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Abstract: Partially identified models typically involve set identification
rather than point identification. That is, the distribution of observables
is consistent with a set of values for the target parameter, rather than
a single value. Interval estimation procedures therefore behave differently
than for identified models. For instance, a Bayesian credible set arising
from a proper prior distribution will tend to a non-degenerate set as the
sample size goes to infinity. A natural question arising is for what parameter
values does the limit of the Bayesian credible interval fail to cover its target?
Intuition suggests this would arise for parameter values which are not very
consistent with the prior distribution. The aim of this paper is to quantify
this intuition.
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1. Introduction

Limitations in the form of discrepancies between ideal data and available data
can lead to partial identification, such that learning the distribution of observ-
able variables only reveals a set of possible values for the target parameter, not
a single value. The set of target parameter values consistent with the distri-
butional law of the observables is often termed the identification region. The
concept of partial identification is surveyed by Manski [16], with recent litera-
ture on interval estimation in partially identified models including Imbens and
Manski [12], Vansteelandt et al. [22], Romano and Shaikh [21], and Zhang [23].
An interesting distinction arises in this literature. In frequentist terms, interval
estimators can be designed to have at least nominal probability of containing
the true value of the target, or to have at least nominal probability of containing
the entire identification region.

From the Bayesian perspective, starting with a proper prior distribution over
all parameters one can interpret a posterior credible set as being likely to contain
the true value of the target, given the combination of observed data plus prior be-
liefs. Work considering Bayesian interval estimators in partially identified mod-
els includes Moon and Schorfheide [17], Liao and Jiang [15], and Gustafson and
Greenland [11]. One particular feature distinguishing the Bayesian approach is
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that the large-sample limit of the posterior distribution will generally assign
more weight to some values in the identification region than others. The ex-
tent to which learning the shape of this distribution is inferentially useful, over
and above learning the identification region, is taken up in Gustafson [9]. As
emphasized in Gustafson and Greenland [11], the usual calibration property of
Bayesian procedures is unaffected by the lack of identification. That is, the av-
erage frequentist coverage of the Bayesian credible set, taken with respect to
the prior distribution over the parameter space, equals the nominal coverage.
In contrast, approaches such as that of Vansteelandt et al. [22] aim to achieve
nominal coverage at ‘worst-case’ spots in the parameter space, with better than
nominal coverage, paid for via extra length, achieved elsewhere.

In the partially identified context, interval estimators generally, and Bayesian
credible sets specifically, will tend to a non-degenerate set as the sample size
increases. Toward a full understanding of Bayesian credible sets in partially
identified contexts, a natural question to ask is: when does the limiting set
contain its target? More particularly, the parameter space can be cleaved into
parameter values under which the limiting credible set does and doesn’t contain
its target. Initial intuition suggests that the choice of prior distribution should
play a role in this regard. Since the posterior density will be pushed upward
(downward) in regions where the prior density is high (low), we might look to
parameter values in the tails of the prior distribution as values under which
generated datasets would produce credible intervals missing their targets. As
well, the values of those parameter components which are less informed by the
data might be suspected to play a bigger role in whether or not the limiting
credible interval contains its target. Through theory and examples, this paper
aims to quantify these intuitions.

2. Methodology

Let π(θ,D) denote the joint density of a parameter vector θ ∈ Θ and observable
data D, as arises as the product of a proper prior density π(θ) and a statis-
tical model density π(D|θ). Assume that θ comprises a ‘scientifically intuitive’
parameterization of the model, such that investigators would feel comfortable
specifying a prior distribution for θ, as opposed to specifying a prior in some
other parameterization. Also assume that the primary inferential interest lies
in some scalar aspect of θ, denoted as the estimand ψ = g(θ). As a point to
bear in mind for later, we presume that the proper prior for θ is elicited with
regard to the scientific interpretations of the elements of θ only, and without re-
gard to whether or not the model π(D|θ) is identified. For instance, imagine an
investigator must commit to a prior on the scientific quantities at hand before
finding out whether he will receive (i), a large budget for data acquisition which
permits gold-standard measurements and consequently an identified model, or
(ii), a small budget which necessitates cheaper proxy measurements giving rise
to only a partially identified model.

When useful, we writeDn to emphasize observable data comprised of n obser-
vations which are independent and identically distributed given θ. To consider
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interval estimation, let I
(α)
π (Dn) denote a credible set for ψ of some type, having

posterior probability 1 − α of containing ψ based on prior π. The two primary
examples of ‘types’ would be equal-tailed intervals and highest posterior density
(HPD) sets. We do not consider ‘pathological’ choices of credible sets, such as
sets which purposefully exclude values in the ‘middle’ of the posterior distribu-
tion. This proviso makes it more meaningful to discuss credible interval failure
arising when true parameter values lie in the tail of the prior distribution.

The immutable calibration property of Bayesian interval estimation is as
follows. With respect to the joint distribution π on (θ,Dn),

prπ

{

ψ ∈ I(α)π (Dn)
}

= 1− α. (2.1)

This follows immediately upon writing the probability on the left-hand side as
an iterated expectation, with the inner expectation taken with respect to the
posterior distribution of (θ|Dn). We can interpret (2.1) in the following manner.
With respect to a sequence of studies arising under different conditions (i.e.,
a different ‘true value’ of θ each time), the 1 − α credible interval contains its
target in proportion 1 − α of the studies, under a strong proviso. Particularly,
(2.1) assumes the distribution generating the sequence of true θ values coincides
with the distribution used by investigators as a prior distribution. Put another
way, if ‘nature’s prior’ and the investigators’ prior match, then the investigators’
interval estimation procedure is well calibrated. It is worth reinforcing that (2.1)
is exact for any n, and does not require model identification.

Of course identified and correctly specified parametric models yield nicely
behaved credible intervals, under weak regularity conditions. As n increases,

I
(α)
π (Dn) converges to the correct value of ψ, with the interval width behaving as
n−1/2. On the other hand, partially identified models typically have the feature
that the posterior distribution on the target of inference does not shrink to a
point-mass as the sample size grows. Rather, for a fixed underlying value of θ,
the distribution of (ψ|Dn) will converge to a non-degenerate distribution as n

increases. Commensurately, I
(α)
π (Dn) will converge to a non-degenerate set as

n→ ∞. Emphasizing that this limit depends on the underlying value of θ which

spawns the data sequence Dn, we denote the limiting credible set as J
(α)
π (θ).

Whereas model identification plus weak regularity conditions imply that
Bayesian credible intervals have approximately correct frequentist coverage for
large n, this cannot apply in the partially identified case. A non-degenerate

J
(α)
π (θ) either contains ψ = g(θ) or it doesn’t. Consequently, for a given θ value

the large-n limit of the frequentist coverage of the Bayesian interval estimator
is either 0% or 100%. On the other hand, from (2.1) it follows that

prπ

{

ψ ∈ J (α)
π (θ)

}

= 1− α. (2.2)

This is simply the limiting version of (2.1). Of course now the event in question
involves parameters only, so that the probability is with respect to the prior dis-
tribution on θ. We can interpret (2.2) as saying that the subset of the parameter
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space for which the limiting frequentist coverage of the Bayesian interval is zero
must have probability mass α with respect to the prior π.

Let B
(α)
π = {θ : g(θ) /∈ J

(α)
π (θ)} be the ‘bad’ subset of the parameter space

on which the limiting credible interval fails to cover its target. That is, for given

prior π and choice of α, B
(α)
π is the set of all θ values such that if data were

generated under θ, then the credible interval, in the large-sample limit, would
fail to contain its target. Equivalently, this is the subset of parameter values
under which the limiting frequentist coverage of the credible interval is zero.

As stated above, it is immediate from (2.2) that B
(α)
π is small in the sense of

having probability α under the joint prior π across the parameter space. What

this paper investigates, however, is where B
(α)
π lies in the parameter space. A

first intuition is that the bad set will lie in the tails of the prior distribution, i.e.,
failure-to-cover will arise when the true parameter values are not very compat-
ible with the prior distribution. A second thought might be that compatibility
of prior and true values may be more important for parameters that aren’t well
informed by the data. The aim of this paper is to make these ideas more precise.

As emphasized by a number of authors (Barankin [1], Kadane [14], Dawid
[4], Poirier [19], Gustafson [7]), the posterior structure in many partially identi-
fied models can be laid bare upon reparameterizing from θ to (φ, λ) such that (i)
Dn ⊥ λ|φ, and (ii) (Dn|φ) comprises a ‘regular’ model admitting root-n consis-
tent estimation of φ. Barankin [1] calls φ a sufficient parameter, and emphasizes
the need to choose a ‘minimal sufficient’ φ, i.e., so that the distribution of the
data is not completely determined by a non-invertible function of φ. Gustafson
[7] calls (φ, λ) a transparent parameterization. Informally, the key feature is that
φ appears in the likelihood function, while λ does not. The limiting posterior dis-
tribution of φ decomposes into a point-mass at the true value of φ combined with
the prior conditional distribution of (λ|φ). One can then determine the induced
limiting posterior distribution on ψ = g(θ(φ)). When useful we will use π∗() to
distinguish the prior density for (φ, λ) from the prior density π() for θ, i.e.,

π∗(φ, λ) = π(θ(φ, λ))

∣

∣

∣

∣

∂θ

∂φ, λ

∣

∣

∣

∣

. (2.3)

The limiting posterior density for λ is immediately obtained, up to a constant of
proportionality, by viewing (2.3) as a function of λ with φ fixed at the true value.

As a motivating example in which a natural initial parameterization is al-
ready transparent, say that interest is focussed on λ = E(Y ), where λ ∈ (0, 2).
However, due to interval censoring, YL rather than Y is observed, where YL ≤
Y ≤ YL+1, with probability one. Moreover, say the distribution of YL is known
up to its mean φ = E(YL), and it is also known a priori that 0 < φ < 1. Clearly
θ = (φ, λ) comprises a transparent parameterization, with ψ = g(θ) = λ being
the inferential target. An identification region of the form λ ∈ (φ, φ+1) results.
Moreover, say any marginal prior with full support π(φ) is chosen, along with
the conditional prior (λ|φ) ∼ Unif(φ, φ + 1). Then the limit of the posterior
distribution on the interest parameter λ is a uniform distribution on (φ0, φ0+1),

where φ0 is the true value of φ. Immediately then B
(α)
π is the subset of the (φ, λ)
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Fig 1. The failure-to-cover set B
(0.2)
π in Example 1. The left panel gives the case of a marginal

prior π(φ) with full support, along with (λ|φ) ∼ Unif(φ, φ+1). The right panel gives the case

of the prior λ ∼ Unif(0, 2), (φ|λ) ∼ Unif[max(λ−1, 0),min(λ, 1)]. In each case, B
(0.2)
π appears

in black, while its complement is in grey.

parameter space on which λ ∈ (φ, φ + α/2) or λ ∈ (φ + 1 − α/2, φ+ 1). In the
case of α = 0.2, this is displayed graphically in the left panel of Figure 1.

In Section 3 we pursue transparent parameterizations as a route to determin-

ing limiting credible intervals, and hence the bad set B
(α)
π , in several examples.

First, however, we point out a general result.

Theorem 2.1. Let h(θ) be any identified quantity, i.e., with respect to a trans-
parent parameterization, h(θ(φ, λ)) does not vary with λ. Then, for any value
of h0 in the support of the prior induced on h(θ), we have

prπ(θ ∈ B(α)
π |h(θ) = h0) = α. (2.4)

That is, with respect to the conditional prior distribution of (θ|h(θ) = h0), the
failure-to-cover subset of the parameter space has probability α.

Proof. For a given h0, let B
(α)
0 be the set of θ values for which the limiting

1 − α credible interval arising from the prior π(θ|h(θ) = h0) fails to cover the

target. Now note that for any θ satisfying h(θ) = h0, θ ∈ B
(α)
0 ⇐⇒ θ ∈ B

(α)
π .

This happens because for data generation under such a θ, the same limiting
credible interval for ψ arises under π(θ) as under π(θ|h(θ) = h0). That is,
since asymptotically the data already reveal the value of φ, correct a priori
conditioning on some function of φ will have no effect whatsoever in the large-n
limit. Thus

prπ

(

θ ∈ B(α)
π |h(θ) = h0

)

= prπ

(

θ ∈ B
(α)
0 |h(θ) = h0

)

= α

as desired, where the second equality follows directly from (2.2) applied with
the prior π(θ|h(θ) = h0).

The theorem says that the performance of the limiting credible interval can-
not be driven exclusively by the compatibility of identified parameters and their
priors. Regardless of whether h0 is an a priori likely or unlikely value of h(θ),



2112 P. Gustafson

(2.4) dictates that the intersection of the failure-set B
(α)
π with {θ : h(θ) = h0}

has ‘size’ α, where size is taken as probability under the prior distribution of
{θ|h(θ) = h0}. A consequence of this, crudely stated, is that coverage can never
be guaranteed to occur solely because an identified quantity happens to lie near
its prior mode, nor can failure-to-cover be guaranteed just because an identified
quantity lies in the extreme tails of its prior. This provides a sense in which
the values of unidentified quantities must play a role in determining whether
coverage occurs.

3. Examples

3.1. Interval censoring, continued

Consider the interval censoring problem described in the previous section. We
have already seen the form of the failure-to-cover set in this problem, for a prior
under which φ has full support while (λ|φ) is uniformly distributed. We now
examine the failure-to-cover set under a different prior specification, namely a
uniform marginal prior for λ and a uniform conditional prior for (φ|λ). More
specifically, λ ∼ Unif(0, 2), (φ|λ) ∼ Unif[max(λ − 1, 0),min(λ, 1)], results in a
joint prior with full support on the (φ, λ) parameter space. We then have the
limiting posterior distribution governed by the prior conditional density

π(λ|φ) ∝ 1

min(λ, 1)−max(λ − 1, 0)
I(φ,φ+1)(λ)

∝
{

I(0,1)(λ)

2− λ
+
I(1,2)(λ)

λ

}

I(φ,φ+1)(λ).

Since this is readily integrated analytically, the α/2 and 1 − α/2 quantiles of
π(λ|φ) are easily obtained for a given φ, and they constitute the limit of the
1 − α equal-tailed credible interval. Values of (φ, λ) for which λ falls outside

the interval constitute B
(α)
π . This ‘bad set,’ as illustrated in the right panel of

Figure 1, is seen to differ from that arising from the earlier choice of prior.
Particularly the top (bottom) failure band widens (narrows) as φ increases. We
also note that the Figure is consistent with Theorem 2.1, with different φ values
giving rise to the same chance of failure to cover.

3.2. Prevalence estimation with nonignorable missingness

As a second example where the failure-to-cover set is readily characterized,
consider estimating the prevalence of a binary trait in the face of nonignorable
missingness. We seek to infer p = Pr(X = 1) based on iid observations of
(R,XR), i.e., R is a binary variable with R = 0 indicating missingness ofX . The
unknown parameters are θ = (p, q0, q1), where qi = Pr(R = 1|X = i), for i =
0, 1, while ψ = g(θ) = p is the inferential target. A transparent parameterization
is obtained by taking φ = (s, t), λ = p, where s = Pr(R = 1) = (1 − p)q0 + pq1



Bayesian intervals in partially identified models 2113

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

q0

q
1

p == 0.025

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

q0

q
1

p == 0.15

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

q0

q
1

p == 0.4

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

q0

q
1

p == 0.6

Fig 2. The failure-to-cover set B
(0.1)
π in Example 2. For select values of the target prevalence

p, the values of (q0, q1) for which failure-to-cover occurs are shaded.

and t = Pr(X = 1|R = 1) = pq1/{(1− p)q0 + pq1}. Immediately we have

π∗(p|s, t) ∝ π(θ(p, s, t))
1

p(1 − p)
I{st < p < st+ (1− s)}. (3.1)

For the sake of a very tractable illustration, say that the prior π on θ is
chosen such that (p, q0, q1) are mutually independent, with p ∼ Beta(2, 2) and
qi ∼ Unif(0, 1). This can be interpreted as a ‘flat’ prior on the parameters
governing the (R,X) association, along with a prior on the target prevalence
which slightly downweights lower/higher values. Under this specification, (3.1)
specializes to a limiting posterior distribution on p which is uniform on the
identification interval (st, st+ (1 − s)). Thus for an equal-tailed 1 − α credible
interval, failure-to-cover occurs if p < st+(α/2)(1−s) or p > st+(1−α/2)(1−s).
Reexpressed in terms of the original parameterization θ, we have

B(α)
π = {θ : q1 > 1− {α/(2− α)}{(1− p)/p}(1− q0)} ∪

{θ : q1 < 1− {(2− α)/α}){(1 − p)/p}(1− q0)}.

For fixed p then, the failure-to-cover region is described by linear boundaries in
the (q0, q1) plane. This is depicted in Figure 2 for a few values of p. We see that
an extreme value of p can lead to failure-to-cover for a ‘majority’ of q values.
For a mid-range value of p, however, either q0 or q1 must be near one for failure
to arise, with the requirement for nearness weaker if the other q is close to zero.
For this problem then, we have a fairly simple and full understanding of the
way in which θ = (p, q0, q1) must be extreme in order for the credible interval
to miss the target.
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Fig 3. The failure-to-cover set B
(0.1)
π when the prior distribution on the target is changed to

p ∼ Beta(2, 8).

This example also lends itself to investigation of how the failure-to-cover set

B
(α)
π depends on the choice of prior π. Say we retain uniform prior distributions

on q0, q1 but generalize from p ∼ Beta(2, 2) to p ∼ Beta(a, b), so that the
limiting posterior distribution on p follows a Beta(a − 1, b − 1) distribution
truncated to the identification interval. Then

B(α)
π =

{

(p, q0, q1) :
F (p)− F (pq1)

F (p+ (1 − p)(1− q0))− F (pq1)
/∈
(α

2
, 1− α

2

)

}

,

where F () is the Beta(a− 1, b− 1) distribution function. For instance, say that
background knowledge speaks to high prevalence being unlikely, so that in-
vestigators settle on hyperparameters (a, b) = (2, 8). Figure 3 indicates that
the resulting failure-to-cover set is quite different than for (a, b) = (2, 2), with
highly nonlinear boundaries. There is a temptation to make direct comparisons

between Figures 2 and 3. For instance, one notes that the intersection of B
(0.1)
π

with {p = 0.4} is smaller under the first prior than under the second, whereas
the reverse is true when we intersect with {p = 0.15} instead. However, since
such discrepancies must indeed ‘even out,’ in the sense that (2.2) applies to both
priors, such observations do not seem particularly useful.

3.3. Imperfect compliance in a randomized trial

Next we consider a version of the imperfect compliance model with binary vari-
ables considered by various authors, including Chickering and Pearl [3], Imbens
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and Rubin [13], Pearl [18, Ch. 8], and Richardson, Evans and Robins [20]. Clin-
ical trial subjects are randomly sampled from a population comprised of never-
takers, always-takers, and compliers, in unknown proportions ωNT , ωAT , and
ωCO = 1−ωNT −ωAT respectively. Each subject is randomly assigned to either
control or treatment. As the labels suggest, never-takers will not take treatment
regardless of their assignment, always-takers will take treatment regardless of
their assignment, and compliers will follow their assignment. We exclude the
possibility of defiers in the population, though the general version of the prob-
lem allows for them.

Assume that a subject’s binary response is Y0 if treatment is not taken,
and Y1 if treatment is taken, regardless of treatment assignment. Then a sub-
ject’s outcome is Y = (1 −X)Y0 +XY1, where X indicates reception of treat-
ment, whereas Z indicates assignment to treatment. For compliance type C ∈
{NT,AT,CO}, let γC,i by the mean of Yi amongst the sub-population of that
type. The observed data consist of (Z,X, Y ) for sampled subjects. Assuming
that Z is based only on randomization (i.e., is independent of Y0, Y1 and com-
pliance type), the observed distribution of (X,Y |Z), in terms of parameters
θ = (ωNT , ωAT , γNT,0, γNT,1, γAT,0, γAT,1, γCO,0, γCO,1), is characterized by:

pr(X = 1|Z = 0) = ωAT

pr(X = 1, Y = 1|Z = 0) = ωATγAT,1

pr(X = 0, Y = 1|Z = 0) = ωCOγCO,0 + ωNTγNT,0

pr(X = 0|Z = 1) = ωNT

pr(X = 0, Y = 1|Z = 1) = ωNTγNT,0

pr(X = 1, Y = 1|Z = 1) = ωCOγCO,1 + ωATγAT,1.

Note that a transparent parameterization is obtained by simply cleaving θ as

φ = (ωNT , ωAT , γNT,0, γAT,1, γCO,0, γCO,1),

λ = (γNT,1, γAT,0).

Particularly, it is easy to verify that the map from φ to the (X,Y |Z) distribution
is invertible. Thus a first thought is that the important consideration for inter-
val coverage might be compatibility between the prior and the true values for
(γNT,1, γAT,0), since these parameters are absent from the likelihood function.
This is backed up with the intuition that these are precisely the counterfactual
quantities that are inherently uninformed by the data, i.e., the mean response
for never-takers if they take, and the mean response for always-takers if they
don’t take.

Consider taking the prior π(θ) to be a uniform distribution, i.e., a Dirich-
let(1,1,1) prior for ω = (ωNT , ωAT , ωCO) and a uniform prior on (0, 1)6 for the
elements of γ, with a priori independence between ω and γ. Now, say the target
of inference ψ = g(θ) is the (global) average causal effect (ACE), given as:

ψ = (1− ωNT − ωAT )(γCO,1 − γCO,0) + ωNT (γNT,1 − γNT,0)

+ ωAT (γAT,1 − γAT,0),

which depends on components of φ and components of λ.
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Gustafson [10] shows that for n independent and identically distributed real-
izations of (Y,X,Z), as n → ∞, the posterior distribution of ψ converges to a
symmetric, trapezoidal density. Particularly, let

a(φ) = (1 − ωNT − ωAT )(γCO,1 − γCO,0) + ωNT (1/2− γNT,0)

+ ωAT (γAT,1 − 1/2),

b(φ) = (ωNT + ωAT )/2,

b∗(φ) = |ωNT − ωAT |/2.

The support of the limiting trapezoidal density is a(φ) ± b(φ), while the ‘top’
of the trapezoid extends along a(φ)± b∗(φ), and consequently the height of the
trapezoid is {b(φ) + b∗(φ)}−1.

Since the limiting posterior is symmetric, equal-tailed and HPD credible inter-
vals agree (with HPD suitably interpreted in light of the ‘flat-topped’ density).
Thus the limiting level 1− α credible interval for the target will have the form

a(φ) ± kα(ωAT /ωNT )b(φ),

where

kα(r) =

{ {(1− α)/2}{1 + v(r)} if v(r) > (1− α)/(1 + α),

1−
√

α{1− v(r))2} otherwise,

with v(r) = |1−r|/(1+r). Note that the limiting interval is narrowest relative to
the support of the limiting posterior when ωAT = ωNT , with the limiting density
becoming triangular and kα(1) = 1−√

α. The interval is widest when ωAT = 0
or ωNT = 0, with the limiting density becoming rectangular and kα(r) → 1−α
as r → 0 or r → ∞.

To gain some intuition, we simulate draws from the joint prior density π(θ)

and ascertain which realizations fall in B
(α)
π , for α = 0.05. We know from (2.2)

that the proportion of draws falling in this ‘bad’ set is α, but the results in

Figure 4 show that the location of B
(α)
π in the parameter space is not understood

trivially. First, membership in B
(α)
π is not driven exclusively by the values of λ =

(γAT,0, γNT,1). The plots show that a necessary, but not sufficient, condition for
failure-to-cover is that these two parameters take on extreme values in opposite
directions. That is, ‘failures’ are found to have λ values in the bottom-right or
upper-left corners of the unit-square. However, ‘successes’ are found in these

regions as well, with no smooth boundary in λ-space to separate B
(α)
π from its

complement.
The other feature evident from Figure 4 is that failure-to-cover is not strongly

driven by the value of the target. The prior distribution of (ψ|θ ∈ B
(α)
π ) is

more dispersed than that of (ψ|θ /∈ B
(α)
π ), but not to a great extent. Put more

succinctly, many θ values for which failure occurs have ψ = g(θ) values near
the middle of the prior for ψ, and many of the θ values yielding ψ values in the
tails of the prior correspond to successful coverage. Thus there is not a direct
explanation for failure-to-cover in terms of the unidentified parameters alone,
nor in terms of the target parameter alone.
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Fig 4. Exploration of coverage in Example 3, via simulated draws from the prior. The upper-
left panel gives the (γAT,0, γNT,1) values of the draws, with success/failure to cover indicated
by ‘o’/‘x’. The upper-right panel focuses only on the shaded corner region of the upper-left
panel. The lower panels depict simulated values of the target ACE, stratified by failure/success
to cover.

To explore in more depth, from the forms of the ACE and the limiting credible
interval, it is apparent that failure to cover occurs when

|(γNT,1 − 1/2)− (ωAT /ωNT )(γAT,0 − 1/2)| > kα

(

ωAT

ωNT

)

1 + ωAT /ωNT

2
.

This underscores that failure is not determined exclusively by the values of
nonidentified parameters λ = (γNT,1, γAT,0), since the failure region depends
on identified parameters via the ratio r = ωAT /ωNT . Particularly, the failure
region intersected with a fixed value of r ∈ (0, 1) corresponds to equal-sized
triangles in the lower-right and upper-left corners of the unit-square describing
(γAT,0, γNT,1) ∈ [0, 1]2. More particularly, these triangles are formed via the
parallel lines of slope r,

γNT,1 − 1/2 = r(γAT,0 − 1/2)± kα(r)(1 + r)/2, (3.2)

passing through the unit square. While the size of the triangles could be deduced
from (3.2), direct appeal to Theorem 2.1 immediately gives the areas as α/2
each.

Figure 5 gives a pictorial representation of how the failure-to-cover region for
λ varies with r = ωAT /ωNT . In the r = 0 limit the region devolves to rectangles
defined by γNT,1 < α/2 and γNT,1 > 1 − α/2. This is intuitively sensible:
when there are fewer (or no) always-takers, success/failure of the interval will be
determined more (or exclusively) by the value of γNT,1. Congruently, γAT,0 plays
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Fig 5. The failure-to-cover region intersected with different values of r = ωAT /ωNT in Ex-
ample 3, with α = 0.05.

a larger role as r becomes large. This behavior explains the lack of separation

between B
(α)
π and its complement in terms of λ alone, i.e., how it is possible to

have successes lying ‘south-east’ of failures in the top right panel of Figure 4.
Roughly put, the situation with this example can be summarized as follows.

Failure-to-cover arises when the nonidentified parameters lie in ‘a tail’ of their
prior distribution, but ‘which tail’ depends on a particular aspect of the iden-
tified parameters. This interaction between nonidentified and identified compo-
nents is more complicated than simply seeing failure-to-cover when the value of
the inferential target is extreme compared to its prior. However the interaction
is quite understandable, in terms of which nonidentified parameter is a bigger
determinant of failure-to-cover when the relevant identified quantity is smaller
or larger.

3.4. Example: Prevalence of misclassified trait

Say that X is a binary trait, with interest lying in its population prevalence
p = Pr(X = 1). However, the observable binary variable is X̃ , which is subject
to misclassification, i.e., if we let p̃ = Pr(X̃ = 1), then p̃ = rγN + (1 − r)(1 −
γP ), where γN = Pr(X̃ = 1|X = 1) and γP = Pr(X̃ = 0|X = 0) are the
sensitivity and specificity of the classification scheme respectively. Thus the
original scientific parameterization is θ = (p, γN , γP ) and the inferential target
is ψ = g(θ) = p.

Consider the situation where the investigator commits to lower bounds on
sensitivity and specificity but applies uniform prior distributions above the
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Fig 6. The limiting posterior density on p in Example 4, in the cases that p̃ = 0.1, 0.2, 0.3, 0.4.
The hyperparameters, in the form of lower bounds on sensitivity γN and specificity γP , are
a = 0.7 and b = 0.85.

bounds and also applies a uniform prior to the target parameter p. That is

π(p, γN , γP ) = (1 − a)−1(1− b)−1I(0,1)(p)I(a,1)(γN )I(b,1)(γP ).

Clearly in the large-sample limit of observing independent and identically dis-
tributed realizations of X̃, conditioning on the observed data is equivalent to
conditioning on the true value of p̃. More particularly, a transparent parameteri-
zation is obtained by taking φ = p̃ and λ = (γN , γP ), and the large-sample limit
of the posterior distribution over the target p is identically the prior conditional
distribution of (p|p̃) (where the conditioning is on the true value of p̃). This
distribution is given in Gustafson [8] as having support

p ∈
(

1− 1− p̃

b∗
,
p̃

a∗

)

, (3.3)

where a∗ = max{a, p̃}, b∗ = max{b, 1− p̃}. The interval (3.3) is then the identi-
fication region for the target parameter in this partially identified model. More-
over, the conditional prior density (and equivalently the limiting posterior den-
sity) over this support is given by:

π∗(p|p̃) ∝ p−1

[

min

{

p̃− a∗p

1− p
, 1− b∗

}

−max

{

p̃− p

1− p
, 0

}]

. (3.4)

For the hyperparameters a = 0.7 and b = 0.85, examples of the limiting posterior
density (3.4), for different values of p̃, appear in Figure 6. Bollinger and van
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Fig 7. Failure to cover in Example 4. The top panels report asymptotic success (‘o’) or
failure (‘x’) to cover, for a sample of θ values drawn from the unconditional prior π(θ). The
remaining panels report asymptotic success/failure to cover for a sample of θ values obtained
via draws from the conditional prior π∗(γN , γP |p̃), for p̃ = 0.05 (second row), p̃ = 0.15 (third
row), and p̃ = 0.25 (fourth row). In each case, the right-hand plot is an enlargement of the
shaded region in the left-hand plot, along with an addition of more sampled points.

Hasselt [2] give related expressions for limiting posterior distributions in this
problem under different choices of prior distributions.

The form of (3.4) is such that limiting credible intervals are readily computed,
but closed-form expressions for their endpoints would be cumbersome. We focus
on 90% HPD credible sets. In the case of hyperparameters (a, b) = (0.7, 0.85),
we draw values of θ = (p, γN , γP ) from the joint prior distribution, and check

membership in B
(α)
π . The top panels of Figure 7 show that failure-to-cover can

occur when one of sensitivity and specificity is large but the other is small. Echo-
ing findings in the previous example, however, failure-to-cover is not completely

determined by the extremity of λ = (γN , γP ), i.e., B
(α)
π is not determined by a

smooth boundary in λ-space.
Again we appeal to Theorem 2.1. Drawing values of θ by sampling from

π∗(γN , γP |p̃ = p̃0) for selected values of p̃0, we examine the intersection of
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Fig 8. Frequentist coverage of the 90% equal-tailed credible interval for p in Example 4.
Coverage is given as a function of n for the five selected values of θ described in the text. The
coverage decreases as we move from values (a) through (e), i.e., further toward the corner of
the prior support for (γN , γP ). At each selected value of n and θ, coverage is approximated
via 4000 realized data values, implying a Monte Carlo simulation standard error for coverage
evaluation of 0.008 or less. Note the use of a logarithmic axis for n.

B
(α)
π with {θ : p̃(θ) = p̃0}. Theorem 2.1 guarantees this intersection to have

probability α with respect to the conditional prior, while Figure 7 illustrates
that this set is determined by a smooth boundary in λ-space. Moreover, this
boundary is seen to vary with p̃0. Thus again we see that failure-to-cover arises
when λ lies in a tail of the prior distribution, but which tail depends on an
identified quantity. As an aside, Figure 7 also illustrates the ‘indirect learning’
that can arise because the support of π∗(γN , γP |p̃ = p̃0) can, for some values of
p̃0, be smaller than the support of π(γN , γP ).

To touch briefly on finite-sample performance, using hyperparameters (a, b) =
(0.7, 0.9), we consider five successively more extreme values of θ given by p̃ =
0.25 along with (a), (γN , γP ) = (0.75, 0.95), (b), (γN , γP ) = (0.74, 0.96), (c),
(γN , γP ) = (0.73, 0.97), (d), (γN , γP ) = (0.72, 0.98), and (e), (γN , γP ) = (0.71,
0.99). For each value we numerically evaluate the frequentist coverage of the
90% equal-tailed credible interval for p, for a variety of sample sizes. While
the asymptotic results in Figure 7 pertain to HPD intervals, it is somewhat
easier to control the numerical error in computing finite-sample coverage in the
equal-tailed case. Details of the numerical evaluation are given in the Appendix.

For each of the five θ values the frequentist coverage is plotted against sample
size n in Figure 8. As is consistent with theory, the coverage is seen to tend to
zero or one as n increases. Particularly, the limit is one for the less extreme cases
(a) through (c), and zero for the more extreme cases (d) and (e). In these latter
instances convergence is slow in practical terms.
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4. Discussion

All four of our examples possess parameters which intuitively aren’t informed
by the data. In the first example this is the location of the target mean inside
the interval induced by censoring. In the second example these are the probabil-
ities of missingness for the two levels of the outcome. In the third example these
are the counterfactual average responses of never-takers if they take treatment
and always-takers if they do not. In the fourth example these are the sensitivity
and specificity of the classification scheme. Intuition suggests we can only do
sensitivity analysis with respect to such parameters, and indeed applying prior
distributions to them and proceeding with Bayesian inference is often regarded
as a probabilistic form of sensitivity analysis (see, for instance, Greenland [5, 6]).
Thus we might only expect a ‘wrong’ answer to arise if the true values of the
uninformed-by-data parameters are extreme with respect to the chosen priors.
We have shown this to be correct in the main, but with some devil lurking in
the details. Notably, what constitutes extreme can vary with identified param-
eters. While Theorem 2.1 precludes the size of the extreme set varying with an
identified quantity, our examples illustrate that the location of the extreme set
can vary with an identified quantity.

It should also be noted that failure-to-cover is inevitable, and cannot be
made to go away via a particular choice of prior. As emphasized by Moon and
Schorfheide [17], the limits of credible sets must lie inside the identification
region, hence failure-to-cover can arise. Of course, this is not a bad thing, in
that 1−α credible intervals are supposed to miss their target sometimes (unless
α = 0). The difficulty in thinking about this stems from the fact that in the
identified case, ‘sometimes’ refers to some data realizations. In the nonidentified
case, however, ‘sometimes’ refers to some values of the parameters.

Appendix

The numerical evaluation of finite-sample frequentist coverage in Example 4
proceeds as follows. Assume the hyperparameters satisfy a+ b > 1, so that the
prior ensures 1 − γP < γN . Upon reparameterizing to (p̃, γN , γP ) we have the
prior density

π∗(p̃, γN , γP ) ∝ (γN + γP − 1)−1I(1−γP ,γN )(p̃)I(a,1)(γN )I(b,1)(γP ).

Then, observing y out of n units to have X̃ = 1 yields updating as

π∗(p̃, γN , γP |y) ∝ p̃y(1− p̃)n−yπ(p̃, γN , γP ). (4.1)

Note that the event p < p0 can be reexpressed as p̃ < (1− p0)(1− γP ) + p0γN ,
and that integration of (4.1) with respect to p̃ can be expressed via the Beta(y+
1, n− y + 1) distribution function, which we denote as Gy(). Thus

pr(p < p0|y) =
E
[

Gy{(1−p0)(1−γP )+p0γN}−Gy(1−γP )
γN+γP−1

]

E
[

Gy(γN )−Gy(1−γP )
γN+γP−1

] , (4.2)
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where the expectations are with respect to the prior distribution of (γN , γP ).
Thus a Monte Carlo sample from this distribution can be used to numerically
approximate both expectations in (4.2). Moreover, since this takes the form of a
ratio estimator, a Monte Carlo standard error is readily obtained to quantify the
approximation error. The results appearing in Figure 8 use 20, 000 realizations
of (γN , γP ).

Thus for a given θ0 value and given sample size n, the frequentist coverage
of the 1−α equal-tailed credible interval is obtained by repeatedly simulating a
value Y = y and reporting the proportion of times for which pr(p < p0|Y = y)
lies between α/2 and 1−α/2. Note that for a given y this only requires numerical
evaluation of (4.2) at a single value of p0, whereas checking coverage for an HPD
interval would require evaluation over a fine grid of values.
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