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DIAM

Delft University of Technology

Delft, The Netherlands

e-mail: h.p.lopuhaa@tudelft.nl

and

Anne Ruiz-Gazen

Toulouse School of Economics

France

e-mail: anne.ruiz-gazen@tse-fr.eu

Abstract: This paper is devoted to rejective sampling. We provide an
expansion of joint inclusion probabilities of any order in terms of the inclu-
sion probabilities of order one, extending previous results by Hájek (1964)
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1. Introduction

In a finite population of size N , sampling without replacement with unequal
inclusion probabilities and fixed sample size is not straightforward, but there ex-
ist several sampling designs that satisfy these properties (see Brewer and Hanif
(1983) for a review). Rejective sampling, which is also called maximum entropy
sampling or conditional Poisson sampling, is one possibility, introduced by Hájek
(1964). If n denotes the fixed sample size, the n units are drawn independently
with probabilities that may vary from unit to unit and the samples in which
all units are not distinct are rejected. In the particular case of equal drawing
probabilities, rejective sampling coincides with simple random sampling with-
out replacement. Rejective sampling with size n can also be regarded as Poisson
sampling conditionally on the sample size being equal to n. The unconditional
Poisson design can be easily implemented by drawing N independently dis-
tributed Bernoulli random variables with different probabilities of success, but
it has the disadvantage of working with a random sample size. The conditional
Poisson design can also be interpreted as a maximum entropy sampling design
for a fixed sample size and a given set of first order inclusion probabilities.

Rejective sampling has been extensively studied in the literature. Hájek (1964,
1981) derives an approximation of the joint inclusion probabilities in terms of
first order inclusion probabilities. By showing that the maximum entropy design
belongs to a parametric exponential family, Chen, Dempster and Liu (1994)
give a recursive expression of the joint inclusion probabilities and propose a
new algorithm. This algorithm has been improved by Deville (2000), who gives
another expression for the joint inclusion probabilities. Using the results in Chen,
Dempster and Liu (1994), Qualité (2008) proves that the variance of the well-
known unbiased Horvitz-Thompson estimator for rejective sampling is smaller
than the variance of the Hansen-Hurvitz estimator for multinomial sampling.
Several estimators of the variance of the Horvitz-Thompson estimator have also
been proposed; see Matei and Tillé (2005) for a comparison by means of a
large simulation study. The conditional Poisson sampling scheme is not only
of interest in the survey sampling field, but also in the context of case-control
studies or survival analysis, see Chen (2000).

The purpose of the present article is to generalize the result given in Hájek
(1964) and Hájek (1981), obtained for the first and second order inclusion prob-
abilities of rejective sampling, to inclusion probabilities of any order and also
to provide a more precise remainder term. The proof of our result is along the
lines of the proof by Hájek (1981) using Edgeworth expansions and leads to
approximations that are valid when N , n and N − n are large enough. One
interesting application of our result is that it enables us to show that rejective
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sampling satisfies the assumptions needed for the consistency and the asymp-
totic normality of some complex estimators, such as the ones defined in Breidt
and Opsomer (2000), Breidt et al. (2007), Cardot et al. (2010) or Wang (2009).
Such assumptions involve conditions on correlations up to order four, which are
difficult to check for complex sampling designs that go beyond simple random
sampling without replacement or Poisson sampling. Our result implies that the
rejective sampling design also satisfies these conditions.

In the case-control context, Arratia, Goldstein and Langholz (2005) consider
rejective sampling and also give approximations of higher order correlations.
Their approach and the assumptions they need to derive their results are differ-
ent from the ones we consider in the present paper. Instead of using Edgeworth
expansions, they consider an expansion that involves the characteristic func-
tion. Their results are obtained using a condition, which is sufficient, but not
necessary to derive our expansion. In view of this we provide an example of a
rejective sampling design that does not satisfy the condition in Arratia, Gold-
stein and Langholz (2005), but does satisfy our weaker assumption. Moreover,
Arratia et al. do not give an explicit approximation formula for higher order
inclusion probabilities in rejective sampling, whereas we do provide such an
approximation, which may be of interest in itself.

The paper is organized as follows: in Section 2 we introduce notations and
state our main result which is Theorem 1. In Section 3, we apply this result and
illustrate that rejective sampling satisfies conditions on higher order correlations
imposed in the recent literature to derive several asymptotic results. Detailed
proofs are provided in Section 4.

2. Notations and main result

In this paper, we use the first description of rejective sampling by Hájek (1981),
namely as Poisson sampling conditionally on the sample size being equal to n.
Let us denote U as the population of size N . Let 0 ≤ p1, p2, . . . , pN ≤ 1 be
a sequence of real numbers such that p1 + p2 + · · · + pN = n. The Poisson
sampling design with parameters p1, p2, . . . , pN is such that for any sample s,
the probability of s is

P (s) =
∏

i∈s

pi
∏

i/∈s

(1− pi).

The corresponding rejective sampling design is such that the probability of a
sample s is

PRS(s) =




c
∏

i∈s

pi
∏

i/∈s

(1− pi) if size s = n,

0 otherwise,

(2.1)

where c is a constant such that
∑

s PRS(s) = 1. We refer the reader to Hájek
(1981) for more details.

The inclusion probabilities of order k under this sampling scheme are denoted
as

πi1,i2,...,ik = PRS(i1 ∈ s, i2 ∈ s, . . . , ik ∈ s)
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for any {i1, i2, . . . , ik} ⊂ {1, 2, . . . , N}. Our purpose is to obtain an expansion of
inclusion probabilities of any order. Theorem 7.4 in Hájek (1981), see also The-
orem 5.2 in Hájek (1964), provides such an expansion for inclusion probabilities
of order two, i.e.,

πij = πiπj

[
1− d−1(1− πi)(1 − πj) + o(d−1)

]
, as d → ∞, (2.2)

uniformly in i, j such that 1 ≤ i 6= j ≤ N , where

d =
N∑

i=1

pi(1− pi). (2.3)

We will obtain an extension of (2.2) and prove that a similar expansion holds
for inclusion probabilities of higher order.

Our approach is along the lines of the method used in Hájek (1981). Con-
sider Poisson sampling with parameters p1, p2, . . . , pN and denote as P the corre-
sponding probability measure on the set of samples under this sampling scheme.
For i = 1, 2, . . . , N , we denote as Ii the indicator of inclusion of unit i, that is

Ii = 1(i ∈ s) =

{
1 if i ∈ s

0 otherwise.

For every i = 1, 2, . . . , N , the indicator Ii is a Bernoulli random variable with
parameter pi. Define

K = size s = I1 + I2 + · · ·+ IN . (2.4)

Note that the expectation and the variance of K satisfy EP (K) = n and
VP (K) = d. By Bayes formula and by independence of the Ii’s under Pois-
son sampling, the inclusion probability πi1,i2,...,ik can be written as

πi1,i2,...,ik

= P (Ii1 = Ii2 = · · · = Iik = 1|K = n)

= P (Ii1 = Ii2 = · · · = Iik = 1)
P (K = n|Ii1 = Ii2 = · · · = Iik = 1)

P (K = n)

= pi1pi2 · · · pik
P (K = n|Ii1 = Ii2 = · · · = Iik = 1)

P (K = n)
.

(2.5)

The next step is to use Edgeworth expansions for the probabilities of K. This
leads to the next lemma.

Lemma 1. Consider Poisson sampling with parameters p1, p2, . . . , pN , such
that p1 + p2 + · · ·+ pN = n with corresponding probability measure P on the set
of samples. Let d and K be defined in (2.3) and (2.4), respectively. Then, for
all Ak = {i1, i2, . . . , ik} ⊂ {1, 2, . . . , N}, k ≥ 1, it holds that if d → ∞, then

P (K = n) = (2πd)−1/2
{
1 + c1d

−1 +O
(
d−2

)}
,

P (K = n|Ii1 = · · · = Iik = 1) = (2πd)−1/2
{
1 + c2d

−1 +O
(
d−2

)}
,
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where

c1 =
1

8

(
1− 6p(1− p)

)
−

5

24

(
1− 2p

)2
,

c2 =
1

2

(
B2 − (B1 − k)2

)
−

1

2
(B1 − k)

(
1− 2p

)
+ c1,

(2.6)

with

p = d−1
N∑

i=1

p2i (1− pi),

p(1 − p) = d−1
N∑

i=1

p2i (1− pi)
2,

B1 =
∑

j∈Ak

pj ,

B2 =
∑

j∈Ak

pj(1− pj).
(2.7)

The proof of the lemma is provided in Section 4. Let us now formulate our
main result.

Theorem 1. For k ≥ 1, let Ak = {i1, i2, . . . , ik} ⊂ {1, . . . , N}. Under rejective
sampling (2.1), the following approximations hold as d → ∞, where d is defined
by (2.3).

(i) For all k ≥ 2,

πi1,i2,...,ik = πi1πi2 · · ·πik×

×



1− d−1
∑

i,j∈Ak:i<j

(1− pi)(1− pj) +O(d−2)



 ,
(2.8)

where O(d−2) holds uniformly in i1, i2, . . . , ik.
(ii) For all k ≥ 2,

πi1,i2,...,ik = πi1πi2 · · ·πik×

×



1− d−1
∑

i,j∈Ak:i<j

(1 − πi)(1− πj) +O(d−2)



 ,
(2.9)

where O(d−2) holds uniformly in i1, i2, . . . , ik.

Proof. From Lemma 1, we find

P (K =n | Ii1 = · · · = Iik =1)

P (K = n)
=

1+ c2d
−1 +O(d−2)

1 + c1d−1 +O(d−2)
= 1+(c2−c1)d

−1+O(d−2).
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Together with (2.5) it follows that for all k ≥ 1,

πi1,i2,...,ik

= pi1pi2 · · · pik
{
1 + (c2 − c1)d

−1 +O(d−2)
}

= pi1pi2 · · · pik

{
1 +

1

2d

∑

j∈Ak

pj(1 − pj)−
1

2d




∑

j∈Ak

pj − k




2

−
1− 2p

2d




∑

j∈Ak

pj − k


+O(d−2)

}
.

(2.10)

Applying (2.10) to the case k = 1, yields that the first order inclusion probabil-
ities satisfy

pi = πi

(
1− d−1(pi − p)(1− pi) +O(d−2)

)
, (2.11)

and as a consequence,

pi1pi2 · · · pik = πi1πi2 · · ·πik



1− d−1

∑

j∈Ak

(pj − p)(1 − pj) +O(d−2)



 .

Combining this with (2.10) yields

πi1,i2,...,ik = πi1πi2 · · ·πik

{
1 + ad−1 +O(d−2)

}

where the contribution to terms of order d−1 is

a =
1

2

∑

j∈Ak

pj(1− pj)−
1

2




∑

j∈Ak

pj − k




2

−
1− 2p

2




∑

j∈Ak

pj − k





−
∑

j∈Ak

(pj − p)(1 − pj)

= −
1

2

∑

j∈Ak

pj(1− pj)−
1

2




∑

j∈Ak

(1 − pj)




2

+
1

2




∑

j∈Ak

(1− pj)




=
1

2

∑

j∈Ak

(1− pj)
2 −

1

2




∑

j∈Ak

(1 − pj)




2

= −
∑

i,j∈Ak:i<j

(1− pi)(1 − pj).

This proves part (i). Part (ii) is deduced immediately from (i) and (2.11).

3. Application: Bounds on higher order correlations under rejective

sampling

Conditions on the order of higher order correlations, as N → ∞, appear at sev-
eral places in the literature, see e.g., Breidt and Opsomer (2000), Breidt et al.
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(2007), Cardot et al. (2010) or Wang (2009), among others. Such conditions are
used when studying asymptotic properties in survey sampling for general sam-
pling designs, but they are difficult to check for more complex sampling designs,
that go beyond simple random sampling without replacement. An attempt to
provide simpler conditions for rejective sampling can be found in Arratia, Gold-
stein and Langholz (2005). They formulate some sort of asymptotic stability
condition on inclusion frequencies that ensure bounds on general higher order
correlations. The purpose of the present section is to explain how Theorem 1
can be used to establish several bounds on higher order correlations for the re-
jective sampling design. The bounds in Arratia, Goldstein and Langholz (2005)
match with the ones that we find for correlations up to order four, which suffices
for the conditions imposed in Breidt and Opsomer (2000); Breidt et al. (2007);
Cardot et al. (2010); Wang (2009). However, in order to derive these bounds,
we only need the simple requirement that

lim sup
N→∞

N

d
< ∞, (3.1)

where d is defined in (2.3). Moreover, one can show that (3.1) is weaker than
the asymptotic stability condition in Arratia, Goldstein and Langholz (2005) as
detailed in Section 4.2.

Before we start a discussion on the assumptions on higher order correlations
that appear for example in Breidt and Opsomer (2000); Breidt et al. (2007);
Cardot et al. (2010); Wang (2009), first note that (3.1) necessarily yields that
d → ∞, which means that Theorem 1 holds. Moreover, condition (3.1) has a
number of additional consequences, such as n ≥ d → ∞, N − n ≥ d → ∞, and

lim sup
N→∞

N

n
≤ lim sup

N→∞

N

d
< ∞. (3.2)

A typical example of a condition on higher order correlations, is

lim sup
N→∞

n max
(i,j)∈D2,N

|EP (Ii − πi)(Ij − πj)| < ∞, (3.3)

where for every integer t ≥ 1:

Dt,N =
{
(i1, i2, . . . , it) : i1, i2, . . . , it are all different and each ij ∈{1, 2, . . . , N}

}
.

(3.4)
Condition (3.3) is one of the assumptions in Breidt and Opsomer (2000) among
others. Since EP (Ii − πi)(Ij − πj) = πij − πiπj , condition (3.3) immediately
follows from Theorem 1 and (3.2).

Interestingly, the simple representation of the second order correlations as
a difference of second order inclusion probabilities and the product of single
order inclusion probabilities can be generalized for correlations of higher order
as detailed in the following lemma.
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Lemma 2. For any k ≥ 2, let Ak = {i1, i2, . . . , ik} ⊂ {1, 2, . . . , N}. Then

E




k∏

j=1

(Iij − πij )




=

k∑

m=2

(−1)k−m
∑

(i1,...,im)∈Dm,k

(πi1,...,im − πi1 · · ·πim)πim+1
· · ·πik , (3.5)

where Dm,k is the set of distinct m-tuples in Ak and {im+1, . . . , ik} = Ak \
{i1, . . . , im}.

From this lemma, we can prove the following proposition that provides an
expansion of higher order correlations for rejective sampling.

Proposition 1. Consider a rejective sampling design. Then, for any k ≥ 3 and
any positive integers nj, j = 1, 2, . . . , k,

E




k∏

j=1

(Iij − πij )
nj



 = O(d−2) (3.6)

as d → ∞, where d is defined by (2.3).

The proofs of Lemma 2 and Proposition 1 are provided in Section 4.3.
Proposition 1 together with condition (3.2) imply that the following condi-

tions that appear for example in Breidt and Opsomer (2000) are satisfied:

lim sup
N→∞

N4

n2
max

(i,j,k,l)∈D4,N

|E(Ii − πi)(Ij − πj)(Ik − πk)(Il − πl)| < ∞

lim sup
N→∞

N3

n2
max

(i,j,k)∈D3,N

∣∣E(Ii − πi)
2(Ij − πj)(Ik − πk)

∣∣ < ∞.

(3.7)

Other conditions on higher order correlations, such as

lim
N→∞

max
(i,j,k,l)∈D4,N

|E(IiIj − πij)(IkIl − πkl)| = 0, (3.8)

that appears in Breidt and Opsomer (2000), can be treated in the same manner.
The conditions in Breidt et al. (2007) and Cardot et al. (2010) on higher

order correlations are equivalent to the preceding ones. A stronger condition
appears in Wang (2009): in assumption (A6) therein, the third condition is as
follows:

lim sup
N→∞

n2 max
(i,j,k)∈D3,N

∣∣E(Ii − πi)
2(Ij − πj)(Ik − πk)

∣∣ < ∞. (3.9)

This is an easy consequence of Proposition 1 and of (3.1) which implies that
n2 = O(d2) as N → ∞.
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4. Proofs

4.1. Proof of Lemma 1

For the proof of Lemma 1, we use Edgeworth expansions for probabilities of
sums of independent random variables, as given in Theorem 6.2 in Hájek (1981).
Suppose K = I1+I2 · · ·+IN is a sum of independent Bernoulli random variables
with parameters p1, p2, . . . , pN , and let d = V(K). Then, for 0 ≤ l ≤ N and
m ≥ 1,

|P (K = l)− fm(x)| = o(d−(m+1)/2) (4.1)

where fm(x) is the Edgeworth expansion of P (K = l) up to order m, given by

fm(x) = d−1/2φ(x)


1 +

m∑

j=1

Pj(x)


 , with x =

l − E(K)

d1/2
, (4.2)

where φ denotes the standard normal density and each Pj is a linear combination
of (probabilistic) Hermite polynomials involving the cumulants ofK. Recall that
the Hermite polynomials are defined by

Hk(x) = (−1)kex
2/2 dk

dxk

[
e−x2/2

]
(4.3)

for k = 0, 1, 2, . . . and that the cumulants of a random variable X are defined
as the coefficients in the expansion of the logarithm of the moment-generating
function, i.e., if

g(t) = logE(etX) =
∞∑

m=1

κm
tm

m!
,

the m-th cumulant is κm = g(m)(0).

In the following lemma, we provide a suitable expression for the polynomi-
als Pj in (4.2).

Lemma 3. The polynomials Pj in (4.2) can be expressed as:

Pj(x) = d−j/2
∑

{km}

Hj+2r(x)

j∏

m=1

1

km!

1

((m+ 2)!)km

(κm+2

d

)km

, (4.4)

where the sum is taken over all sets {km} consisting of all non-negative integer
solutions of

k1 + 2k2 + · · ·+ jkj = j, (4.5)

and r is defined by k1 + k2 + · · ·+ kj = r, and where κm is the m-th cumulant
of K and Hj+2r is the Hermite polynomial of degree j + 2r as given in (4.3).
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Proof. The proof relies on the Edgeworth expansion of P (K = l), e.g., see (43)
in Blinnikov and Moessner (1998),

P (K = l) = d−1/2φ(x)



1 +

∞∑

j=1

dj/2
∑

{km}

Hj+2r(x)
1

km!

j∏

m=1

(
Sm+2

(m+ 2)!

)km



 ,

where x = (l − EP (K))d−1/2 and Sm = κm/dm−1. This means that

Pj(x) = dj/2
∑

{km}

Hj+2r(x)

j∏

m=1

1

km!

(
Sm+2

(m+ 2)!

)km

.

Note that

j∏

m=1

Skm

m+2 =

j∏

m=1

(κm+2

dm+1

)km

=

j∏

m=1

(κm+2

d

)km
j∏

m=1

d−mkm = d−j

j∏

m=1

(κm+2

d

)km

,

according to (4.5). This yields (4.4).

The next lemma shows that the cumulants of the sum of independent Bernoulli
variables are of the same order as the variance.

Lemma 4. Let K = I1 + I2 + · · · + IN be a sum of independent Bernoulli
random variables with parameters p1, p2, . . . , pN . Let d = V(K) =

∑N
i=1 pi(1 −

pi). Then, for any positive integer m, we have κm = O(d), as d → ∞, uniformly
in p1, p2, . . . , pN .

Proof. The definition of cumulants implies that the m-th cumulant κm of the
sum of independent Bernoulli random variables is equal to the sum of the m-
th cumulants em of the individual Bernoulli variables. Moreover, we have the
following recurrence relation between the cumulants of a single Bernoulli variable
with parameter p:

em+1 = p(1− p)
d

dp
em, (4.6)

see for instance, example (c) in Section 4 in Khatri (1959). It is straightforward

to see that κ1 = p1+p2+· · ·+pN and κ2 =
∑N

i=1 pi(1−pi) = d. It can be proved
by induction, using (4.6), that em = p(1 − p)Rm(p), where Rm is a polynomial
with degree less than or equal to m− 1 and with coefficients depending only on
m. Thus, κm = dQm(p), where Qm(p) is of the form

Qm(p) =

∑N
i=1 pi(1− pi)Rm(pi)∑N

i=1 pi(1− pi)

and is bounded uniformly in p1, p2 . . . , pN . This proves the lemma.

Proof of Lemma 1. We use (4.1) withm = 4. Because EP (K) = n, formula (4.2)
is used with x = 0. In order to determine the expressions of Pj(0), for j =
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1, 2, 3, 4, we use Lemma 3. It follows from (4.3) that the Hermite polynomials
satisfy the following recurrence relationship

Hk+1(x) = −ex
2/2 d

dx

[
Hk(x)e

−x2/2
]
. (4.7)

By induction it follows from (4.7) that for any integer j = 0, 1, . . ., the Hermite
polynomials H2j and H2j+1 are of the form

H2j(x) = a0j + a1jx
2 + · · ·+ ajjx

2j ,

H2j+1(x) = b1jx+ b2jx
3 + · · ·+ bjjx

2j+1.

It follows that H2j+1(0) = 0, for any integer j. Combining this with Lemmas 3
and 4, we can see that P2j+1(0) = 0 and P2j(0) = O(d−j) for any integer j.
Thus, P1(0) = P3(0) = 0 and P4(0) = O(d−2). Moreover,

P2(0) =
H6(0)

2!(3!)2
κ2
3

d3
+

H4(0)

4!

κ4

d2
= −

15

72

κ2
3

d3
+

3

24

κ4

d2
.

Finally, from (4.6) one can easily deduce that κ3 = d(1 − 2p) and κ4 = d(1 −

6p(1− p)). We then obtain:

P (K =n) = d−1/2φ(0)



1 +

4∑

j=1

Pj(0) +O
(
d−2

)




= (2πd)−1/2

{
1−

5

24

(
1− 2p

)2
d−1 +

1

8

(
1− 6p(1− p)

)
d−1 +O(d−2)

}

= (2πd)−1/2
{
1 + c1d

−1 +O
(
d−2

)}
.

For the expansion of P (K = n|Ii1 = · · · = Iik = 1), let Ek denote the event

{Ij = 1, for all j ∈ Ak} and define the random variable K̃ = K | Ek. Note that
it can be written as the sum of independent Bernoulli’s,

K̃ =
∑

j /∈Ak

Ij +
∑

j∈Ak

I∗j

where I∗j = 1. Thus, we can write an Edgeworth expansion for K̃ as stated
in (4.1). Since

E(K̃) =
∑

j /∈Ak

pj + k = n+ k −
∑

j∈Ak

pj = n+ k − B1,

V(K̃) =
∑

j /∈Ak

pj(1− pj) = d−
∑

j∈Ak

pj(1 − pj) = d−B2,
(4.8)

with d̃ = d−B2, the expansion is as follows:

P (K̃ = n) = d̃−1/2φ(x̃)




1 +

4∑

j=1

P ∗
j (x̃)




+ o(d̃−5/2), with x̃ =
n− E(K̃)

d̃1/2
,
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where the P ∗
j ’s are the polynomials given in (4.4) corresponding to K̃.

Let us first compute an expansion for d̃−1/2φ(x̃). We start with the expansion

of d̃−1/2:

d̃−1/2 = (d−B2)
−1/2 = d−1/2

{
1 +

1

2
B2d

−1 +O(d−2)

}
. (4.9)

Next, remark that

x̃ = (d−B2)
−1/2(B1 − k) = d−1/2(B1 − k)

{
1 +

1

2
B2d

−1 +O(d−2)

}
, (4.10)

so that

φ(x̃) = (2π)−1/2

{
1−

1

2
x̃2+O(x̃4)

}
= (2π)−1/2

{
1−

1

2
(B1−k)2d−1+O(d−2)

}
.

Together with (4.9), this gives

d̃−1/2φ(x̃) = (2πd)−1/2
{
1 + a1d

−1 +O(d−2)
}
, (4.11)

where a1 = (B2 − (B1 − k)2)/2. Finally, we compute P ∗
j (x̃), for j = 1, 2, 3, 4.

First, let us compute the third and fourth cumulants of K̃. We find

κ∗
3 = κ3 −

∑

Ak

pj(1− pj)(1− 2pj) = κ3 −B3,

κ∗
4 = κ4 −

∑

Ak

pj(1− pj)(1− 6pj + 6p2j) = κ4 −B4,

for constants B3 and B4. Thus, by Lemmas 3 and 4 with (4.9) and (4.10),

P ∗
1 (x̃) =

H3(x̃)

6

κ∗
3

d̃3/2
= −

1

2

κ∗
3

d̃3/2

(
x̃+O(x̃3)

)

= −
1

2
(B1 − k)

(
1− 2p

)
d−1

(
1 +O(d−1)

)
,

and likewise

P ∗
2 (x̃) =

H6(x̃)

72

(κ∗
3)

2

d̃3
+

H4(x̃)

24

κ∗
4

d̃2
=

(
−

5

24

(κ∗
3)

2

d̃3
+

1

8

κ∗
4

d̃2

)
(1 +O

(
x̃2)

)

=

{
−

5

24

(
1− 2p

)2
+

1

8

(
1− 6p(1− p)

)}
d−1

(
1 +O(d−1)

)
.

Moreover, similarly to Lemma 4, one has κ∗
m = O(d), for any positive integer

m. Hence, for any integer j, P ∗
2j(x̃) = O(d−j) and P ∗

2j+1(x̃) = O(d−(j+1)), so

that P ∗
3 (x̃) = O(d−2) and P ∗

4 (x̃) = O(d−2). It follows that

1 +

4∑

j=1

P ∗
j (x̃) = 1 + c∗1d

−1 +O(d−2), (4.12)
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where

c∗1 = −
1

2
(B1 − k)

(
1− 2p

)
−

5

24

(
1− 2p

)2
+

1

8

(
1− 6p(1− p)

)

= −
1

2
(B1 − k)

(
1− 2p

)
+ c1.

Combining (4.11) and (4.12) proves the lemma.

4.2. Comparison with assumptions in Arratia et al.

In Arratia, Goldstein and Langholz (2005), the following condition is used for
rejective sampling. For all δ ∈ (0, 1), there exists ǫ ∈ (0, 1), such that

lim sup
N→∞

1

N

N∑

i=1

1

{
ǫ

1 + ǫ
< pi <

1

1 + ǫ

}
≥ 1− δ. (4.13)

This condition implies our condition (3.1), because

d =

N∑

i=1

pi(1− pi) ≥ N(1− δ)
ǫ

1 + ǫ

(
1−

1

1 + ǫ

)
≥ Nλ > 0,

where λ = (1− δ)(ǫ/(1 + ǫ))2 ∈ (0, 1).
However, our condition is weaker, in the sense that we can construct an

example which satisfies (3.1), but not (4.13). To this end, suppose that n/N →
γ ∈ (0, 1). Take δ ∈ (0, 1), such that 0 < γ < 1 − δ < 1. Furthermore, choose
α ∈ (0, 1), such that 0 < γ < α < 1− δ < 1, and let k = αN . Then define

p1 = · · · = pk =
γ

α
and pk+1 = · · · = pN = δn =

n/N − γ

1− α
→ 0.

First note that this choice is possible in rejective sampling, since

p1 + · · ·+ pN = k ×
γ

α
+ (N − k)× δn = Nγ +N(1− α)

n/N − γ

1− α
= n.

With these probabilities, condition (4.13) is not satisfied for any ǫ ∈ (0, 1),
because for N sufficiently large pk+1 = · · · = pN < ǫ/(1 + ǫ), so that

1

N

N∑

i=1

1

{
ǫ

1 + ǫ
< pi <

1

1 + ǫ

}
≤

k

N
= α < 1− δ,

whereas condition (3.1) is fulfilled, as

d

N
=

n

N
−

1

N

N∑

i=1

p2i =
n

N
−

k

N

( γ

α

)2

−
N − k

N
δ2n =

n

N
−
γ2

α
−(1−α)δ2n → γ−

γ2

α
≥ λ

where λ = (γ − γ2/α)/2 ∈ (0, 1).
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4.3. Proofs of Lemma 2 and Proposition 1

Proof of Lemma 2. We decompose the product in the following way:

E




k∏

j=1

(Iij − πij )





= πi1πi2 . . . πik(−1)k + E




k∑

m=1

∑

Dm,k

Iij1 Iij2 . . . Iijmπijm+1
. . . πijk

(−1)k−m




= πi1πi2 . . . πik(−1)k +
k∑

m=1

∑

Dm,k

πij1 ij2 ...ijm
πijm+1

. . . πijk
(−1)k−m

=

k∑

m=1

∑

Dm,k

(
πij1 ij2 ...ijm

− πij1
πij2

. . . πijm

)
πijm+1

. . . πijk
(−1)k−m

+ πi1πi2 . . . πik(−1)k +
k∑

m=1

∑

Dm,k

πij1
πij2

. . . πijmπijm+1
. . . πijk

(−1)k−m.

The last two terms on the right hand side are equal to

πi1πi2 . . . πik (−1)k +

k∑

m=1

∑

Dm,k

πi1πi2 . . . πik(−1)k−m

= πi1πi2 . . . πik(−1)k + πi1πi2 . . . πik

k∑

m=1

(
k

m

)
(−1)k−m

= πi1πi2 . . . πik

k∑

m=0

(
k

m

)
(−1)k−m = πi1πi2 . . . πik (1− 1)k = 0.

Proof of Proposition 1. The proof is by induction on the powers nj. We first
prove that

E




k∏

j=1

(Iij − πij )


 = O(d−2), (4.14)

for any Ak = {i1, i2, . . . , ik} ⊂ {1, 2, . . . , N}, with 3 ≤ k ≤ N and then add an
extra power one by one. From Lemma 2, we have that

E




k∏

j=1

(Iij − πij )




=

k∑

m=2

(−1)k−m
∑

(i1,...,im)∈Dm,k

(πi1,...,im − πi1 · · ·πim)πim+1
· · ·πik ,
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where {im+1, . . . , ik} = Ak \ {i1, . . . , im}. From Theorem 1, we have that

πi1,...,im − πi1 · · ·πim = −πi1 · · ·πimd−1
∑

i<j

(1− πi)(1− πj) +O(d−2),

where the sum runs over all i < j, such that i, j ∈ {i1, . . . , im}. This means that

E




k∏

j=1

(Iij − πij )




= −d−1πi1 · · ·πik

k∑

m=2

(−1)k−m
∑

(i1,...,im)∈Dm,k

∑

i<j

(1− πi)(1 − πj) +O(d−2).

For 2 ≤ m ≤ k fixed, consider the summation

∑

(i1,...,im)∈Dm,k

∑

i<j

(1− πi)(1 − πj).

The first summation is over all possible (i1, . . . , im) ∈ Dm,k, which are all
possible combinations of m different indices from Ak = {i1, i2, . . . , ik}. From
each such combination i1, . . . , im, the second summation picks two different
indices i < j from the set {i1, . . . , im}. This means that any combination of
(1 − πi)(1 − πj), with {i, j} ⊂ Ak is possible. In fact, each such combination
will appear several times and we only have to count how many times. Well, for
a fixed combination (i, j), from the k possibilities Ak, we need to pick i and j,
and for the m − 2 remaining choices there are k − 2 possibilities left. We con-
clude that each term (1 − πi)(1 − πj), with {i, j} ⊂ Ak, appears

(
k−2
m−2

)
times.

Moreover, this holds for any m = 2, 3, . . . , k. This means that

k∑

m=2

(−1)k−m
∑

(i1,...,im)∈Dm,k

∑

i<j

(1− πi)(1 − πj)

=
∑

{i,j}⊂Ak

(1− πi)(1 − πj)

k∑

m=2

(−1)k−m

(
k − 2

m− 2

)
,

where

k∑

m=2

(−1)k−m

(
k − 2

m− 2

)
=

k−2∑

n=0

(−1)k−2−n

(
k − 2

n

)
= (1− 1)k−2 = 0.

We conclude that the coefficient of d−1 is zero, which proves (4.14).
Next, suppose that the expectation is of order O(d−2) for all powers 1 ≤

mj ≤ nj , and consider

E
[
(Ii1 − πi1)

n1+1(Ii2 − πi2 )
n2 · · · (Iik − πik )

nk
]
.
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This can be written as

E [Ii1(Ii1 − πi1 )
n1(Ii2 − πi2)

n2 · · · (Iik − πik)
nk ]

− πi1E [(Ii1 − πi1)
n1(Ii2 − πi2 )

n2 · · · (Iik − πik )
nk ]

= E [Ii1 (Ii1 − πi1)
n1(Ii2 − πi2)

n2 · · · (Iik − πik)
nk ] +O(d−2)

according to the induction hypothesis. Next, write

Ii1(Ii1 − πi1)
n1 = (1− πi1)Ii1 (Ii1 − πi1 )

n1−1

= (1− πi1)(Ii1 − πi1)
n1 + (1 − πi1)πi1 (Ii1 − πi1)

n1−1.

When we insert this, we find

E
[
(Ii1 − πi1)

n1+1(Ii2 − πi2)
n2 · · · (Iik − πik)

nk
]

= (1− πi1)E [(Ii1 − πi1 )
n1(Ii2 − πi2)

n2 · · · (Iik − πik)
nk ]

+ (1− πi1)πi1E
[
(Ii1 − πi1)

n1−1(Ii2 − πi2 )
n2 · · · (Iik − πik )

nk
]
+O(d−2)

= O(d−2)

by applying the induction hypothesis.
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