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Discussion of “Statistical Modeling of
Spatial Extremes” by A. C. Davison,
S. A. Padoan and M. Ribatet
D. Cooley and S. R. Sain

We congratulate the authors for their overview paper
discussing modeling techniques for spatial extremes.
There is great interest in spatial extreme data in the at-
mospheric science community, as the data is inherently
spatial and it is recognized that extreme weather events
often have the largest economic and human impacts.
In order to adequately assess the risk of potential fu-
ture extreme events, there is a need to know how the
characteristics of phenomena such as precipitation or
temperature could be altered due to climate change.

Because of the high interest level in the atmospheric
science and (more broadly) the geoscience commu-
nities, it is imperative for the statistics community
to develop methodologies which appropriately answer
the questions associated with spatial extreme data.
Davison, Padoan and Ribatet (2012) provide a compre-
hensive overview of existing techniques that can serve
as a useful starting point for statisticians entering the
field. That the paper is written as a case study helps to
illustrate the advantages and disadvantages of the vari-
ous methods. We hope that this Swiss rainfall data will
serve as a test set by which future methodologies can
be evaluated.

The authors analyze data which are annual max-
ima. This is natural from the classical extreme value
theory point of view whose fundamental result estab-
lishes the limiting distribution of Y = (

∨n
i=1 X1i , . . . ,∨n

i=1 XDi)
T to be in the family of the multivariate

max-stable distributions. In practice, modeling vectors
of annual maxima seems less than ideal, and it is not
clear how much dependence information is lost by dis-
carding the coincident data. Scientists in other disci-
plines can be uncomfortable with the idea of construct-
ing data vectors of events which most often occur on
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different days. We are aware that there is current work
to extend spatial extremes work to deal with threshold
exceedances, and we look forward to that work appear-
ing in the literature.

Davison, Padoan and Ribatet (2012) divide the spa-
tial approaches into three categories: latent variable
models, copulas, and max-stable process models. In
Section 7 they do a very nice job of detailing the
strengths and weaknesses of the three approaches.
However, it seems that the article does not make clear
enough that the aim of the latent variable approach is
fundamentally different than the aim of a copula or
max-stable process model. As the authors state in Sec-
tions 2.2 and 2.3, current modeling of multivariate (or
spatial) extremes requires two tasks: (1) the marginals
must be estimated and transformed to something stan-
dard (e.g., unit Fréchet) so that (2) the tail dependence
in the data can be modeled. The latent variable model is
a method for characterizing how the marginal distribu-
tion varies over space, that is, task 1. In contrast, both
copula models and existing max-stable process models
explicitly model the tail dependence in the data once
the marginals are known, that is, task 2. We refer to the
dependence remaining after the marginals have been
accounted for as “residual dependence,” as Sang and
Gelfand (2010) described the random variables after
marginal transformation as “standardized residuals.”

Davison, Padoan and Ribatet (2012) are correct to
point out (Figure 4) that using a latent variable model
is inappropriate for applications where the joint be-
havior of the random vector is required. However,
there are applications which aim only to model the
marginal behavior. There is a long history of produc-
ing return level maps such as those shown in Figure 3
of the manuscript. For instance, the recent effort to
update the precipitation frequency atlases for the US
(Bonnin et al., 2004a, 2004b) aimed only to charac-
terize the marginal distribution’s tail over the study re-
gion. Bonnin et al. (2004a, 2004b) employed a regional
frequency analysis (Dalrymple, 1960; Hosking and
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Wallis, 1997), approach which, like the latent variable
model approach, aims to borrow strength across sites
when estimating marginal parameters. As Davison,
Padoan and Ribatet (2012) clearly show, explicitly
modeling residual dependence requires considerable
effort, and when only the marginal effects need to be
described, we feel it can be appropriate to ignore the
residual dependence so long as one recognizes the lim-
ited scope of the questions that such an analysis can
answer.

In situations where the joint behavior of multi-
ple locations must be described, then one must ex-
plicitly model the residual dependence. As Davison,
Padoan and Ribatet (2012) show, dependence mod-
els not specifically designed for extremes may be
inadequate to capture tail dependence. However, mod-
els such as the extremal copulas or max-stable pro-
cesses do not easily lend themselves to current atmo-
spheric science applications with hundreds, thousands,
or tens-of-thousands of locations. There are obvious
avenues to explore toward adapting the pairwise like-
lihood methods for large spatial data sets, but, to date,
pairwise likelihood methods have only been applied to
applications similar to the one in Davison, Padoan and
Ribatet (2012) with roughly 50 locations. We imag-
ine scaling the methods to the size of current appli-
cations will be nontrivial, and perhaps new inference
procedures or more computationally-feasible extremes
dependence models will need to be developed. Until
appropriate extremes techniques are available, people
will continue to be tempted to apply high-dimensional
models developed to describe nonextreme data (e.g.,
a Gaussian copula) to model tail dependence.

Most of the spatial extremes work to date has been
primarily descriptive in nature. Such analyses are use-
ful in assessing risk (i.e., the probability of an ex-
treme event), but do not help to explain the underlying
causes of extreme events. There is a desire in the at-
mospheric sciences to move beyond descriptive analy-
ses and toward analyses which enhance understanding
of the processes which lead to extreme events. For ex-
ample, Sillmann et al. (2011) establish a link between
extreme cold temperatures in Europe and a blocking
phenomenon in the North Atlantic, Maraun, Osborn
and Rust (2011) link extreme precipitation in Europe to
large-scale airflow covariates, and Weller, Cooley and
Sain (2012) link extreme precipitation on the Pacific
coast of North America to surface pressure patterns.

Since it is generally believed that climate models are
better at representing processes at large-scales, estab-
lishing links between extreme events and large-scale
phenomena enable one to better conjecture how the na-
ture of extreme events will change with the climate.
While none of the analyses cited above involved exten-
sive spatial modeling of extremes, it is foreseeable that
science will move in this direction.

Finally, undertaking a pairwise likelihood fitting
of a max-stable process model is challenging and
would be beyond the capabilities of most geoscien-
tists. The authors are to be commended for developing
the SpatialExtremes (Ribatet, 2011) package in
R which enables the general scientific community to
utilize these methods.
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