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NEARLY OPTIMAL MINIMAX ESTIMATOR FOR
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We present estimators for a well studied statistical estimation problem:
the estimation for the linear regression model with soft sparsity constraints
(�q constraint with 0 < q ≤ 1) in the high-dimensional setting. We first
present a family of estimators, called the projected nearest neighbor esti-
mator and show, by using results from Convex Geometry, that such estima-
tor is within a logarithmic factor of the optimal for any design matrix. Then
by utilizing a semi-definite programming relaxation technique developed in
[SIAM J. Comput. 36 (2007) 1764–1776], we obtain an approximation algo-
rithm for computing the minimax risk for any such estimation task and also
a polynomial time nearly optimal estimator for the important case of �1 spar-
sity constraint. Such results were only known before for special cases, despite
decades of studies on this problem. We also extend the method to the adaptive
case when the parameter radius is unknown.

1. Introduction. In the classical estimation problem with linear regression
model, one observes a noisy ỹ of some y ∈ R

n where y = Xθ for a given n × p

matrix X (called the design matrix) and an unknown θ ∈ R
p and wishes to estimate

y or θ . Recently, there have been enormous interests in the high-dimensional set-
ting which in addition assumes that the design matrix is high-dimensional, that is,
when p � n, and θ satisfies certain sparsity constraints. Such sparsity constraints
can be “hard”, when it bounds the number of nonzero components in θ , or “soft”,
when θ is assumed to belong to the unit �q ball for 0 < q ≤ 1. In the existing study,
the focus has so far been on the condition needed for X such that certain (typically
polynomial time) estimators are nearly optimal or achieve lowest possible error
for the given parameters. The work along this line has been quite successful [1, 2,
4, 5, 7, 11, 13, 14, 16–19, 34, 43, 44] and produced many characterization of X

(typically Gaussian random matrix) for which a polynomial time nearly optimal
estimator exists.

The main departure point of this study is that we consider the problem of de-
signing nearly optimal estimator for any given design matrix X, that is, we make
no assumption about X. As the main contribution of this paper, we present a family
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of estimators, which we call the projected nearest neighbor estimator (PNN), and
show that for any design matrix X, there is a projected nearest neighbor estimator
that is nearly optimal in terms of the prediction risk for the corresponding linear
regression problem over soft sparsity constraints. As a consequence, we obtain a
polynomial time algorithm to compute the approximate minimax risk for any such
problem and a polynomial time estimator in the important case of q = 1. Our re-
sults represent the first provably nearly optimal estimators without any constraint
on the design matrix for 0 < q ≤ 1. We also design an adaptive estimator for the
case when the �1 radius is not given.

We believe that studying optimal estimator for arbitrary X is important for mul-
tiple reasons. First, in practice we often do not have control over the design matrix
or even the distribution of the design matrix. The design matrix might be “ill”-
conditioned such that no estimator can achieve good accuracy. On the other hand,
the design matrix may have a structure, as is often the case in practice, rather than
completely random. In this case, it is important to take advantage of such structure
to obtain better accuracy. Second, while there have been many characterization
(typically some isometry property on X) known for certain algorithms to work
well, it is often difficult to tell if the required property holds for a given X. So
most results assume that X come from Gaussian random matrix. Third, relaxing
the requirement about the design X calls for the development of new algorithms
as well as new analysis tools. Indeed, to argue the optimality of our estimator, we
have to utilize novel tools from Convex Geometry (the classical restricted invert-
ibility result by Bourgain and Tzafriri [8]).

1.1. Problem setup. In the linear regression problem, one observes ỹ = y +
g ∈ R

n, where y = Xθ for a given n × p matrix X and an unknown vector
θ ∈ �q(C) for 0 < q ≤ 1, where �q(C) = {(θ1, . . . , θp) : (

∑
i |θi |q)1/q ≤ C}. In

addition, the noise g is a random vector drawn from the multivariate Gaussian
distribution with the covariance matrix σ 2I . In this paper, we only consider the
prediction estimation, that is, on the estimation of y but not θ . We use the standard
total squared loss1 to measure the error of an estimation, that is,

loss(ŷ, y) = ‖ŷ − y‖2 = ∑
i

(ŷi − yi)
2.

For an estimator M : Rn → R
n, we define the expected error of M on an input

y and on Gaussian error as

errM(y,σ ) = Eỹ=y+g;g∼G(σ ) loss
(
M(ỹ), y

) = Eỹ=y+g;g∼G(σ )

∥∥M(ỹ) − y
∥∥2

.

Following [20], for K ⊆ R
n, the risk of M over K is defined as

RM(K,σ) = sup
y∈K

errM(y,σ ).(1)

1We use the total squared error instead of the common mean squared error purely for the brevity
of notation.
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Define the minimax risk, denote by R∗(K,σ), as the minimum achieve-able
risk among all the possible estimators, that is,

R∗(K,σ) = inf
M

RM(K,σ).(2)

For the aforementioned linear model with sparsity constraint �q(C), we have
K = X�q(C) for an n × p design matrix X. Clearly, the minimax risk R∗ ranges
between 0 and nσ 2 and depends on the structure of X. The main goal of this paper
is to design an estimator M such that RM(X�q(C), σ ) is close to R∗(X�q(C), σ )

for any given X. For our main results, we consider the case where the sparsity
radius C is given. Since we will only consider the prediction risk, we can assume,
by rescaling X, that C = 1. In what follows, we write �q for �q(1). In addition,
we only consider the high-dimensional case where p ≥ n because for p < n, we
can apply a rotation to the design matrix so that the last n − p rows are entirely 0.
Since Gaussian noise is invariant under rotation, this does not affect the minimax
risk, and the dimensions of the design matrix is effectively reduced to p × p.

1.2. Main contribution. We present a family of estimators, called the pro-
jected nearest neighbor estimator (PNN), that can achieve nearly optimal risk for
any design matrix X and any given 0 < q ≤ 1. The projected nearest neighbor
estimator is a combination of two classic estimators: the orthogonal projection
estimator, in which the estimation is obtained by projecting the observation ỹ to
a properly chosen subspace, and the nearest neighbor estimator, in which ỹ is
mapped to the closest point (in terms of �2 distance) on the ground truth set K . The
projected nearest neighbor estimator is defined with respect to an orthogonal pro-
jection P . It is the summation of two components: one, similar to the orthogonal
projection estimator, is the projection P ỹ of ỹ by P ; the other, similar to the near-
est neighbor estimator, is the nearest neighbor projection of P ⊥ỹ on P ⊥K , where
P ⊥ is the projection orthogonal to P . As the main contribution of this work, we
show that for any X, 0 < q ≤ 1, and σ > 0, there always exists a projection P so
that the corresponding projected nearest neighbor estimator for K = X�q is nearly
minimax optimal. More precisely, we show the following theorem.2

THEOREM 1. For any given n × p matrix X, 0 < q ≤ 1, and σ ≥ 0, there
exists a projected nearest neighbor estimator M such that

RM(X�q, σ ) = O
(
cq

(
log1−q/2 p

)
R∗(X�q, σ )

)
,

where cq = O(21/q 1
q

ln 2
q
) is a constant dependent on q only.

2Throughout this paper, the O notation only hides some absolute constant, that is, a constant
independent of any of the parameters, such as n,p,q,σ,X, θ, y.
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In the above theorem, the projection P is chosen in two steps: (1) for each 0 ≤
k ≤ n, a k-dimensional projection Pk is chosen to minimize maxi ‖P ⊥xi‖ where
xi ’s are column vectors of X; (2) a proper k∗ is chosen to minimize the risk among
all the Pk’s. Finding the projection in step 1 turns out to be NP-hard. However,
by using the semi-definite programming technique in [41], we can compute an
approximately optimal projection and therefore an approximate minimax risk in
polynomial time.

THEOREM 2. For any given n × p matrix X, 0 < q ≤ 1, and σ ≥ 0, we can
compute an O(cq logp) approximation3 of R∗(X�q, σ ) in polynomial time. When
q = 1, there is a randomized polynomial time estimator that is within O(logp)

factor of the optimal.

The above two results assume that the radius of �q ball is given. For q = 1, we
can extend the estimator to the adaptive case when ‖θ‖1 is unknown. Using the
similar idea to the projected nearest neighbor estimator, we have that

THEOREM 3. There is a polynomial time adaptive estimator A such that for
any given n × p matrix X, θ , and σ > 0,

errA(Xθ,σ ) = O
(
logp · R∗(

X�1
(‖θ‖1

)
, σ

) +
√

n lognσ 2)
.(3)

Notice that the first term of the above error is O(logp) factor within the oracle
risk bound when ‖θ‖1 is given. While we do not quite get the true oracle bound
due to the presences of the additive term of

√
n lognσ 2, the bound becomes a true

(and nontrivial) oracle bound for a rather large range of ‖θ‖1. See Remark 7 for a
more detailed discussion.

1.3. Intuition. We provide some high level intuition of the projected nearest
neighbor estimator. The orthogonal projection estimator, by projecting the ob-
servation to a chosen subspace, effectively identifies the “leading factors” in the
ground truth set. It works well when K is “skewed”. However by simple projec-
tion, it ignores the detailed local geometry of K . This makes it less effective when
K has many constraints or has constraints involving many dimensions, for exam-
ple, when K satisfies sparse constraints. On the other hand, the nearest neighbor
estimator, by projecting to the nearest neighbor, depends more on the local geom-
etry of K . But it ignores the global geometry of K so it works well when the body
is not skewed along any direction. In some sense, the projected nearest neigh-
bor estimator achieves the optimality by taking both global and local geometry
into account: it first identifies the skewed dimensions and then applies the nearest
neighbor estimator to the “residual” space which is less biased.

3A quantity a is a c-approximation of a∗ ≥ 0, if a∗ ≤ a ≤ ca∗.
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It is long known that the nearest neighbor estimator may be far away from the
optimal when there is strong correlation among column vectors of the design ma-
trix X [21, 22, 45]. There have been many methods proposed to deal with this
problem. The projection phase can be viewed as one way to remove the correla-
tion such that the residual vectors are less biased. This might not be obvious as the
projection only minimizes the maximum of �2 norm of the projection, a seemingly
different quantity. However, in order for the projected vectors to be all short, they
necessarily “span” all the directions because otherwise we could “tilt” the projec-
tion to reduce the longest projection. This intuition can actually be made rigorous
with the help of tools from Convex Geometry [8].

The technical analysis of the projected nearest neighbor estimator is inspired by
two recent works, one is the analysis on the nearest neighbor estimator by Raskutti,
Wainwright and Yu [34]; the other is on the optimality of the orthogonal projection
estimator by Javanmard and the author [26]. In [34], it is shown that if X satisfies
a certain isometry property, then the nearest neighbor estimator is close to optimal.
On the other hand, [26] shows that for symmetric convex bodies there always exists
a projection such that the orthogonal projection estimator is close to optimal. At
the very high level, we combine the analysis of these two results and show that
there always exists a nearly optimal projection of X such that the bound in [34] is
nearly optimal on the projected body.

While the main machinery in our analysis is similar to what is in [34] and [26],
we need further insights for our problem. For the nearest neighbor analysis, we
need a slightly different analysis than [34] to obtain an upper bound suit our pur-
pose. This also allows our result hold for all ranges of p,n. The lower bound
is obtained by extending the techniques in [26] to the sets of the form X�q for
0 < q ≤ 1. The technique utilizes some classical results from Banach space ge-
ometry, first started by Bourgain and Tzafriri [8] and fully developed by Szarek,
Talagrand, and Giannopoulous [23, 36].

Despite its somewhat involved analysis, the projected nearest neighbor estima-
tor suggests a quite natural heuristic: project K = X�q to a subspace to make it
more “round” before applying other estimators (in our case the nearest neighbor
estimator). This approach is probably already being used in practice. As the main
result in this paper, we prove that such heuristics can actually lead to a nearly opti-
mal estimator. In addition, a nearly optimal projection can be found in polynomial
time via semi-definite programming technique in [41].

For the adaptive estimator, we consider the case of q = 1. The well-known
Lasso [38] and Dantzig selector [13] can be viewed as the adaptive version of
the nearest negibhor estimator. According to [5], these estimators can achieve an
error bound dependent on ‖θ‖1, which is the same as the oracle risk bound of
PNN when the projection is taken as the identity projection. We can apply Lasso
or Dantzig selector to the projection of X and to obtain the oracle risk bound of
PNN under different projection dimensions. This way, we can obtain a set of esti-
mations among which one achieves the true oracle risk bound! Unfortunately, we
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cannot reliably determine which one it is. By using ideas from hypothesis test-
ing, we can only choose one within O(

√
n lognσ 2) error, which accounts for the

additive bound in Theorem 3.
More concretely, in PNN, the optimal projection dimension is a staircase func-

tion of the parameter radius. So we try to “guess” ‖θ‖1 at those critical values at
which the optimal dimension changes value. The problem then reduces to a hy-
pothesis testing problem on whether y = Xθ belongs to some convex body. By
using the statistics of ‖ỹ − ŷ‖2

2, we can achieve the claimed bound. Our procedure
is similar in spirit to the classical Lepski’s recipe [6, 28] for converting a nonadap-
tive estimator to an adaptive one. But there is a significant difference as the PNN
estimator is nonlinear, and the projections at different dimensions lack a nested
structure. As a result, our bound leaves an additive gap of

√
n lognσ 2.

1.4. Related work. There are vast amounts of work on the minimax risk esti-
mator. We refer to [27, 30, 39] for comprehensive surveys. Despite many studies
on this subject, optimal or nearly optimal estimators are only known for special
types of bodies.

One particularly interesting case is when the parameter space is sparse. It is
long known that no linear estimator works well under such constraints (see, e.g.,
[20]). Instead, one needs nonlinear estimator such as the thresholding estimator to
achieve nearly optimal risk. Recently, much attention has been paid to the (hard)
sparsity constraint defined as the number of nonzero components, dubbed as �0
quantity, of a vector. This problem, called compressive sensing in the literature,
is computationally infeasible in general so the study has focused on the condition
under which nearly optimal polynomial time estimator exists [1, 2, 4, 7, 11, 13, 14,
16, 43, 44].

The case of q = 1 is closely related to Lasso [38], which is the nearest neighbor
estimator for the case of q = 1 and later evolves to solving a regularized near-
est neighbor problem with the �1 norm penalty. While Lasso has proved to be
very effective, it is known that when the design matrix has strong correlation, the
Lasso estimator may not produce a good estimation [21, 22]. Various methods have
been proposed to remove the correlations [21, 22, 45] by using different penalty
terms. The projected nearest neighbor estimator can also be viewed as a way to
remove correlation. The difference is that our method can be shown to be close
to the optimal solution for any design matrix X. In the projected nearest neighbor
estimator, we choose the projection dimension that balance two error terms. Sim-
ilar technique has appeared before. For example, in [3], the estimation is chosen
among greedy approximations of the span of vectors of varying size, and the op-
timal choice is by balancing two error terms. In [10], the dimension is controlled
by a stopping rule dependent on the noise structure. Despite these similarity, the
optimality of the projected nearest neighbor estimator requires careful choice of
the projection via solving a semi-definite program. It is unlikely that the greedy
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algorithm can achieve the same goal. On the other hand, the computational effi-
ciency of the greedy algorithm makes it (or some variation) an attractive practical
alternative to the more complex projection phase in this paper.

Many authors also consider (arguably more flexible and realistic) soft sparsity
constraints in the form of θ ∈ �q for 0 < q ≤ 1, the setting considered in this paper.
In [19], asymptotically tight bounds are obtained for X = I , the identity matrix.
A similar notion of roughness was studied in [29] in which soft-thresholding es-
timator is shown to be nearly optimal, again for X = I , but extended to more
general noise and loss models. In [18], it is shown that there exists design matri-
ces X which allow fairly accurate estimation when there is no noise. In [42], the
authors presented several upper bounds, dependent on the design matrix X, on the
loss of the Lasso and Dantzig selector methods when applied to soft sparsity con-
straints. They also show that the upper bound is nearly optimal for a family of X’s.
Then in [34], it is shown that the nearest neighbor estimator is nearly optimal if
X satisfies certain isometry property which holds for Gaussian random matrix X.
In [17], it is shown that for Gaussian random matrix, the (polynomial time) �1 pe-
nalized least squares is nearly optimal. Despite all these studies, no nearly optimal
estimator is known for general design matrix X. So our knowledge is limited to the
case where X is a diagonal matrix or when X satisfies strong isometry properties.
In [12], the authors showed a lower bound of the minimax risk on the estimation
of θ for any design matrix and with the hard sparsity constraint, but it could be far
away from the upper bound in general.

Among previous work, [34] is particularly relevant to our current work. In [34],
the authors show, among many other results, an upper bound for the nearest neigh-
bor estimator which depends on q and the radius of K . While this could be far
away from the optimal, it turns out if we apply proper projection of K , the radius
of the projection can be made so that the resulted bound is near optimal. For this,
we follow a similar approach as [26], in which they show that the orthogonal pro-
jection estimator is nearly optimal for symmetric linear constraints. But we need
to adapt the argument in [26] as X�q have exponentially many faces and can be
nonconvex.

As mentioned earlier, the transformation from nonadaptive estimator to the
adaptive one is similar to Lepski’s method [6, 28] but there are significant differ-
ences as our nonadaptive estimator does not quite satisfy the properties required
by Lepski’s method.

2. Preliminaries.

2.1. Basic notation and definitions. For a vector x = (x1, . . . , xp) ∈ R
p and

q > 0, denote by ‖x‖q = (
∑

i |xi |q)1/q . When p ≥ 1, ‖x‖q is a norm. When 0 <

q < 1, ‖x‖q is not a norm but it is quasi-convex as there is a constant c dependent
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on q such that for any x, y, ‖x + y‖q ≤ c(‖x‖q + ‖y‖q). We use �
p
q (r) to denote

the p-dimensional q-ball with radius r , that is,

�p
q (r) = {

x ∈ R
p :‖x‖q ≤ r

}
.

We often drop p when the dimension is clear from the context. We use �q as a
short hand for �q(1). For a set K ⊆ R

n containing the origin, define the q-radius of
K as ‖K‖q = supx∈K ‖x‖q . In all these notations, whenever q is omitted, it means
q = 2.

We use Gn(σ ) to denote the distribution of n-dimensional Gaussian random
variable with covariance matrix σ 2I . Again, we often drop n and σ when they are
clear from the context.

As standard, f = O(g) if there exists a constant c > 0 such that f ≤ c · g and
f = �(g) if there exists a constant c > 0 such that f ≥ c · g. Throughout this
paper, high probability is understood as the probability of 1 − 1/n2.

2.2. Minimax risk. An estimator M is a map from R
n to R

n: it takes a noisy
observation ỹ = y + g of an unknown vector y ∈ R

n and maps it to an estimation
ŷ = M(ỹ). Here we consider the noise drawn from Gn(σ ). As described early, the
risk RM(K,σ) of M is defined as the maximum expected error among y in K , that
is,

RM(K,σ) = sup
y∈K

Eỹ=y+g;g∼G(σ )

[∥∥M(ỹ) − y
∥∥2]

.

The minimax risk of K is defined as the minimum achievable risk for K , that is,
R∗(K,σ) = infM RM(K,σ). We state a well-known lower bound on the minimax
risk of Euclidean balls which we will use later.

LEMMA 4. R∗(�n
2(r), σ ) = �(min(nσ 2, r2)).

2.3. Orthogonal projection estimator. The orthogonal projection estimator T

is a special type of linear estimator. It is defined with respect to some linear sub-
space. The estimation is simply by projecting the observation ỹ ∈ R

n to the sub-
space. Let Pk denotes all the k-dimensional linear subspaces in R

n. For P ∈ Pk ,
we also use P denote the orthogonal projection to P . The estimator TP is then
defined as TP (ỹ) = P ỹ.

Since Gaussian random vector is invariant under the rotation, we have that
RTP

(K,σ) = kσ 2 + supy∈K ‖y − Py‖2 = kσ 2 + supy∈K ‖P ⊥y‖2, where P ⊥ de-
notes the (n − k)-dimensional subspace orthogonal to P . For 0 ≤ k ≤ n, define
Kolmogorov width (as in [31]) as

dk(K) = inf
P∈Pk

sup
y∈K

‖y − Py‖.
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For �2 norm, this definition is equivalent to following more convenient form,
which we will use through the paper:

dk(K) = inf
P∈Pk

∥∥P ⊥(K)
∥∥ = inf

P∈Pn−k

∥∥P(K)
∥∥.

Clearly, dk(K) is monotonically decreasing with k. Kolmogorov width deter-
mines the minimax risk of the orthogonal projection estimators [20]. Let RT de-
note the minimum risk among all the orthogonal projection estimators.

LEMMA 5. RT (K,σ) = mink(kσ 2 + dk(K)2).

The orthogonal projection estimator is long known to be nearly optimal for el-
lipsoids [25, 32] and more generally for quadratically convex and orthosymmetric
objects [20]. However, it is also well known that the orthogonal projection estima-
tor (actually any linear estimator) can be far away from optimal for the �1 ball and
therefore does not work well for linear regression with sparsity constraints.

LEMMA 6 ([20]).

RT

(
�n

1,1/
√

n
) = �

(√
n/ lognR∗(

�n
1,1/

√
n
))

.

2.4. Nearest neighbor estimator. The nearest neighbor estimator is another
well-known estimator. It maps an observation to the nearest point on K , that is,
NK(ỹ) = arg minŷ∈K ‖ŷ − ỹ‖. The nearest neighbor estimator is a nonlinear esti-
mator and works well for “skinny” objects such as the �1 ball. However, we can
construct an example (Section 6.1) to demonstrate it is far from optimal. Denote
by RN(K,σ) the risk of the nearest neighbor estimator.

LEMMA 7. There exist ellipsoids En ⊂ R
n for n = 1,2, . . . such that

RN(En,1) = �(
√

nR∗(En,1)).

3. Projected nearest neighbor estimator. We now describe the projected
nearest neighbor estimator, which is defined with respect to some low-dimensional
orthogonal projection. Given a k-dimensional subspace P ∈ Pk , we define the
projected nearest neighbor estimator HP as follows. Let P ⊥ denote the (n − k)-
dimensional subspace orthogonal to P . Recall that we also use Px, P ⊥x to denote,
respectively, the orthogonal projection to the space P and P ⊥. The estimator HP

is defined as

HP (ỹ) = P ỹ + NP ⊥K

(
P ⊥ỹ

)
.

In other words, HP consists of two components, one of which is the projec-
tion to the subspace P and the other the nearest neighbor of P ⊥ỹ to P ⊥K . We
use RH(K,σ) = infq RHP

(K,σ) to denote the minimum risk achievable by the
projected nearest neighbor estimator for given K,σ .
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When the projection is set as the identity projection, the corresponding PNN is
the same as the nearest neighbor estimator. In addition, for the same projection,
the projected nearest neighbor estimator outperforms the corresponding orthog-
onal projection estimator. So the projected nearest neighbor estimator subsumes
both the nearest neighbor and the orthogonal projection estimators. In the follow-
ing, we give an example to show the projected nearest neighbor estimator can
outperform both the orthogonal projection and the nearest neighbor estimators by
a large factor.

EXAMPLE 8. Consider the ellipsoid defined as

En,k =
{
x :

1√
n

k∑
i=1

x2
i +

n∑
i=k+1

x2
i ≤ 1

}
.

Let K = En2,k × �n
1(

√
n) with k ≤ n. By the above discussion, we can see

that for the orthogonal projection estimator RT (K,1) = �(n), and for the near-
est neighbor estimator RN(K,1) = �(n), but RH(K,1) = O(

√
n logn) by setting

P to be the k-dimensional projection spanned by the k long axes of En2,k . This
demonstrates a large gap between the projected nearest neighbor estimator and
both the orthogonal projection and the nearest neighbor estimators.

To study the performance of the projected nearest neighbor estimator, we first
need the following error bound for the nearest neighbor estimator from [34].

PROPOSITION 9. For 0 < q ≤ 1,K = X�
p
q , the nearest neighbor estimator N

has risk

RN(K,σ) = O
(
cq‖K‖qσ 2−q(logp)1−q/2)

,

where cq = O(21/q 1
q

ln 2
q
) is a constant dependent on q only.

The above bound is almost identical to Theorem 4(a) in [34]. We will present
a slightly different proof which applies to wider combination of parameters. For
clarity and completeness, we present the proof in Section 6.2. According to Propo-
sition 9, the error is bounded by ‖K‖q . Hence, if we fix the dimension of the
projection in a PNN estimator, in order to minimize the risk, we should seek the
projection P that minimizes ‖PK‖, that is, realizes Kolmogorov width. By us-
ing this projection, we obtain the following upper bound of the projected nearest
neighbor estimator.

COROLLARY 10. For any 0 < q ≤ 1 and any K = X�
p
q ,

RH(K,σ) = O
(

min
0≤k≤n

(
kσ 2 + cqdk(K)qσ 2−q(logp)1−q/2))

,(4)

where cq is the same as in Proposition 9.



NEARLY OPTIMAL MINIMAX ESTIMATOR 2159

PROOF. For any fixed k, the error consists of two terms: O(kσ 2) for the pro-
jection, and O(cqdk(K)qσ 2−q(logp)1−q/2) for the nearest neighbor estimation.
The second term comes from Proposition 9 with ‖K‖ replaced by dk(K) if we ap-
ply the projection that realizes dk(K). Clearly, we can choose k with the minimum
bound. �

To show (4) is nearly optimal, we prove an almost matching lower bound in
terms of the Kolmogorov width. This is the key technical contribution of the paper
and relies on the classic restricted invertibility property developed by Bourgain and
Tzafriri [8]. The proof is in Section 6.3.

THEOREM 11. For K = X�
p
q ,

R∗(K,σ) = �
(

max
0≤k≤n

min
(
kσ 2, k1−2/qdk(K)2))

.(5)

Theorem 1 follows readily from Corollary 10 and Theorem 11 by setting k to
equalize two terms in (5). The details are in Section 6.4.

REMARK 1. In the proof of Theorem 1, we choose k∗ such that dk(X) ≈
k1/qσ . When q goes to 0, then k∗ goes to 1. Therefore, when q is close to 0, the
projected nearest neighbor estimator becomes the ordinary nearest neighbor algo-
rithm. As stated in Theorem 4(b) in [34], the risk of the nearest neighbor estimator
is O(s log(p/s)σ 2) for θ ∈ �0(s). On the other hand, if the rank of X is at least s,
then R∗(X�0(s), σ ) = �(sσ 2). Hence, the nearest neighbor estimator (and the
projected nearest neighbor estimator) is O(logp) minimax for the hard sparsity
constraint. This is consistent with the bound in Theorem 1 by letting q → 0.

REMARK 2. In the proof of Theorem 11, we actually showed that there exists
a submatrix X′ which consists of k ≤ n columns of X such that the minimax risk
of X′�k

q is close to that of X�
p
q . In some sense, this means that there is a hardest

sub-problem which has at most n columns.

REMARK 3. Our technique still leaves a gap of (logp)1−q/2. We do not know
if this gap is inherent to the projected nearest neighbor estimator or due to the
deficiency of the analysis. We note that the upperbound cannot be improved in
general, as demonstrated by the example of �1 ball. There might be a chance to
improve the lowerbound by a factor of

√
log k by more sophisticated techniques.

But this is still insufficient to close the gap as k might be much smaller than p.

REMARK 4. While PNN may sound similar to the technique of low dimen-
sion projection, there are significant differences. For example, when applying low
dimension projection, we typically would like to preserve the original metric struc-
ture, and often a random projection suffices. In our case, however, we would like
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to make the projection as small as possible, and it requires more careful selection
of the projection. Indeed, it is easy to show that a random projection would fail for
our purpose.

4. Algorithms. While the analysis of projected nearest neighbor estimators is
somewhat involved, the resulted algorithm is quite straightforward. There are two
separate parts in the projected nearest neighbor estimator. First, for given K and σ ,
compute the optimal projection P and k. Second, for any observation ỹ, apply the
projection and then compute the nearest neighbor of P ⊥ỹ to P ⊥K .

We will describe these two steps separately. For the first step, by the proof of
Theorem 1, it suffices to compute dk(K). This problem is however NP-hard [9].
But since K = X�

p
q , ‖P ⊥K‖ must be realized at one of p column vectors of X

(see the proof of Lemma 19). Let V = {xi : i = 1, . . . , p} be the p column vectors
of X. Then computing dk(K) reduces to computing an (n−k)-dimensional projec-
tion P ′ such that max{‖P ′v‖ :v ∈ V } as small as possible. This problem has been
studied in [41], and it is shown one can compute an O(

√
logp) approximation by

the semi-definite programming relaxation. The following proposition is the main
result of [41].

PROPOSITION 12. For any n×p matrix X, 0 < q ≤ 1, and 0 ≤ k ≤ n, we can
compute in polynomial time an O(

√
logp) approximation to dk(X�q). In addition,

we can compute an (n − k)-dimensional subspace P ′ in randomized polynomial
time such that with high probability, ‖P ′(X�q)‖ = O(

√
logpdk(X�q)).

As for the second step, we need to compute the nearest neighbor on K = X�
p
q

for any given point. This can be done by convex programming for q = 1. Unfor-
tunately, we do not know how to compute it efficiently for q < 1. So we can only
claim polynomial time nearly optimal estimator for K = X�1, as described in Al-
gorithm 1. For description simplicity, we have described the algorithm in which
we try all k = 1,2, . . . , n. Since dk(K) is monotonically decreasing, the complex-
ity can be reduced by using a binary search. Theorem 2 follows from the above
discussion.

The following proof summarizes our above discussion.

PROOF OF THEOREM 2. By Proposition 12, we can compute an O(
√

logp)

approximation d ′
k of dk(X�q). Using this approximation, we compute

R′ = O
(

min
0≤k≤n

(
kσ 2 + cqd

′q
k σ 2−q(logp)1−q/2))

.

Since dk(K) ≤ d ′
k ≤ c

√
logpdk(K) for some constant c > 0, we have that

RH(K,σ) ≤ R′ = cq logq/2 pRH(K,σ).
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Algorithm 1 Nearly optimal estimator for X�1

Require: design matrix X and observation ỹ.
Ensure: ŷ.

1: Let x1, . . . , xp be column vectors of X. Denote the set by Y ;
2: for k ∈ {1, . . . , p} do
3: Compute a projection Pk such that zk = ‖PkY‖ = O(

√
logp)dk(K);

4: Compute rk = kσ 2 + zkσ
√

logp;
5: end for
6: Pick k∗ = arg mink rk , and let P = Pk∗ and P ⊥ be the subspace orthogonal

to P ;
7: Compute ŷ′ as the nearest neighbor of P ⊥ỹ to the convex hull of

±P ⊥x1, . . . ,±P ⊥xp . This can be done by using any polynomial time con-
vex programming algorithm.

8: Set ŷ = P ỹ + ŷ′.

By Theorem 1, RH is an O((logp)1−q/2) approximation of R∗, so R′ is an
O((logp)q/2(logp)1−q/2) = O(logp) approximation of R∗.

When q = 1, by Proposition 12, we can compute the nearly optimal projection
P and use convex programming to compute the nearest neighbor of P ỹ to PX�1.
The former can be done in randomized polynomial time and the latter in polyno-
mial time. �

REMARK 5. The first step of the algorithm uses the semi-definite program-
ming relaxation to compute a nearly optimal projection of X�q . While it has guar-
anteed approximation ratio, it can be time consuming. In practice, the projections
on the principal subspaces of X�2 might serve as a good heuristics.

REMARK 6. We do not have a polynomial time estimator for 0 < q < 1 be-
cause of the lack of a polynomial time algorithm for computing the nearest neigh-
bor to the nonconvex body of K = X�q . While such nearest neighbor problem is
hard, for our purpose an approximate nearest neighbor is sufficient. In addition,
we only need to succeed in an average sense as ỹ = y + g for y ∈ K and g an i.i.d.
Gaussian noise. It is interesting to know if there exists an efficient procedure in this
particular setting. We note that this problem can be formulated under the frame-
work of the smoothed analysis [35]. In both cases, we are interested in minimizing
the expected performance of an algorithm (or an estimator) in the worst case.

5. Adaptive estimator when C is not given. The projected nearest neighbor
estimator in the last section is nearly minimax optimal once the sparsity radius is
given. In this section, we extend the same idea to design an adaptive estimator to
deal with the case when the sparsity radius is not known. Write C = ‖θ‖1. Ideally,
one would like to achieve some kind of oracle inequality with the error bound
proportional to R∗(X�1(C), σ ), that is, the nearly optimal risk bound assuming C
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is available. We can only partially achieve this goal with an extra additive term
of

√
n lognσ 2. Here we will focus on the case of q = 1 for the simplicity of the

exposition.
Again let K = X�1. Intuitively, the adaptive estimator will search for the un-

known C at some discrete values. In view of the upper bound in Corollary 10, we
will only try those C’s which equalize the two error terms in (4).

Define Ck = kσ/dk(K) for k = 0,1, . . . , n/2. Ck has the following properties:

(1) C0 ≤ C1 ≤ C2 ≤ · · · is monotonically increasing, since dk is nonincreasing.
(2) There is a constant c > 0, for C ≥ Ck ,

R∗(
X�1(C), σ

) ≥ ckσ 2.(6)

This follows from Theorem 11.

Further, we define Pk to be the (n − k)-dimensional projection that realizes
dk(K), that is, minimizes max1≤i≤n ‖Pxi‖ among all the (n−k)-dimensional pro-
jection. The adaptive estimator will estimate ỹk = Pkỹ against PkX�1(Ck) using
the nearest neighbor estimator, starting from k = 0. Suppose that the outcome is ŷk .
It is easy to show that among the n estimations ŷk for k = 0, . . . , n, there is one
that satisfies the true oracle risk bound, that is, with high probability, there exists
0 ≤ k ≤ n such that

‖ŷk − y‖2 = O
(√

logpR∗(
X�1

(‖θ1‖)
, σ

))
.

Unfortunately, we cannot determine reliably which one it is. Instead, we can
only choose one which is within O(

√
n lognσ 2) error. This is by finding the mini-

mum k such that ‖ỹk − ŷk‖2 is not too large (defined precisely later). Algorithm 2
contains a formal description.

Algorithm 2 Adaptive projected nearest neighbor estimator
Require: design matrix X and observation ỹ.
Ensure: estimation ŷ.

1: for k ∈ {0,1, . . . , n/2} do
2: Compute the (n − k)-dimensional projection Pk that approximately mini-

mizes ‖PX‖;
3: Compute ỹk = Pkỹ, Xk = PkX, and �k = maxi Pkxi ;
4: Set Ck = kσ/�k

5: Compute ŷk to be the nearest neighbor of ỹk on Xk�1(Ck)

6: if ‖ŷk − ỹk‖2 ≤ (n − k)σ 2 + 2
√

n lognσ 2 then
7: Set ŷ = ŷk + P ⊥

k ỹ and return;
8: end if
9: end for

10: Set ŷ = ỹ.
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Now we will show that the estimator given in Algorithm 2 satisfies the bound
stated in Theorem 3. The proof requires some properties on ‖ŷk − ỹk‖2 as described
in Lemma 13. Denote by yk = Pky and Kk = PkX�1(Ck). Let δk denote the �2
distance between yk and Kk , that is, δk = minz∈Kk

‖yk − z‖.

LEMMA 13. There are constants c1, c2 > 0 such that the following holds with
high probability:

(1) If yk ∈ Kk , then

‖ŷk − ỹk‖2 ≤ (n − k)σ 2 + 2
√

n lognσ 2.

(2) If δ2
k ≥ c1(

√
n lognσ 2 + kσ 2 logp), then

‖ŷk − ỹk‖2 ≥ (n − k)σ 2 + 2
√

n lognσ 2.

(3) If δ2
k ≤ c1(

√
n lognσ 2 + kσ 2 logp), then

‖ŷk − yk‖2 ≤ c2
(√

n lognσ 2 + kσ 2 logp
)
.

By Lemma 13(1) and (2), step 6 in Algorithm 2 serves as a test for whether yk

is sufficiently separated from Kk . When yk ∈ Kk , then the test is true with high
probability, and the algorithm outputs ŷ and returns. But when the separation be-
tween yk and Kk is large enough [c1(

√
n lognσ 2 + kσ 2 logp)], then step 6 would

test false with high probability. Theorem 3 follows from Lemma 13.

PROOF OF THEOREM 3. If the test at step 6 outputs false for some k, then by
Lemma 13(1), yk /∈ Kk . Thus y /∈ X�1(Ck), that is, C ≥ Ck . By (6), we have that
R∗(X�1(C), σ ) ≥ ckσ 2.

On the other hand, if step 6 tests true for k, then by Lemma 13(2), δ2
k ≤

c1(
√

n lognσ 2 + kσ 2 logp), and by Lemma 13(3), ŷ returned at step 7 satisfies
that

‖ŷ − y‖2 = ‖ŷk − yk‖2 + kσ 2 ≤ c2
(√

n lognσ 2 + kσ 2 logp
) + kσ 2.

We distinguish three outcomes of step 6.

• Step 6 tests true for k = 0. In this case,

‖ŷ − y‖2 ≤ c2

√
n lognσ 2.

• Step 6 test true for some k > 0 and therefore is false for k − 1. In this case

R∗(
X�1(C), σ

) ≥ c(k − 1)σ 2

and

‖ŷ − y‖2 ≤ c2
(√

n lognσ 2 + kσ 2 logp
) + kσ 2

= O
(√

n lognσ 2 + R∗(
X�1(C), σ

)
logp

)
.
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• Step 6 is never true so step 10 is reached. In particular, the test is false for k =
n/2 and hence R∗(X�1(C), σ ) ≥ c1(n/2−1)σ 2 but then ‖ŷ −y‖2 = O(nσ 2) =
O(R∗(X�1(C), σ )).

In all the above cases, the bound in Theorem 3 holds. �

REMARK 7. When R∗(X�1(‖θ‖1), σ ) ≥ √
nσ 2, the bound (3) in Theorem 3

becomes a true oracle risk bound (within O(logp) factor). In view of the proof
of Theorem 1, this happens when ‖θ‖1d√

n(X�1) ≥ √
nσ , that is, when ‖θ‖1 ≥√

nσ/d√
n(X�1). In such case, the risk ranges between

√
n lognσ 2 and nσ 2. So

the bound (3) is nearly optimal and nontrivial for a rather large range of ‖θ‖1.

REMARK 8. It might be possible to apply the Lasso or Dantzig selector es-
timators to the projection PkX to obtain ŷk and then choose one ŷk similar to
Algorithm 2. This would probably result in the same bound as in (3). We choose
our current exposition because Lemma 13(2) relies on the fact that ŷk is the near-
est neighbor to Pkỹ. It is not immediately clear whether it also holds for Lasso or
Dantzig selector.

REMARK 9. One may wonder if it is possible to get rid of
√

n lognσ 2 factor
and obtain a pure oracle inequality bound. If such a bound is possible, then when
C = 0, the estimator needs to map all the observations to 0. Since it is impossible
to distinguish 0 and a sphere with radius n1/4σ , there might be a good reason for
such an additive separation to be expected.

6. Proofs.

6.1. Proof of Lemma 7 (bad example for the nearest neighbor estimator). We
will now construct a bad example for the nearest neighbor estimator. While it is
well known that the nearest neighbor estimator can be nonoptimal, we could not
find a definitive reference for a large gap. In our example, we will demonstrate a
large gap of

√
n. Consider the ellipsoid

En =
{
y = (y1, . . . , yn) :

n−1∑
i=1

y2
i + y2

n√
n

≤ 1

}
.

Set σ = 1. The orthogonal projection estimator M(ỹ) = (0, . . . ,0, ỹn) has min-
imax error

M(ỹ) =
n−1∑
i=1

y2
i + E

[
(ỹn − yn)

2] ≤ 2.(7)

On the other hand, we show that the nearest neighbor estimator has error
�(

√
n). For any ỹ = (ỹ1, . . . , ỹn), by using Lagrangian multiplier, we have that
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the nearest point ŷ to ỹ on En satisfies that ỹi = (1 + λ)ŷi for i = 1, . . . , n − 1
and ỹn = (1 + λ/

√
n)ŷn. Now, pick y = (0, . . . ,0, n1/4) ∈ En. Then with high

probability
∑n−1

i=1 ỹ2
i = �(n). By

n−1∑
i=1

ỹ2
i = (1 + λ)2

n−1∑
i=1

ŷ2
n ≤ (1 + λ)2,

we have λ = �(
√

n). But then ŷn ≤ cỹn ≤ cn1/4 for some constant c < 1. Thus,
with high probability ‖ŷ − y‖ = �(n1/4). So the nearest neighbor estimator has
error �(n1/2). Since the projection estimator achieves the risk of O(1), we have
constructed an example to show that the nearest neighbor estimator can be �(

√
n)

factor larger than the optimal.

6.2. Proof of Proposition 9. It is well known that the error of the nearest
neighbor estimator is determined by the metric structure of K . For two bodies
K1,K2 ⊆ R

n, define the (dyadic) entropy number ek(K1,K2), for any k ≥ 0, as
the minimum ε such that K1 can be covered by 2k copies of εK2. When K2 is the
unit �2 ball, we simply write it as ek(X1).

For a random vector g ∈ G = Gn(1) and any y ∈ R
n, let gy denote the random

variable g · y ∈ R. The classical Dudley bound states that there is a constant c > 0
such that

Eg∼G
[

sup
y∈K

|gy |
]
≤ c

∞∑
k=0

2k/2e2k (K).

We need a slight variation of the above bound where the summation is over k

above some threshold. For δ ≥ 0, write

k(δ) = ⌊
log

(
min

{
k : ek(K) ≤ δ

})⌋
,

γ (K,κ) =
∞∑

k=κ

2k/2e2k (K),

K(δ) = K ∩ �n
2(δ).

With the above notation, the following lemma holds.

LEMMA 14. There is a constant c > 0, for any t > 0,

Probg∼G
[

sup
y∈K(δ)

|gy | ≥ tγ
(
K,k(δ)

)] ≤ exp
(−ct22k(δ)).

PROOF. By the standard chaining argument [37]. Clearly the result holds if
we replace ek(K) with any upper bound of ek(K). �

Now we prove Proposition 9. Without loss of generality, we assume σ = 1. We
apply the standard technique to bound the error of the nearest neighbor estimator
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by the supreme of Gaussian processes [34, 40]. The starting point is the well-
known observation that for ŷ = NK(ỹ),

‖ŷ − y‖2 ≤ 2(ỹ − y) · (ŷ − y).(8)

Since ŷ, y ∈ K = X�
p
q and by the quasi-convexity of �

p
q for 0 < q ≤ 1, we have

that ŷ−y ∈ c′K for c′ = 21/q . Observe that g = ỹ−y is a Gaussian random vector.
We can bound ‖ŷ − y‖ through Dudley bound over �

p
q ball as follows.

To apply Lemma 14, we need an estimate on the entropy number of K = X�
p
q .

Write � = ‖K‖. The following is a consequence of [15, 24]. For completeness,
we include the derivation in the Appendix.

LEMMA 15.

e2k

(
X�p

q , �n
2
) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O(�), k ≤ logp,

O

((
fq

log(1 + p/k)

k

)1/q−1/2
�

)
, logp ≤ k ≤ p,

O
(
2−2k/p(fq/p)1/q−1/2�

)
, k ≥ p,

(9)

where fq = O( 1
q

ln 2
q
) is a constant dependent on q only.

Now the crucial lemma is Lemma 16.

LEMMA 16. Suppose that � ≤ p1/q(logp)1/2 and �/p1/q−1/2 ≤ δ ≤ �, for
any constant d > 0, there exists c(q, d) > 0, dependent on q and d only, such that

Probg∼G
[

sup
y∈K,‖y‖≤δ

|gy | ≥ c(q, d)�q/(2−q)δ(2−2q)/(2−q)
√

logp
]

≤ p−d(�/δ)q/2
.

PROOF. The proof is by applying Lemmas 14 and 15. By Lemma 15, for

�/p1/q−1/2 ≤ δ ≤ �,

we have,

k(δ) = O
(
(�/δ)2q/(2−q) logp

) = O(p).

Therefore,

γ
(
K,k(δ)

) =
∞∑

k=k(δ)

2k/2e2k (K)

=
logp∑

k=k(δ)

2k/2e2k (K) +
∞∑

k=logp

2k/2e2k (K).
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By Lemma 15, it is easily seen that for both terms, the dominant term is the
first term, that is, when k = k(δ) and k = logp, respectively. Plugging in ek(K)

for these values, we have

γ
(
K,k(δ)

) ≤ O
(
δ

√
(�/δ)2q/(2−q) logp

) + O
(√

p�/p1/q−1/2)
≤ O

(
�q/(2−q)δ(2−2q)/(2−q)

√
logp + p1−1/q�

)
.

It is easy to verify that with δ ≥ �/p1/q−1/2,

�q/(2−q)δ(2−2q)/(2−q)
√

logp ≥ c�p1−1/q
√

logp

for some constant c′ > 0. So the first term dominates, that is,

γ
(
K,k(δ)

) = O
(
�q/(2−q)δ(2−2q)/(2−q)

√
logp

)
.

The claim now follows from Lemma 14. �

With the above preparation, we are ready to prove Proposition 9.

PROOF OF PROPOSITION 9. We assume σ = 1. Recall � = ‖K‖. We can
further assume √

logp ≤ � ≤ n1/q/(logp)(2−q)/2q .(10)

Otherwise the claim follows immediately by using the trivial bound of
O(min(�2, nσ 2)). Together with the assumption that p = �(n/ logn), the upper
bound in (10) implies that

� = O
(
p1/q(logp)1/2)

.(11)

Write δ0 = c�q/2(logp)1/2−p/4 for some sufficiently large c such that δ0 ≥
�/p1/q−1/2. This is possible as � = O(p1/q(logp)1/2). Hence, by applying
Lemma 16, we have that for δ0 ≤ δ ≤ � and any d > 0 there exists c(q, d) > 0
such that

Probg∼G
[

sup
y∈K(δ)

|gy | ≥ c(q, d)�q/(2−q)δ(2−2q)/(2−q)
√

logp
]
≤ p−d(�/δ)q/2

.

Now denote by E the following event:

∃y
(
δ0 ≤ ‖y‖ ≤ �

) ∧ (|gy | ≥ t
√

logp�q/(2−q)‖y‖(2−2q)/(2−q)).
By the peeling argument we show that we can choose t , dependent on q only,

such that Prob[E ] ≤ p−4/q . Define

K(δ) = K(δ) \ K(δ/2).
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Clearly K(δ) ⊆ K(δ) and for any y ∈ K(δ), ‖y‖ ≥ δ/2. By these we have

Prob
[

sup
y∈K(δ)

|gy | ≥ tq

√
logp�q/(2−q)‖y‖q/2

]
≤ p−d(�/δ)q/2

.

Hence for any d > 0, there is c(q, d) > 0 such that

Prob[E ] = Prob
[

sup
y∈K,‖y‖≥δ0

|gy | ≥ c(q, d)
√

logp�q/(2−q)‖y‖(2−2q)/(2−q)
]

≤
log(�/δ0)∑

k=0

Prob
[

sup
y∈K(2kδ0)

|gy | ≥ c(q, d)
√

logp�q/(2−q)‖y‖(2−2q)/(2−q)
]

≤
log(�/δ0)∑

k=0

p−d(�/(2kδ0))
q/2

.

Now choosing d = 4/q and setting tq = c(p,4/q), we have that Prob[E ] =
O(p−4/q). Let z = ŷ − y. So for ‖z‖ ≥ δ0, with probability 1 − O(p−4/q),

‖z‖2 ≤ 2|w · z| ≤ tq

√
logp�q/(2−q)‖z‖(2−2q)/(2−q).

That is,

‖z‖ = O
(
�q/2(logp)1/2−q/4) = O(δ0).

Hence with probability 1 − O(p−4/q),

‖ŷ − y‖2 = O
(
δ2

0
) = O

(
�q(logp)1−q/2)

.

Since ‖ŷ − y‖ ≤ 2� ≤ 2p1/q , we have that

E
[‖ŷ − y‖2] ≤ δ2

0 + O
(
p−4/q · 2p2/q) = O

(
�q(logp)1−q/2)

.

For general σ > 0, we apply the standard scaling formula of RN(K,σ) =
σ 2RN(K/σ,1) and complete the proof of Proposition 9. The constant of cq =
O(21/q 1

q
ln 2

q
) comes from multiplying c′ and fq in Lemma 15. �

6.3. Proof of Theorem 11. To establish the lower bound, we consider the
largest Euclidean ball of various dimension contained in K . Intuitively, we show
that if Kolmogorov width of K is large then it has to contain a large enough Eu-
clidean ball, in terms of both radius and the dimension, which allows us to nearly
match the upper bound. The crucial technical tool is the restricted invertibility re-
sult by Bourgain and Tzafriri [8] and developed by Szarek and Talagrand [36] and
Giannopoulous [23].

DEFINITION 17. For a set of vectors S, let span[S] denote the linear sub-
space spanned by S. A set V = {v1, . . . , vs} is called δ-wide if for any 1 ≤ i ≤ s,
dist(vi, span[V/{vi}]) ≥ δ, where dist(v,P ) denotes the minimum distance be-
tween v and any vector in P .
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The following proposition can be gleaned from work in [8, 23, 36]. See [26]
(Proposition 5.2) for a proof.

PROPOSITION 18. For any δ-wide set V = {v1, . . . , vs}, there exists S ⊆
{1, . . . , s} with |S| ≥ (1 − ε)s such that for any α = (αj )j∈S , ‖∑

j∈S αjvj‖ ≥
c
√

ε/sδ
∑

j∈S |αj |, where c is an absolute constant.

We make the following observation.

LEMMA 19. Suppose that K = X�
p
q and X = (x1, . . . , xp). Then for any

k > 0, there exists k + 1 vectors V ⊆ {x1, . . . , xp} such that V is dk(K) wide.

PROOF. For a set of points p1, . . . , ps and k ≥ s − 1, let volk(p1, . . . , ps)

denote the k-volume of the convex hull of p1, . . . , ps .
We find k + 1 points V = {v1, . . . , vk+1} in K such that the k + 1 volume of the

simplex spanned by the origin O and v1, . . . , vk+1 is the maximum, that is,

V = arg max
y1,...,yk+1∈K

volk+1(O,y1, . . . , yk+1).

Since K is a compact set, V ⊆ K . We first show that V is dk(K) wide. Consider
the k-dimensional subspace P spanned by v1, . . . , vk . By the definition of dk , we
have supy∈K ‖Py − y‖ ≥ dk(K). Or equivalently

sup
y∈K

dist
(
y, span

[{v1, . . . , vk}]) ≥ dk(K).(12)

On the other hand,

volk+1(O,v1, . . . , vk+1)
(13)

= 1

k + 1
volk(O,v1, . . . , vk) · dist

(
vk+1, span

[{v1, . . . , vk}]).
By the maximality of volk+1(O,v1, . . . , vk+1) and (12) and (13), we have

dist
(
vk+1, span(v1, . . . , vk)

) ≥ dk(K).

Repeating this argument for each vi in V , we have that V is dk(K)-wide. In
addition, for K = X�1, K is the convex hull of ±x1, . . . ,±xp . Hence for any
projection P , arg maxx∈K ‖Px‖ has to be a vertex of K . That is, V ⊆ {±xi : 1 ≤
i ≤ p}. It is easy to see that V can be chosen such that V ⊆ {x1, . . . , xp}. Since
X�q ⊆ X�1 for 0 < q < 1, dk(X�q) ≤ dk(X�1). This holds for any 0 < q ≤ 1. �

Using Proposition 18 and Lemma 19, we have Lemma 20.

LEMMA 20. There exists a constant c > 0 such that for any K = X�
p
q , k > 0,

and 0 < ε < 1, there exists a linear sub-space P such that P ∩ K contains an
(1 − ε)k-dimensional �2 ball with radius �(

√
ε(1 − ε)k1/2−1/qdk(K)).
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PROOF. Clearly we can assume that dk(K) > 0. Let V be the dk(K)-wide set
as in Lemma 19. Write S0 = {i :xi ∈ V }. By Proposition 18, let S ⊆ S0 be such
that |S| ≥ (1 − ε)|S0| and for any {αj }j∈S ,∥∥∥∥∑

i∈S

αixi

∥∥∥∥ ≥ c
√

ε/|S0|dk(K)
∑
i∈S

|αi |.

According to reverse Hölder inequality, for x ∈ R
p and 0 < q ≤ 1, ‖x‖1 ≥

n1−1/q‖x‖q . Hence, for any {αi} such that
∑

i∈S |αi |q = 1,
∑

i∈S |αi | ≥ |S|1−1/q .
Thus if ‖α‖q = 1, then∥∥∥∥∑

i∈S

αixi

∥∥∥∥ ≥ c
√

ε/|S0|dk(K)|S|1−1/q

(14)
≥ c

√
ε(1 − ε)|S|1/2−1/qdk(K).

Let P be the sub-space spanned by xi for i ∈ S. Since {xi}i∈S0 is dk(K) > 0
wide, they are linearly independent. That is, K ∩ P is fully (|S|) dimensional. On
the other hand by (14) for any v on the boundary of K ∩ P , we have that

‖v‖ ≥ c
√

ε(1 − ε)|S|1/2−1/qdk(K).

Hence, K ∩ P contains an |S|-dimensional �2 ball with radius

c
√

ε(1 − ε)|S|1/2−1/qdk(K).

The claim follows by |S| ≤ k and 1/2 − 1/q < 0. �

By Lemma 4, R∗(�k
2(r), σ ) = �(min(kσ 2, r2)). In addition, by definition of

minimax risk, for any K1 ⊇ K2, R∗(K1, σ ) ≥ R∗(K2, σ ) (see, e.g., [20]). Choos-
ing ε = 1/2, we have that for K = X�

p
q ,

R∗(K,σ) = �
(
max

k
min

(
kσ 2, k1−2/qdk(K)2))

.

6.4. Proof of Theorem 1. Let

k∗ = arg max
k

min
(
dk(K), k1/qσ

)
.

When there is a tie, we pick k∗ to be the smallest among the ties. Clearly 0 <

k∗ < n since dn(K) = 0. When k∗ = 1, it is easy to show the claim holds. For
1 < k∗ < n, we distinguish two cases.

Case 1. dk∗(K) ≥ (k∗)1/qσ .
In this case, we have that dk∗+1(K) ≤ (k∗ + 1)1/qσ . Otherwise, we would have

that

min
(
dk∗+1(K),

(
k∗ + 1

)1/q
σ

)
= (

k∗ + 1
)1/q

σ >
(
k∗)1/q

σ

≥ dk∗(K) ≥ min
(
dk∗(K),

(
k∗)1/q

σ
)
.
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This contradicts with the maximality of k∗. Since dk∗(K) ≥ (k∗)1/qσ , k1−2/q ×
dk∗(K)2 ≥ k∗σ 2. We apply the lower bound in (5) and obtain that

R∗(K,σ) = �
(
k∗σ 2)

.

For the upper bound, by taking k = k∗ + 1 in (4), we have

RH(K,σ) = O
((

k∗ + 1
)
σ 2 + cqdk∗+1(K)qσ 2−q(logp)1−q/2)

= O
((

k∗ + 1
)
σ 2 + cq

((
k∗ + 1

)1/q
σ

)q
σ 2−q(logp)1−q/2)

= O
((

k∗ + 1
)
σ 2(logp)1−q/2)

= O
(
R∗(K,σ)(logp)1−q/2)

.

Case 2. dk∗(K) < (k∗)1/qσ .
In this case, dk∗(K) ≥ (k∗ − 1)1/qσ . Otherwise, we would have that dk∗(K) <

(k∗ − 1)1/qσ and dk∗(K) < dk∗−1(K). The latter is due to that we pick k∗ the
smallest k in case there is a tie. This would imply that

min
(
dk∗−1(K),

(
k∗ − 1

)1/q
σ

)
> dk∗(K) ≥ min

(
dk∗(K),

(
k∗)1/q

σ
)
.

Again it contradicts with the maximality of k∗. Hence for the lower bound, we
have that

R∗(K,σ) = �
((

k∗)1−2/q
dk∗(K)2)

= �
((

k∗)1−2/q(
k∗ − 1

)2/q
σ 2)

= �
((

k∗)2
σ 2)

by k∗ > 1.

Setting k = k∗ in (4), we have

RH(K,σ) = O
(
k∗σ 2 + cqdk∗(K)qσ 2−q(logp)1−q/2)

= O
(
k∗σ 2 + cq

((
k∗)1/q

σ
)q

σ 2−q(logp)1−q/2)
= O

(
k∗σ 2(logp)1−q/2)

= O
(
R∗(K,σ)(logp)1−q/2)

.

Therefore, for any 0 < q ≤ 1 and p = �(n/ logn), for K = X�
p
q where X is an

n × p matrix, we have that RH(K,σ) = O((logp)1−q/2R∗(K,σ)).

6.5. Proof of Lemma 13. In what follows, all the statements hold with high
probability, say 1 − 1/n2.
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(1) Since ỹk − yk is (n − k)-dimensional Gaussian vector, by the property of
χ2-distribution,

‖ỹk − yk‖2 ≤ (n − k)σ 2 + 2
√

n lognσ 2.

Since ‖ỹk − ŷk‖ ≤ ‖ỹk − yk‖, the statement follows immediately.
(2) Let z denote the nearest neighbor of yk on Kk . So ‖z − yk‖ = δk . Further,

(ŷk − z) · (yk − z) ≤ 0.(15)

Following the same analysis for the nearest neighbor estimator, we have

‖ŷk − z‖2 ≤ 2(ŷk − z) · (ỹk − z)

= 2(ŷk − z) · (ỹk − yk) + 2(ŷk − z) · (yk − z)

≤ 2(ŷk − z) · (ỹk − yk) by (15)

≤ c1Ckdkσ
√

logp

= 4c1kσ 2
√

logp.

Hence,

‖ŷk − ỹk‖2 ≥ ‖ŷk − z‖2 + ‖z − ỹk‖2 + 2(ŷk − z) · (z − ỹk)

≥ ‖ỹk − z‖2 + 2(ŷk − z) · (z − yk) + 2(ŷk − z) · (yk − ỹk)

≥ ‖ỹk − z‖2 + 2(ŷk − z) · (yk − ỹk) by (15)

≥ ‖ỹk − z‖2 − 2
∣∣(ŷk − z) · (yk − ỹk)

∣∣.
We bound these two terms separately:

‖ỹk − z‖2 = ‖ỹk − yk‖2 + ‖yk − z‖2 + 2(ỹk − yk) · (yk − z)

≥ (n − k)σ 2 − 2
√

n lognσ 2 + δ2
k − 4δkσ

√
logp.

By the analysis for the nearest neighbor estimator, we have

2
∣∣(ŷk − z) · (yk − ỹk)

∣∣ ≤ c1Ckdkσ
√

logp = c1kσ 2
√

logp.

Putting them together, we can take δ2
k = c2(

√
n lognσ 2 + kσ 2√logp) for some

sufficiently large c2 and obtain

‖ŷk − ỹk‖2 ≥ (n − k)σ 2 + 2
√

n lognσ 2.

(3) If δ2
k ≤ c1(

√
n lognσ 2 + kσ 2 logp), then according to the above

‖ŷk − z‖2 ≤ O
(
kσ 2logp

) = O
(
δ2
k

)
.

Hence,

‖ŷk − yk‖ ≤ ‖ŷk − z‖ + ‖z − yk‖ = O(δk).
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APPENDIX: THE ENTROPY NUMBER OF X�q

By Guedon and Litvak ([24], Theorem 6)

ek

(
�p
q , �

p
1

) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�(1), k ≤ logp,

�

((
fq

log(1 + p/k)

k

)1/q−1)
, logp ≤ k ≤ p,

�
(
2−k/p(fq/p)1/q−1)

, k ≥ p,

(16)

where fq = O( 1
q

ln 2
q
) is a constant dependent on q only.

And by Carl and Pajor [15],

ek

(
X�

p
1 , �n

2
) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O(�), k ≤ logp,

O

((
log(1 + p/k)

k

)1/2

�

)
, logp ≤ k ≤ p,

O
(
2−k/p(1/p)1/2�

)
, k ≥ p.

(17)

From the definition of ek , we have (see also [33])

ek1+k2(K1,K3) ≤ ek1(K1,K2)ek2(K2,K3).(18)

By (18), e2k(X�
p
q , �n

2) ≤ ek(�
p
q , �

p
1 )ek(X�

p
1 , �n

2). So we have

e2k

(
X�p

q , �n
2
) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O(�), k ≤ logp,

O

((
fq

log(1 + p/k)

k

)1/q−1/2

�

)
, logp ≤ k ≤ p,

O
(
2−2k/p(fq/p)1/q−1/2�

)
, k ≥ p.

(19)
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