroes.
We denote, respectively, by λi and −µi the roots of a(·) and b(·), such that these
polynomials can be written as a(z) =

∏p
i=1(z − λi) and b(z) =

∏q
i=1(z + µi).

Moreover, we suppose permanently

Assumption 1. (i) The zeroes of the polynomial a(·) satisfy ℜ(λj) < 0 for
every j = 1, . . . , p,

(ii) and the roots of b(·) have non-vanishing real part, i.e. ℜ(µj) 6= 0 for all
j = 1, . . . , q.

Since the derivative DLt does not exist in the usual sense, we interpret (1)
as being equivalent to the observation and state equations

Yt = bTXt , (2)

dXt = AXtdt+ epdLt , (3)

where

Xt =















X(t)

X(1)(t)
...

X(p−2)(t)

X(p−1)(t)















, b =















b0
b1
...

bp−2

bp−1















, ep =















0
0
...
0
1















,

A =















0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−ap −ap−1 −ap−2 . . . −a1















and A = −a1 for p = 1.

It is easy to check that the eigenvalues of the matrix A are the same as the
zeroes of the autoregressive polynomial a(·).

Under Assumption 1(i) it has been shown in ([13], Theorem 3.3) that Eqs. (2)-
(3) have the unique strictly stationary solution

Yt =

∫ ∞

−∞

g(t− u)dLu, t ∈ R, (4)

where

g(t) =











σ
2πi

∫

ρ

b(z)

a(z)
etzdz = σ

∑

λ

Resz=λ

(

ezt
b(z)

a(z)

)

, if t > 0,

0, if t ≤ 0,

(5)
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and ρ is any simple closed curve in the open left half of the complex plane
encircling the zeroes of a(·). The sum is over the distinct zeroes λ of a(·) and
Resz=λ(·) denotes the residue at λ of the function in brackets. The kernel g can
be expressed (cf. [13], Equations (2.10) and (3.7)) also as

g(t) = σb⊤eAtep1(0,∞)(t), t ∈ R, (6)

and its Fourier transform is

F {g(·)} (ω) :=
∫

R

g(s)eiωsds = σ
b(−iω)
a(−iω) , ω ∈ R. (7)

In the light of Eqs. (4)-(7), we can interpret a CARMA process as a continuous-
time filtered white noise whose transfer function has a finite number of poles
and zeroes. We emphasise that the condition on the roots of a(·) to lie in the
interior of the left half of the complex plane in order to have causality arises
from Theorem V, p. 8, [27], which is intrinsically connected with the theorems
in [30], pp. 125-129, on the Hilbert transform. A similar request on the roots of
b(·) will turn out to be necessary for recovering the driving Lévy process.

2.2. Properties of high-frequency sampled CARMA processes

We now recall some properties of the sampled sequence Y ∆ := {Yn∆}n∈Z of
a CARMA(p, q) process where ∆ > 0; cf. [11, 12] and references therein. It is
known that the sampled process Y ∆ satisfies the ARMA(p, p− 1) equations

Φ∆(B)Y ∆
n = Θ∆(B)Z∆

n , n ∈ Z, {Z∆
n } ∼ WN(0, σ2

∆), (8)

with the AR part Φ∆(B) :=
∏p

i=1(1 − e∆λiB), where B is the discrete-time
backshift operator, BY ∆

n := Y ∆
n−1. Finally, the MA part Θ∆(·) is a polynomial

of order p − 1, chosen in such a way that it has no roots inside the unit circle.
For p > 3 and fixed ∆ > 0 there is no explicit expression for the coefficients of
Θ∆(·) nor the white noise process Z∆. Nonetheless, asymptotic expressions for
Θ∆(·) and σ2

∆ = var(Z∆
n ) as ∆ ↓ 0 were obtained in [11, 12]. Namely, we have

that the polynomial Θ∆(z) and the variance σ2
∆ can be written as (see Theorem

2.1, [11])

Θ∆(z) =

p−q−1
∏

i=1

(1 + η(ξi)z)

q
∏

k=1

(1− ζkz), z ∈ C, (9)

σ2
∆ =

σ2∆2(p−q)−1

(2(p− q)− 1)!
∏p−q−1

i=1 η(ξi)
(1 + o(1)) as ∆ ↓ 0, (10)

where, again as ∆ ↓ 0,

ζk = 1± µk∆+ o(∆), k = 1, . . . , q,

η(ξi) = ξi − 1±
√

(ξi − 1)2 − 1 + o(1), i = 1, . . . , p− q − 1. (11)
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The signs ± in (11) are chosen in such a way that, for sufficiently small ∆, the
coefficients ζk and η(ξi) are less than one in absolute value. This ensures that
Eq. (8) is invertible. Moreover, ξi are the zeroes of the function αp−q−1(·) that
is defined as the (p− q − 1)-th coefficient in the series expansion

sinh(z)

cosh(z)− 1 + x
=

∞
∑

k=0

αk(x)z
2k+1, z ∈ C, x ∈ R\{0}, (12)

where the LHS of Eq. (12) is a power transfer function arising from the sam-
pling procedure (cf. [12], Eq. (11)). Therefore the coefficients η(ξi) can be re-
garded as spurious since they do not depend on the parameters of the underlying
continuous-time process Y , but just on p− q.

Remark 2.1. Our notion of sampled process is a weak one since we require
only that the sampled sequence has the same autocovariance structure as the
continuous-time model observed on a discrete grid. We know that the filtered
process on the LHS of (8) (see [13], Lemma 2.1) is a (p− 1)-dependent discrete-
time process. Therefore there exist 2p−1 possible representations for the RHS of
(8), each yielding the same autocovariance function of the filtered process, but
only one has its roots outside the unit circle. The latter is called minimum-phase
spectral factor (see [29] for a review on the topic). Since it is not possible to
discriminate between the different factorisations, we always take the minimum-
phase spectral factor without any further question. This will be crucial for our
main result.

Moreover, the rationale behind Assumption 1(ii) becomes clear: if ℜ(µk) = 0
for some k, then the corresponding |ζk|2 is equal to 1 + ∆2|µk|2 + o(∆2) for
either sign choice. In this case, the MA(p− 1) polynomial in Eq. (9) cannot be
invertible for small ∆.

To ensure that the sampled CARMA process is invertible, we need to verify
that |η(ξi)| is strictly less than one for sufficiently small ∆.

Proposition 2.2. The coefficients η(ξi) in Eq. (11) are uniquely determined by

η(ξi) = ξi − 1−
√

(ξi − 1)2 − 1 + o(1), i = 1, . . . , p− q − 1,

and we have that ξi − 1−
√

(ξi − 1)2 − 1 ∈ (0, 1) for all i.

Proof. It follows from Proposition A.1 that ξi ∈ (2,∞) for all i = 1, . . . , p−q−1.
This yields ξi − 1 +

√

(ξi − 1)2 − 1 > 1 for all i and hence, we have that

η(ξi) = ξi − 1−
√

(ξi − 1)2 − 1 + o(1), i = 1, . . . , p− q − 1.

Since the first-order term of η(ξi) is positive and monotonously decreasing in ξi,
the additional claim follows.

3. Noise recovery

In this section we prove the first main statement of the paper, a recovery result
for the driving Lévy process. We start with some motivation for our approach.
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We know that the sampled CARMA sequence Y ∆ = {Yn∆}n∈Z has the Wold
representation (cf. [9], p. 187)

Y ∆
n =

∞
∑

j=0

ψ∆
j Z

∆
n−j =

∞
∑

j=0

(

σ∆√
∆
ψ∆
j

)

(√
∆

σ∆
Z∆
n−j

)

, n ∈ Z, (13)

where
∑∞

j=0(ψ
∆
j )2 < ∞. Moreover, Eq. (13) is the causal representation of

Eq. (8), and it has been shown in [11] that for every causal and invertible
CARMA(p, q) process, as ∆ ↓ 0,

σ∆√
∆
ψ∆
⌊t/∆⌋ → g(t), t ≥ 0, (14)

where g is the kernel in the moving average representation (4). Given the avail-
ability of classical time series methods to estimate {ψ∆

j }j∈N and σ2
∆, and the

flexibility of CARMA processes, we argue that this result can be applied to more
general continuous-time moving average models.

In view of Eqs. (13) and (14) it is natural to investigate whether the quantity

L̄∆
n :=

√
∆

σ∆
Z∆
n , n ∈ Z,

approximates the increments of the driving Lévy process in the sense that for
every fixed t > 0,

⌊t/∆⌋
∑

i=1

L̄∆
i

L2

→ Lt as ∆ ↓ 0. (15)

The first results on retrieving the increments of L were given in [10], and
further generalized to the multivariate case by [14]. The essential limitation of
this parametric method is that it might not be robust with respect to model
misspecification. More precisely, the fact that a CARMA(p, q) process is (p−q−
1)-times differentiable (see Proposition 3.32 of [26]) is crucial for the procedure
to work (cf. Theorem 4.3 of [14]). However, if the underlying process is instead
CARMA(p′, q′) with p′ − q′ < p− q, then some of the necessary derivatives do
not exist anymore. In contrast to the aforementioned procedure, in the method
we propose there is no need to specify the autoregressive and the moving average
orders p and q in advance.

Before we start to prove the recovery result in Eq. (15), let us establish the
notion of invertibility in analogy to the discrete-time case.

Definition 3.1. A CARMA(p, q) process is said to be invertible if the roots of
the moving average polynomial b(·) have negative real parts, i.e. ℜ(µi) > 0 for
all i = 1, . . . , q.

Our main theorem is the following. Its proof can be found in the appendix.

Theorem 3.2. Let Y be a finite-variance CARMA(p, q) process and Z∆ the
noise on the RHS of the sampled Eq. (8). Moreover, let Assumption 1 hold and
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define L̄∆ :=
√
∆/σ∆Z

∆. Then, as ∆ ↓ 0,

⌊t/∆⌋
∑

i=1

L̄∆
i

L2

→ Lt, t ∈ (0,∞), (16)

if and only if the roots of the moving average polynomial b(·) on the RHS of the
CARMA Eq. (1) have negative real parts, i.e. if and only if the CARMA process
is invertible.

Remark 3.3. (i) It is an easy consequence of the triangle and Hölder’s in-
equality that, if the recovery result (16) holds, then also

⌊t/∆⌋
∑

i=1

L̄∆
i

⌊s/∆⌋
∑

j=⌊t/∆⌋+1

L̄∆
j

L1

→ Lt(Ls − Lt), t, s ∈ (0,∞), t ≤ s,

is valid.
(ii) Minor modifications of the proof of Theorem 3.2 show that the recovery

result in Eq. (16) remains still valid if we drop the assumption of causality,
Assumption 1(i), and suppose instead only ℜ(λj) 6= 0 for every j. Hence,
invertibility of the CARMA process is necessary for the noise recovery
result to hold, whereas causality is not. Note that the white noise process
in the non-causal case is not the same as in the Wold representation (13).

(iii) The necessity and sufficiency of the invertibility assumption descends di-
rectly from the fact that we choose always the minimum-phase spectral
factor as pointed out in Remark 2.1.

(iv) The proof of Theorem 3.2 suggests that this procedure should work in
a much more general framework. Let I∆(·) denote the inversion filter in
Eq. (25) and ψ∆ :=

{

ψ∆
i

}

i∈N
the coefficients in the Wold representa-

tion (13). The proof essentially needs, apart from the rather technical
Lemma A.3, that, as ∆ ↓ 0,

I∆(eiω∆)F{g(·)}(ω) =
∫∞

0
g(s)eiωsds

∑∞
k=0 ψ

∆
k e

ikω∆
→ 1, ω ∈ R, (17)

provided that the function
∑∞

k=0 ψ
∆
k z

k does not have any zero inside the
unit circle. In other words, we need that the discrete Fourier transform
in the denominator of Eq. (17) converges to the Fourier transform in the
numerator; this can be easily related to the kernel estimation result in
Eq. (14). Given the peculiar structure of CARMA processes, this rela-
tionship can be calculated explicitly, but the results should hold true for
continuous-time moving average models with more general kernels, too.

We illustrate Theorem 3.2 and the necessity of the invertibility assumption
by an example where the convergence result is established using a time domain
approach. That gives an explicit result also when the invertibility assumption
is violated.

Unfortunately this strategy is not viable for a general CARMA process due
to the complexity of involved calculations when p is greater than two.
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Example 3.4 (CARMA(2, q) process). The causal CARMA(2, q) process is the
strictly stationary solution to the formal stochastic differential equation

(D − λ2)(D − λ1)Yt = σDLt, q = 0,

(D − λ2)(D − λ1)Yt = σ(b+D)DLt, q = 1,

where λ1, λ2 < 0, λ1 6= λ2 and b ∈ R\{0}. It can be represented as a continuous-
time moving average process as in Eq. (4), with kernel function

g(t) =σ
etλ1 − etλ2

λ1 − λ2
, q = 0,

g(t) =σ
b+ λ1
λ1 − λ2

etλ1 + σ
b+ λ2
λ2 − λ1

etλ2 , q = 1,

for t > 0 and 0 elsewhere. The corresponding sampled process Y ∆
n = Yn∆,

n ∈ Z, satisfies the causal and invertible ARMA(2, 1) equations as in (8). From
Eq. (27) of [12] we know for any n ∈ Z that

Φ∆(B)Y ∆
n =

∫ n∆

(n−1)∆

g(n∆− u)dLu

+

∫ (n−1)∆

(n−2)∆

[g(n∆− u)− (eλ1∆ + eλ2∆)g((n− 1)∆− u)]dLu.

The corresponding MA(1) polynomial in Eq. (8) is Θ∆(B) = 1 − θ∆B, with
asymptotic parameters

θ∆ =
√
3− 2 + o(1), σ2

∆ = σ2∆3(2 +
√
3)/6 + o(∆3), q = 0,

θ∆ = 1− sgn(b) b∆+ o(∆), σ2
∆ = σ2∆+ o(∆), q = 1.

Inversion of Eq. (8) gives, for every ∆ > 0,

Z∆
n =

Φ∆(B)

Θ∆(B)
Y ∆
n =

∞
∑

i=0

(θ∆B)i
2
∏

i=1

(1− eλi∆B)Y ∆
n

=

∫ n∆

(n−1)∆

g(n∆− u)dLu +
∞
∑

i=0

θi∆

∫ (n−i−1)∆

(n−i−2)∆

[

g((n− i)∆− u)

− (eλ1∆ + eλ2∆ − θ∆)g((n− i− 1)∆− u)
]

dLu.

The sequence Z∆ := {Z∆
n }n∈Z is a weak white noise process. Moreover, using

∆Ln =
∫ n∆

(n−1)∆ dLs, we observe that

E[Z∆
n ∆Ln−j] =







0, j < 0,
∫ ∆

0
g(s)ds, j = 0,

θj−1
∆

∫ ∆

0
[g(∆ + s)− (eλ1∆ + eλ2∆ − θ∆)g(s)]ds, j > 0.

(18)
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For any fixed t ∈ (0,∞), since ∆L and L̄∆ are both second-order stationary
white noises with variance ∆, we obtain that

E





⌊t/∆⌋
∑

i=1

(L̄∆
i −∆Li)





2

= 2⌊t/∆⌋∆− 2

⌊t/∆⌋
∑

i=1

E[L̄∆
i ∆Li]− 2

∑

i6=j

E[L̄∆
i ∆Lj ]

= 2⌊t/∆⌋∆− 2
√
∆

σ∆
⌊t/∆⌋

∫ ∆

0

g(s)ds

− 2
√
∆

σ∆

∫ ∆

0

[g(∆ + s)− (eλ1∆ + eλ2∆ − θ∆)g(s)]ds

⌊t/∆⌋
∑

i=1

i−1
∑

j=1

θj−1
∆ ,

where the last equality is deduced from Eq. (18). For every a 6= 1,

n
∑

i=1

i−1
∑

j=1

aj−1 =
an + (1− a)n− 1

(1− a)2
, n ∈ N,

and the variance of the error can be explicitly calculated as

E





⌊t/∆⌋
∑

i=1

(L̄∆
i −∆Li)





2

= 2⌊t/∆⌋∆− 2
√
∆

σ∆
⌊t/∆⌋

∫ ∆

0

g(s)ds− 2
√
∆

σ∆

θ∆
⌊t/∆⌋ + ⌊t/∆⌋(1− θ∆)− 1

(1− θ∆)2

×
∫ ∆

0

[g(∆ + s)− (eλ1∆ + eλ2∆ − θ∆)g(s)]ds.

We now compute the asymptotic expansion for ∆ ↓ 0 of the equation above. We
obviously have that 2⌊t/∆⌋∆ = 2t(1+ o(1)) and, using the explicit formulas for
the kernel functions g,

2
√

∆
σ∆

⌊t/∆⌋
∫∆
0 g(s)ds

2
√

∆
σ∆

∫∆
0 [g(∆ + s)− (eλ1∆ + eλ2∆ − θ∆)g(s)]ds

(θ∆
⌊t/∆⌋ + ⌊t/∆⌋(1 − θ∆)− 1)/(1 − θ∆)2







=























































q = 0
(

3−
√
3
)

t + o(1)
(

4
√
3− 6

)

∆(1 + o(1))

1
6

(

3 +
√
3
)

t/∆(1 + o(1))

q = 1
2t+ o(1)
2(b− sgn(b) b)∆2 + o(∆2)
e−sgn(b)bt+sgn(b)bt−1

(b∆)2
+ o(∆−2).

Hence, for a fixed t ∈ (0,∞) and ∆ ↓ 0, we get

E





⌊t/∆⌋
∑

i=1

(L̄∆
i −∆Li)





2

=

{

o(1), q = 0,

2(e−sgn(b)bt + sgn(b)bt− 1)(sgn(b)− 1)/b + o(1), q = 1,
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i.e. (16) holds always for q = 0, whereas for q = 1 if and only if b > 0. If
b < 0, the error made by approximating the driving Lévy by inversion of the
discretised process grows as 4t for large t.

4. High-frequency behaviour of approximating Riemann sums

The fact that, in the sense of Eq. (15), L̄∆
n ≈ ∆Ln = Ln∆ − L(n−1)∆ for small

∆, along with Eq. (14), gives rise to the conjecture that the Wold representation
for Y ∆ behaves on a high-frequency time grid approximately like the MA(∞)
process

Ỹ ∆,h
n :=

∞
∑

j=0

g(∆(j + h))∆Ln−j , n ∈ Z, (19)

with some h ∈ [0, 1] and g is the kernel function as in (6). In other terms, we have
for a CARMA process, under the assumption of invertibility and causality, that
the discrete-time quantities appearing in the Wold representation approximate
the quantities in Eq. (19) when ∆ ↓ 0. The transfer function of Eq. (19) is
defined as

ψ∆
h (ω) :=

∞
∑

j=0

g(∆(j + h))e−iωj , −π ≤ ω ≤ π, (20)

and its spectral density can be written as

f̃∆
h (ω) =

1

2π
|ψ∆

h |2(ω), −π ≤ ω ≤ π.

It is well known that a CMA process can be defined (for a fixed time point t)
as the L2-limit of Eq. (19); this fact is naturally employed to simulate a CMA
model when all the relevant quantities are known a priori. Therefore, we call
Ỹ ∆,h approximating Riemann sum of Eq. (4), and h is said to be the rule of the
approximating sum. If, for instance, h is chosen to be 1/2, we have the popular
mid-point rule.

Remark 4.1. (i) It would be possible to consider more sophisticated inte-
gration rules by taking more nodes on every interval of length ∆ and
suitable weights. However, since mostly used in practice, we decided to
concentrate on that “simple” Riemann sum approximation.

(ii) In practice, when considering simulation studies for instance, one has to
use a finite (truncated) Riemann sum of the form

Ỹ ∆, h
n, N :=

N
∑

j=0

g(∆(j + h))∆Ln−j ,

where N ∈ N is usually taken as a large number. If we let N = N(∆) → ∞
as ∆ → 0 with a suitable rate (N(∆) should diverge faster than ∆ goes
to 0, e.g. N(∆) = ∆−(1+ε)), the main result of this section, Corollary 4.6,
remains valid.
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To give an answer to our conjecture, we investigate properties of the approx-
imating Riemann sum Ỹ ∆,h of a CARMA process and compare its asymptotic
autocovariance structure with the one of the sampled CARMA sequence Y ∆.
This yields more insight into the role of h for the behaviour of Ỹ ∆,h as a process.

We start with a well-known property of approximating sums.

Proposition 4.2. Let g be in L2 and Riemann-integrable. Then, for every
h ∈ [0, 1], as ∆ ↓ 0:

(i) Ỹ ∆,h
k − Y ∆

k
L2

→ 0, for every k ∈ Z.

(ii) Ỹ ∆,h
⌊t/∆⌋

L2

→ Yt, for every t ∈ R.

Proof. This follows immediately from the hypotheses made on g and the defi-
nition of L2-integrals.

This result essentially says only that approximating sums converge to Yt for ev-
ery fixed time point t. However, for a CARMA(p, q) process we have that the ap-
proximating Riemann sum process satisfies for every h and ∆ an ARMA(p, p−1)
equation (see Proposition 4.3 below). This means that there might exist a pro-
cess whose autocorrelation structure is the same as the one of the approximating
sum. Given that the AR filter in this representation is the same as in Eq. (8), it
is reasonable to investigate whether Φ∆(B)Y ∆ and Φ∆(B)Ỹ ∆,h have, as ∆ ↓ 0,
the same asymptotic autocovariance structure, which can be expected but is not
granted by Proposition 4.2.

The following proposition states the ARMA(p, p − 1) representation for the
approximating Riemann sum.

Proposition 4.3. Let Y be a CARMA(p, q) process, satisfying Assumption 1.
Furthermore, suppose that the roots of the autoregressive polynomial a(·) are
distinct. The approximating Riemann sum process Ỹ ∆,h of Y defined by Eq. (19)
satisfies, for every h ∈ [0, 1], the ARMA(p, p− 1) equation

Φ∆(B)Ỹ ∆,h
n = σΘ̃∆,h(B)∆Ln, n ∈ Z, (21)

where

Θ̃∆,h(z) := θ̃∆,h
0 − θ̃∆,h

1 z +− . . .+ (−1)p−1θ̃∆,h
p−1z

p−1 (22)

and

θ̃∆,h
k :=

p
∑

l=1

b(λl)

a′(λl)
eh∆λl

∑

e∆(λj1+λj2+···+λjk
), k = 0, . . . , p− 1.

The right-hand sum is defined to be one for k = 0 and it is evaluated over all
possible subsets {j1, . . . , jk} of {1, . . . , p}\{l} with cardinality k, if k > 0.
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Proof. Write Φ∆(z) =
∏p

j=1(1− e∆λjz) = −
∑p

j=0 φ
∆
j z

j and observe that

Φ∆(B)Ỹ ∆,h
n = −

p
∑

j=0

φ∆j Y
∆,h
n−j

= −σb⊤

p−1
∑

k=0





k
∑

j=0

φ∆j e
A(k−j)∆



 eAh∆ep ·∆Ln−k

−σb⊤

p
∑

j=0

∞
∑

k=p−j

φ∆j e
A(h+k)∆ep ·∆Ln−j−k

= −σb⊤

p−1
∑

k=0





k
∑

j=0

φ∆j e
A(k−j)∆



 eAh∆ep ·∆Ln−k

+σb⊤
∞
∑

k=p



−
p
∑

j=0

φ∆j e
−Aj∆



 eA(h+k)∆ep ·∆Ln−k.

By virtue of the Cayley-Hamilton Theorem (cf. also [13, proof of Lemma 2.1]),
we have that

−
p
∑

j=0

φ∆j e
−Aj∆ = 0,

and hence, Φ∆(B)Ỹ ∆,h
n = −σb⊤

∑p−1
k=0

(

∑k
j=0 φ

∆
j e

A(k−j)∆
)

eAh∆ep · ∆Ln−k.

We conclude with [18, Lemma 2.1(i) and Eq. (4.4)].

Remark 4.4. (i) The approximating Riemann sum of a causal CARMA pro-
cess is automatically a causal ARMA process. On the other hand, even if
the CARMA model is invertible in the sense of Definition 3.1, the roots of
Θ̃∆,h(·) may lie inside the unit circle, causing Ỹ ∆,h to be non-invertible.

(ii) It is easy to see that θ̃∆,h
0 = g(h∆). If p− q ≥ 2 and h = 0, we have that

θ̃∆,0
0 = 0, giving that Θ̃∆,0(0) = 0. This is never the case for Θ∆(·) as one
can see from Eq. (9) and Proposition 2.2. Moreover, it is possible to show

that for h = 1 and p−q ≥ 2, the coefficient θ̃∆,1
p−1 is equal to zero, implying

that (21) is actually an ARMA(p, p−2) equation. For those values of h, the
ARMA equations solved by the approximating Riemann sums can never
have the same asymptotic form as Eq. (8). Therefore, we restrict ourselves
to the case h ∈ (0, 1) from now on.

(iii) The assumption of distinct autoregressive roots might seem restrictive,
but the omitted cases can be obtained by letting distinct roots tend to
each other. This would, of course, change the coefficients of the MA poly-
nomial in Eq. (22). Moreover, as shown in [11, 12], the multiplicity of the
zeroes does not matter when L2-asymptotic relationships as ∆ ↓ 0 are
considered.
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Due to the complexity of retrieving the roots of a polynomial of arbitrary
order from its coefficients, finding the asymptotic expression of Θ̃∆,h(·) for ar-
bitrary p is a daunting task. Nonetheless, by using Proposition 4.3, it is not
difficult to give an answer for processes with p ≤ 3, which are mostly used in
practice.

Proposition 4.5. Let Ỹ ∆,h be the approximating Riemann sum for a
CARMA(p, q) process, suppose p ≤ 3, and let Assumption 1 hold and the roots
of a(·) be distinct.

If p = 1, the process Ỹ ∆,h is an AR(1) process driven by Z∆
n = σe∆hλ1∆Ln.

If p = 2, 3, we have

Φ∆(B)Ỹ ∆,h
n =

q
∏

i=1

(1−(1−∆µi+o(∆))B)

p−q−1
∏

i=1

(1−χp−q,i(h)B)

(

σ
(h∆)p−q−1

(p− q − 1)!
∆Ln

)

,

(23)

where, for h ∈ (0, 1) and ∆ ↓ 0,

χ2,1(h) =
h− 1

h
+ o(1) and

χ3,j(h) =
2(h− 1)2

2(h− 1)h− 1− (−1)j
√

1− 4(h− 1)h
+ o(1), j = 1, 2.

Proof. The polynomial Θ̃∆,h(z) is of order p−1. Since p ≤ 3, its roots, if any, can
be calculated from the coefficients and asymptotic expressions can be obtained
by computing the Taylor expansions of the roots around ∆ = 0.

If p = 1, the statement follows directly from Eq. (21). For p = 2, 3, the roots
of Eq. (22) are {1 + ∆µi + o(∆)}i=1,...,q and {1/χp−q,i(h)}i=1,...p−q−1, giving
that

Θ̃∆,h(z) = θ̃∆,h
p−1

q
∏

i=1

(1 + ∆µi + o(∆) − z)

p−q−1
∏

i=1

(1/χp−q,i(h)− z), z ∈ C.

Vieta’s Theorem shows that the product of the roots must be equal to θ̃∆,h
0 /θ̃∆,h

p−1,
which yields

Θ̃∆,h(z) = θ̃∆,h
0

q
∏

i=1

(1− (1−∆µi + o(∆))z)

p−q−1
∏

i=1

(1− χp−q,i(h)z).

Since θ̃∆,h
0 = g(h∆) = σ(h∆)p−q−1/(p − q − 1)!(1 + o(1)), we have established

the result.

In general, the autocorrelation structure depends on h through the param-
eters χp−q,i(h). In a time series context, it is reasonable to require that the
approximating Riemann sum has the same asymptotic autocorrelation struc-
ture as the CARMA process that we want to approximate.
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Corollary 4.6. Let the assumptions of Proposition 4.5 hold. Then Φ∆(B)Y ∆

and Φ∆(B)Ỹ ∆,h have the same asymptotic autocovariance structure as ∆ ↓ 0

for every h ∈ (0, 1), if p− q = 1,

for h = (3±
√
3)/6, if p− q = 2,

and for h =
(

15±
√

225− 30
√
30
)

/30, if p− q = 3.

Moreover, the MA polynomials in Eqs. (9) and (23) coincide if and only if the
CARMA process is invertible and |χp−q,i(h)| < 1, that is

for every h ∈ (0, 1), if p− q = 1,

for h = (3 +
√
3)/6, if p− q = 2.

For p− q = 3, such an h does not exist.

Proof. The claim for p − q = 1 follows immediately from Proposition 4.5 and
Eqs. (9)-(10). For p = 2 and q = 0, we have to solve the spectral factorization
problem

σ2
∆(1 + η(ξ1)

2) = σ2∆3(1 + χ2,1(h)
2)h2

σ2
∆η(ξ1) = −σ2∆3χ2,1(h)h

2

with η(ξ1) = 2 −
√
3 + o(1) and χ2,1(h) = (h − 1)/h + o(1). Equation (10)

then yields the two solutions h = (3 ±
√
3)/6. For p = 3 and q = 1, analogous

calculations lead to the same solutions. Finally, consider the case p = 3 and
q = 0. We have to solve asymptotically the following system of equations

σ2
∆(1+(η(ξ1)+η(ξ2))

2+η(ξ1)
2η(ξ2)

2)=σ2∆5

4 (1+(χ3,1(h)+χ3,2(h))
2+χ3,1(h)

2χ3,2(h)
2)h4

σ2
∆(η(ξ1)+η(ξ2))(1+η(ξ1)η(ξ2))=−σ2∆5

4 (χ3,1(h)+χ3,2(h))(1+χ3,1(h)χ3,2(h))h
4

σ2
∆η(ξ1)η(ξ2)=

σ2∆5

4 χ3,1(h)χ3,2(h)h
4

where η(ξ1,2) =
(

13±
√
105−

√

270± 26
√
105
)

/2+o(1) and χ3,1(h) and χ3,2(h)
are as in Proposition 4.5. Solving that system for h gives the claimed values.

To prove the second part of the corollary, we start observing that, under
the assumption of an invertible CARMA process, the coefficients depending
on µi, if any, coincide automatically. Then it remains to check whether the
coefficients depending on h can be smaller than 1 in absolute value. The cases
p − q = 1, 2 follow immediately. Moreover, to see that there is no such h for
p− q = 3, it is enough to notice that, for any h ∈ (0, 1), we have |χ3,1(h)| > 1
and 0 < |χ3,2(h)| < 1. Hence, they never satisfy the sought requirement for
h ∈ (0, 1).

Remark 4.7. It is also feasible to use spectral densities rather than covariances
in the proof of Corollary 4.6. In that case, one has to compare the spectral
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densities of Φ∆(B)Y ∆ and Φ∆(B)Ỹ ∆,h asymptotically as ∆ → 0. This would
lead to the question whether the equation

σ2
∆ |Θ∆(z)|2 = σ2 ∆

∣

∣

∣Θ̃∆,h(z)
∣

∣

∣

2

(24)

holds for any z ∈ C with |z| = 1 as ∆ → 0. Of course, (24) implies the same
values for h as those stated in Corollary 4.6.

Corollary 4.6 can be interpreted as a criterion to choose an h such that the
Riemann sum approximates the continuous-time process Y in a stronger sense
than the simple convergence as a random variable for every fixed time point t.
The second part of the corollary says that there is an even more restrictive way
to choose h if we want Eqs. (9) and (23) to coincide. If the two processes satisfy
asymptotically the same causal and invertible ARMA equation, they have the
same coefficients in their Wold representations as ∆ ↓ 0. In the case of the
approximating Riemann sum these coefficients are given explicitly by definition
in Eq. (19).

In the light of Eq. (14) and Theorem 3.2, the sampled CARMA process
behaves asymptotically like its approximating Riemann sum process for some
specific h = h̄, which might not even exist as in the case p = 3, q = 0. However,
if such an h̄ exists, the kernel estimators (14) can be improved to

σ∆√
∆
ψ∆
⌊t/∆⌋ = g(∆(⌊t/∆⌋+ h̄)) + o(1), t ∈ R.

For invertible CARMA(p, q) processes with p− q = 1, any choice of h would
accomplish that. In principle an h̄ can be found by matching a higher-order
expansion in ∆, where higher-order terms depend on h.

For p − q = 2, there is only a specific value h = h̄ := (3 +
√
3)/6 such

that Ỹ ∆,h̄ behaves as Y ∆ in this particular sense. Therefore, it advocates for a
unique, optimal value for, e.g., simulation purposes.

Finally, for p − q = 3, a similar value does not exist, meaning that it is not
possible to mimic Y ∆ in this sense with any approximating Riemann sum.

To confirm these observations, we now give a small numerical study. We con-
sider three different causal and invertible processes, a CARMA(2, 1), a CAR(2),
and a CAR(3) model with parameters λ1 = −0.7, λ2 = −1.2, λ3 = −2.6 and
µ1 = 3. Of course, for the CARMA(2, 1) we use only λ1, λ2 and µ1, whereas
for the CAR processes there is no need for µ1. We estimate the kernel func-
tions from the theoretical autocorrelation functions using (14) as in [11]. Our
sampling rates are moderately high, namely 22 = 4 (Figure 1) and 26 = 64 sam-
plings per unit of time (Figure 2). To see where the kernel is being estimated,
we plot the kernel estimations on different grids. The small circles denote the
extremal cases h = 0 and h = 1, the vertical sign the mid-point rule h = 0.5,
and the diamond and the square are the values given in Corollary 4.6, if any.
The true kernel function is then plotted with a solid, continuous line. For the
sake of clarity, only the first eight estimates are plotted.

For the CARMA(2, 1) process, the kernel estimation seems to follow a mid-
point rule (i.e. h = 1/2). For the CAR(2) process, the predicted value h̄ =
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Fig 1. Kernel estimation for a sampling frequency of 22 samplings per unit of time, i.e. ∆ =
0.25. The diamond and the square symbols denote, if available, the values of h suggested by

Corollary 4.6.
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Fig 2. Kernel estimation for a sampling frequency of 26 samplings per unit of time, i.e. ∆ ≈
0.016. The diamond and the square symbols denote, if available, the values of h suggested by

Corollary 4.6.

(3 +
√
3)/6 (denoted with squares) is definitely the correct one, and for the

CAR(3) the estimation is close for every h ∈ [0, 1], but constantly biased. In the
limit ∆ ↓ 0, the slightly weaker results given by Eq. (14) still hold, showing that
the bias vanishes in the limit. The conclusion expressed above is true for both
considered sampling rates, which is remarkable since they are only moderately
high in comparison with the chosen parameters.
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Appendix A: Proof of Theorem 3.2 and auxiliary results

Throughout the appendix, we use the same notation as in the preceding sections.
We start with the proof of our main theorem in Section 3.

Proof of Theorem 3.2. Due to Assumption 1(ii) and Proposition 2.2, the sam-
pled ARMA equation (8) is invertible. The noise on the RHS of Eq. (8) is then
obtained using the classical inversion formula

Z∆
n =

Φ∆(B)

Θ∆(B)
Y ∆
n , n ∈ Z,

where B is the usual backshift operator. Let us consider the stationary
continuous-time process

Z∆
t :=

Φ∆(B∆)

Θ∆(B∆)
Yt =

∞
∑

i=0

a∆i

∫ t−i∆

−∞

g(t− i∆− s)dLs, t ∈ R, (25)

where the continuous-time backshift operator B∆ is defined such that B∆Yt :=
Yt−∆ for every t ∈ R. The coefficients a∆i on the RHS of Eq. (25) are determined
by the Laurent series expansion of the rational function Φ∆(·)Θ−1

∆ (·). Moreover,
Z∆

n∆ = Z∆
n for every n ∈ N; as a consequence, the random variables Z∆

s ,Z∆
t

are uncorrelated for |t − s| ≥ ∆ and var(Z∆
t ) = var(Z∆

n ). Exchanging the sum
and the integral signs in Eq. (25), and since g(·) = 0 for negative arguments, we
have that Z∆ is a continuous-time moving average process

Z∆
t =

∫ t

−∞

g∆(t− s)dLs, t ∈ R,

whose kernel function g∆ has Fourier transform (cf. Eq. (7))

F{g∆(·)}(ω) = Φ∆(e
iω∆)

Θ∆(eiω∆)
F{g(·)}(ω) = σ

Φ∆(e
iω∆)

Θ∆(eiω∆)

b(−iω)
a(−iω) , ω ∈ R, ∆ > 0.

Since we can write Lt − Lt−∆ =
∫ t

−∞ 1(0,∆)(t− s)dLs, the sum of the differ-
ences between the rescaled sampled noise terms and the increments of the Lévy
process is given by

n
∑

j=1

L̄∆
j − Ln∆ =

∫ n∆

−∞

n
∑

j=1

[√
∆

σ∆
g∆(j∆− s)− 1(0,∆)(j∆− s)

]

dLs

=

∫ n∆

−∞

h∆n (n∆− s)dLs, (26)

where, for every n ∈ N,

h∆n (s) :=

n
∑

j=1

[√
∆

σ∆
g∆(s+ (j − n)∆)− 1(0,∆)(s+ (j − n)∆)

]

, s ∈ R.
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Note that the stochastic integral in Eq. (26) w.r.t. L is still in the L2-sense. It
is a standard result, cf. [21, Ch. IV, §4], that the variance of the moving average
process in Eq. (26) is given by

E





n
∑

j=1

L̄∆
j − Ln∆





2

=

∫ n∆

−∞

(

h∆n (n∆− s)
)2
ds = ‖h∆n (·)‖2L2 ,

where the latter equality is true since h∆n (s) = 0 for any s ≤ 0.

Furthermore, the Fourier transform of h∆n (·) can be readily calculated, in-
voking the linearity and the shift property of the Fourier transform. We thus
obtain

F{h∆n (·)}(ω) =
[√

∆

σ∆
F{g∆(·)}(ω)−F{1(0,∆)(·)}(ω)

]

n
∑

j=1

eiω(n−j)∆

=

[

σ

√
∆

σ∆

∏p
j=1(1− e∆(λj+iω))

Θ∆(eiω∆)

b(−iω)
a(−iω) −

eiω∆ − 1

iω

]

1− eiω∆n

1− eiω∆

=:
[

h∆,1(ω)− h∆,2(ω)
]

· h∆,3
n (ω), ω ∈ R.

Due to Plancherel’s Theorem, we deduce

var

[

n
∑

i=1

L̄∆
j − Ln∆

]

= ‖h∆n (·)‖2L2 =
1

2π

∫

R

|F{h∆n (·)}|2(ω)dω,

=
1

2π

∫

R

[

∣

∣h∆,1h∆,3
n (ω)

∣

∣

2
+
∣

∣h∆,2h∆,3
n (ω)

∣

∣

2 − 2ℜ
(

h∆,1h∆,2(ω)
)

∣

∣h∆,3
n (ω)

∣

∣

2
]

dω.

(27)

It is easy to see that the first two integrals in Eq. (27) are, respectively, the
variances of

∑n
i=1 L̄

∆
j and Ln∆, both equal to n∆. Setting n := ⌊t/∆⌋ yields for

fixed positive t, as ∆ ↓ 0,

var





⌊t/∆⌋
∑

i=1

L̄∆
j − L⌊t/∆⌋∆



 = 2⌊t/∆⌋∆− 1

π

∫

R

ℜ
(

h∆,1h∆,2(ω)
) ∣

∣

∣h
∆,3
⌊t/∆⌋(ω)

∣

∣

∣

2

dω

= 2t(1 + o(1))− 1

π

∫

R

ℜ
(

h∆,1h∆,2(ω)
) ∣

∣

∣h
∆,3
⌊t/∆⌋(ω)

∣

∣

∣

2

dω.

Hence, to show Eq. (16), it remains to prove that

1

π

∫

R

ℜ
(

h∆,1h∆,2(ω)
) ∣

∣

∣h
∆,3
⌊t/∆⌋(ω)

∣

∣

∣

2

dω = 2t(1 + o(1)) as ∆ ↓ 0,
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which in turn is equivalent to

1

2πt

∫

R

σ

√
∆

σ∆

1− cos(ω⌊t/∆⌋∆)

1− cos(ω∆)

[

sin(ω∆)

ω
ℜ
(

∏p
j=1(1− e∆(λj+iω))

Θ∆(eiω∆)

b(−iω)

a(−iω)

)

+
1− cos(ω∆)

ω
ℑ
(

∏p
j=1(1− e∆(λj+iω))

Θ∆(eiω∆)

b(−iω)

a(−iω)

)]

dω = 1 + o(1) as ∆ ↓ 0.

(28)

Now, Lemma A.2 asserts that the integrand in Eq. (28) converges pointwise,
for every ω 6= 0, to 2(1 − cos(ωt))/ω2 as ∆ ↓ 0. Since, for sufficiently small ∆,
the integrand is dominated by an integrable function (see Lemma A.3), we can
apply Lebesgue’s Dominated Convergence Theorem and deduce that the LHS
of Eq. (28) converges, as ∆ ↓ 0, to

1

πt

∫

R

1− cos(ωt)

ω2
dω =

2

π

∫ ∞

0

1− cos(ω)

ω2
dω = 1.

This proves (28) and concludes the proof of the “if”-statement.
As to the “only if”-part, let J := {j = 1, . . . , q : ℜ(µj) < 0} and suppose

that |J | ≥ 1. Due to Eq. (9) we have for ∆ ↓ 0

b(−iω)
Θ∆(eiω∆)

=

p−q−1
∏

j=1

(1 + η(ξj))
−1

q
∏

j=1

µj − iω

1− ζj eiω∆

=

p−q−1
∏

j=1

(1 + η(ξj))
−1

∆−q
∏

j∈J

µj − iω

−µj − iω
(1 + o(1))

=

p−q−1
∏

j=1

(1 + η(ξj))
−1 ∆−q(1 +D(ω))(1 + o(1)), ω ∈ R, (29)

where D(ω) := −1+
∏

j∈J (µj − iω)/(−µj − iω). By virtue of Lemmata A.2 and
A.3, we then obtain that the LHS of Eq. (28) converges, as ∆ ↓ 0, to

1

πt

∫

R

1− cos(ωt)

ω2

(

1 + ℜ(D(ω))
)

dω = 1 +
1

π

∫

R

1− cos(ω)

ω2
ℜ(D(ω/t)) dω.

Since |∏j∈J (µj − iω)/(−µj − iω)| = 1, we further deduce that ℜ(D(ω)) ≤ 0 for
any ω ∈ R. Obviously, ℜ(D(ω)) 6≡ 0 and hence,

1

πt

∫

R

1− cos(ωt)

ω2

(

1 + ℜ(D(ω))
)

dω < 1.

This shows that the convergence result (16) cannot hold.

In the following, we state three auxiliary results. For the proof of the first
one, we need a concrete representation of the function αn(x), which is defined
in Eq. (12). It can be shown that

αn(x) =
Pn(x)

(2n+ 1)!xn+1
, x 6= 0, n ∈ N,
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where Pn(x) is a polynomial of order n in x, namely

Pn(x) =
n
∑

j=0

xn−j
n
∑

k=j+1

(2k)!
{2n+ 1

2k

}

k
∑

i=j

[

(i+ 1

j + 1

)( 2k

2i+ 1

)

−
( i

j + 1

)(2k

2i

)

]

(−2)j+1−2k

+
n
∑

j=0

xn−j
n
∑

k=j

(2k + 1)!
{2n+ 1

2k + 1

}

k
∑

i=j

[

(i+ 1

j + 1

)(2k + 1

2i+ 1

)

−
( i

j + 1

)(2k + 1

2i

)

]

(−2)j−2k ,

(30)

with
{

·
·

}

being the Stirling number of the second kind.

Proposition A.1. All the zeroes of αn(x) are real, distinct and greater than 2.

Proof. Using Eq. (30), we easily see that, for Pn(x) = p0 + p1x+ · · ·+ pnx
n,

p0 = (−2)−n(2n+ 1)!, pn = 1, (31)

i.e. Pn(x) will have n, potentially complex, roots, and they cannot be zero.
Moreover, it is easy to verify that

f(z, x) :=
sinh(z)

cosh(z)− 1 + x
=

e2z − 1

e2z + 1 + 2(x− 1)ez
, z ∈ C, x 6= 0,

solves the mixed partial differential equation

∂2

∂z2
f(z, x) =

[

(x− 1)
∂

∂x
+ x(x − 2)

∂2

∂x2

]

f(z, x). (32)

We take 2n− 1 derivatives in z on both sides of Eq. (32). Invoking the Schwarz
Theorem, the product rule for derivatives and evaluating the resulting expression
for z = 0, we obtain that the function αn(x) is given by recursion, for x 6∈ (0, 2),
as

(2n+ 3) (2n+ 1)αn+1(x) =
√

x(x − 2)
∂

∂x

[

√

x(x− 2)
∂

∂x
αn(x)

]

, (33)

α0(x) = 1/x.

We prove by induction that the roots are real, distinct and greater than 2.
The functions α0(x) = 1/x and 6α1(x) = (x− 3)/x2 have, respectively, no and
one zero, so the claim can be partially verified. We start with α2(x) = (30 −
15x + x2)/(120x3), whose zeroes are ξ2,1 = 1/2

(

15−
√
105
)

≈ 2.37652 and

ξ2,2 = 1/2
(

15 +
√
105
)

≈ 12.6235, and note that they satisfy the claim. Assume
that the statement is valid for αn(x), n ≥ 2, and its zeroes are 2 < ξn,1 < ξn,2 <
· · · < ξn,n.

The derivative of αn(x) is of the form Qn(x)/x
n+2, where (2n+ 1)!Qn(x) =

x ∂
∂xPn(x)−(1+n)Pn(x). By virtue of Rolle’s Theorem,Qn(x) has n−1 real roots

χn,i, i = 1, . . . , n− 1, such that 2 < ξn,1 < χn,1 < ξn,2 < χn,2 < · · · < χn,n−1 <
ξn,n. Using the product rule and the value of the coefficients in Eq. (31), we get

∂

∂x
αn(x) ∼ −x−2/(2n+ 1)! → 0, x→ ∞. (34)
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Again due to Rolle’s Theorem, and since ∂
∂xαn(x) → 0 and αn(x) → 0 as

x → ∞, the function Qn(x) has a zero at some point ξn,n < χn,n < ∞. For

x ≥ 2, the function
√

x(x − 2) ∂
∂xαn(x) is well defined and it is zero for x = 2

and x = χn,i, i = 1, . . . , n. With the same arguments as before, we then obtain

that ∂
∂x [
√

x(x − 2) ∂
∂xαn(x)] is zero for x = ξn+1,i, i = 1, . . . , n + 1, where

2 < ξn+1,1 < χn,1 < ξn+1,2 < χn,2 < · · · < χn,n < ξn+1,n+1 < ∞. Due
to Eq. (33), those zeroes are also roots of, respectively, αn+1(x) and Pn+1(x).
Since Pn+1(x) is a polynomial of order n+1, it can have only n+1 roots, which
were found already. Moreover, they are all real, distinct and strictly greater than
2, and the claim is proven.

Lemma A.2. Suppose that ℜ(µj) 6= 0 for all j = 1, . . . , q. We have, for any
t ∈ (0,∞) and ω 6= 0,

lim
∆↓0

σ

√
∆

σ∆

1− cos(ω⌊t/∆⌋∆)

ω

sin(ω∆)

1− cos(ω∆)
ℜ
(

∏p
j=1(1− e∆(λj+iω))

Θ∆(eiω∆)

b(−iω)
a(−iω)

)

=
2− 2 cos(ωt)

ω2

(

1 + ℜ(D(ω))
)

and

lim
∆↓0

σ

√
∆

σ∆

1− cos(ω⌊t/∆⌋∆)

ω
ℑ
(

∏p
j=1(1− e∆(λj+iω))

Θ∆(eiω∆)

b(−iω)
a(−iω)

)

= 0,

where D(ω) := −1+
∏

j∈J (µj−iω)/(−µj−iω) and J := {j = 1, . . . , q : ℜ(µj) <
0}. Obviously, if ℜ(µj) > 0 for all j = 1, . . . , q, then D(ω) = 0 for all ω ∈ R.

Proof. Due to Proposition 2.2, we have that η(ξj) ∈ (0, 1) for sufficiently small
∆. Hence, for any ω ∈ R,

∏p
j=1(1− e∆(λj+iω))

Θ∆(eiω∆)

b(−iω)
a(−iω)

=
1

∏p−q−1
j=1 (1 + η(ξj)eiω∆)

p
∏

j=1

e∆(λj+iω) − 1

iω + λj

q
∏

j=1

µj − iω

1− ζjeiω∆

= ∆p−q(1 +D(ω))

p−q−1
∏

j=1

(1 + η(ξj))
−1 · (1 + o(1)) as ∆ ↓ 0.

Moreover, using Eq. (10), we obtain

σ

√
∆

σ∆
=

√

[2(p− q)− 1]! ·∏p−q−1
j=1 η(ξj)

∆p−q−1
(1 + o(1)) as ∆ ↓ 0.

Since cos(ω⌊t/∆⌋∆) → cos(ωt) and ∆ sin(ω∆)/(1 − cos(ω∆)) → 2/ω as ∆ ↓ 0
for any ω 6= 0, we use the asymptotic equality (cf. [11, proof of Theorem 3.2])
√

[2(p− q)− 1]! ·∏p−q−1
j=1 η(ξj)

∏p−q−1
j=1 (1 + η(ξj))

=

∏p−q−1
j=1 |1 + η(ξj)|

∏p−q−1
j=1 (1 + η(ξj))

· (1 + o(1)) = 1 + o(1)

to conclude the proof.
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Lemma A.3. Suppose that t ∈ (0,∞) and ℜ(µj) 6= 0 for all j = 1, . . . , q,

and let the functions h∆,1(·), h∆,2(·) and h∆,3
⌊t/∆⌋(·) be defined as in the proof of

Theorem 3.2. There is a constant C > 0 such that, for any ω ∈ R and any
sufficiently small ∆,

∣

∣

∣2ℜ
(

h∆,1 · h∆,3
⌊t/∆⌋(ω) · h∆,2 · h∆,3

⌊t/∆⌋(ω)
)∣

∣

∣ ≤ h(ω),

where h(ω) :=
(

72p/22p+q + 1
)

t21(−1,1)(ω) + Cω−21R\(−1,1)(ω). Moreover, h is
integrable over the real line.

Proof. We obviously have
∣

∣

∣2ℜ
(

h∆,1h∆,3
⌊t/∆⌋(ω)h

∆,2h∆,3
⌊t/∆⌋(ω)

)∣

∣

∣ ≤
∣

∣

∣h∆,1h∆,3
⌊t/∆⌋(ω)

∣

∣

∣

2

+
∣

∣

∣h∆,2h∆,3
⌊t/∆⌋(ω)

∣

∣

∣

2

(35)
for any ω ∈ R and any ∆. Let us first consider the second addend on the RHS
of Eq. (35).

We obtain |h∆,2h∆,3
⌊t/∆⌋(ω)|2 = 2(1−cos(ω⌊t/∆⌋∆))/ω2 and since ⌊t/∆⌋∆ ≤ t

holds, we can bound, for any ∆, the latter function by t2 on the interval (−1, 1)
and by 4/ω2 on R\(−1, 1).

As to the first addend on the RHS of Eq. (35), we calculate

∣

∣

∣h∆,1h∆,3
⌊t/∆⌋(ω)

∣

∣

∣

2

= σ2 ∆

σ2
∆

∏p
j=1

∣

∣1− e∆(λj+iω)
∣

∣

2

|Θ∆(eiω∆)|2
|b(−iω)|2

|a(−iω)|2
· 1− cos(ω⌊t/∆⌋∆)

1− cos(ω∆)
.

(36)
Let now |ω| < 1 and suppose that ∆ is sufficiently small, i.e. the following

inequalities are true for any |ω| < 1 whenever ∆ is sufficiently small. Using
|1− ez| ≤ 7/4|z| for |z| < 1 (see, e.g., [1, 4.2.38]) yields

∏p
j=1

∣

∣1− e∆(λj+iω)
∣

∣

2

|a(−iω)|2
≤
(

7

4
∆

)2p

.

The inequalities (1−cos(ω∆))/(ω∆)2 ≥ 1/4 and 4(1−cos(ω⌊t/∆⌋∆))/ω2 ≤ 2t2

(see above) imply

1− cos(ω⌊t/∆⌋∆)

1− cos(ω∆)
≤ 2

(

t

∆

)2

.

As in the proof of Lemma A.2 we write Θ∆(z) =
∏p−q−1

j=1 (1+η(ξj)z) ·
∏q

j=1(1−
ζjz), where ζj = 1 − sgn(ℜ(µj))µj ∆ + o(∆) (see [11], Theorem 2.1). Since
∏q

j=1

(∣

∣1− ζje
iω∆
∣

∣ /∆
)2 ≥∏q

j=1 1/2 |sgn(ℜ(µj))µj − iω|2, we further deduce

|b(−iω)|2
∏q

j=1 |1− ζjeiω∆|2
≤ 2q

∆2q
.

Due to Eq. (10), we obtain

σ2 ∆

σ2
∆

p−q−1
∏

j=1

∣

∣1 + η(ξj)e
iω∆
∣

∣

−2 ≤ 2 · [2(p− q)− 1]!

∆2(p−q−1)

p−q−1
∏

j=1

|η(ξj)|
|1 + η(ξj)eiω∆|2
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and since |η(ξj)| < 1 (see Proposition 2.2) we also have that |1 + η(ξj)e
iω∆| ≥

1
2 |1 + η(ξj)| for all j, resulting in

σ2 ∆

σ2
∆

p−q−1
∏

j=1

∣

∣1 + η(ξj)e
iω∆
∣

∣

−2 ≤ 22(p−q)−1

∆2(p−q−1)
· [2(p− q)− 1]!

p−q−1
∏

j=1

|η(ξj)|
|1 + η(ξj)|2

=
22(p−q)−1

∆2(p−q−1)
.

The latter equality follows from [11, proof of Theorem 3.2]. All together the
RHS of Eq. (36) can be bounded for any |ω| < 1 and any sufficiently small ∆

by (7/2)
2p

2−qt2.
It remains to bound the RHS of Eq. (36) also for |ω| ≥ 1. Hence, for the rest

of the proof let us suppose |ω| ≥ 1 and in addition we assume again that ∆ is
sufficiently small. We show that

σ2 ∆

σ2
∆

∏p
j=1

∣

∣1− e∆(λj+iω)
∣

∣

2

|Θ∆(eiω∆)|2
|b(−iω)|2

|a(−iω)|2
1− cos(ω⌊t/∆⌋∆)

1− cos(ω∆)
≤ C

ω2

for some C > 0. Since
∣

∣σ2∆/σ2
∆

∣

∣ ≤ const. ·
∣

∣∆2/∆2(p−q)
∣

∣ (see (10)) and since
∏p−q−1

j=1 |1+η(ξj)eiω∆|−2 ≤∏p−q−1
j=1 (1−|η(ξj)|)−2 ≤ const. (cf. Proposition 2.2),

it is sufficient to prove

(ω∆)2

∆2(p−q)

∏p
j=1

∣

∣1− e∆(λj+iω)
∣

∣

2

∏q
j=1 |1− ζjeiω∆|2

|b(−iω)|2

|a(−iω)|2
1− cos(ω⌊t/∆⌋∆)

1− cos(ω∆)
≤ C (37)

for some C > 0. The power transfer function satisfies |b(−iω)|2/|a(−iω)|2 ≤
const./(ω2(p−q) + 1) for any ω ∈ R. Thus, Eq. (37) will follow from

(ω∆)2

(ω∆)2(p−q) +∆2(p−q)

∏p
j=1

∣

∣1− e∆(λj+iω)
∣

∣

2

∏q
j=1 |1− ζjeiω∆|2

1− cos(ω⌊t/∆⌋∆)

1− cos(ω∆)
≤ C. (38)

We even show that Eq. (38) is true for any ω ∈ R. However, using symmetry and
periodicity arguments it is sufficient to prove Eq. (38) on the interval [0, 2π∆ ].
We split that interval into the following six subintervals

I1 :=

[

0, min
j=1,...,q

|µj |
2

]

, I2 :=

[

min
j=1,...,q

|µj |
2
, max
j=1,...,q

2|µj |
]

,

I3 :=

[

max
j=1,...,q

2|µj |,
π

∆

]

, I4 :=

[

π

∆
,
2π

∆
− max

j=1,...,q
2|µj|

]

,

I5 :=

[

2π

∆
− max

j=1,...,q
2|µj |,

2π

∆
− min

j=1,...,q

|µj |
2

]

and I6 :=

[

2π

∆
− min

j=1,...,q

|µj |
2
,
2π

∆

]

.

For any ω ∈ I1 ∪ I6, the fraction 1−cos(ω⌊t/∆⌋∆)
1−cos(ω∆) can be bounded by ⌊t/∆⌋2.

In the other intervals we have the obvious bound 2/(1−cos(ω∆)) for that term.
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Now, for any j = 1, . . . , p, we have, as ∆ ↓ 0,

∣

∣1− e∆λj · eiω∆
∣

∣

2 ≤ 2
∣

∣1− eiω∆
∣

∣

2
+ 4∆2 |λj |2 = 8 sin2

(

ω∆

2

)

+ 4∆2 |λj |2

≤ 4∆2
(

ω2 + |λj |2
)

if ω ∈ I1 ∪ I2 ∪ I3, and
∣

∣1− e∆λj · eiω∆
∣

∣

2 ≤ 4∆2
(

(2π/∆− ω)
2
+ |λj |2

)

if ω ∈
I4 ∪ I5 ∪ I6.

The first fraction on the LHS of Eq. (38) satisfies

(ω∆)2

(ω∆)2(p−q) +∆2(p−q)
≤















min
j=1,...,q

|µj |
2 · ∆2

∆2(p−q) , if ω ∈ I1,

(ω∆)2

(ω∆)2(p−q) , if ω ∈ I2 ∪ I3,
(2π)2

π2(p−q) , if ω ∈ I4 ∪ I5 ∪ I6.

Then, for any j = 1, . . . , q and ω ∈ I1 ∪ I6, we obtain

∣

∣1− ζje
iω∆
∣

∣

2
=
∣

∣1− (1− sgn(ℜ(µj))µj∆+ o(∆))eiω∆
∣

∣

2

≥ 1

2
∆2 |sgn(ℜ(µj))µj − iω|2 ≥ 1

8
∆2 |µj |2 .

If ω ∈ I3, we deduce

∣

∣1− ζje
iω∆
∣

∣

2 ≥
(∣

∣1− eiω∆
∣

∣− |µj + o(1)|∆
)2

=

(

2 sin

(

ω∆

2

)

− |µj + o(1)|∆
)2

≥ ∆2

(

3

5
ω − |µj + o(1)|

)2

and likewise, for ω ∈ I4, we have
∣

∣1− ζje
iω∆
∣

∣

2 ≥ ∆2
(

3
5 (

2π
∆ − ω)− |µj + o(1)|

)2
.

For ω ∈ I2 we get with arbitrary ε > 0

∣

∣1− ζje
iω∆
∣

∣

2
= 2(1− cos(ω∆)) · (1 −∆sgn(ℜ(µj))ℜ(µj) + o(∆))

+ 2 sin(ω∆) · (−∆sgn(ℜ(µj))ℑ(µj) + o(∆)) + ∆2|µj |2 + o(∆2)

≥ (ω∆)2 · (1− ε)− 2(ω∆) ·∆ |ℑ(µj)| · (1 + ε) + ∆2
(

|µj |2 + o(1)
)

=: f∆
ε (ω∆).

Since f∆
ε (ω)/ω2 → 1−ε (ω → ∞) and f∆

ε (ω)/ω2 → ∞ (ω → 0), a (global) min-

imum of f∆
ε (ω)/ω2 on (0,∞) could be achieved in any ω∗ with

(

d
dω

f∆
ε (ω)
ω2

)

(ω∗) =

0. The only such value is ω∗ =
∆(|µj |

2+o(1))
(1+ε)|ℑ(µj)|

. Since

f∆
ε (ω∗)

(ω∗)2
= 1− ε− (1 + ε)2

|ℑ(µj)|2
|µj |2 + o(1)

≥ (1 + ε)
ℜ(µj)

2

|µj |2
− 3ε− ε2 ≥ 1

2

ℜ(µj)
2

|µj |2

for, e.g., ε = 1
6
ℜ(µj)

2

|µj |2
, we obtain

f∆
ε (ω)
ω2 ≥ 1

2
ℜ(µj)

2

|µj |2
for any ω ∈ (0,∞). Hence,

∣

∣1− ζje
iω∆
∣

∣

2 ≥ f∆
ε (ω∆) ≥ 1

2

ℜ(µj)
2

|µj |2
(ω∆)2 for all ω ∈ I2.
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Using periodic properties of the sine and cosine terms, we likewise get

∣

∣1− ζje
iω∆
∣

∣

2 ≥ 1

2

ℜ(µj)
2

|µj |2
∆2

(

2π

∆
− ω

)2

for any ω ∈ I5.

Putting all together, we can bound the LHS of Eq. (38) in I1 by

min
j=1,...,q

|µj |
2

· (⌊t/∆⌋∆)2

∆2(p−q)

4p∆2p ·
∏p

j=1

(

mink=1,...,q |µk|2/4 + |λj |2
)

8−q∆2q
∏q

j=1 |µj |2

≤ min
j=1,...,q

|µj |
2

· t2 ·
4p+q ·∏p

j=1

(

mink=1,...,q |µk|2/4 + |λj |2
)

∏q
j=1

1
2 |µj |2

= C,

in I2 by

2(ω∆)2

1− cos(ω∆)

4p∆2p ·∏p
j=1

(

4maxk=1,...,q |µk|2 + |λj |2
)

(ω∆)2p ·∏q
j=1

1
2
ℜ(µj)2

|µj |2

≤
5 · 42p ·∏p

j=1

(

4maxk=1,...,q |µk|2 + |λj |2
)

minj=1,...,q |µj |2p ·
∏q

j=1
1
2
ℜ(µj)2

|µj |2

= C,

in I3 by

2(ω∆)2

1− cos(ω∆)

4p(ω∆)2p ·∏p
j=1

(

1 +
|λj |

2

4maxk=1,...,q |µk|2

)

(ω∆)2(p−q) · ( 1
20ω∆)2q

≤ π2 4p 202q
p
∏

j=1

(

1 +
|λj |2

4maxk=1,...,q |µk|2
)

= C,

in I4 by

(2π)2

π2(p−q)

2

1− cos(ω∆)

4p(2π − ω∆)2p ·∏p
j=1

(

1 +
|λj |

2

4maxk=1,...,q |µk|2

)

20−2q (2π − ω∆)2q

≤ 4p+1 202q
p
∏

j=1

(

1 +
|λj |2

4maxk=1,...,q |µk|2
)

2 · (2π − ω∆)2

1− cos(2π − ω∆)

≤ π2 4p+1 202q
p
∏

j=1

(

1 +
|λj |2

4maxk=1,...,q |µk|2
)

= C,

in I5 by

(2π)2

π2(p−q)

2

1− cos(ω∆)

4p∆2p ·∏p
j=1

(

4maxk=1,...,q |µk|2 + |λj |2
)

∆2q
∏q

j=1
1
8 mink=1,...,q |µk|2(ℜ(µj)/|µj |)2

≤ (2π)2

π2(p−q)

4p ·
∏p

j=1

(

4maxk=1,...,q |µk|2 + |λj |2
)

∏q
j=1

1
8 mink=1,...,q |µk|2(ℜ(µj)/|µj |)2

2∆2

1− cos(2π − ω∆)

≤ (2π)2

π2(p−q)

4p ·∏p
j=1

(

4maxk=1,...,q |µk|2 + |λj |2
)

∏q
j=1

1
8 mink=1,...,q |µk|2(ℜ(µj)/|µj |)2

5 · 4
minj=1,...,q |µj |2

= C,
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and, finally, in I6 by

(2π⌊t/∆⌋)2
π2(p−q)

4p∆2p ·∏p
j=1

(

mink=1,...,q |µk|2/4 + |λj |2
)

8−q∆2q
∏q

j=1 |µj |2

≤ (2πt)2

π2(p−q)

4p+q ·∏p
j=1

(

mink=1,...,q |µk|2/4 + |λj |2
)

∏q
j=1

1
2 |µj |2

= C.

This shows Eq. (38) and thus concludes the proof.
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