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We consider estimation of covariance matrices and their inverses (a.k.a.
precision matrices) for high-dimensional stationary and locally stationary
time series. In the latter case the covariance matrices evolve smoothly in time,
thus forming a covariance matrix function. Using the functional dependence
measure of Wu [Proc. Natl. Acad. Sci. USA 102 (2005) 14150–14154 (elec-
tronic)], we obtain the rate of convergence for the thresholded estimate and
illustrate how the dependence affects the rate of convergence. Asymptotic
properties are also obtained for the precision matrix estimate which is based
on the graphical Lasso principle. Our theory substantially generalizes earlier
ones by allowing dependence, by allowing nonstationarity and by relaxing
the associated moment conditions.

1. Introduction. Estimation of covariance matrices and their inverses (a.k.a.
precision matrices) is of fundamental importance in almost every aspect of statis-
tics, ranging from the principal component analysis [Johnstone and Lu (2009)],
graphical modeling [Meinshausen and Bühlmann (2006), Ravikumar et al. (2011),
Yuan (2010)], classification based on the linear or quadratic discriminant anal-
ysis [Bickel and Levina (2004)], and real-world applications such as portfolio
selection [Ledoit and Wolf (2003), Talih (2003)] and wireless communication
[Abrahamsson, Selen and Stoica (2007), Guerci (1999), Li, Stocia and Wang
(2003), Ward (1994)]. Suppose we have n temporally observed p-dimensional
vectors (zi )

n
i=1, with zi having mean zero and covariance matrix �i = E(ziz�

i )

whose dimension is p × p. Our goal is to estimate the covariance matrices �i

and their inverses �i = �−1
i based on the data matrix Zp×n = (z1, . . . , zn). In the

classical situation where p is fixed, n → ∞ and zi are mean zero independent
and identically distributed (i.i.d.) random vectors, it is well known that the sample
covariance matrix

�̂n = n−1
n∑

i=1

ziz�
i(1)
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is a consistent and well behaved estimator of �, and �̂n = �̂−1
n is a natural and

good estimator of �. See Anderson (1958) for a detailed account. However, when
the dimensionality p grows with n, random matrix theory asserts that �̂n is no
longer a consistent estimate of � in the sense that its eigenvalues do not converge
to those of �; see, for example, the Marčenko–Pastur law [Marčenko and Pastur
(1967)] or the Tracy–Widom law [Johnstone (2001)]. Moreover, it is clear that �̂n

is not defined when �̂n is not invertible in the high-dimensional case with p > n.
During the last decade, various special cases of the above covariance matrix es-

timation problem have been studied. In most of the previous papers it is assumed
that the vectors z1, . . . , zn are i.i.d. and thus the covariance matrix �i ≡ � is time-
invariant. See, for example, Bickel and Levina (2008a, 2008b), Cai, Zhang and
Zhou (2010), Cai and Zhou (2012, 2013), where consistency and rates of conver-
gence are established for various regularized (banded, tapered or thresholded) esti-
mates of covariance matrices and their inverses. As an alternative regularized esti-
mate for sparse precision matrix, one can adopt the Lasso-type entry-wise 1-norm
penalized likelihood approach; see Banerjee, El Ghaoui and d’Aspremont (2008),
Fan, Feng and Wu (2009), Friedman, Hastie and Tibshirani (2008), Ravikumar
et al. (2011), Rothman et al. (2008). Other estimates include the Cholesky decom-
position based method [Huang et al. (2006), Wu and Pourahmadi (2003)], neigh-
borhood selection for sparse graphical models [Liu and Luo (2012), Meinshausen
and Bühlmann (2006), Yuan (2010)], regularized likelihood approach [Fan, Feng
and Wu (2009), Lam and Fan (2009)] and the sparse matrix transform [Cao,
Bachega and Bouman (2011)]. Xiao and Wu (2012) considered covariance ma-
trix estimation for univariate stationary processes.

The assumption that z1, . . . , zn are i.i.d. is quite restrictive for situations that
involve temporally observed data. In Zhou, Lafferty and Wasserman (2010) and
Kolar and Xing (2011) the authors considered time-varying Gaussian graphical
models where the sampling distribution can change smoothly over time. However,
they assume that the underlying random vectors are independent. Using nonpara-
metric smoothing techniques, they estimate the time-vary covariance matrices in
terms of covariance matrix functions. Their asymptotic theory critically depends
on the independence assumption.

The importance of estimating covariance matrices for dependent and nonsta-
tionary processes has been increasingly seen across a wide variety of research
areas. In modeling spatial–temporal data, Wikle and Hooten (2010) proposed
quadratic nonlinear dynamic models to accommodate the interactions between the
processes which are useful for characterizing dynamic processes in geophysics
[Kondrashov et al. (2005)]. Zheng, Chen and Blasch (2007) considered non-
Gaussian clutter and noise processes in space–time adaptive processing, where the
space–time covariance matrix is important for detecting airborne moving targets
in the nonstationary clutter environment [Guerci (1999), Ward (1994)]. In finance,
Jacquier, Polson and Rossi (2004) considered multivariate stochastic volatility
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models parametrized by time-varying covariance matrices with heavy tails and cor-
related errors. Talih (2003) investigated the Markowitz portfolio selection problem
for optimal returns of a large number of stocks with hidden and heterogeneous
Gaussian graphical model structures. In essence, those real-world problems pose a
number of challenges: (i) nonlinear dynamics of data generating systems, (ii) tem-
porally dependent and nonstationary observations, (iii) high-dimensionality of the
parameter space and (iv) non-Gaussian distributions. Therefore, the combination
of more flexible nonlinear and nonstationary components in the models and reg-
ularized covariance matrix estimation are essential to perform related statistical
inference.

In contrast to the longstanding progresses and extensive research that have been
made in terms of heuristics and methodology, theoretical work on estimation of co-
variance matrices based on high-dimensional time series data is largely untouched.
In this paper we shall substantially relax the i.i.d. assumption by establishing an
asymptotic theory that can have a wide range of applicability. We shall deal with
the estimation of covariance and precision matrices for high-dimensional station-
ary processes in Sections 2 and 3, respectively. Section 2 provides a rate of conver-
gence for the thresholded estimator, and Section 3 concerns the graphical Lasso
estimator for precision matrices. For locally stationary processes, an important
class of nonstationary processes, we shall study in Section 4 the estimation of
time-varying covariance and precision matrices. This generalization allows us to
consider time-varying covariance and precision matrix estimation under temporal
dependence; hence our results significantly extend previous ones by Zhou, Lafferty
and Wasserman (2010) and Kolar and Xing (2011). Furthermore, by assuming a
mild moment condition on the underlying processes, we can relax the multivariate
Gaussian assumption that was imposed in Zhou, Lafferty and Wasserman (2010)
and Kolar and Xing (2011) [and also by Bickel and Levina (2008a, 2008b) in the
i.i.d. setting]. Specifically, we shall show that, thresholding on the kernel smoothed
sample covariance matrices, estimators based on the localized graphical Lasso pro-
cedure are consistent estimators for time-varying covariance and precision matri-
ces.

To deal with temporal dependence, we shall use the functional dependence mea-
sure of Wu (2005). With the latter, we are able to obtain explicit rates of conver-
gence for the thresholded covariance matrix estimates and illustrate how the depen-
dence affects the rates. In particular, we show that, based on the moment condition
of the underlying process, there exists a threshold value. If the dependence of the
process does not exceed that threshold, then the rates of convergence will be the
same as those obtained under independence. On the other hand, if the dependence
is stronger, then the rates of convergence will depend on the dependence. This
phase transition phenomenon is of independent interest.

We now introduce some notation. We shall use C,C1,C2, . . . to denote positive
constants whose values may differ from place to place. Those constants are inde-
pendent of the sample size n and the dimension p. For some quantities a and b,
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which may depend on n and p, we write a � b if a ≤ Cb holds for some constant
C that is independent of n and p and a � b if there exists a constant 0 < C < ∞
such that C ≤ lim infb/a ≤ lim supb/a ≤ C−1. We use x ∧ y = min(x, y) and
x ∨ y = max(x, y). For a vector x ∈ R

p , we write |x| = (
∑p

j=1 x2
j )1/2 and for

a matrix �, |�|1 = ∑
j,k |σjk|, |�|∞ = maxj,k |σjk|, |�|F = (

∑
j,k σ 2

jk)
1/2 and

ρ(�) = max{|�x| : |x| = 1}. For a random vector z ∈ R
p , write z ∈ La , a > 0, if

‖z‖a =: [E(|z|a)]1/a < ∞.

2. Covariance matrix estimation for high-dimensional stationary pro-
cesses. In this section we shall assume that (zi ) is a p-dimensional stationary
process of the form

zi = g(Fi ),(2)

where g(Fi ) = (g1(Fi ), . . . , gp(Fi ))
� is an R

p-valued measurable function, Fi =
(. . . , ei−1, ei) is a shift process and ei are i.i.d. random vectors. Following
Wu (2005), we can view Fi and zi as the input and the output of a physical sys-
tem, respectively, and g(·) is the transform representing the underlying physical
mechanism. The framework (2) is quite general. Some examples are presented in
Wu (2011). It can also be conveniently extended to locally stationary processes;
see Section 4.

Write zi = (Z1i , . . . ,Zpi)
� and Zp×n = (zi )

n
i=1, the data matrix observed at

time points i = 1, . . . , n. Here we shall consider estimation of the p×p covariance
matrix � = cov(zi ) based on the realization z1, . . . , zn, while Section 3 concerns
estimation of its inverse. We consider Frobenius and spectral norm convergence of
the thresholded estimator

Tu(�̂n) = (
σ̂jkI

(|σ̂jk| ≥ u
))

1≤j,k≤p,(3)

where �̂n = (σ̂jk) is the sample covariance matrix defined in (1); see Bickel and
Levina (2008a). It was shown in the latter paper that, with a properly chosen u,
Tu(�̂n) is a consistent estimator when �0 ∈ Gr (M̃) [see (45)] and (zi ) are i.i.d.
sub-Gaussian. Our rates of convergence depend on the dependence of the process
and the moment conditions, which can be quite mild. Our main theoretical result is
given in Section 2.1. To obtain a consistent estimate for �, we need to impose reg-
ularization conditions. In particular, we shall assume that � is weakly dependent
in that most of its entries are small, by providing a bound on the tail empirical pro-
cess of covariances. Some examples are provided in Section 2.3 with applications
to spatial–temporal processes.

2.1. Asymptotic results. To establish a convergence theory for covariance ma-
trix estimates, we shall use the functional dependence measure of Wu (2005). Re-
call that Zji = gj (Fi), 1 ≤ j ≤ p, where gj (·) is the j th coordinate projection
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of the R
p-valued measurable function g. For w > 0, the functional dependence

measure of Zji is defined by

θi,w,j = ∥∥Zji − Z′
ji

∥∥
w = (

E
∣∣Zji − Z′

ji

∣∣w)1/w
,(4)

where Z′
ji = gj (F ′

i ), F ′
i = (. . . , e−1, e′

0, e1, . . . , ei) and e′
0 is such that e′

0, el , l ∈
Z, are i.i.d. In other words, Z′

ji is a coupled version of Zji with e0 in the latter
replaced by an i.i.d. copy e′

0. In Wu (2011) functional dependence measures were
computed for some commonly used linear and nonlinear stationary processes. We
shall assume that the short-range dependence (SRD) condition holds,

�m,w = max
1≤j≤p

∞∑
l=m

θl,w,j < ∞.(5)

If (5) fails, the process (Zji)i∈Z may exhibit long-range dependence, and the
asymptotic behavior can be quite different. A nonlinear process satisfying (5) is
given in Example 2.1, while Example 2.2 concerns linear processes. Theorems 2.1
and 2.3 provide rates of convergence under the normalized Frobenius norm and the
spectral norm for the thresholded estimate Tu(�̂n), respectively. The constants C

therein are independent of n, u and p.

THEOREM 2.1. Assume that there exist q > 2, α > 0, μ < ∞ and a positive
constant C0 < ∞ such that maxj≤p ‖Zji‖2q ≤ μ and �m,2q ≤ C0m

−α for all
m ≥ 1. Let α̃ = α ∧ (1/2 − 1/q) and β̃ = (3 + 2α̃q)/(1 + q). Define

H(u) =
⎧⎪⎨
⎪⎩

u2−qn1−q, if α > 1/2 − 1/q;
u2−qn1−q(logn)1+q, if α = 1/2 − 1/q;
u2−qn−q(α+1/2), if α < 1/2 − 1/q,

(6)

G(u) =

⎧⎪⎪⎨
⎪⎪⎩

(
n−1 + u2)

e−nu2
, if α > 1/2 − 1/q;(

n−1(logn)2 + u2)
e−n(logn)−2u2

, if α = 1/2 − 1/q;(
n−β̃ + u2)

e−nβ̃u2
, if α < 1/2 − 1/q

(7)

and

D(u) = 1

p2

p∑
j,k=1

(
u2 ∧ σ 2

jk

)
.(8)

Then there exists a constant C, independent of u, n and p, such that

E|Tu(�̂n) − �|2F
p2 �D(u) + min

(
1

n
,
u2−q

nq/2 ,H(u) + G(Cu)

)
.(9)

REMARK 1. If α > 1/2 − 1/q , elementary calculations indicate that H(u) +
G(Cu) � u2−qn−q/2. Hence the right-hand side of (9) is � D(u) + min(n−1,

H(u) + G(Cu)). The term u2−qn−q/2 is needed if α ≤ 1/2 − 1/q .
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By Theorem 2.1, if u = O(n−1/2), then p−2
E|Tu(�̂n)−�|2F = O(n−1). Better

convergence rates can be achieved if D(n−1/2) = o(n−1) by choosing a larger
threshold; see cases (i)–(iii) in Corollary 2.2 below.

COROLLARY 2.2. Assume that the conditions of Theorem 2.1 hold. Let ϒ =
infu>0 p−2

E|Tu(�̂n) − �|2F ; let G̃(u) = min(G(u),u2−qn−q/2) if α ≤ 1/2 − 1/q

and G̃(u) = G(u) if α > 1/2 − 1/q .
Let u� ≥ n−1/2 be the unique solution to the equation H(u) = G(u). (i) If D̄ =:

p−2 ∑p
j,k=1 σ 2

jk = O(H(1)), then there is a fixed constant c > 0 such that ϒ �
H(u) � H(1) for all u ∈ [c,μ]. (ii) If H(1) = o(D̄) and D(u�) ≤ H(u�), let u†
solve D(u†) = H(u†), then ϒ � D(u†). (iii) If H(1) = o(D̄), D(u�) > H(u�)
and D(n−1/2) = o(n−1), let u◦ be the solution to the equation D(u) = G̃(u) over
the interval u ∈ [n−1/2, u�], then ϒ �D(u◦). (iv) If n−1 = O(D(n−1/2)), then the
right-hand side of (9) is � n−1 for all u ≤ n−1/2 and ϒ � n−1.

Theorem 2.1 and Corollary 2.2 describe how the Frobenius rate of convergence
depends on the sample size n, the dimension p, the smallness measure quanti-
fied by the function D(u) and the heaviness of tails (moment conditions) and
strength of dependence which are characterized by q and α, respectively. It sug-
gests the interesting dichotomy phenomenon: under the weaker dependence con-
dition α > 1/2 − 1/q , the thresholded estimate Tu(�̂n) has the same convergence
rates as those obtained under independence. However, the convergence becomes
slower under stronger temporal dependence with α < 1/2 − 1/q . The phase tran-
sition occurring at α = 1/2 − 1/q . The theorem also provides information about
the optimal threshold u, as revealed in its proof. The optimal threshold balances
the bias or the smallness function D(u), the tail function H(u) and the variance
component which roughly corresponds to the Gaussian-type function G(u). Under
different conditions, the optimal threshold assumes different forms; see Corollar-
ies 2.4 and 2.5.

PROOF OF THEOREM 2.1. We first assume α > 1/2 − 1/q . Note that

E
∣∣Tu(�̂n) − �

∣∣2
F =

p∑
j,k=1

E
[
σ̂jkI

(|σ̂jk| ≥ u
) − σjk

]2

(10)

≤ 2
p∑

j,k=1

E
(
W 2

jk

) + 2B(u/2),

where Wjk = σ̂jkI(|σ̂jk| ≥ u) − σjkI(|σjk| ≥ u/2) and

B(u) =
p∑

j,k=1

σ 2
jkI

(|σjk| < u
)
.(11)
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Let events A1
jk = {|σ̂jk| ≥ u, |σjk| ≥ u/2}, A2

jk = {|σ̂jk| < u, |σjk| ≥ u/2} and

A3
jk = {|σ̂jk| ≥ u, |σjk| < u/2}, 1 ≤ j, k ≤ p. Observe that

Wjk = WjkI
(
A1

jk

) + WjkI
(
A2

jk

) + WjkI
(
A3

jk

)
.

We shall consider these three terms separately. Write ξjk = σ̂jk − σjk .
Case I: on the event A1

jk , since the functional dependence measure for the prod-
uct process ZjiZki , i ∈ Z, satisfies∥∥ZjiZki − Z′

jiZ
′
ki

∥∥
q ≤ ∥∥ZjiZki − Z′

jiZki

∥∥
q + ∥∥Z′

jiZki − Z′
jiZ

′
ki

∥∥
q

(12)
≤ μ(θi,2q,j + θi,2q,k),

it follows from the moment inequality Theorem 2.1 in Wu (2007) that

‖ξjk‖q ≤ cqn−1/2μ�0,2q,(13)

where cq is a constant only depending on q . Let C1 = c2
qμ2�2

0,2q . Then

E
{
W 2

jkI
(
A1

jk

)} ≤ Eξ2
jkI

(|σjk| ≥ u/2
) ≤ C1

I(|σjk| ≥ u/2)

n
.(14)

Case II: on the event A2
jk , we observe that

E
{
W 2

jkI
(
A2

jk

)} = E
[
σ 2

jkI
(|σjk| ≥ u/2, |σ̂jk| < u

)]
≤ 2E

[
ξ2
jkI

(|σjk| ≥ u/2, |σ̂jk| < u
)]

(15)
+ 2E

[
σ̂ 2

jkI
(|σjk| ≥ u/2, |σ̂jk| < u

)]
≤ 2

(
C1n

−1 + u2)
I
(|σjk| ≥ u/2

)
.

Case III: on the event A3
jk , let

�jk = E
[
ξ2
jkI

(|σ̂jk| ≥ u, |σjk| < u/2
)]

= E
[
ξ2
jkI

(|σ̂jk| ≥ u, |σjk| < u/2, |ξjk| > u/2
)]

(16)

≤ E
[
ξ2
jkI

(|ξjk| > u/2
)]

.

Then

E
{
W 2

jkI
(
A3

jk

)} = E
[
σ̂ 2

jkI
(|σ̂jk| ≥ u, |σjk| < u/2

)]
(17)

≤ 2�jk + 2σ 2
jkI

(|σjk| < u/2
)
.

Since the functional dependence measure for the product process (ZjiZki)i satis-
fies (12), under the decay condition �m,2q ≤ Cm−α , α > 1/2 − 1/q , we have by
Theorem 2(ii) in Liu, Xiao and Wu (2013) that

P
(|ξjk| > v

) ≤ C2n

(nv)q
+ C3e

−C4nv2
(18)
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holds for all v > 0. Using integration by parts, we obtain

E
[
ξ2
jkI

(|ξjk| > v
)] = v2

P
(|ξjk| > v

) +
∫ ∞
v2

P
(|ξjk| > √

w
)
dw

≤ v2
[

C2n

(nv)q
+ C3e

−C4nv2
]

(19)

+
∫ ∞
v2

[
C2n

(n
√

w)q
+ C3e

−C4nw

]
dw

= C5n
1−qv2−q + C3

(
(C4n)−1 + v2)

e−C4nv2
,

where C5 = C2q/(q − 2). By (13), we also have

E
[
ξ2
jkI

(|ξjk| > v
)] ≤ min

(
‖ξjk‖2

2,
‖ξjk‖q

q

vq−2

)
� min

(
1

n
,
v2−q

nq/2

)
.(20)

Combining cases I, II and III, by (11) and (14)–(20), we have

E|Tu(�̂n) − �|2F
p2 � B(u/2)

p2 + 1 + nu2

np2

p∑
j,k=1

I
(|σjk| ≥ u/2

)
(21)

+ min
(

1

n
,
u2−q

nq/2 ,H(u) + G(Cu)

)
=: M0(u),

where C = C
1/2
4 /2, and the constant of � is independent of p, u and n. If

u ≥ n−1/2, then (9) clearly follows from the inequality p−2 ∑
j,k I(|σjk| ≥ v) ≤

v−2D(v). If u < n−1/2, we also have (9) since in this case M0(u) � n−1 and the
right-hand side of (9) has the same order of magnitude n−1.

The other cases with 0 < α < 1/2 − 1/q and α = 1/2 − 1/q can be similarly
handled. The key difference is that, instead of (18), we shall now use the following
versions of Nagaev inequalities which can allow stronger dependence:

P
(|ξjk| > v

) ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C2n
q(1/2−α)

(nv)q
+ C3e

−C4n
β̃v2

, if α < 1/2 − 1/q;
C2n(logn)1+q

(nv)q
+ C3e

−C4n(logn)−2v2
, if α = 1/2 − 1/q.

See also Liu, Xiao and Wu (2013). �

PROOF OF COROLLARY 2.2. Let M1(u) be the term on the right-hand side
of (9). We now minimize M1(u) over u > 0. Let

M2(v) = D(v) + min
(

1

n
,
v2−q

nq/2 ,max
(
H(v),G(v)

))
.
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Then infu>0 M1(u) � infv>0 M2(v). Clearly, infv≤n−1/2 M2(v) � n−1. Let v ≥
n−1/2. If α > 1/2 − 1/q , then for some constant cq , we have v2−qn−q/2 ≥
cqv

2e−nv2 ≥ cqG(v)/2. Also we have v2−qn−q/2 ≥ H(v). Hence

inf
v≥n−1/2

M2(v) � inf
v≥n−1/2

max
[
D(v),H(v),G(v)

]
.(22)

Note that the equation H(u) = G(u) has a unique solution u� on (n−1/2,∞), and
the function max[H(u),G(u)] is decreasing over u ≥ n−1/2. A plot of the function
in (22) is given in Figure 2(a). Let u be the minimizer of the right-hand side
of (22). For (i), assume D̄ ≤ C0n

1−q for some C0 > 0. Then u satisfies D(u) =
H(u), which implies u ≥ C

1/(2−q)
0 , and hence (i) follows. Note that (ii) follows in

view of u† = u ≥ u� and u† → 0. Similarly we have (iii) since u = u◦. The last
case (iv) is straightforward since M2(u) � n−1 for all u ≤ n−1/2.

If 0 < α ≤ 1/2 − 1/q , assume v ≥ n−1/2, and then (22) still holds with G(v)

therein replaced by G̃(v). A plot for this case is given in Figure 2(b). Note that
G̃(v) = G(v) if v ≥ u�. Then we can similarly have (i)–(iv). �

REMARK 2. From the proof of Corollary 2.2, if 0 < α ≤ 1/2 − 1/q , in
case (iii), we can actually have the following dichotomy: let u� be the solu-
tion to the equation G(u) = u2−qn−q/2. Then the minimizer u ∈ [n−1/2, u�]
if D(u�) ≥ G̃(u�) and u ∈ [u�, u�] if D(u�) ≤ G̃(u�). For α > 1/2 − 1/q ,
(22) indicates that v2−qn−q/2 is not needed; see also Remark 1.

Using the argument for Theorem 2.1, we can similarly establish a spectral norm
convergence rate. Bickel and Levina (2008a) considered the special setting with
i.i.d. vectors. Our Theorem 2.3 is a significant improvement by relaxing the in-
dependence assumption, by obtaining a sharper rate and by presenting a moment
bound. As in Theorem 2.1, we also have the phase transition at α = 1/2 − 1/q .
Note that Bickel and Levina (2008a) only provides a probabilistic bound.

THEOREM 2.3. Let the moment and the dependence conditions in Theo-
rem 2.1 be satisfied. Let Lα = n1/q−1, n1/q−1(logn)1+1/q, n−α−1/2 and Jα =
n−1/2, n−1/2 logn,n−β̃/2, for α > 1/2 − 1/q,α = 1/2 − 1/q , and α < 1/2 − 1/q ,
respectively. Define

D∗(u) = max
1≤k≤p

p∑
j=1

(|σjk| ∧ u
)
, N∗(u) = max

1≤k≤p

p∑
j=1

I
(|σjk| ≥ u

)
,(23)

and M∗(u) = Lαp1/qN
1+1/q∗ (u) + Jα(logp)1/2N∗(u). Then there exists a con-

stant C, independent of u, n and p, such that∥∥ρ(
Tu(�̂n) − �

)∥∥
2 � D∗(u) + M∗(u/2)

(24)

+ p min
(

1√
n
,
u1−q/2

nq/4 ,
(
H(u) + G(Cu)

)1/2
)
,
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where H(·) and G(·) are given in (6) and (7), respectively.

PROOF. We shall only deal with the weaker dependent case with α > 1/2 −
1/q . The other cases similarly follow. Recall the proof of Theorem 2.1 for Wjk ,
ξjk and Al

jk, l = 1,2,3. Let matrices Vl = (WjkI(A
l
jk))j,k≤p . Similar to (11), let

B∗(u) = max1≤k≤p

∑p
j=1 |σjk|I(|σjk| < u). Then

∣∣ρ(
Tu(�̂n) − �

)∣∣ ≤ B∗(u/2) +
3∑

l=1

∣∣ρ(Vl)
∣∣.(25)

Let Nk(u) = {j : |σjk| ≥ u/2} and zu = C1M∗(u/2), where C1 > 0 is a large con-
stant. Since ρ(V1) ≤ maxk≤p

∑
j∈Nk(u) |σ̂jk − σjk| =: Q, by (18),

‖ρ(V1)‖2
2

2
≤

∫ ∞
0

zP(Q ≥ z) dz

� z2
u

2
+

∫ ∞
zu

zpSu

[
n

(nz/Su)q
+ e−C4nz2S−2

u

]
dz(26)

� M2∗(u/2),

where Su = N∗(u/2). Similar to (15), since σjk ≤ |σ̂jk − σjk| + u on A2
jk ,∣∣ρ(V2)

∣∣ ≤ Q + uSu ≤ Q + 2D∗(u).(27)

Using the idea of (17), we have

ρ2(V3) ≤ ∑
j,k

∣∣WjkI
(
A3

jk

)∣∣2
(28)

≤ 2
∑
j,k

ξ2
jkI

(|ξjk| > u/2
) + 2B2∗(u/2).

By (16)–(20) and (25)–(28), we have (24) since B∗(u/2) ≤ B∗(u) ≤ D∗(u). �

The bounds in Theorems 2.1 and 2.3 depend on the smallness measures, the
moment order q , the dependence parameter α, the dimension p and the sample
size n. The problem of selecting optimal thresholds is highly nontrivial. Our nu-
meric experiments show that the cross-validation based method has a reasonably
good performance. However, we are unable to provide a theoretical justification of
the latter method, and pose it as an open problem.

EXAMPLE 2.1 (Stationary Markov chains). We consider the nonlinear pro-
cess (zi ) defined by the iterated random function

zi = g(zi−1, ei),(29)
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where ei’s are i.i.d. innovations, and g(·, ·) is an R
p-valued and jointly measurable

function, which satisfies the following two conditions: (i) there exists some x0 such
that ‖g(x0, e0)‖2q < ∞ and (ii)

L = sup
x�=x′

‖g(x, e0) − g(x′, e0)‖2q

|x − x′| < 1.(30)

Then, it can be shown that zi defined in (29) has a stationary ergodic distribution
z0 ∈ L2q and, in addition, (zi ) has the geometric moment contraction (GMC) prop-
erty; see Wu and Shao (2004) for details. Therefore, we have �m,2q = O(Lm) and
Theorems 2.1 and 2.3 with α > 1/2 − 1/q and β̃ = 1 can be applied.

EXAMPLE 2.2 (Stationary linear processes). An important special class of (2)
is the vector linear process

zi =
∞∑

m=0

Amei−m,(31)

where Am,m ≥ 0, are p × p matrices, and ei are i.i.d. mean zero random vec-
tors with finite covariance matrix �e = E(eie�

i ). Then zi exists almost surely with
covariance matrix � = ∑∞

m=0 Am�eA
�
m if the latter converges. Assume that the

innovation vector ei = (e1i , . . . , epi)
�, where eji are i.i.d. with mean zero, vari-

ance 1 and eji ∈ L2q , q > 2, and the coefficient matrices Ai = (ai,jk)1≤j,k≤p

satisfy maxj≤p

∑p
k=1 a2

i,jk = O(i−2−2γ ), γ > 0. By Rosenthal’s inequality, the

functional dependence measure θ2
i,2q,j ≤ cq

∑p
k=1 a2

i,jk = O(i−2−2γ ), and hence
by (5) �m,2q = O(m−γ ). By Theorem 2.1, the normalized Frobenius norm of
the thresholded estimator has a convergence rate established in (9) with α = γ ,
α̃ = γ ∧ (1/2−1/q) and β̃ . Note that our moment condition relaxes the commonly
assumed sub-Gaussian condition in previous literature [Lam and Fan (2009),
Rothman et al. (2008), Zhou, Lafferty and Wasserman (2010)]. For the vector
AR(1) process zi = Azi−1 + ei , where A is a real matrix with spectral norm
ρ(A) < 1, it is of form (31) with Am = Am, and the functional dependence mea-
sure θi,2q,j = O(ρ(A)i). The rates of convergence established in (9) hold with
α > 1/2 − 1/q and β̃ = 1.

2.2. Positive-definitization. The thresholded estimate Tu(�̂n) may not be pos-
itive definite. Here we shall propose a simple modification that is positive definite
and has the same rate of convergence. Let Tu(�̂n) = Q�̂Q� = ∑p

j=1 λ̂j qj q�
j be

its eigen-decomposition, where Q is an orthonormal matrix and �̂ is a diagonal
matrix. For v > 0, consider

S̃v =
p∑

j=1

(λ̂j ∨ v)qj q�
j ,(32)
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where 0 < v ≤ √
p� and � 2 is the rate of convergence in (9). Let μ1, . . . ,μp be

the diagonal elements of Q��Q. Then we have by Theorem 2.1 that
∑p

j=1(λ̂j −
μj)

2 ≤ p2� 2, and consequently

|S̃v − �|2F ≤ 2
∣∣S̃v − Tu(�̂n)

∣∣2
F + 2

∣∣Tu(�̂n) − �
∣∣2
F

≤ 2
p∑

j=1

(
λ̂j − (λ̂j ∨ v)

)2 + 2� 2p2

≤ 2
p∑

j=1

(
2λ̂2

j 1
λ̂j≤0 + 2v2) + 2� 2p2.

If λ̂j ≤ 0, since μi ≥ 0, we have |λ̂j | ≤ |λ̂j − μi |. Then |S̃v − �|2F ≤ 4v2p +
6� 2p2 ≤ 10� 2p2. Note that the eigenvalues of S̃v are bounded below by v, and
thus it is positive definite. In practice we suggest using v = (p−1 ∑p

j,k=1 u2 ×
I(|σ̂jk| ≥ u))1/2. The same positive-definization procedure also applies to the spec-
tral norm and its rate can be similarly preserved.

2.3. Classes of covariance matrices. In this section we shall compute the
smallness measure D(u) for certain class of covariance matrices, so that Theo-
rem 2.1 is applicable. We consider some widely used spatial processes. Let the
vectors zi = (Z1i , . . . ,Zpi)

�, 1 ≤ i ≤ n, be observed at sites s◦
1 , . . . , s◦

p ∈ R
2. As-

sume that the covariance function between Zji and Zki satisfies

σjk = cov(Zji,Zki) = f
(
d
(
s◦
j , s◦

k

))
,(33)

where d(s◦
j , s◦

k ) is a distance between sites s◦
j and s◦

k , and f is a real-valued func-
tion with f (0) = 1 and f (∞) = 0. For example, we can choose d(s, s ′) = |s − s′|
as the Euclidean distance between sites s and s′. Assume that, as m → ∞,

f (m) = O
(
m−K)

,(34)

where the index K > 0 characterizes the spatial dependence, or

f (m) ≤ exp
(−C(m/τ)θ

)
, 0 < θ ≤ 2,(35)

where τ is the characteristic length-scale, and

1

p

p∑
j,k=1

I
(
d
(
s◦
j , s◦

k

) ≤ m
) = O

(
mχ )

.(36)

Condition (36) outlines the geometry of the sites (s◦
j )

p
j=1, and χ can be roughly

interpreted as the correlation dimension. It holds with χ = 2 if s◦
j are Z

2 points in
a disk or a square, and χ = 1 if s◦

j = (j,0), j = 1, . . . , p. The rational quadratic
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covariance function [Rasmussen and Williams (2006)] is an example of (34), and
it is widely used in spatial statistics,

f (m) =
(

1 + m2

Kτ 2

)−K/2

,(37)

where K is the smoothness parameter and τ > 0 is the length scale parameter.
We now provide a bound for D(u). By (34) and (36), as u ↓ 0, the covariance tail
empirical process function

F(u) =: 1

p2

p∑
j,k=1

I
(|σjk| ≥ u

) ≤ p−1 min
(
p,Cu−χ/K)

(38)

for some constant C > 0 independent of n, u and p. If K > χ/2, then

D(u) = u2F(u) + 1

p2

∞∑
l=0

p∑
j,k=1

σ 2
jkI

(
u2−l−1 ≤ |σjk| < u2−l)

≤ u2F(u) +
∞∑
l=0

(
2−lu

)2
F

(
2−l−1u

)
(39)

≤ u2p−1 min
(
p,Cu−χ/K) = u2 min

(
1,Cp−1u−χ/K)

.

In the strong spatial dependence case with K < χ/2, we have

D(u) ≤ min
(
Cp−K,u2)

.(40)

To this end, it suffices to prove this relation with u2 > p−K . Let u0 = p−K/χ . Then

D̄ ≤
∞∑
l=0

(
21+lu0

)2
F

(
2lu0

)

≤
∞∑
l=0

(
21+lu0

)2
Cp−1(

21+lu0
)−χ/K ≤ Cp−2K/χ .

Class (35) allows the γ -exponential covariance function with f (m) =
exp(−(m/τ)γ ), and some Matérn covariance functions [Stein (1999)] that are
widely used in spatial statistics. With (36), following the argument in (39), we can
similarly have

D(u) ≤ min
(
u2,Cp−1τχu2(

log
(
2 + u−1))χ/θ )

.(41)

Corollary 2.4 of Theorem 2.1 concerns covariance matrices satisfying (38).
Slightly more generally, we introduce a decay condition on the tail empirical
process of covariances. Note that (38) is a special case of (42) with M = Cp

and r = χ/K . For (37) with possibly large length scale parameter τ , we can let
M = Cτ 2p. Similarly, Corollary 2.5 can be applied to f satisfying (35) and the
class Lr (M) defined in (43), with M = pτχ and r = χ/θ .
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DEFINITION 2.1. For M > 0, let Hr (M), 0 ≤ r < 2, be the collection of p×p

covariance matrices � = (σjk) such that supj≤p σjj ≤ 1 and, for all 0 < u ≤ 1,

p∑
j,k=1

I
(|σjk| ≥ u

) ≤ Mu−r ,(42)

and Lr (M), r > 0, be the collection of � = (σjk) with supj≤p σjj ≤ 1 and

p∑
j,k=1

I
(|σjk| ≥ u

) ≤ M logr(2 + u−1)
.(43)

COROLLARY 2.4. Assume (42). Let conditions in Theorem 2.1 be satisfied
and α > 1/2 − 1/q . Let ϒ = p−2 sup�∈Hr (M) infu>0 E|Tu(�̂n) − �|2F . (i) If
nq−1 = O(p2/M), then for u � 1, ϒ = O(H(u)) = O(n1−q). (ii) If p2/M =
o(nq−1) and n(r+q)/2−1(logn)(q−r)/2 ≤ p2/M , let u′

† = (n1−qp2/M)1/(q−r), then

ϒ = O(u′
†

2−q
n1−q). (iii) If p2/M = o(nq−1) and

n1−q/2

(logn)(q−r)/2 ≤ M

p2 nr/2 ≤ 1,(44)

then the equation u2−rM/p2 = u2e−nu2
has solution u′◦ � [n−1 log(2 +

p2M−1n−r/2)]1/2 and ϒ = O(u′◦
2−r

M/p2). (iv) If nr/2 ≥ p2/M , then the right-
hand side of (9) is � n−1 for u = O(n−1/2) and ϒ = O(n−1).

In particular, if p2/M � nφ , φ > 0, then we have (i), (ii), (iii) or (iv) if φ >

q − 1, q − 1 > φ > (q + r − 2)/2, (q + r − 2)/2 > φ > r/2 or r/2 > φ holds,
respectively.

PROOF. Similar to (39), we have D(u) ≤ min(u2,Cu2−rM/p2). Note that
the solution u� ≥ n−1/2 to the equation H(u) = G(u) satisfies u� ∼ ((q/2 −
1)n−1 logn)1/2. Then by Corollary 2.2, (i)–(iv) follow from elementary but tedious
manipulations. Details are omitted. �

By taking into consideration of M in the tail empirical process condition (42),
we can view p2/M as the effective dimension. Corollary 2.4 describes the choice
of the optimal threshold u at different regions of the effective dimension p2/M and
the sample size n. Case (i) [resp., (iv)] corresponds to the overly large (resp., small)
dimension case. The most interesting cases are (ii) and (iii). For the former, the tail
function H(·) determines the rate of convergence with a larger threshold u†, while
for the latter with moderately large dimension the Gaussian-type function G(·)
leads to the optimal threshold u◦ < u†.

COROLLARY 2.5. Assume (43). Let conditions in Theorem 2.1 be satis-
fied with α > 1/2 − 1/q and ϒ = p−2 sup�∈Lr (M) infu>0 E|Tu(�̂n) − �|2F .
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(i) If nq−1 = O(p2/M), then for u � 1, ϒ = O(H(u)) = O(n1−q). (ii) If
p2/M = o(nq−1) and nq/2−1(logn)r+q/2 ≤ p2/M , let ε† = n1−qp2/M and u′

† =
ε

1/q
† (log(2 + ε−1

† ))−r/q . Then ϒ = O(u′
†

2−q
n1−q). (iii) If nq/2−1(logn)r+q/2 >

p2/M ≥ (logn)r , let η = (logn)−rp2/M . If η ≥ 2−r let u′◦ = (n−1 logη)1/2. Then
ϒ = O(n−1η−1 logη). (iv) If η in (iii) is less than 2−r , then the right-hand side
of (9) is � n−1 for u = O(n−1/2) and ϒ = O(n−1).

PROOF. We have D(u) = u2 min(1,p−2M logr (2 +u−1)). We shall again ap-
ply Corollary 2.2. Case (i) is straightforward. For (ii), we note that the equation
uq logr (2 + u−1) = ε has solution u† � ε

1/q
† (log(2 + ε−1

† ))−r/q . Under (iii), the
equation u2p−2M logr (2 + u−1) = G(u) has solution � u′◦. �

Corollaries 2.4 and 2.5 deal with the weaker dependence case with α > 1/2 −
1/q . By Corollary 2.2, similar versions can be obtained for α ≤ 1/2−1/q . Details
are omitted.

As a numeric example, we use the rational quadratic covariances (37) to illus-
trate the rates of convergence given in Theorem 2.1 and Corollary 2.2. We choose
n = 100, p = 200, K = 4, the moment q = 4 and consider the weaker (α > 1/4)
and stronger (α = 1/8) temporal dependence cases. We first generate p random
sites uniformly distributed on the p1/2 ×p1/2 square; see Figure 1(a). Figure 1(b),
1(c) and 1(d) show three 200 × 200 rational quadratic covariance matrices (37)
respectively with length scale parameters τ = p1/3,p1/6 and p1/9, which corre-
spond to different levels of spatial dependence. Next, we calculate the terms in
Corollary 2.2 for the thresholded estimator. The results are shown in Figure 2.
In the plots, u� is the solution of G(u) = H(u). Note that, u, the minimizer of
max[D(u),H(u),G(u)] over u ≥ n−1/2, can be either u† or u◦. We observe that
when the spatial dependence decreases, that is, the covariance matrix � has more
small entries [e.g., Figure 1(d)], a larger threshold is needed to yield the opti-
mal rate of convergence. When the temporal dependence increases (i.e., α = 1/8),
a larger threshold is needed and the rate of convergence is slower than the one in
the weaker dependence case (i.e., α > 1/4).

2.4. Comparison with earlier results. We now compare (42) with the com-
monly used sparsity condition defined in terms of the strong �q -ball [Bickel and
Levina (2008a), Cai, Liu and Luo (2011), Cai and Zhou (2012)]

Gr (M̃) =
{
�

∣∣∣ max
j≤p

σjj ≤ 1; max
1≤k≤p

p∑
j=1

|σjk|r ≤ M̃

}
, 0 ≤ r < 1.(45)

When r = 0, (45) becomes max1≤k≤p

∑p
j=1 I(σjk �= 0) ≤ M̃ , a sparsity condition

in the rigid sense. We observe that condition (42) defines a broader class of sparse
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(a) p sites s◦
1 , . . . , s◦

p uniformly sampled from the square p1/2 × p1/2

(b) �: τ = p1/3 (c) �: τ = p1/6

(d) �: τ = p1/9

FIG. 1. Rational quadratic covariance matrix � for the uniform random sites model on the
[0,p1/2]2 square with three different scale length parameters: τ = p1/3,p1/6 and p1/9.
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(a) Weaker temporal dependence with α > 1/4

(b) Stronger temporal dependence with α = 1/8

FIG. 2. Rates of convergence for the thresholded estimator in the weaker (α > 1/4) and stronger
(α = 1/8) temporal dependence cases.

covariance matrices in the sense that Gr (M/p) ⊂ Hr (M), which follows from

∑
j,k

I
(|σjk| ≥ u

) ≤ p max
k

∑
j

|σjk|r
ur

≤ Mu−r .

Hence Corollary 2.4 generalizes the consistency result of Tu(�̂n) in Bickel and
Levina (2008a) to the non-Gaussian time series. Note that our convergence is in
L2 norm, while the error bounds in previous work [see, e.g., Bickel and Levina
(2008a, 2008b)] are of probabilistic nature; namely in the form |Tu(�̂n) − �|2F is
bounded with large probability under the strong �q -ball conditions.

The reverse inclusion Hr (M) ⊂ Gr (M/p) may be false since the class Gr speci-
fies the uniform size of sums in matrix columns, whereas (42) can be viewed as an
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overall smallness measure over all entries of the matrix. As an example, consider
the covariance matrix

�p×p =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 ε ε · · · ε

ε 1 0 · · · 0
ε 0 1 · · · 0
...

...
...

. . .
...

ε 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(46)

where 0 < ε ≤ (p − 1)−1/2 so that � is positive-definite. Then for any threshold
level u ∈ (ε,1),

∑p
j,k=1 I(|σjk| ≥ u) = p and for any u ∈ (0, ε], ∑p

j,k=1 I(|σjk| ≥
u) = 3p − 2. In both cases, we may choose M = O(p). On the other hand,
maxk

∑
j |σjk|r = 1 + (p − 1)εr . So � /∈ Gr (M/p) for any ε ≥ (p − 1)η/r−1/r

with η ∈ (0,1 − r/2).
With the strong �q -ball and sub-Gaussian conditions, Cai and Zhou (2012)

showed that the minimax rate under the Bregman divergence is O(n−1 +
M̃(logp/n)1−r/2). Observing that the upper bounds in Corollary 2.4 is estab-
lished under the larger parameter space Hr (M) ⊃ Gr (M̃) where M = pM̃ and
milder polynomial moments conditions, the lower bound of Cai and Zhou (2012)
automatically becomes a lower bound in our setup. Therefore, in the moderately
high-dimensional situation with weaker temporal dependence, we can conclude
that the Frobenius norm bound in Corollary 2.4(iii) is minimax rate optimal.

COROLLARY 2.6. Let α > 1/2 − 1/q . Under the conditions in Corol-
lary 2.4(iii) and in addition assume p2M−1n−r/2 ≥ pε for some ε > 0. Then

inf
�̂

sup
�∈Hr (M)

p−1
E|�̂ − �|2F � M

p

(
logp

n

)1−r/2
,(47)

where the inf is taken over all possible estimators based on the data Zp×n.

We next compare our Theorem 2.3 with the result in Section 2.3 of Bickel
and Levina (2008a), where the special class (45) is considered. Assuming
maxj ‖Zji‖2q ≤ μ, they obtained the probabilistic bound

ρ
(
TuBL(�̂n) − �

) = Op

(
M̃u1−r

BL
)

where uBL = Cp2/qn−1/2,(48)

and C > 0 is a sufficiently large constant. As a natural requirement for con-
sistency, we assume uBL → 0, namely p = o(nq/4). Since � ∈ Gr (M̃), we
have D∗(u) ≤ M̃u1−r =: D̄∗(u) and N∗(u) ≤ min(p, M̃u−r ) =: N̄∗(u). Con-
sider the weaker dependence case with α > 1/2 − 1/q . Note that in (24)
D∗(·) is nondecreasing, while all other three functions are nonincreasing. Let
u1, u2, u3 be the solutions to the equations N̄

1+1/q∗ (u)p1/qn1/q−1 = D̄∗(u),
N̄∗(u)(n−1 logp)1/2 = D̄∗(u), and H∗(u) = pu1−q/2n(1−q)/2 = D̄∗(u), respec-
tively; let u4 = max(u1, u2, u3, (n

−1 logp)1/2). For a sufficiently large constant
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C2 > 0, G∗(C2u4) = o(D∗(u4)) and hence the right-hand side of (24) is of or-
der D∗(u4) = O(M̃u1−r

4 ) if u = C2u4. Let u′
1 = (M̃pn1−q)1/(q+r) and u′′

1 =
(p1+2/qM̃−1n1/q−1)1/(1−r). Note that u1 = u′

1 if p ≥ M(u′
1)

−r and u1 = u′′
1 if

p ≤ M(u′
1)

−r . In both cases we have by elementary calculations that u1 = o(uBL).
Similarly, we have u2 = o(uBL) and u3 = o(uBL). Hence u4 = o(uBL) and our rate
of convergence D∗(u4) is sharper.

Based on Theorem 2.3 and the above discussion, we have:

COROLLARY 2.7. Let the conditions in Theorem 2.1 be satisfied and α >

1/2 − 1/q . Let � = sup
�∈Gr (M̃)

infu>0 ‖ρ(Tu(�̂n) − �)‖2. Assume M̃ � pθ , 0 ≤
θ ≤ 1 and p � nτ , τ > 0. Let φ′

1 = (τθ + τ + 1 − q)/(q + r), φ′′
1 = (τ (1 − θ +

2/q) − 1 + 1/q)/(1 − r), φ1 = min(φ′
1, φ

′′
1 ), φ3 = (2τ − 2τθ + 1 − q)/(q − 2r)

and φ = max(φ1, φ3). (i) If φ > −1/2, then � = O(nφ(1−r)+θτ ). (ii) If φ ≤ −1/2,
then � = O(nθτ (n−1 logp)(1−r)/2).

3. Precision matrix estimation for high-dimensional stationary processes.
As a straightforward estimate for precision matrices, one can invert the regularized
covariance matrix estimates. However, this inversion procedure may cause the pre-
cision matrix estimate to lose sparsity. Sparsity of the precision matrix � = �−1

has important statistical meaning because a zero entry in � = (ωjk)1≤j,k≤p reflects
the conditional independence when zi are multivariate Gaussian. In the graphi-
cal model representation, ωij = 0 indicates that there is a missing edge between
node i and node j . Performance bounds for estimating � under dependence is
useful for statistical learning problems. For direct estimation of precision matrices
that can preserve sparsity, one can adopt entry-wise 1-norm penalized likelihood
approaches; see Banerjee, El Ghaoui and d’Aspremont (2008), Fan, Feng and Wu
(2009), Friedman, Hastie and Tibshirani (2008), Ravikumar et al. (2011), Rothman
et al. (2008), which we refer them as Lasso-type precision matrix estimators.
Friedman, Hastie and Tibshirani (2008) proposed a graphical Lasso model and
developed a computationally efficient and scalable algorithm for estimating large
precision matrices. This 1-norm penalized multivariate Gaussian likelihood ap-
proach was also considered by Banerjee, El Ghaoui and d’Aspremont (2008). Con-
sistency of the graphical Lasso were studied in Ravikumar et al. (2011), Rothman
et al. (2008).

The precision matrix estimation procedure considered here is the graphical
Lasso model [Friedman, Hastie and Tibshirani (2008)] which minimizes the ob-
jective function

�̂n(λ) = arg min
��0

{
tr(��̂n) − log det(�) + λ|�|1}

,(49)

where λ is the penalty to be determined later. In (49) � � 0 means that � is
positive-definite. Here we assume the maximum eigenvalue

ρ(�) ≤ ε−1
0 for some ε0 > 0,(50)
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or equivalently the minimum eigenvalue of � is larger than ε0. Note that we do
not assume the minimum eigenvalue of � is uniformly bounded below from zero.
To introduce an asymptotic theory for the estimate �̂n, we recall (6) and (7) of
Theorem 2.1 for the definition of the functions H(·) and G(·) and also α̃ and β̃ .
An analogue of the function D(·) in this context is

D∗(u) = 1

p2

p∑
j,k=1

u
(
u ∧ |ωjk|).(51)

Recall Corollary 2.2 for G̃(·).
It is interesting and surprising to note that the structure of Theorem 3.1 is very

similar to that in Theorem 2.1. However, the main idea for the proof of Theo-
rem 3.1 seems quite different, and our key argument here is based on convex min-
imization. It is also interesting to note that our rate of convergence is expressed
in terms of the L2 norm; see (52), while in the previous literature probabilistic
bounds are obtained; see Lam and Fan (2009), Ravikumar et al. (2011), Rothman
et al. (2008). The constant C in Theorem 3.1 can be the same as the one in Theo-
rem 2.1.

THEOREM 3.1. Let the moment and the dependence conditions in Theo-
rem 2.1 be satisfied and λ = 4u. Then

1

p2E
∣∣�̂n(λ) − �

∣∣2
F �D∗(u) + min

(
1

n
,
u2−q

nq/2 ,H(u) + G(Cu)

)
,(52)

where C is independent of u,n and p. Let u� be the solution to the equation

D∗(u�) = min
(
n−1,max

(
G̃(u�),H(u�)

))
.(53)

Then infλ>0 p−2
E|�̂n(λ) − �|2F �D∗(u�).

REMARK 3. As an immediate consequence of Theorem 3.1, if the entries ωjk

of the inverse matrix � satisfy (42) with 0 ≤ r < 1, then we have by the argument
in (39) that D∗(u) ≤ Cu2−rM/p2. Similarly, if ωjk satisfy (43), then D∗(u) ≤
Cu2M logr (2+u−1). Therefore Corollaries 2.4 and 2.5 are still valid in the context
of precision matrix estimation.

PROOF OF THEOREM 3.1. Using � = � + �, we see that �̂n = �̂n(λ) − �

minimizes

G(�) = tr(��̂n) − log det(�) + λ|�|1 + log det(�) − λ|�|1.
Hence G(�̂n) ≤ G(0) = 0. Let �v = � + v�. By Taylor’s expansion,

G(�) = tr
[
�(�̂n − �)

] + λ
(|� + �|1 − |�|1)

(54)

+ vec(�)�
[∫ 1

0
(1 − v)�−1

v ⊗ �−1
v dv

]
vec(�),
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where ⊗ denotes the Kronecker product. Write � = �̂n − � = (ξjk), Su =
{(j, k) : |ωjk| ≥ u} and Wu = {(j, k) : |ξjk| ≥ u}. Let Wc

u be the complement of
Wu. Then

tr(��) = tr(��Wu) + tr(��Wc
u
) ≥ −|�|F |�Wu |F − u|�|1,(55)

where the matrix �Wu = (ξjk1(j,k)∈Wu)1≤j,k≤p . Assume α > 1/2 − 1/q . By (19),

E
(|�Wu |2F

)
� p2(

n1−qu2−q + (
n−1 + u2)

e−C4nu2) =: N(u)2.(56)

Using the arguments for Theorem 1 in Rothman et al. (2008), we have by (50) that

vec(�)�
[∫ 1

0
(1 − v)�−1

v ⊗ �−1
v dv

]
vec(�) ≥ 1

4
ε2

0|�|2F ,(57)

and by letting the penalty λ = 4u that

λ
(|� + �|1 − |�|1) − u|�|1

≥ λ
(∣∣�−

Sc
u

∣∣
1 − 2|�Sc

u
|1 − ∣∣�+∣∣

1 − ∣∣�−
Su

∣∣
1

) − u|�|1(58)

≥ 3u
∣∣�−

Sc
u

∣∣
1 − 8u|�Sc

u
|1 − 5u

(∣∣�+∣∣
1 + ∣∣�−

Su

∣∣
1

)
,

where, for a matrix �, �+ = diag(�) and �− = � − �+. By the Cauchy–
Schwarz inequality, |�+|1 + |�−

Su
|1 ≤ |�|F √

su, where su = #Su. By (54)–(58),

G(�) ≥ 1
4ε2

0|�|2F − |�|F |�Wu |F − 8u|�Sc
u
|1 − 5u|�|F √

su.(59)

Since G(�̂n) ≤ 0, there exists a deterministic constant C > 0 such that

|�̂n|2F ≤ C
(|�Wu |2F + u2su + u|�Sc

u
|1) ≤ C

(|�Wu |2F + p2D∗(u)
)
.(60)

Then (52) follows from (56) and by choosing u to minimize the right-hand side
of (60); see the argument in (22). The case with α ≤ 1/2 − 1/q can be similarly
handled with special care (20) being taken into (56). �

Ravikumar et al. (2011) studied the graphical Lasso estimator with off-diagonal
entries penalized by the 1-norm. For i.i.d. p-variate vectors with polynomial mo-
ment condition, they showed that if p = O((n/d2)q/(2τ)) for some τ > 2, where d

is the maximum degree in the Gaussian graphical model, then

1

p2 |�̂n − �|2F = OP

(
s + p

p2 · p2τ/q

n

)
,(61)

where s is the number of nonzero off-diagonal entries in �. For � ∈ H0(M),
we can choose M = s + p. Note that d ≥ s/p and thus d + 1 ≥ M/p. By Re-
mark 3, Corollary 2.4 holds. Under case (ii) [resp., (iii)], our rate of convergence is
(M/p2)1−2/qn2/q−2 [resp., n−1(logp)M/p2]. Elementary calculations show that
both of our rates are of order o(Mp−2n−1p2τ/q). Hence our bounds are much
better than (61), the one obtained in Ravikumar et al. (2011).
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We now compare our results with the CLIME (constrained L1-minimization for
inverse matrix estimation) method, a non-Lasso type estimator proposed in Cai,
Liu and Luo (2011), which is to

minimize |�|1 subject to |�̂n� − I |∞ ≤ λn.(62)

Cai, Liu and Luo (2011) showed that with n i.i.d. p-variate observations, if
p = o(nq/2−1), then the rate of convergence for the CLIME estimator under the
normalized Frobenius norm is O(C̃4−2rM̃(logp/n)1−r/2), where C̃ is the upper
bound for the matrix L1-norm on the true precision matrix, and M̃ is in (45). We
see that the rates of convergence under the normalized Frobenius norm are the
same for both papers. This rate of convergence is in general better than those ob-
tained for the Lasso-type estimators in the polynomial moment case [Ravikumar
et al. (2011)].

REMARK 4. Following Rothman et al. (2008), we can consider the slightly
modified version of the graphical Lasso: let V = diag(σ

1/2
11 , . . . , σ

1/2
pp ) and R be

the correlation matrix; let V̂ and R̂ be their sample versions, respectively. Let
K = R−1. We estimate � = V −1KV −1 by �̂λ = V̂ −1K̂λV̂

−1, where

K̂λ = arg min
��0

{
tr(�R̂) − log det(�) + λ

∣∣�−∣∣
1

}
.(63)

Let D−(u) = p−2 ∑
1≤j �=k≤p u(u ∧ |ωjk|). Using the arguments of Theorem 2 in

Rothman et al. (2008), we have the following result on the spectral norm rate of
convergence of �̂λ: Assuming the moment and dependence conditions in Theo-
rem 3.1 are satisfied and ε0 ≤ ρ(�) ≤ ε−1

0 , and then

ρ2(�̂λ − �)

p2 �P D−(λ) + min
(

1

n
,
λ2−q

nq/2 ,H(λ) + G(Cλ)

)
(64)

holds if max[p1/qn−1+1/q, (logp/n)1/2] � λ. Details of the derivation of (64) is
given in the supplementary material [Chen, Xu and Wu (2013)]. If � satisfies
|{(j, k) :ωjk �= 0, j �= k}| ≤ s [Rothman et al. (2008)], we have � ∈ H0(M) with
M = s+p. Simple calculations show that, if α > 1/2−1/q and s = O(p), then for
λ� � max[(logp/n)1/2, (s−1p2n1−q)1/q], we have by (64) that ρ(�̂(λ�) − �) =
OP(

√
sλ�), and it reduces to Theorem 2 in Rothman et al. (2008).

4. Evolutionary covariance matrix estimation for nonstationary high-
dimensional processes. The time series processes considered in Sections 2 and 3
are stationary. In many situations the stationarity assumption can be violated, and
the graphical structure is time-varying. One may actually be interested in how the
covariance matrices and dependence structures vary with respect to time. Zhou,
Lafferty and Wasserman (2010) and Kolar and Xing (2011) studied the estima-
tion of covariance matrices for independent, locally stationary Gaussian processes.
Both requirements can be quite restrictive in practice.
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Here we shall consider nonstationary processes that can be both dependent and
non-Gaussian with mild moment conditions, thus having a substantially broader
spectrum of applicability. To allow such nonstationary processes, following the
framework in Draghicescu, Guillas and Wu (2009), we shall consider locally sta-
tionary process

zi = g(Fi; i/n), 1 ≤ i ≤ n,(65)

where g(·, ·) = (g1(·, ·), . . . , gp(·, ·))� is a jointly measurable function such that
the uniform stochastic Lipschitz continuity holds: there exists C > 0 for which

max
j≤p

∥∥gj (F0; t) − gj

(
F0; t ′)∥∥ ≤ C

∣∣t − t ′
∣∣ for all t, t ′ ∈ [0,1].(66)

In Examples 4.1–4.3 below we present some popular models of locally station-
ary processes. Let z�

i (t) = g(Fi; t). The preceding condition (66) suggests local
stationarity in the sense that, for a fixed t ∈ (0,1) and bandwidth bn → 0 with
nbn → ∞,

max
j≤p

max�n(t−bn)�≤i≤�n(t+bn)�
∥∥z�

j,i(t) − Zj,i

∥∥ ≤ Cbn = o(1),(67)

indicating that the process (zi ) over the range �n(t − bn)� ≤ i ≤ �n(t + bn)� can
be approximated by the stationary process z�

i (t). The locally stationarity property
suggests that the data generating mechanism g(·; i/n) at time i is close to the one
g(·; i ′/n) at time i ′ if |i − i ′|/n is small. Hence the following covariance matrix
function is continuous:

�(t) = cov
(
g(F0; t)) = E

(
z(t)z(t)�

)
, t ∈ (0,1).(68)

The covariance matrix �i = �(i/n) of zi can then be estimated by the approxi-
mate stationary process zl , �n(t − bn)� ≤ l ≤ �n(t + bn)�, by using the Nadaraya–
Watson or other smoothing techniques. Recall that in the stationary case the thresh-
olded estimator is defined as Tu(�̂n) = (σ̂jkI(|σ̂jk| ≥ u))jk , where �̂n = (σ̂jk) is
the sample covariance matrix given in (1). To estimate �(t), we substitute �̂n by
the kernel smoothed version

�̂n(t) =
n∑

m=1

wm(t)zmz�
m where wm(t) = K((t − m/n)/bn)∑n

m=1 K((t − m/n)/bn)
.(69)

Write �̂n(t) = (σ̂jk(t))jk . In (69), K(·) is a symmetric, nonnegative kernel with
bounded support in [−1,1] and

∫ 1
−1 K(v)dv = 1. As per convention, we assume

that the bandwidth bn satisfies the natural condition: bn → 0 and nbn → ∞. The
thresholded covariance estimator for nonstationary processes is then defined as

Tu

(
�̂n(t)

) = (
σ̂jk(t)I

(∣∣σ̂jk(t)
∣∣ ≥ u

))
1≤j,k≤p.
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Parallelizing Theorem 2.1, we give a general result for the thresholded estima-
tor for time-varying covariance matrices of the nonstationary, nonlinear high-
dimensional time series. As in (4) and (5), we similarly define the functional de-
pendence measure

θi,w,j = max
0≤t≤1

∥∥Zji(t) − Z′
ji(t)

∥∥
w,(70)

where Z′
ji(t) = gj (F ′

i , t). We also assume that (5) holds. For presentational sim-

plicity let α > 1/2 − 1/q . Let n� = nbn, H�(u) = u2−qn
1−q
� ,

D(u) = 1

p2 max
0≤t≤1

p∑
j,k=1

(
u2 ∧ σjk(t)

2)
, G�(u) = (

n−1
� + u2)

e−n�u
2
.(71)

Theorem 4.1 provides convergence rates for the thresholded covariance matrix
function estimator Tu(�̂n(t)). Due to the nonstationarity, the bound is worse than
the one in Theorem 2.1 since we only use data in the local window [n(t −bn), n(t +
bn)]. Therefore, in the nonstationary case a larger sample size is needed for achiev-
ing the same level of estimation accuracy.

THEOREM 4.1. Assume max1≤j,k≤p supt∈[0,1] |σ ′′
jk(t)| < ∞ and α > 1/2 −

1/q . Under the moment and dependence conditions of Theorem 2.1, we have

E|Tu(�̂n(t)) − �(t)|2F
p2 � D(u) + min

(
n−1

� ,H�(u) + G�(Cu)
) + b4

n(72)

uniformly over t ∈ [bn,1 − bn], where C is independent of u,n, bn and p.

PROOF. Let �◦
n(t) = E�̂n(t) = (σ ◦

jk(t))jk . Under the condition on σ ′′
jk(t), we

have σ ◦
jk(t) − σjk(t) = O(b2

n) uniformly over j, k and t ∈ [bn,1 − bn]. Hence

|�◦
n(t) − �(t)|2F /p2 = O(b4

n). It remains to deal with E|Tu(�̂n(t)) − �◦
n(t)|2F .

With a careful check of the proof of Theorem 2.1, if we replace σ̂jk and σjk therein
by σ̂jk(t) and σ ◦

jk(t), respectively, then we can have

E|Tu(�̂n(t)) − �◦(t)|2F
p2 �D(u) + min

(
n−1

� ,H�(u) + G�(Cu)
)

(73)

if the following Nagaev inequality holds:

P
(∣∣σ̂jk(t) − σ ◦

jk(t)
∣∣ > v

) ≤ C2n�

(n�v)q
+ C3e

−C4n�v
2
.(74)

The above inequality follows by applying the nonstationary Nagaev inequal-
ity in Section 4 in Liu, Xiao and Wu (2013) to the process Xm = K((t −
m/n)/bn)(ZmjZmk −E(ZmjZmk)), �n(t − bn)� ≤ m ≤ �n(t + bn)�. Note that the
functional dependence measure of the latter process is bounded by μ(θi,2q,j +
θi,2q,k) supu |K(u)|; see (12) and (70). �
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REMARK 5. If in (69) we use the local linear weights [Fan and Gijbels
(1996)], then it is easily seen based on the proof of Theorem 4.1 that (72) holds
over the whole interval t ∈ [0,1], and the boundary effect is removed. This applies
to the Theorem 4.2 below as well.

A similar result can be obtained for estimating evolutionary precision matrices
of high-dimensional nonstationary processes �(t) = �−1(t) where �(t) is given
in (68). As in the stationary case, we assume that �(t) satisfies (50) for all t ∈
[0,1]. The actual estimation procedure of �(t) based on the data Zp×n is a variant
of the graphical Lasso estimator of �, which minimizes the following objective
function:

�̂n(t;λ) = arg min
��0

{
tr

(
��̂n(t)

) − log det(�) + λ|�|1}
,(75)

where �̂n(t) is the kernel smoothed sample covariance matrix given in (69). The
same minimization program is also used in Kolar and Xing (2011), Zhou, Lafferty
and Wasserman (2010). As in (51) and (71), let

D∗(u) = 1

p2 max
0≤t≤1

p∑
j,k=1

u
(
u ∧ ∣∣ωjk(t)

∣∣).(76)

As in (53), choose λ = 4u
�
� . For the estimator (75), we have the following theorem.

We omit the proof since it is similar to the one in Theorems 3.1 and 4.1.

THEOREM 4.2. Assume max1≤j,k≤p supt∈[0,1] |ω′′
jk(t)| < ∞ and α > 1/2 −

1/q . Under the moment and dependence conditions of Theorem 2.1, we have

E|�̂n(t;4u) − �(t)|2F
p2 �D∗(u) + min

(
n−1

� ,H�(u) + G�(Cu)
) + b4

n(77)

uniformly over t ∈ [bn,1 − bn], where C is independent of u,n, bn and p. Let
u

�
� ≥ n

−1/2
� be the solution to the equation max(G�(u),H�(u)) = D∗(u). Then

infλ>0 p−2
E|�̂n(t;λ) − �(t)|2F �D∗(u�

�).

EXAMPLE 4.1 (Modulated nonstationary process [Adak (1998)]). Let (yi ) be
a stationary p-dimensional process with mean 0 and identity covariance matrix.
Then the modulated process

zi = �1/2(i/n)yi ,(78)

has covariance matrix �i = �(i/n). Zhou, Lafferty and Wasserman (2010) con-
sidered the special setting in which yi are i.i.d. standard Gaussian vectors, and
hence zi are independent.
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EXAMPLE 4.2 (Nonstationary linear process). Consider the nonstationary lin-
ear process

zi =
∞∑

j=0

Aj(i/n)ei−j , 1 ≤ i ≤ n,(79)

where Aj(·) are continuous matrix functions. We can view (79) as a time-varying
version of (31), a framework also adopted in Dahlhaus (1997). As in Example 2.2,
we assume a uniform version

max
k≤p

p∑
l=1

max
0≤t≤1

aj,kl(t)
2 = O

(
j−2−2γ )

, γ > 0.(80)

EXAMPLE 4.3 (Markov chain example revisited: Nonstationary version). We
consider a nonstationary nonlinear example adapted from Example 2.1. Let the
process (zi ) be defined by the iterated random function

zi = gi (zi−1, ei),(81)

where gi (·, ·) is an R
p-valued and jointly measurable function that may change

over time. As in Example 2.1, we assume gi satisfy: (i) there exists some x0 such
that supi ‖gi (x0, e0)‖2q < ∞; (ii)

L := sup
i

E|Li |q < 1 where Li = sup
x�=x′

‖gi (x, e0) − gi (x′, e0)‖2q

|x − x′| .

Then (zi ) have the GMC property with �m,2q = O(Lm). Therefore, Theorem 4.1
can be applied with α > 1/2 − 1/q and β̃ = 1.
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SUPPLEMENTARY MATERIAL

Additional proofs (DOI: 10.1214/13-AOS1182SUPP; .pdf). The supplemen-
tary file contains the proof of relation (64): spectral norm convergence rate for
precision matrix.
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