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Abstract. We study the asymptotic behavior of a class of stochastic dynamics on interlacing particle configurations (also known
as Gelfand-Tsetlin patterns). Examples of such dynamics include, in particular, a multi-layer extension of TASEP and particle dy-
namics related to the shuffling algorithm for domino tilings of the Aztec diamond. We prove that the process of reflected interlacing
Brownian motions introduced by Warren in (Electron. J. Probab. 12 (2007) 573-590) serves as a universal scaling limit for such
dynamics.

Résumé. Nous étudions le comportement asymptotique d’une classe de dynamiques aléatoires sur des configurations entrelacées
de particules (dites aussi motifs de Gelfand—Tsetlin). Des exemples de telles dynamiques incluent, en particulier, une extension
a plusieurs niveaux du TASEP et des dynamiques de particules reliées a 1’algorithme de mélange pour les pavages par dominos
du diamant azteque. Nous montrons que le processus des mouvements browniens réfléchis entrelacés introduit par Warren dans
(Electron. J. Probab. 12 (2007) 573-590) est une limite d’échelle universelle pour ces dynamiques.
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1. Introduction

Consider N(N + 1)/2 interlacing particles with integer coordinates xij ,j=1,...,N,i=1,...,j satisfying the
inequalities

J Jj—1 J
X <Xxi_; <xi. (1)

and denote by GT™) the set of all vectors in ZNVN+D/2 which satisfy (1). An element of GT® is shown in Fig. 1.
Elements of GT™) are often called Gelfand—Tsetlin patterns of size N and under this name are widely used in
representation-theoretic context. Whenever it does not lead to confusion, we use the notation xi./ both for the location
of a particle and the particle itself.

In this article we study a class of Markov chains on GT®Y) with simple block/push interaction between particles.
Let us start with an example. Let Y (¢), r > 0 be a continuous-time Markov chain taking values in GT®) and defined
as follows. Each of the N (N + 1)/2 particles has an independent exponential clock of rate 1 (in other words, the times
when clocks of particles ring are independent standard Poisson processes). If the clock of the particle Yl.] rings at time
t, we check whether Yi]*1 (t—)= Yi] (t—) + 1. If so, then nothing happens; otherwise we let Yi] (1) = Yi] (t=)+ 1. 1f

v/ u-) =Y/ e = =yt thenwealsoset v/ 0 =Y/ e+ 1, v/ o =Y e + 1.
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Fig. 1. Interlacing particles.

Informally, one can think of each particle having a weight depending on its vertical coordinate, with higher particles
being lighter. The dynamics is defined in such a way that heavier particles push lighter ones and lighter ones are
blocked by heavier ones in order to preserve the interlacement conditions.

The Markov chain Y was introduced in [4] as an example of a 2d growth model relating classical interacting particle
systems and random surfaces arising from dimers. The restriction of Y to the N leftmost particles xll, ...,x{v is the
familiar totally asymmetric exclusion process (TASEP), while the particle configuration Y (¢) at a fixed time ¢ can be
identified with a lozenge tiling of a sector in the plane and with a stepped surface (see the introduction in [4] for the
details).

More generally, we can start from any N (N + 1)/2 integer-valued random processes (in discrete or continuous
time) with unit jumps of particles (but possibly differing jump rates) and construct a process similar to ¥ on GT™)
through the same block/push interactions between particles (see Section 2 for a formal definition). We will refer
to this process as the interlacing dynamics driven by the original N(N + 1)/2 random processes. Some of such
processes were studied in [4,23] and [17]. In particular, in the last article it is shown that interlacing dynamics driven
by N(N + 1)/2 independent simple random walks is closely related to the shuffling algorithm for the domino tilings
of the Aztec diamond studied in [11].

In the present article we investigate the convergence to the scaling limits of the process Y and more general
interlacing dynamics. The asymptotics of the fixed time distributions of such processes as t — oo is well studied.
Most results are easier to prove if the process is started from the densely packed initial conditions: Y,.j O=1-1i,
j=1,...,N,i=1,..., j. The reason is that such processes often have determinantal correlation functions (see [4]).
However, many of the results hold in much greater generality. If one takes the limit # — oo for a fixed N € N, then the
distribution of Y (¢) converges to the so-called “GUE-minors” process, namely the joint distribution of the eigenvalues
of an N x N Gaussian Hermitian matrix and the eigenvalues of its top-left corners (see [1,16,17,20]).

If N goes to infinity together with ¢, then locally one unveils the Tracy—Widom distribution, the Airy point process
and discrete point processes governed by the sine kernel in the limit (see [8,14,15]), whereas the global fluctuations
in this model are described by the Gaussian Free Field (see [4]). In the physics terminology the model fits into the
anisotropic KPZ universality class (see the introduction in [4] and the references therein for more details).

We perform the next step and study the joint distributions of Y and similar processes at various times. Currently
we restrict ourselves to the case of fixed N. The limit process Wi] ,j=1,...,N,i=1,...,j was introduced in [22]
and can be constructed inductively as follows. Wll is standard Brownian motion; given Wi] with j < k the coordinate
Wl.k is defined as a Brownian motion reflected by the trajectories Wl.kjll (ifi>1)and Wl.k_1 (if i < k) (see [22] or
Section 2 for a more detailed definition). The process W has many interesting properties: for instance, its projection
WiN ,i=1,..., N is an N-dimensional Dyson’s Brownian motion, namely the process of N independent Brownian
motions conditioned not to collide with each other by means of Doob’s h-transform.

Our main result is the following theorem. Let D([0, 00), RNWN+D/2y stand for the space of right-continuous func-
tions from [0, co) to RYNW+D/2 having left limits, endowed with the topology of uniform convergence on compact
sets.

Theorem 1. Let X(-;n),n=1,2,... be a sequence of ZNWN+D2 yalued random processes with unit steps in each
coordinate and let X (-;n),n = 1,2, ... be the interlacing dynamics driven by X (-; n), n € N, respectively, with some
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initial conditions X (0; n) € G'H‘(N), n € N, which are independent of the increments of X (-; n), n € N. Suppose that
there exists a sequence {a, (-)},eN of continuous real-valued functions on [0, 00) and a sequence {b,},eN of positive
reals such that, as n — oo, one has b, — oo, the law of (X (-; n) — an(-)) /b, on D([0, 00), RN(NH)/Z) converges to
the law of a standard N (N + 1)/2 dimensional Brownian motion, and the law of (X (0; n) — a,(0))/b, converges to
some law W (0).

Then the law of (X (-; n) — a,(-))/b,, on D([0, 00), RN(N+1)/2y converges to the law of the process W with initial
condition W (0) as n — oo.

Remark 2. If one wants to speak about discrete time processes, then it suffices to extrapolate them to continuous time
processes with piecewise constant trajectories, to which one can apply Theorem 1.

Remark 3. The proof of Theorem 1 shows that the result of the theorem is universal in the following sense. Sup-
pose that X (-;n), n € N are such that the processes %n_“"() n € N converge in distribution to an arbitrary

C ([0, 00), RNWNED/2Y valyed process B as n — oo, where {a,(-)},eN is a sequence of continuous real-valued func-
tions on [0, 00) and {b,},eN is a sequence of positive reals such that b, — 0o as n — 00. Then, the laws of the
processes X('+n_a”('), n € N converge to the law of the image of B under the continuum Skorokhod map WX (see

Section 3.2 below for the definition of the latter) in D([0, 00), RNNV+D/2y g6 5 — 0.
Remark 4. Theorem 1 for a special choice of driving processes X (-; n) was conjectured in [17].

Remark 5. Theorem 1 is known to hold for certain projections of the process Y. Namely, in the literature one can find
proofs of the convergence towards the joint distribution of Wl.N ,i=1,..., N ([4] and [22] give explicit formulas for
the transition probabilities of both the prelimit and the limiting processes, then an application of Stirling’s formula
yields the convergence), the joint distribution of Wii, i =1,..., N and the joint distribution of Wf, i=1,...,N
([21] and [3] provide formulas for the transition probabilities of the prelimit processes, while [22] gives them for the
limiting process; the convergence of the former to the latter can be established via well-known techniques, see e.g. [6],
Section 7), as well as the distribution of W at any fixed moment of time (this again follows from the explicit formulas
for the relevant distributions given in [4] and [22]).

Using the well-known convergence of the standard Poisson process to the standard Brownian motion, we conclude
from Theorem 1 that the laws of the processes (Y (nt) — tn)/+/n, t > 0 converge in the limit # — oo to the law of the
process W, started from 0. Similarly, applying Theorem 1 to the interlacing dynamics of N(N + 1)/2 independent
simple random walks and using the convergence of the latter to standard Brownian motions, we prove the conjecture
in [17] on the convergence of the particle dynamics related to the shuffling algorithm for the domino tilings of the
Aztec diamond to the process W started from 0.

The proof of Theorem 1 is based on the following idea. The limit process W can be constructed inductively
using Skorokhod reflection maps in time-dependent intervals recently introduced in [9], applied to the independent
Brownian motions driving the particles. Moreover, the prelimit processes can be seen to be the images of the respective
driving processes X (-; n) under similar Skorokhod maps. Putting these facts together with the joint continuity of the
Skorokhod map in the driving path and the time-dependent boundaries, one obtains Theorem 1.

It is worth noting that regularity properties of Skorokhod maps in polyhedral domains with oblique directions of
reflection has been studied before in [13] and [10], where sufficient algebraic conditions for the continuity of the
Skorokhod map were established using the so-called reflection mapping technique. However, it seems that GT®) is
not one of the domains for which the regularity properties are known. For instance, the results of [13], Theorem 1, and
[10], Theorem 2.2, are restricted to the situation, where the number of constraints coincides with the dimension of the
state space of the unconstrained process. This is not the case here, with the number of constraints being N(N — 1)
and the dimension being N (N + 1) /2. Therefore, to the best of our knowledge the continuity of the Skorokhod map
in GT™Y), that we analyze here, is novel and might be of interest by itself (allowing for example to construct strong
solutions of stochastic differential equations with reflection on GTW).

There are two directions in which Theorem 1 might be generalized. First, it seems plausible that the condition
on the prelimit processes to have unit steps in Theorem 1 can be weakened. There are examples of the dynamics on
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Gelfand-Tsetlin patterns in the literature (for example, interlacing dynamics driven by sums of geometric random
variables as in [4,23], or the shuffling algorithm for boxed plane partitions as in [2,5,7]), for which the fixed time
distribution is known to converge to the “GUE-minors process.” Therefore, it is reasonable to expect that the laws
of the paths of these discrete processes also converge to the law of W. One might also want to study what happens
when the different components of the driving process have different asymptotic behavior, that is, when the sequences
{a, () }neN, {Pn}nen in Theorem 1 may also depend on the particles. Some particular results into this direction were
obtained in Section 7 of [6].

In addition, Theorem 1 allows to recover many properties of the process W (for example, the ones studied in [22])
from the corresponding properties of the discrete prelimit processes, which are sometimes easier to prove (see e.g.
[4]). For some more details in this direction, please see Remark 11 below.

It is worth noting that there is another natural way to construct a stochastic dynamics on GT™ which is based on
the Robinson—Schensted—Knuth correspondence, see [18,19]. This dynamics is driven by N random walks as opposed
to N(N + 1)/2 in our case. While the evolution itself is very much different from the one considered in the present
article due to strong correlations between components, the fixed time distributions (and also some other projections)
are similar and can be made the same by an appropriate choice of the driving processes.

The rest of the article is organized as follows. In Section 2 we introduce stochastic processes studied throughout
the paper, in Section 3 we explain the relation of these processes to the Skorohod reflection map, and in Section 4 we
prove Theorem 1.

2. Processes on interlacing particle configurations

In this section, we give rigorous definitions of the stochastic dynamics on interlacing particle configurations that
we study. To this end, let X (¢) := {Xl.] @®,j=1,...,N,i=1,...,j}, t =0 be a random process taking values in
ZNW+D/2 We impose the following regularity conditions on X:

1. The trajectories of X are cadlag, that is, for every ¢ > 0, the limits X (1—) :=limy4, X (s) and X (t+) := limy; X (s)
exist, and X (r) = X (1 +). ‘ _
2. Each coordinate X; has unit increments, that is, for every ¢ > 0, we have |X] (1) — X] (t—)| < 1.

Note that the regularity conditions imply, in particular, that on any time interval [0, T'], the trajectory of X has finitely
many points of discontinuity.

Given a regular process X, we construct the interlacing dynamics X (t), t > 0 driven by X and taking values in
GT™) as follows. The initial value X'(0) can be any GT™)-valued random variable. If X is constant on some time
interval [t1, 1], then so is X'. If a r > 0 is a point of discontinuity in X, then the value of X'(#) depends only on X (t—)
and X (t) — X (t—), and is given by the following sequential update. First, we define Xll (1), then Xl.z(t), i=1,2, then
2(1.3 (1),i=1,2,3, etc. To start with, we set

Xl =xa—)+ X[ (0) - X](t-);

in other words, the increments of the process X’ 11 coincide with those of X 11 Subsequently, once the values of Xij ®,
j=1,...,k—1,i=1,..., j are determined, we define Xik (t) foreachi =1, ..., k independently by the following
procedure, in which each type of update is performed only if the conditions for the previous types are not satisfied.

1. Ifi > 1 and XF(r—) = X*7'(r) — 1, then we say that particle X* is pushed by X} and set X¥(r) = X¥(r—) + 1.

2. Ifi <k and Xik(t—) = Xik_l(t), then we say that particle Xik is pushed by Xik_l and set Xik )= Xl.k(t—) —1.

3. If Xl].‘(t) — Xll.‘ (t—) =1, then we check whether i < k and Xik_l (1) = Xik(t—) + 1. If so, then we say that particle
XK is blocked by XF~! and set X¥(r) = X¥(1—); otherwise, we set XX (1) = X (t—) + 1.

4. If Xl{‘ (1) — Xl{‘ (t—) = —1, then we check whether i > 1 and /'\,’ik__ll (t) = Xik (t—). If so, then we say that particle Xik
is blocked by Xlk:]l and set Xik 1) = Xik (t—); otherwise, we set Xik 1) = Xik (t—)—1.

5. If X¥(t) — X¥(t—) = 0, then we set X (1) = X*(1-).
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The aboye definition can be also adapted to discrete-time processes. If X (¢), t =0, 1, 2, ... is such a process, then
we define X (), t > 0 by

X(1)=X@m) forn<t<n+1,n=0,1,2,... )

and let X(¢),t =0, 1, 2, ... be the restriction of the interlacing dynamics driven by X to integer times.
The following proposition enlists the properties of X which are immediate from the construction.

Proposition 6. X (1), 1 > 0 is a well-defined stochastic process taking values in GT™N). The paths of the process
X depend only on the increments of the driving process X, but not on its initial value X (0). Suppose that X has
independent increments, that is, for any T > 0, the process X (t) — X(T—), t > T is independent of the process
X()—X(0),0<t <T.Then X is a Markov process.

Examples.

1. If X is a family of N(N + 1)/2 independent standard Poisson processes, then X is the Markov process Y defined
in the Introduction.

2. If{EiJ @®:j=1,...,N,i=1,...,j,t=0,1,2,...} is an array of i.i.d. Bernoulli random variables with parame-
ter p and X l/ (1) = ZZ;}) &ij (s), then X gives the dynamics studied in [17] and [4], which is related to the shuffling
algorithm for sampling random domino tilings of the Aztec diamond.

Next we aim to introduce a continuous-space analogue of the above discrete processes. This process W was first
defined and studied in [22]. It takes values in the continuum version of GT™), which we denote by GTEN ). An element
of GTEN) is an array of reals xl.j, j=1,...,N,i=1,...,j satisfying the inequalities

. - .
Xy =xiT = x €)
The process W taking values in G’]TgN ) is defined level by level. For j = 1, we let Wll be a standard Brownian

motion. For j > 1, we define the component Wij as a standard Brownian motion (independent of those used in the

previous steps) reflected on the trajectories of Wl.j:l] and Wl.j ~! In other words,
W/ () =B/ )+ 4] ()= 4] (), ©)

where Bl.] is a new standard Brownian motion, A{ is the local time accumulated at zero by Wij - Wi]:ll and A{ is

the local time accumulated at zero by Wij - Wl:j . In particular, W/'." and Wi/ are reflected on only one trajectory. We
can start W from any deterministic or random initial condition with the only restriction being that W (0) belongs to
GT™) with probability 1. For more details, please see [22], Section 2, and [22], Section 4.

Properties. As shown in [22], the process W started from 0 possesses certain interesting properties. In particular, the
projection WiN ,i=1,..., N evolves according to the Dyson’s Brownian motion of dimension N. Also, for any fixed
t, the distribution of W (t) is given by the distribution of the eigenvalues of corners of an N x N Gaussian Hermitian
matrix (see [16,20]).

Another intriguing property is the following Markovity: Fixan N e Nand 0 <t] <t < --- <ty and consider the
process Z which is defined to coincide with the R¥-valued process (Wik: i=1,...,k) on the time interval [ty_1, t,)
(here, we use the convention ty = 0). Then the process Z(t), 0 <t <ty is Markovian and its transitional probabilities
can be given explicitly, see [22], proof of Proposition 6, and also [4], Proposition 2.5, for a similar statement in
discrete settings.
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3. Skorokhod maps

The proof of our main result relies on the observation that the limiting process W is given by the image of the vector
of driving Brownian motions, started in W (0), under an appropriate Skorokhod reflection map, whereas the prelimit
processes X (-;n), n € N are given by images of the driving processes X (-;n), n € N, started in X (0; n), n € N,
respectively, under slightly modified Skorokhod maps. Our construction relies on [9], Theorem 2.6, which we state in
the following proposition for the convenience of the reader.

Proposition 7. Let I, r be two right-continuous functions with left limits on [0, 00) taking values in [—00, 00) and
(—o00, o], respectively. Suppose further that 1(t) <r(t), t > 0. Then, for every right-continuous function  with left
limits on [0, 00) taking values in R, there exists a unique pair of functions ¢, n in the same space satisfying

1. Foreveryt €[0,00), () =y (@) +n(t) €[l®),r(@)];
2. Forevery() <s <t < 00,

n@) —n(s)=0 o) <r)foralluc(s,t], ()

n@)—n(s) <0 o) >Iu)foralluc(s,t]; (6)
3. Forevery () <t < oo,

n@)—nt—=)=0 ife@) <r(), (N

n)—nit—=) <0 ife@) > 1), ®)

where n(0—) is to be interpreted as 0.

Moreover, the map I', which sends the triple (1, r, V) to the function ¢ is jointly continuous with respect to the topology
of uniform convergence on compact sets.

We will refer to I' (I, r, -) as the extended Skorokhod map in the time-dependent interval [/(¢), r(¢)], t > 0. It will not
be important in the following, but it is worth mentioning that the map I can be given explicitly (see [9], Theorem 2.6).

3.1. Skorokhod maps for the prelimit processes

Since the definition of X'(-; n) does not depend on the initial value X (0; n) we may assume that X' (0; n) = X (0; n).
In this subsection we show that in this case each of the prelimit processes X'(-; n), n € N can be constructed as the
image of the vector of driving processes under a deterministic map, which we will refer to as the discrete Skorokhod
map.

In our construction we fix an n € N and proceed by induction over the number of levels N. For N = 1, we set
.)E'(~; n)=X(;n)=X(-;n). For N > 2, we may assume that the process /f(-; n) with (N — 1) levels, with initial
condition being the restriction of X'(0; n) to the first (N — 1) levels, has already been constructed. We fix a path of
this process and will construct the corresponding paths of the particles on level N.

We consider first an 1 <i < N and define .JEI.N(~; n) as the image of XlN(~; n), started in XiN (0; n), under the
extended Skorokhod map in the time-dependent interval

[XN M), 8N Yy — 1], 120 )

in the sense of Proposition 7 above. Next, let i = 1. In this case, we define )EIN (-; n) as the image of X f/ (-; n), started
in X IN (0; n), under the extended Skorokhod map in the time-dependent interval

(=00, XY Mt;my—1], >0 (10)

in the sense of Proposition 7. Similarly, for i = N, we define /'\?]{,V(-; n) as the image of X%(-; n), started in X/\Y 0; n),
under the extended Skorokhod map in the time-dependent interval

[X) ") (t:n),00), 120 (11)
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in the sense of Proposition 7. This finishes the construction.

We remark at this point that the paths of the processes X(-in),n e Nare given by images of the paths of the driving
processes X (-; n), n € N, started in X(0; n), n € N, respectively, under a deterministic map @SK depending only on
N (and not on n):

X(in) =@ (X(5n), neN. (12)

We will refer to @5K as the discrete Skorokhod map. Finally, for each n € N, we define )7( n) as the process con-
structed from M by employing the discrete Skorokhod map in the rescaled coordinates; that is, repeating the
procedure above, but rescaling all initial conditions, processes involved and the constant 1 in (9), (10) according to
the change of coordinates

— t
[0, 00) x ZNNHD/2 10, 00) x RNNFD2 (4 1y s (z, me> (13)
n

The following proposition shows that X'(-; n), n € N are in fact the processes defined in Theorem 1, and that Y(-; n),
n € N coincide with the corresponding rescaled processes.

Proposition 8. Suppose that the processes X(;n), n € Nand X(-;n), n € N are constructed by using the same
driving processes X (-;n), n € N. Then,

X(;n)=X(;n), neN, (14)
j(.;n)ZW’ neN (15)

with probability 1.

Proof. Fix an n € N. We start with the proof of (14) for that n and proceed by induction over the number of levels N.
For N = 1, the statement (14) follows directly from the definition of X (-;n). Now, let N > 2 and suppose that (14)
holds for all N’ < N. Then, the paths of the particles on the first (N — 1) levels of X (-; n) must coincide with the
paths of the particles on the first (N — 1) levels of X'(-; n). Now, consider the trajectories of the particles on the Nth
level in the two processes. If the trajectories coincide up to some time 71, then they clearly coincide up to time t, > #;
as long as no particles are pushed or blocked in X'(-; n) in the time interval [z1, t>].

In case that a particle on level N in X'(-; n) is pushed, the trajectory of the pushing particle must have a jump of size
1 at the moment of the push and the other particle is pushed accordingly. The definitions of ®5¥ and of the extended
Skorokhod map in a time-dependent interval incorporated in @SK ghow that the value of X (;n) = ®SK(X (-; n)) after
the push must coincide with the value of X'(-; n) after the push.

Similarly, when a particle on level N in X'(-; n) is blocked, the blocking particle must be at distance 1 from the
blocked particle at the moment, when it blocks the other particle, and the trajectory of the component in X (-; n)
driving the blocked particle must have a jump of size 1 at the same moment. By the definitions of @K and the
extended Skorokhod map in a time-dependent interval, the value of X (;n) = &3K(X (-1 n)) after a particle is blocked
must coincide with the value of X (-; n) at the same moment of time.

The statement (15) can be shown by arguing as in the proof of the statement (14), but working in the coordinates
obtained by the rescaling (13). ]

3.2. Skorokhod map for the limiting process

In this subsection we will employ Proposition 7 to show that the process W can be viewed as the image of the vector
of driving Brownian motions, started in W (0), under a deterministic map, which we will refer to as the continuum

Skorokhod map. To this end, we let B := {Bl.j, j=1,....,N,i=1,..., j} be the collection of independent standard

Brownian motions driving the process W and will construct an auxilliary GTEN )-valued process W on the same
probability space, which a posteriori will turn out to coincide with W.
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The construction proceeds by induction over the number of levels N. For N = 1, we set W = Bl1 = W.For N > 2,
we may assume that the paths of the particles on the first (N — 1) levels of the process W, with initial condition being
the restriction of W (0) to the first (N — 1) levels, have already been constructed. Then, for 1 <i < N, we define
the path of the particle WiN as the image of the driving Brownian motion BiN , started in Wl.N (0), under the extended
Skorokhod map in the time-dependent interval

[(WNT'o, W], =0 (16)

in the sense of Proposition 7. For i = 1, we define the path of the particle WlN as the image of the driving Brownian
motion va , started in WlN (0), under the extended Skorokhod map in the time-dependent interval

(oo, WN )], 120 (17)

defined as in Proposition 7. Finally, for i = N, we define the path of the particle Wll\\,] as the image of the driving
Brownian motion B /]\\,’ , started in W/{,V (0), under the extended Skorokhod map in the time-dependent interval

(Wi (0),00), 120 (18)
in the sense of Proposition 7.
We note that the process W is given by the image of the Brownian motion B, started in W (0), under a deterministic
map ¥SK:
W =w5K(B). (19)

We will refer to WS as the continuum Skorokhod map. The following proposition shows that W coincides with W.

Proposition 9. Let the processes W and W be defined on the same probability space and be driven by the same
collection B of independent standard Brownian motions. Then, with probability 1:

W) =W (@) forallt>0. (20)

Proof. We proceed by induction over the number of levels N. For N = 1, the statement of the proposition follows
directly from the definition of W. Now, consider an N > 2 and assume that the proposition holds for all N "< N.
Since the paths of the particles on the first (N — 1) levels in W and W coincide with the paths of the particles in the

respective processes with (N — 1) levels, we have Wl.] = Wi] forall j=1,....,N—1,i=1,..., j with probability 1.
Now, fix an 1 <i < N and consider the particle WiN on the Nth level in W and the corresponding particle WiN
in W. The equation (4), the fact that the local time processes AIN , /va are non-decreasing and their properties

o
N
/0 I{W,-N(t)—wjijl(z»o; dA; (1) =0,
> N
/0 1{WiN—1(t)_WiN(t)>0} dAl (t) :O
show that Wl.N solves the extended Skorokhod problem in the time-dependent interval
[Wﬁf} (), W,'Nq )] = [Wﬁ]l(t), WZ.N*I(t)], t>0 o

for the Brownian motion BiN , started in WiN (0). Since WiN solves the same extended Skorokhod problem by defini-

tion, the uniqueness statement of Proposition 7 implies that it must hold WiN = Wl.N with probability 1. In the cases
that i =1 or i = N, one can argue in the same manner, invoking the uniqueness statement of Proposition 7 for the
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extended Skorokhod maps in the time-dependent intervals
(=00, W1 (0)] = (=00, W], 120, (22)
(WY (), 00) = [WN | (1), 00), 120, (23)

respectively, to conclude that WlN = WlN and W}VV = WII\,V almost surely. This finishes the proof of the proposition. [

Remark 10. Although this will not play a role in the following, we remark that due to Proposition 9 and the findings
in [22] the particles on the same level in W never collide after time 0. Thus, if at time 0 no two of these particles are
at the same location, [9], Corollary 2.4, shows that the extended Skorokhod maps used in the construction of W are
in fact regular Skorokhod maps in the sense of [9], Definition 2.1.

4. Limiting procedure

We now come to the proof of the main result of the paper, stating that the process W serves as a universal limiting
object for discrete processes with block/push interactions.

Proof of Theorem 1. We proceed by induction over the number of levels N. For N = 1, there is nothing to show.
We now let N > 2 be fixed and assume that the theorem holds for all N’ < N. Since the first (N — 1) levels of
the processes %"_“"(), n € N evolve as the corresponding processes with (N — 1) levels, we conclude that their
laws converge to the law of {Wij: j=1,...,N—1,i=1,...,j}on D([0, c0), R(N_I)N/z), started according to the
restriction of W (0) to the first (N — 1) levels. By virtue of the Skorokhod Representation Theorem in the form of [12],
Theorem 3.1.8, and the fact that the limit processes are almost surely continuous, one can define the processes on the
first (N — 1) levels of X (-; n) together with the processes XlN(-; n),i=1,..., N, started in XiN(O; n),i=1,...,N,
respectively, for all values of n € N on the same probability space such that

X (n) = an() oo

; W/, j=1... N—1li=1,..,}j (24)
n
XN N) —ay(-
FGN) Zan() nog BN, i=1,....N (25)
by
almost surely, where {Wij: j=1,...,.N—1,i=1,...,j}lisa GTEN*I)-Valued process of the law described in
Theorem 1 and (BN ,..., B ,1\\,] ) is an NV-dimensional standard Brownian motion started in ( WIN ,..., WII\\,] 0)).

Now, recall from Proposition 8 and the definition of the processes 37(.; n), n € N that the paths of the processes

Ny . N(-ny— :
W, i=1,...,N,n e N are given by the images of the driving processes %:a”(), i=1,...,N,neN
under the extended Skorokhod maps in the appropriate time-dependent intervals (we will refer to the latter as Il.N (n)).
Moreover, from Proposition 9 and the definition of the process W we know that the paths of the processes W,.N ,
i=1,...,N are given by the images of the driving Brownian motions BY, ..., BJI\\,’ under the extended Skorokhod
maps in the appropriate time-dependent intervals (we will refer to the latter as / l.N (00)).

It now suffices to observe that, for all 1 <i < N, the left (resp. right) boundaries of the time-dependent intervals
Il.N (n) converge in the limit as n — oo to the left (resp. right) boundaries of the time-dependent intervals I,.N (00) in
D([0, 00), R) with probability 1. We remark that here the assumption b,, — 0o as n — oo is used. By applying the

A . . AN (n)—an () .
continuity statement in Proposition 7 we conclude that the paths of the processes %, i=1,..., N converge
in the limit as n — oo to the paths of the processes Wl.N ,i=1,..., N almost surely in D([0, c0), R). This finishes
the proof. ([

Remark 11. Theorem 1 shows that one can reprove the properties of the process W and its projections stated at the
end of Section 2 by using the corresponding properties of the process Y and taking limits. Indeed, one can reexpress
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the transition probabilities of the process W as limits of the corresponding transition probabilities of the appropriately
rescaled versions of the process Y .
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