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Abstract: The minimax rate for estimating the regression function r(·) =
E(y|X = ·) when y ∈ R and X takes values in a function space is the
initial motivation of this work. Recent articles underline the major role
of the shifted small ball probability P(‖X − x0‖ < ·) in the variance of
classical estimates. The main results are twofold. First, starting from a
theorem by [41], we study the small ball probability P(S < ε) when ε ↓
0 with S =

∑+∞

i=1
λiZi where the Zi’s are i.i.d. positive and (λi)i∈N a

positive nonincreasing sequence such that
∑

λi < +∞. It is shown that
P(S < ·) belongs to a class of functions introduced by de Haan, well-known
in extreme value theory, the class of Gamma-varying functions, for which
an exponential-integral representation is available. Second this approach
allows to derive minimax lower bounds for the risk at a fixed point x0

when X ∈ H some Hilbert space of functions. Denoting this minimax risk:

R∗
n = inf

Tn

sup
r∈E

E |Tn − r(x0)|
2

where Tn is any estimate of r(x0) and E is some class of smooth functions
from H to R it turns out that, in a general framework, nτR∗

n → +∞ for
any τ > 0. This negative result may pave the way towards new approaches
for modeling regression with functional data.
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1. Preliminaries

The three following subsections are independent. The first introduces the non-
parametric regression model for functional data and simply raises the problems
attached to obtaining sharp bounds for the quadratic risk at a fixed point. The
second gives some basic material about small ball probability. The third col-
lects classical results from extreme value theory as well as the definition of the
class Γ0 which is then briefly described. The notions encountered in this long
introduction though intially distinct from each other merge in the sequel of this
work and give birth to the main results. Proofs are given in the last section.

1.1. The nonparametric regression model for functional data

Statistics for functional data is a recent domain which has been receiving in-
creasing interests and was boosted by computational advances. We briefly recall
that the main purpose of functional data analysis (FDA) is to model and study
datasets where observations are of functional nature (usually observed on a grid
then smoothed, approximated and reconstructed by projection on accurate ba-
sis ). FDA extends the classical statistical models designed for vectors to the
situation when the data are functions or curves. We refer to the monographs
by [47] and [22] for an overview of this topic. Consider the general regression
problem with functional data as inputs:

y = r (X) + ε (1.1)

where y and ε are real random variables with Eε = 0 with variance denoted
σ2
ε , X belongs to the Hilbert space H and r is a function from H to R. The

space H may be chosen to be L2 (T ) where T is a compact set in the Euclidean
space or some Sobolev space H2,m (T ). It is endowed with an inner product
〈·, ·〉 inducing a norm ‖·‖ . Estimating the regression function at a fixed point x0
namely r (x0) = E (y|X = x0) is possible from an i.i.d. sample (yi, Xi)1≤i≤n and
by a classical Nadaraya-Watson approach (see [54] for a general presentation in
the finite dimensional setting and [22] for implementation on functional data).
This model was studied for instance in [21] and asymptotic results were derived
in [19] like a first upper bound for the quadratic risk at a fixed point and in
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[18] for a uniform bound under entropy conditions. Apparently no projection-
based estimate in this model has been introduced yet, certainly due to a lack of
theoretical results on approximation theory for functions defined on a Hilbert
space.

When X ∈ R
d model (1.1) was obviously exhaustively studied. It is known

since [49, 50] that the optimal rate of convergence in minimax sense depends on
smoothness conditions of r namely the order of the highest achievable smooth
derivative of r say m (and subject to the choice of an accurate kernel K) as
well as on the dimension d. This rate is more precisely of order n−m/(2m+d)

and depletes when the dimension d increases. This phenomenon is known in
nonparametric statistics as ‘curse of dimensionality’. Letting d go to infinity in
the rate above should leave us rather pessimistic about what we could expect
from model (1.1) with functional input X . Indeed the issue of the minimax risk
in this model -that is when X belongs to a function space- is open and will be
addressed here. Slightly anticipating we can say that the concerns raised by the
curse of dimensionality are grounded and that the rate for any efficient estimate
is slower than any power of n.

We consider here an adapted Nadaraya-Watson estimate. This estimate is
asymptotically efficient when X ∈ R

d:

r̂ (x0) =

∑n
i=1 yiK (‖Xi − x0‖ /h)∑n
i=1K (‖Xi − x0‖ /h)

where x0 is a fixed point of the space, K is a kernel, that is a mesurable,
unilateral (defined on R

+) positive function with
∫
K = 1 and h = (hn)n∈N

is a
nonnegative sequence tending to 0 (the bandwidth). We consider the following
additional conditions on the kernel K:

K has compact support (say [0, 1]), is absolutely continuous and bounded
above and below with K (1) > 0

These conditions hold for the naive kernel, K (u) = 1 if and only if u ∈ [0, 1].
We do not seek minimal conditions on the kernel here and the assumption
above could certainly be alleviated but is sufficient to carry out computations.
The estimate r̂ (x0) has already been considered in the papers mentioned above
(see also [22, 24]).

Considering the L2-risk at a fixed point x0 leads to a bias-variance decom-
position:

Rn (x0) = E (r̂ (x0)− r (x0))
2
= Bn (x0) + Vn (x0)

with

Bn (x0) =

{
E

∑n
i=1 [r (Xi)− r (x0)]K (‖Xi − x0‖ /h)∑n

i=1K (‖Xi − x0‖ /h)

}2

(1.2)

Vn (x0) = E

[∑n
i=1 εiK (‖Xi − x0‖ /h)∑n
i=1K (‖Xi − x0‖ /h)

]2
(1.3)
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where εi = yi − r (Xi). It will be shown later in Proposition 5 that:

Vn (x0) ∼
σ2
ε

n

EK2 (‖X − x0‖ /h)
[EK (‖X − x0‖ /h)]2

(1.4)

Bn (x0) ∼
1

E2K (‖X − x0‖ /h)

(
+∞∑

i=1

biE

[
〈X, ei〉2K (‖X‖ /h)

])2

(1.5)

where the bi’s are positive and non random constants given in Proposition 5.
The sequence (bi)i∈N

is not unveiled here because it depends on several
parameters which will be introduced later, namely the derivatives of r and
other functions depending on the distribution of X . We keep in mind that
the bias-variance decomposition of the risk is essentially based on the compu-
tation of two sorts of moments: EK (‖X − x0‖ /h) and E[〈X, ei〉2K (‖X‖ /h)].
Calculation of EK2 (‖X − x0‖ /h) is similar with EK (‖X − x0‖ /h). Turning
to E[〈X, ei〉2K (‖X‖ /h)] which appears in the numerator of (1.5) (note that
here x0 does not appear anymore) is more tricky and will not be done at this

stage. This expectation is bounded above by E[‖X‖2K (‖X‖ /h)] which will be
treated like EK (‖X − x0‖ /h) at (1.7) below. We ask the reader to accept for
the moment that the computation of Rn (x0) critically depends on moments of
the form E [‖X‖pK (‖X‖ /h)] for some integer p.

In a multivariate setting, when X is an R
d valued random variable, and the

density of X fX is smooth enough at x0 simple calculus leads in many situations
to:

EK (‖X − x0‖ /h) ∼ cdfX (x0)h
d (1.6)

where cd denotes the volume of the unit ball in the space R
d. The r.h.s. of the

formula above may vary, depending on the support of the distribution of X .
However neither Lebesgue’s measure or a counterpart to fX may be defined
when X is valued in a Hilbert space for instance. The classical notion of volume
of a ball cannot be generalized to such spaces. As a consequence when X is
a process, the density of X at x0 does not make sense anymore or should be
revisited. A major issue is then to compute the preceding expectation without
assuming that fX (x0) exists. Applying Fubini’s Theorem is sufficient to get rid
of the density. Denoting P (‖X − x0‖ < h) = Fx0

(h) we obtain:

EK

(‖X − x0‖
h

)
= Fx0

(h)

[
K (1)−

∫ 1

0

K ′ (s)
Fx0

(hs)

Fx0
(h)

ds

]

and the evaluation of the expectation above essentially depends again on the
small ball probability Fx0

(·). Assume that Fx0
is regularly varying at zero with

index d (which is usually true when X is finite dimensional) then Fx0
(h) =

C (x0)h
dl (h) where C (x0) is a constant depending on x0, l is a slowly varying

function at 0 and Fx0
(hs) /Fx0

(h) → sd when h → 0 for s > 0 which yields
EK (‖X − x0‖ /h) ∼ cdh

dl (h) where cd depends only on d andK. Unfortunately
when X lies in a function space, the most classical examples of Fx0

(h) are not
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reguarly varying as will be seen below. However we notice for further purpose
that the theory of regular variation is of some help in this important special
case.

Remark 1. It is straightforward to see that the same method may yield the
value of such integrals as:

E

[
‖X − x0‖pK

(‖X − x0‖
h

)]
= hpFx0

(h)

[
K (1) +

∫ 1

0

K̃p (s)
Fx0

(hs)

Fx0
(h)

ds

]

(1.7)

with K̃p (s) = −
[
spK ′ (s) + psp−1K (s)

]

When X is a random function the behaviour of Fx0
at 0 is crucial and de-

termines the rate of convergence to zero of the expectations in (1.4) and (1.5)
-what statisticians are truly interested in. The behaviour of this small ball prob-
ability has been an issue hard to circumvent. Usually the authors express their
final results in terms of Fx0

(·) and cannot derive more explicit formulae in a
general framework (see again [19] or [18]). Along the past decade some authors
turned their attention to the question of modelizing probability distribution for
curve-data with applications in statistics: [11, 31, 12] in a general setting then.
But a unified and general result for representing Fx0

(·) efficiently is missing.

Remark 2. Some variants of the Nadaraya-Watson estimate above were studied
when the norm of the function space ‖·‖ is replaced by a semi-norm ν (·). This
usually allows to fix the problem of the small ball probability. Indeed taking
projection semi-norms like ν (x) = ‖Pdx‖ where Pd is the projection on some
d-dimensional space it is easily seen that P (ν (X − x0) < h) ∼ cdh

d. However
the semi-norm estimate is usually not consistent. It suffices to take x0 in the null
space of ν to see that ν (X − x0) = ν (X) and the estimate cannot converge.
This route may be attractive for numerical and practical reasons but will not
be considered in this formal setting. The case of increasing d = dn has not been
investigated, at least up to the author’s knowledge.

A special case of (1.1) is the linear regression model y =
∫
X (s)β (s) + ε.

It has been extensively investigated in the last years. We refer for instance to
[31, 10, 9] (see also references therein these works). The optimal rate for the
risk is now fully determined in this linear model conversely to the non-linear
one investigated here. A comparison is given later at Remark 8.

1.2. About non-shifted and shifted small ball problems

Small ball problems could generally be stated in the following way: consider a
random variableX with values in a general normed space (E, ‖·‖) (which may be
infinite-dimensional) and estimate P (‖X‖ < ε) for small values of ε. This issue
may be viewed as a counterpart of the large deviations or concentration problems
(where P (‖X‖ > M) is studied for large M) and the terms small deviations or
lower tail behaviour are sometimes encountered to name small ball problems.
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The core of the literature on small ball problems focuses on Gaussian random
variables. The survey by [39] is a complete state of the art, introducing the
main concepts and providing numerous references. Another reference is Chapter
18 of [40] entirely devoted to Gaussian random functions. Much attention has
been given to Brownian motion (when (E, ‖·‖) = (C (0.1) , |·|∞)) or its relatives
(fractional Bronwian motion, Bronwian sheet, etc). The case of stable random
elements was also investigated (see for instance [38, 3]). Another issue is related
to the norm. Indeed in infinite dimensional spaces, norms or metrics are not
equivalent and this may influence the local behaviour of P (‖X‖ < ε).

A more general question -certainly more attractive in statistics- could be the
shifted small ball probability P (‖X − x0‖ < ε) for a fixed x0. A concern arises
from the shift x0. It turns out that, in general, computations cannot be carried
out for any x0. Several works focus on expliciting the set of those x0 for which the
shifted small ball probability may be computed from the non-shifted one (when
x0 = 0). We refer to [7] or [36] for instance. A classical example stems from the
situation where PX−x0

≪ PX where PX denotes the probability distribution
induced by the random element X . The classical Cameron-Martin’s theorem for
Brownian motion illustrates this case for instance. Absolute regularity yields:

P (‖X − x0‖ < ε) =

∫

B(0,ε)

PX−x0
(dx) =

∫

B(0,ε)

fx0
(x)PX (dx)

where fx0
= dPX−x0

/dPX and B (0, ε) stands for the ball centered at 0 with
radius ε. When fx0

is regular enough in a neighborhood of zero:

Fx0
(h) =

∫

B(0,ε)

PX−x0
(dx) =

∫

B(0,ε)

fx0
(x)PX (dx) ∼ fx0

(0)F (h) (1.8)

About this fact see Proposition 2.1 in [1]. In general the sharpness of ex-
isting results may vary, depending on the triplet ((E, ‖·‖) ,PX , x0) under con-
sideration. In fact there are only few spaces for which the local behaviour of
P (‖X − x0‖ < ε) is explicitely described. Quite often lower and upper bounds
are computed so that:

P (‖X − x0‖ < ε) ≍ ϕx0
(ε)

where ϕx0
is known and f ≍ g means here that for some positive constants c−

and c+ the positive functions f and g satisfy:

0 < c− ≤ lim inf
0

f

g
≤ lim sup

0

f

g
≤ c+.

Sometimes only one of these bounds is accessible or needed.
It is worth noting or recalling a few crucial features of small deviations tech-

niques. The Laplace transform, as well as in large deviations problems, is a
major tool when coupled with the saddlepoint method. Small deviations are
intimately connected with the entropy of the unit ball of the reproducing kernel
Hilbert space associated with X , with the l-approximation numbers of X (i.e.
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the rate of approximation of X by a finite dimensional random variable, see [37]
or to the degree of compactness of linear operators generating X (see [38]). All
these notions are clearly connected to the regularity of the process X, when X
is a process.

Applications of small ball probabilities are numerous: they appear when
studying rates of convergence in the Law of the Iterated Logarithm (see [53, 34]
or the rate of escape of the Brownian motion (see [15]). They even surpris-
ingly provide a sufficient condition for the CLT (see [35], Theorem 10.13 p.289).
However small ball problems remained until nowadays a matter essentially re-
served to probability theory. For example [55, 56] found applications of small
ball techniques to Bayesian statistics. Recently [27] introduced them in condi-
tional extremal quantile estimation. It turns out that this topic may be also
of interest in functional data analysis. As shown in the previous section, since
Lebesgue’s density of an infinite-dimensional random X does not exist, all the
inferential techniques based on the density cannot hold anymore. In this frame-
work, the small ball probabilities appear as natural counterparts and should be
investigated with much care.

First we introduce the l2 framework. Consider X a random variable defined
the following way:

X =
(√

λ1x1,
√
λ2x2, . . .

)
(1.9)

where (λi)1≤i≤n is a real positive sequence arranged in a non-increasing or-

der such that
∑+∞

i=1 λi < +∞ and (xi)1≤i≤n is a sequence of real independent
and identically distributed random variables with null expectation. From Kol-
mogorov’s 0 − 1 law it is straightforward to see that X exists as a l2-valued
random element. The square norm of X is S =

∑+∞
i=1 λix

2
i .

The small ball problem consists here in estimating for different choices of the
sequence (λi)i∈N

and (xi)i∈N
the probability P (S < r) when r tends to zero.

The latter probability is expected to depend on the λi’s. About this fact we
refer to [14].

The inspection of the caseE = l2 is motivated by the application to functional
statistics mentioned in the paragraph above. Indeed random functions are often
reconstructed by interpolation techniques, like splines or wavelets, in Hilbert
spaces such as L2 ([0, T ]) or the Sobolev space Wm,2 ([0, T ]) , m ∈ N. Then
the random element X is valued in a separable Hilbert space H and all these
Hilbert spaces of functions are isometrically isomorphic to l2. In this framework
a useful tool is the so-called Karhunen-Loève decomposition (sometimes referred
to as Principal Orthogonal Decomposition in other areas of mathematics such as
PDEs). Any centered random function X will be represented by its coordinates
in a basis of eigenvectors of the covariance operator CX = E [X ⊗X ]. When ei’s
are the eigenvectors of CX and λi the associated eigenvalues

X =

+∞∑

i=1

√
λixiei (1.10)

where the xi’s are uncorrelated real random variables. The xi’s are actually
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always independent when X is Gaussian and are assumed to be in most set-
tings. The l2 random element defined in (1.9) is formally identifiable with this
Karhunen-Loève decomposition familiar in Functional Data Analysis.

Historically the description of the exact behaviour of Gaussian small ball
probability in Hilbert space is due to [52]. However we borrow the notations
from [41] who extended Sytaya’s results to the non-Gaussian framework. First
in order to alleviate notations set once and for all:

S =

+∞∑

i=1

λiZi (1.11)

where λi > 0 are arranged in decreasing order with
∑+∞

i=1 λi < +∞ and Zi

are positive random variables (they stand for the x2i ’s above). For the sake of
completeness and since the main theorems of this work heavily rely on his results
we recall them. In the previously mentioned article Lifshits proved that:

P (S < r) ∼
r→0

1√
2π

1

γσ
exp (γr) Λ (γ) (1.12)

where γ and σ are functions of r defined below and Λ (γ) = E exp (−γS) is
the Laplace transform of S evaluated at γ (r). The definitions of γ and σ are
implicit. Let Sγ be the Esscher transform of S that is the random variable with
distribution exp (−γx)PS (dx) /Λ (γ). Then set:

r = E [Sγ ] = −∂ log Λ (γ)

∂γ
, (1.13)

σ2 = V [Sγ ] =
∂2 log Λ (γ)

∂γ2
. (1.14)

where V denotes variance. We note for further purpose that the implicit function
theorem ensures the existence and smoothness of functions γ (r) and γ

(
σ2
)

derived from (1.13) and (1.14). Without further assumption on the λi’s P (S < r)
cannot be made more explicit. This is done for instance in [14] where these
authors considered the case of λi with polynomial and exponential decay.

1.3. The class Γ0

As a last part of this long introduction we shift from functional data analysis
and small ball problems to extreme value theory. The theory of extremes is
another well-known topic connecting probability theory, mathematical statis-
tics and real analysis through regular variation and Karamata’s theory. The
foundations of extreme value theory may be illustrated by the famous Fisher-
Tippett theorem (see [25] and [28]). This classical result assesses that whenever
U1, . . . , Un is an i.id. sample of real random variables, Mn = max {U1, . . . , Un}
belongs to the domain of attraction of G, where G has same type as one of
the three distributions Gumbel, Frechet and Weibull. The Gumbel law, also
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named double exponential distribution, with cumulative distribution function
R (x) = exp (− exp (−x)) defines the domain of attraction of the third type.
Laurens de Haan in [29] characterized the (cumulative) distribution functions
of U such that Mn belongs to the domain of attraction of R. We give this result
below.

Theorem ([29]). If F is the cumulative distribution function of a real random
variable X which belongs to the domain of attraction of the third type (Gumbel)
there exists a measurable function ρ : R → R

+, called the auxiliary function of
F , such that:

lim
s↑x+

F (s+ xρ (s))

F (s)
= exp (−x)

where F (s) = 1− F (s) , x+ = sup {x : F (x) < 1}.
This property was initially introduced by de Haan as a Form of Regular

Variation (see the title of his article). This class of distribution functions is
referred to as de Haan’s Gamma class in the book by [5] and within this article.
Surprisingly, in their book as well as in de Haan’s article no examples of functions
belonging to Γ is given. The cumulative distribution function of the Gaussian
distribution belongs to this class with x+ = +∞ and ρ (s) = 1/s.

Since we focus on the local behaviour at zero and not at infinity of the
cumulative distribution function function of a real valued random variable we
have to modifiy again slightly the definitions above. We introduce the class Γ0

and feature some of its properties below. We share most of our notations with
[5] which differ from those of de Haan.

Definition 1. The class Γ0 consists of those functions F : R → R
+ null over

(−∞, 0], non decreasing with F (0) = 0 and right-continuous for which there
exists a continuous non decreasing function ρ : V+ → R

+, defined on some a
right-neighborhood of zero V+ such that ρ (0) = 0 and for all x ∈ R,

lim
s↓0+

F (s+ xρ (s))

F (s)
= exp (x) . (1.15)

The function ρ is called the auxiliary function of F .

The properties of the auxiliary function are crucial.

Proposition 1. From Definition 1 above we deduce that: ρ (s) /s→ 0 as s→ 0
and ρ is self-neglecting which means that:

ρ (s+ xρ (s))

ρ (s)

s→0→ 1

locally uniformly in x ∈ R.

Remark 3. When the property in the Proposition above does not hold locally
uniformly but only pointwise the function is called Beurling slowly varying.
Assuming that ρ is continuous in Definition 1 yields local uniformity and enables
to consider a self-neglecting ρ.
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The class Γ0 is subject to an exponential-integral representation. In fact the
following Theorem asserts that the local behaviour at 0 of any F in Γ0 depends
only on the auxiliary mapping ρ.

Theorem 1. Let F belong to Γ0 with self-neglecting auxiliary function ρ then
when s→ 0:

F (s) = exp

{
η (s)−

∫ 1

s

1

ρ (t)
dt

}
(1.16)

with η (s) → c ∈ R and the auxiliary function ρ is unique up to asymptotic
equivalence and may be taken as

∫ s

0
F (t) dt/F (s) . Besides

F (λs) /F (s) →





∞ (λ > 1)
1 (λ = 1)
0 (λ < 1)

as s→ 0. (1.17)

Remark 4. The upper bound 1 in the integral in (1.16) is unimportant and
may be replaced by any positive number. Then the function η will change as
well.

The proofs of Proposition 1 and of Theorem 1 are closely inspired from the
proofs of Lemma 3.10.1, Proposition 3.10.3 and Theorem 3.10.8 in [5] and will
be omitted.

Let us also mention that Gäıffas in [26] proposed to model locally the density
of sparse data by Gamma-varying functions. This is another statistical applica-
tion for Γ0.

It is simple to construct explicit examples of functions in Γ0 by tuning the
auxiliary function ρ and taking η (·) = 0 in (1.16). For instance taking ρ1 (t) = tm

(with m > 1) gives F1 (s) = exp(−1/sm−1). Now taking ρ2 (t) = −t/ log (t)
yields F2 (s) = exp(− [log (s)]

2
). Obviously constants may be added in front of

or within the exponential. The next Proposition seems to show a specific feature
of functions in the class Γ0 which will be used later: they are very flat at zero.

Proposition 2. Let F belong to Γ0. Then for all integer p F (p) (0) = 0 where
F (p) denotes the derivative of order p of F .

2. Main results

We are ready to give the main results. This section is split in three parts. In the
first it is shown that the function Fx0

(·) which is crucial for evaluating the risk
in model (1.1) belongs to the class Γ0 of Gamma-varying functions in a quite
general framework. In the second we focus on the case of a Gaussian design. In
the third we use the properties of the class Γ0 to derive upper and lower bounds
on the risk for (1.1) and at a fixed point. The degeneracy of the lower bound
(with respect to the case when X is finite dimensional) announced earlier may
be seen as an ultimate symptom of the curse of dimensionality. If f and g are
two positive functions the notation f �x g means that limu→x f (u) /g (u) ≤ c
for some positive constant c.
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2.1. Small ball probabilities of random functions are

Gamma-varying

This sub-section connects the two apparently distinct notions of probability seen
before: the class of small ball probabilities in l2 and de Haan’s Gamma class
of functions. Both families of functions are defined by their local behaviour
around 0. In what follows, the exponent −1 is strictly reserved to denoting
the generalized inverse of a function f denoted f−1. Consequently in general
f−1 6= 1/f. Let us introduce the function λ (·) which interpolates the λj ’s in a
smooth way (which means that λ (j) = λj for all j and λ is C1).

Since our results rely on those of [41] we recall now the assumptions needed
in this article. Let G denote the (cumulative) distribution function of Z then
we assume that there exists b ∈ (0, 1) , c1 > 1, c2 ∈ (0, 1) and c3 > 0 such that
for r < c3:

A0 :





G (r) ≤ c1G (br)
G (br) ≤ c2G (r)

EZ3 < +∞
(2.1)

As mentioned in [41] assumption A0 states that the local behaviour at 0 of
G is polynomial and A0 holds whenever the density g of Z is regularly varying
at 0 with index α > −1. We also note that the assumption above holds for
a large class of classical positive distributions of Z itself (Gamma, Beta...) or
when Z = X2 with X Gaussian, X Laplace, Uniform or Student distributions
for instance. These considerations are of interest for the statistician in order
not to limit the approach to Gaussian models. Note that the assumption on
the convergence of the third order moment of Z was alleviated in some recent
papers. We keep it here since it is general enough for our purpose.

When (Zi)i∈N
is a sequence of random variables whose cumulative distri-

bution function G is regularly varying at 0 with strictly positive index, the
explicit form of the small ball probability was derived for explicit sequences of
log convex λ (·) by [14]. In particular they show that when λi = i−β (β > 1) ,

P(‖X‖2 < s) ∼ F1 (s) and that when λi = exp (−i) , P(‖X‖2 < s) ∼ F2 (s) with:

F1 (s) = c1s
[1+β(2+c2)]/(2β−2) exp

(
−c3s−1/(β−1)

)
(2.2)

F2 (s) ∼ c4

[
s1/3 log (1/s)

]−3/4

exp
(
− [log (s log 1/s)]

2
/4 + ψ0 (log (s log 1/s))

)

(2.3)

where ψ0 is a bounded function. Formula (2.2) is proved as well at page 269 in
[40]. Simple algebra proves that both functions on the right hand side of (2.2) and
(2.3) have all their derivatives vanishing at 0.We notice that the r.h.s. of (2.2) is
always flatter than the r.h.s. of (2.3) which in turn will always be flatter at 0 than
any polynomial function (like cds

d). However we notice that the degree of flat-
ness is directly connected with the rate of decrease of the λi’s which quantifies,
exactly like the l-numbers, the accuracy of a finite-dimensional approximation
of X. We emphasize the following Proposition, which will not be proved.
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Proposition 3. Both functions F1 and F2 defined above at (2.2) and (2.3)
belong to Γ0 with respective auxiliary functions ρ1 (s) ∼ sβ/(β−1) and ρ2 (s) ∼
s log (1/s) which both match Proposition 1.

The auxiliary functions ρ1 and ρ2 could be more precisely computed but we
only need equivalencies at this stage.

We are ready to extend this fact to general sequences (λi)i∈N
. Remind that

the function γ (·) was defined implicitely at line (1.13). In words it is, up to sign,
the inverse of the first order derivative of the log-Laplace transform of S.

Theorem 2. Let S =
∑+∞

i=1 λiZi and set P (S < r) = F (r) the small ball
probability of S then F ∈ Γ0 with auxiliary function:

ρ (r) =
1

γ (r)
(2.4)

and the representation (1.12) may be rephrased only in terms of γ (·):

P (S < r) ∼
r→0

1√
2π

√
−γ′ (r)
γ (r)

exp

[
−
∫ r0

r

γ (s) ds

]
(2.5)

where r0 = EZ ·∑+∞
j=1 λj .

Obviously the r.h.s. of (2.5) is mathematically the same object as the r.h.s. of
(1.12). The Gamma-varying version of the right hand side is

√
ρ′(r) exp[−

∫ r0
r ds/

ρ(s)]. We believe however that this new version is slightly more explicit and
maybe more suited for statistical purposes. We will take advantage of the prop-
erties of the class Γ0 listed earlier.

The Theorem may be intuitively explained in view of Proposition 2. Indeed
when X lies in R

d and in a general context F (s) ∼0 pd (s) = cds
d. The function

pd has the following property: p
(k)
d (0) = 0 whenever k 6= d. Consequently in an

infinite dimensional space we can expect that all the derivatives at 0 should be
null and this property is recovered through Proposition 2. A more geometric way
to understand this consists in considering the problem of the concentration of a
probability measure. Let µ be the measure associated with the random variable
X . Once again starting from R

d and letting d increase -even if this approach is
not really fair- we see that µ must allocate a constant mass of 1 to a space whose
dimension increases. Then µ gets more and more diffuse, allowing fewer mass
to balls and visiting rarely fixed points such as x0 (and their neighborhoods),
resulting in a very flat small ball probability function.

The following corollary provides some information about the rate of decrease
to zero of F (·) when an additional assumption is made on ρ.

Corollary 1. Assume that ρ (s) = sαl (s) with l (·) slowly varying at 0 (which
just means that ρ is regularly varying at 0 with index α ≥ 1) and set:

RV+ : α > 1 or RV1 : ρ (s) = sl (s) with l (s) � log (1/s) . (2.6)

If RV+ holds logP (S < r) � −r1−α and when RV1 holds logP (S < r) �
−ς (r) log (1/r) for some ς (r) → +∞ when r → 0. In both preceding cases
for all integer p limr→0 r

−p
P (S < r) = 0.
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This property of the small ball probability has to be connected with prop-
erty (1.17). It is referred to as rapid variation at 0 in the literature on regular
variations and may be compared or opposed with the regularly varying situa-
tion discussed below (1.7). The assumptions RV+ and RV1 will be encountered
again when addressing the case of nonparametric regression. At last, note that
for the auxiliary functions ρ1 and ρ2 appearing at Proposition 3 and arising
from [14] we get ρ1 ∈ RV+ and ρ2 ∈ RV1.

Remark 5. For the sake of completeness we point out the following fact which
may be misleading: indeed we started from P(‖X‖2 < r) and the properties

of this function may differ from the true small ball probability P(‖X‖2 < r2).
It is simple to show that if F ∈ Γ0 with auxiliary function ρF then G (r) =
F (r2) belongs to Γ0 as well with auxiliary function ρG defined by ρG (r) =
ρF (r

2)/ (2r) .

2.2. Gaussian framework

Assuming that X is Gaussian, hence that xi in (1.10) are N (0, 1) distributed
provides a critical amount of extra information. Indeed it is then possible to
compute in a more explicit form:

r = −∂ log Λ (γ)

∂γ
=
∑

j

λj
1 + 2γλj

(2.7)

which is the initial equation linking r and γ. We derive below an explicit link
between the λj ’s and γ (·) or equivalently ρ (·). Under rather general assumptions
on the rate of decrease of the λj ’s we obtain as well an upper bound for the small
ball probability which will be exploited in the next subsection when investigating
a lower bound for the regression.

Proposition 4. Assume that X is Gaussian, that λ (·) is a convex decreasing
function and set ϕ (t) = tγ (t). We have the following: There exists a fixed
constant l ∈

[
2
3 ,

3
2

]
such that for any ε > 0 and large enough x

λ (x (l + ε)) ≤ 1

γ (ϕ−1 (x))
= ρ

(
ϕ−1x

)
≤ λ (x (l − ε))

Besides when λ(x) ≻∞ exp(−xα) for some α > 0, F (s) ≺0 exp[−(log 1/r)1+1/α].
When λ (·) is explicitely known more precise relationships may be derived. For
instance when λa (x) = cx−1−ν with c, ν > 0, γa (s) ∼0 s

−1−1/νc1/ν l1+1/ν and

l =
∫ +∞

0 du/
(
2 + u1+ν

)
. When λg (x) = c exp (−νx) , with again c, ν > 0,

γg (s) ∼0 log (1/s) / (νs) .

Remark 6. The auxiliary functions ρa = 1/γa and ρg = 1/γg match respec-
tively ρ1 and ρ2 in Proposition 3. Besides letting ν go to infinity we see that, in a
way ρg may be viewed as a limit of ρa. In fact 1/ log (1/s) echoes the degeneracy
of 1/ (β − 1). The second part of Proposition 4 modestly rediscovers the results
of [14]. The upper bound of F (·) is close to the one obtained in Theorem 2. No
assumptions are needed on ρ here but the distribution of X is Gaussian.
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2.3. Upper and lower bound in regression for functional data

We fix once and for all the assumptions considered in what follows. These as-
sumptions appear in addition to those considered in the previous sections. Re-
mind that if g is some function defined on H and with values in R the first order
Fréchet-derivative of g at x0 (its infinite-dimensional gradient) may be identified
with an element of H. The second order derivative g′′ (x0) (Hessian operator) is
identified with a symmetric operator from H to H.

Assumptions on the distribution of X. The random element X is cen-
tered and in the development (1.10) the xi’s are independent. We have PX−x0

≪
PX with fx0

= dPX−x0
/dPX such that fx0

(0) > 0, f ′ (x0) ∈ H exists and the
second order derivative of fx0

denoted f ′′ (x) is for all x in a neighborhood of
x0 a bounded linear operator from H to H. Denote ∂ifx0

= 〈f ′ (x0) , ei〉 where
ei is one of the eigenvectors appearing in (1.10). Besides we assume that for all
i the density of the margins 〈X, ei〉 is symmetric.

Discussion and examples. Let for instance X be Gaussian. Chapter 9 and
10 in [40] are clear about these issues (see more specifically p.102-107.) It is
possible to shift the assumptions on the regularity of X to conditions on the
regularity of x0. First in order to define f ′ (x0) we need to assume that x0 =
(mi)1≤i belongs to the kernel of X that is

∑
i∈N

m2
i /λi < +∞. Then for any u =

(ui)1≤i in H fx0
(u) = exp(−∑i≥1m

2
i /2λi +

∑
i≥1 uimi/2λi) and ∂ifx0

(u) =
(mi/2λi) fx0

(u). We are interested in the smoothness of these functions at 0.
From |fx0

(u)− fx0
(0)| � ‖u‖ (∑i≥1m

2
i /λ

2
i )

1/2 the major point is the finiteness
of the latter series. This is subject to a condition of decay on the coefficients
mi’s with respect to the λi’s hence of smoothness of the fixed function x0.

It turns out that the Gaussian framework may be generalized to some other
stable distributions though somewhat restricted. Skorohod ([48]) gives condi-
tions for non Gaussian distributions to check the condition PX−x0

≪ PX . We
refer to the characterization of stable distributions on Hilbert spaces by Ju-
rek ([33]) for further reading. When these formal conditions hold and X =
(λ1Z1, λ2Z2 . . .) with Zi centered with unit variance and independent, condi-
tions on mi and λi and similar to the Gaussian case may be formulated from
simple calculations, all linking the smoothness of f (x0) with the relative decay
rate of the Fourier coefficients of x0 with respect to the eigenvalues.

Assumptions on the regression function. Assume that r′′ (x) exists
for x in a neighborhood of x0. We denote ∂irx0

= 〈r′ (x0) , ei〉 and ∂2iirx0
=

〈r′ (x0) (ei) , ei〉 and assume as well that:

+∞∑

i=1

λi

(
∂2iirx0

fx0
(0)

2
+ ∂irx0

∂ifx0

)
= η 6= 0 (2.8)

Discussion and examples: If we except the technical assumption given
at the line above, the conditions on r given here are classical. They hold for
instance when r (x) = r0 (ω (x)) where r0 : R → R has second order derivative

around ω (x0) and ω : H → R is a simple functional such as ω (x) =
∑D

i=1 〈x, gi〉
where D ∈ N and gi ∈ H or even ω (x) = ‖x‖ for x0 6= 0. But the functional
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setting forces us to consider other kinds of possible regression functions. We
briefly comment two of them that may produce irregularity: evaluation and
derivation-based functionals. In [17] the regression function r involves sums and
products of evaluation functionals. For instance rFHV (x) = x (t1)x (t2) where

t1 and t2 are two fixed points in [0, 1]. In [20] rFKV (x) =
∫
t cos (t) [X ′ (t)]

2
dt.

We recall that the linear mapping dt0 (x) = x (t0) is not continuous when H =
L2 ([0, 1]) . If we require that H is a reproducing kernel Hilbert space -typically
a Sobolev space with boundary conditions such as Cameron–Martin space H2

0 ={
f ∈ L2 ([0, 1]) ,

∫
f ′2 < +∞, f (0 = 0)

}
- then dt0 (·) = 〈kt0 , ·〉 where kt0 ∈ H is

bounded hence continuous (by Riesz representation theorem). Then we derive
d′t0 (x) = kt0 for all x and d′′t0 = 0 and the condition (2.8) on rFHV may be
expressed in terms of coefficients of the kernel kt1 and kt2 in the basis ei. For the
second example, considering smooth spaces of functions will here again ensure
the smoothness of the operator. Some calculations show that ∇rFKV (x) (t) =

2
∫ t

0 s cos (s)x
′ (s) dt. Here too the assumption will hold if the coordinates of

∇rFKV (x0) = r′ (x0) and of the diagonal of r′′ (x0) in the basis ei tend rapidly
to zero.

2.3.1. Upper bound

In view of the results of the preceding section we are in a position to simplify
some computations. Turning to the local moments defined at (1.7), from prop-
erties of functions in Γ0 and specifically (1.17) we get:

E [‖X − x0‖p]K
(‖X − x0‖

h

)
∼ K (1)hpFx0

(h) ∼ K (1)hpfx0
(0)F (h) (2.9)

We see again that the representation theorem of the preceding section is of some
help to simplify our calculations. We mention for immediate purpose that the
derivation of both formula above leads as well to:

EK2

(‖X − x0‖
h

)
∼ K2 (1)Fx0

(h) (2.10)

Let the local moments of order 1 and 2 of X at x0 be respectively defined by:

MK,1 (x0) = E

[
(X − x0)K

(‖X − x0‖
h

)]
(2.11)

MK,2 (x0) = E

[
(X − x0)⊗ (X − x0)K

(‖X − x0‖
h

)]
. (2.12)

Note that MK,1 belongs to H since (X − x0)K (‖X − x0‖ /h) does. Formula
(2.12) may be explicited. First let u and v be two points in the vector space
then u ⊗ v is a linear operator defined by [u⊗ v] (x) = 〈v, x〉 y and so is
(X − x0) ⊗ (X − x0)K (‖X − x0‖ /h) . Erasing x0 and K (‖X − x0‖ /h) gives
the usual covariance operator of X for a centered X which is trace-class by def-
inition whenever E ‖X‖2 < +∞. The special covariance operator MK,2 (x0) is
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obtained by shifting and smoothingX around x0 andMK,2 is also a linear trace-

class operator acting from and onto H whenever E[‖X − x0‖2K (‖X − x0‖ /h)]
is finite. We refer to [44] for some statistical results on local moments for finite-
dimensional random variables and to [42] for some related results dealing with
(2.12) and where random functions and small ball problems appear.

The next Proposition bounds above and below the bias part of the risk of
our kernel estimate.

Proposition 5. For the variance part of the risk the equivalence holds Vn (x0) ∼
σ2
ε/ [fx0

(0)nF (h)]. For the bias part we have

Bn (x0) ∼
1

E2K (‖X − x0‖ /h)

(
+∞∑

i=1

biE

[
〈X, ei〉2K (‖X‖ /h)

])2

with bi =
∂2
iirx0

fx0
(0)

2 + ∂irx0
∂ifx0

as announced in (1.5). From the line above
we derive an approximate rate:

c−ρ6 (h) ≤ Bn (x0) ≤ c+h4

where c+ and c− depend only on η2. Hence when ρ (h) � hm for some m Bn (x0)
decreases to 0 at most and at least at a polynomial rate.

The problem here is to ensure a rough control of Bn (x0). As will be seen
soon ρ6 (h) turns out to be regularly varying in most cases and decays to zero
at a polynomial rate. The unusual framework (namely with distributions in the
class Γ0) motivates to prove the reader that Bn (x0) does not reach an unusual
rate of decreaes to 0 (namely exponential). And the bound c−ρ6 (h) ≤ Bn (x0)
will justify the conditions under which the minimax lower bound for the risk is
going to be derived.

Remark 7. The role of the auxiliary function ρ is crucial. The question of
its estimation is quite simple indeed. From [5] Corollary 3.10.5(b) p.177 we

know that ρ may be taken as F/F ′. A natural estimator of ρ̂ may be F̂ /f̂

where f̂ (resp. F̂ ) is a kernel estimator of the density (resp. of the cumulative
distribution function) of ‖X‖ . A simple procedure for the practitioner consists
here in considering the sample made of the positive real valued random variables
(zi = ‖Xi‖ 1I‖‖Xi‖<s‖)1≤i≤n where s is some threshold close to zero and then

to perform the estimation of f̂ and F̂ classically on this sample.

2.3.2. Lower bound

From the preceding subsection the optimal risk for the kernel estimate is ob-
tained by selecting an h balancing the trade-off between variance and bias.
Imagine that we had found in Proposition 5 a result such as Bn (x0) ≍ Fκ (h)
for some κ > 0. Then the optimal bandwidth would stem from n−1 ≍ F 1+κ (h)
leading to a Rn (x0) � n−κ/(1+κ) which would contradict the initial claim of



Regression for functional data 1761

degenerate rate for the risk. This explains why we derived the lower bound
on Bn (x0) in Proposition 5. As will be seen now when r belongs to a class
large enough to inherit classical approximation features, Rn cannot decrease
at a polynomial rate. What we mean by classical approximation features is
explicited now.

Let Ep denote any class of R-valued functions defined on H such that:

sup
r∈Ep

Bn (x0) � h2p (2.13)

For instance Ep may be the class of Hölder functions of order p ∈ ]0, 1[. When Ep
is the class of functions which have two derivatives at x0 we see from Proposition
5 that we have in addition

h6m � sup
r∈Ep

Bn (x0) � h4

when ρ (h) � hm, m > 1. Optimizing the bias-variance trade-off in the risk leads
to choosing an h such that supr∈Ep

Bn (x0) = Vn (x0) . The next Lemma deals
with this issue.

Lemma 1. Assume that X is gaussian and λ (x) ≻∞ exp (−xα) for some α > 0.
Let c∗ be some constant and h∗ be the solution of the functional equation:

1

n
= c∗h2pF (h) (2.14)

then nβ/ (nF (h∗)) → +∞ for any β > 0.When X is non Gaussian but satisfies
the assumptions (2.1) and (2.6) the same conclusion holds.

Proof of the Lemma. Only the case 0 < β < 1 has to be investigated. When X
is Gaussian the lemma is easily derived from Proposition 4 since it was proved

that F (h) ≺0 exp[− (log 1/h)
1+1/α

] holds. When X is not gaussian and RV1

holds the proof of Corollary 1 shows that β logn+2p log h∗ > βς (h∗) log (1/h∗)−
2p logh∗ where ς (h∗) tends to +∞ when h∗ tends to 0. When RV+ holds the

proof is the same with cα (h∗)
1−α

instead of ς (h∗) log (1/h∗).

Now our approach to derive lower bounds for the minimax risk follows Tsy-
bakov’s scheme (see [54]): we construct two models r0 and r1 far enough from
each other but such that the Hellinger distance between the two models is
bounded. Let pε stand for the density of ε. Assume that for some constant p∗
and for all y ∈ R,

∫

R

[√
pε (t)−

√
[pε (t+ y)]

]2
dt ≤ p∗y

2. (2.15)

This assumption is general and appears in Tsybakov’s book. It holds under
smoothness assumptions on pε. We comment it briefly. If Λ (y) denotes the left
hand side in the inequality above Λ (y) ≤ 2 for all y and we just need to study Λ
on a compact neighborhood around 0 (up to a rescaling through the constant p∗).
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We see that Λ (0) = 0 and Λ′ (y) = −
∫
p′ε (t+ y)

√
pε (t) /pε (t+ y)dt whenever

pε is smooth enough hence Λ′ (0) = 0. Under accurate conditions on Λ′′, Λ (y) ≤
p∗y

2 will hold around 0 hence everywhere.

Theorem 3. We consider two situations depending on the design X:
Part I: Assume that X is Gaussian, λ (·) is a convex decreasing function with
λ (x) ≻∞ exp (−xα) for some α > 0 and that (2.15) holds. Denote Tn any
estimator of the regression function at a fixed point r (x0) = E (y|X = x0) and
Rn (x0) (≡ Rn for short) the minimax risk over the class Ep defined in (2.13) :

Rn = min
Tn

sup
r∈Ep

E [Tn − r (x0)]
2

then Rn ≻ exp[−2p (logn)
α/(α+1)

] which imples nβRn → +∞ for any β > 0

but (logn)β Rn → 0 for any β > 0. Strengthening the assumptions on λ and

taking λ (x) ≻∞ x−α for some α > 1 then Rn ≻ (logn)
−(α−1)

.
Part II: Let X be non gaussian but satisfy the conditions (2.1). Let ρ be the
auxiliary function of the small ball probability of X. Assume that ρ is regularly
varying at 0 with index α ≥ 1 with either α > 1 or α = 1 and ρ (s) /s � log (1/s)
then again nβRn → +∞ for any β > 0.

In Part II we recall for the sake of completeness the conditionsRV+ andRV1

introduced earlier. The theorem above shows that it is not possible to estimate
the regression function in a nonparametric model with functional inputs at a
polynomial rate. The rates may be considered as degenerate even when the
functional variable X is very smooth (case λ (x) = exp (−xα) for some α > 0)
and the data concentrated close to a finite-dimensional space. In the classical
situations of polynomial decay, λ (x) ≃ x−α for some α > 1 the situation gets
even worse and the optimal rate we may recover is a logarithmic power.

Remark 8. An interesting comparison is possible with the linear regression
model as studied in [8] since these authors focus on the risk at a fixed point too.
Their Theorem 4.2 p. 2168 coupled with the rate given at page 2167 gives a lower
bound for a linear r. This lower bound is possibly parametric (that is O (1/n))
for very regular designs. Otherwise it depends on the relative smoothness of x0
(positively) and of X through the λ’s (negatively) as well as on the regularity of
the unknown slope function but remains polynomial. Obviously the lower bound
is damaged when shifting to the general regression model.

The next corollary is stated for completeness because the Theorem above
gives only a lower bound for Rn. Its proof is omitted since it stems from the
derivation of Theorem 3.

Corollary 2. We get in fact Rn (x0) ≍ 1/ (nF (h∗)) ≍ (h∗)
2p

where h∗ is
defined at (2.14) and the kernel estimator reaches this optimal rate up to con-
stants.

These results are clearly connected with the complexity of the setting: the
general nonparametric model coupled with the sparsity of functional spaces
already mentioned in the paragraph below Proposition 2.
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Remark 9. Other classes of regression functions could be considered. Here
Ep was considered because calculations are possible when looking for an upper
bound. However the theorem above holds, up to a change of constants when r
belongs to a class Ep for which:

sup
r∈Ep

E (r (X)− r (x0))K (‖X − x0‖ /h) ≍ hpF (h)

Like in a finite-dimensional framework, obtaining large values of p switches the
problem to defining higher order kernels designed for functional data. This issue
is out of the scope of this work. Yet, because of the degeneracy of the convergence
rate we are not sure it deserves much attention in this setting.

3. Complementary facts

In this short section are collected results of secondary interest. They complete
however the precedings by underlining some facts about the non-unicity and the
limits of the representation obtained above. Indeed the preceding theorems lead
to the following question: is it possible to obtain a one to one representation,
in a general framework, of the small ball probabilities of random elements in l2
-characterized by the sequence (λi)i∈N

- by a function in Γ0, depending solely on
its auxiliary function ρ ? The answer is negative for at least two reasons. First
it is plain that two series S and S′ built from different sequences (λi, Zi)i∈N

may have equivalent (at 0) small ball probabilities. Second, imagine that we
confine to Gaussian small ball probabilities and consider again the r.h.s. of (2.5)
denoting F ∈ Γ0 with auxiliary function ρ. Simple calculus shows that any
function φF where φ (x+ tρ (x)) /φ (x) → 1 when x → 0 belongs to Γ0 with
exactly the same auxiliary function ρ. Consequently even fixing the distribution
of the sequence Zi is not sufficient to obtain a one to one mapping between
small ball probabilities and the set Γ0.

Indeed, pick a function F0 in the class Γ0. This function is essentially defined
by its auxiliary ρ0 (·) and Theorem 1 is not precise enough for us to identify
it with a small ball probability. This is due to the non-unicity of ρ mentioned
just under (1.16) by the words ‘up to asymptotic equivalence’. If ρ1 ∼0 ρ0
lims↓0+ F0 (s+ xρ1 (s)) /F0 (s) = exp (x) as well. But the local behaviour at 0

of F1 (s) = exp{η (s)−
∫ 1

s 1/ρ1 (t) dt} may differ from F0 (s) and F0 may not be
equivalent with F1. What we show below is that if F0 is accurately scaled we
may deduce from F0 a new function F ∗

0 which has the same auxiliary function
as F0 (but which may not be equivalent to F0) and such that for a well-chosen
sequence (λi)i∈N

and the Gaussian small ball probability P (S < r) is such that
P (S < r) ∼0 F

∗
0 (r)

We start with a definition which seems to be new.

Definition 2. Let ρ be a self-neglecting function. A measurable function φ is
called ρ-self-neglecting if:

φ (x+ tρ (x))

φ (x)
→
x→0

1.
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It is obvious that, if φ is ρ-self-neglecting it is ρ∗-self-neglecting whenever
ρ∗ ∼0 ρ. We propose below in Theorem 5 a representation theorem for ρ-self-
neglecting functions.

Definition 3. Pick a ρ0 in the class of self-neglecting functions at 0 such that
ρ0 (0) = 0. We define the equivalence class of a function F0 ∈ Γ0 with auxiliary
function ρ0 by the relationship △ defined for all G in Γ0 by:

F0△G⇔ F0

G
is ρ− self-neglecting for some ρ ∼0 ρ0

Remind that ϕ (t) = tγ (t) is defined within Proposition 4.

Theorem 4. Let F0 ∈ Γ0 with auxiliary function ρ0 = 1/γ0. Assume that
ρ0 is regularly varying at 0 with index κ > 1 and C1 in a neighborhood of
0. Consider the equivalence class of F0 in Γ0\△ say F0. Then one may pick
F ∗
0 ∈ F0 such that F ∗

0 (·) ∼0 P (S < ·) where S =
∑n

i=1 λiZi, the Zi’s follow a
χ2 (1) distribution and:

λi =
1

γ0 (ϕ−1 (i))
= ρ0

(
ϕ−1 (i)

)

Remark 10. Once again we encounter a regularly-varying condition on ρ0.
Here it echoes in a way the assumption A0 (necessary to derive (1.12)) which
claims that the cdf of Z is itself regularly varying at 0. An interesting open
question would consist in finding examples of auxiliary functions which are not
regularly varying with positive index, whenever it is possible.

For the sake of completeness we obtain a last result, complementing and illus-
trating Proposition 3. From this Proposition we see that F△G if F = φG where
φ is ρ-self-neglecting. The forthcoming Theorem represents these functions φ.

Theorem 5. Let ρ be self-neglecting at 0 which does not vanish in a neighbor-
hood of 0. A function φ is ρ-self-neglecting if and only if:

φ (x) = c (x) exp

(∫ 1

x

ε (u)

ρ (u)
du

)

where c (u) → c ∈ ]0,+∞) and ε (u) → 0 when u → 0 and ε has the same
regularity as ρ.

This theorem slightly generalizes the representation Theorem 2.11.3 for self-
neglecting functions p.121 in [5] initially due to [6]. If one take φ = ρ the
representation above coincides with the one announced in this theorem.

3.1. Conclusion and perspectives

The first main result of this article identifies small ball probabilities in l2 with
a class of rapidly varying functions involved in extreme value theory and whose
derivatives at all orders vanish at zero. This representation was obtained through
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previous works especially the initial formula (1.12) of [41]. We hope that this new
formulation will be more convenient for modelizing the small ball probabilities
with some applied -especially statistical- purposes in mind. However many other
questions arise. For instance the generalization to random elements with values
in lp or in more general Banach spaces is certainly an intricate matter since the
starting fomulae (1.12) and followings seem to be intimately suited to the space
l2. A surprising fact is the parallel that can be drawn between large deviations
on a one hand and extreme value theory on the other hand. Both were intially
introduced to model and explore large values of sequences of random elements. It
turns out that both provide an accurate setting to study small deviations as well:
Laplace transform for the classical approach and methods around the domain
of attraction of the third type (Gamma class, self-neglecting functions. . . ) as
outlined here. However the connections between regular variations and small
ball probabilities have been known since de Bruin in 1959, and his theorem on
Laplace transfoms (see Theorem 4.12.9 in [5]). This work confirms that both
Tauberian and extreme value theory may provide tools complementing large
deviations techniques to derive new results in this area.

The other fact is, as an application of the previous, that the optimal risk in
nonparametric regression for functional data is slow in the sense that we cannot
expect to obtain polynomial rates in the reasonable setting used in this work. It
is obviously interpretable in terms of curse of dimensionality. In the past such
similar negative results were obtained in different contexts. We have in mind
the optimal rates in deconvolution with supersmooth noise as obtained by [16].
The lower bounds were O (1/ logτ n) , τ > 0 and this situation is close to the
one encountered here. Fortunately Fan’s theorems did not prevent people from
making deconvolution with very smoothly corrupted data, but they pointed out
the formal limits of the approach.

Here one may hope that this negative result will raise new challenges since it
will shift attention to new, more restricted and parsimonious non-linear models
like the one introduced in [45]:

y =

k∑

i=1

ri (〈X, ei〉) + ε

where the ri are functions defined on R and estimated from one-dimensional
projections of the data X . It is known since [51] that this model is not subject
to the curse of dimensionality when X is valued in R

k for a fixed k. Letting
k increase with the sample size would be a possible track to introduce non-
linearity in regression models for functional data and avoiding some redhibitory
features of a general model. A work was carried out by [23] in this direction.

Finally the rather negative result in Theorem 3 should be tempered since it
relies heavily on the use of the theoretical norm. Other strategies based on data-
driven semi-norms coupled with automatic bandwidth selection provide very
satisfactory performances. The reader interested by these novel methods may
refer to [46] or to [2]. Like in other areas of statistics, purely numerical techniques
may sooner or later overcome the flaws and stumbling stones of theory.
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4. Proofs

Considerations about the smoothness at 0 of F and ρ are not the matter in this
work and we will take it for granted that both functions are smooth enough. Be-
sides along the proofs we may sometimes consider generalized or local inverses
of some fonctions which may not be invertible or have smooth derivatives every-
where. For example the auxiliary function ρ defined on R

+ for which we always
have ρ′ (0) = 0 has no smooth inverse on [0, c] for c > 0. But we may frequently
use the smoothness of, say, ρ and ρ−1 on sets ]a, b[ for 0 < a < b without always
justifying it. This section is split in two subsections. In the first are collected
the derivations of results related to small ball probability representation by de
Haan’s Gamma class. The second is devoted to the upper and lower bounds for
the risk at a fxed point in the regression model for functional data.

4.1. Proofs of results of sections 2.1, 2.2 and 3

Proof of Proposition 1. Suppose that ρ (s) /s does not tend to zero when s does.
Then we may pick an ε > 0 such that for infinitely many sk ↓ 0 when k ↑ +∞,
ρ (sk) /sk > ε. Now fix x < −ε−1 then sk+xρ (sk) < 0 and F (sk + xρ (sk)) = 0
for all k and F (sk + xρ (sk)) /F (sk) cannot converge to exp (x). The second
part of the proof, namely ensuring the ρ is self-neglecting, follows the lines of
the proof of Proposition 3.10.6 in [5].

Proof of Proposition 2. Suppose that for some p F (p) (0) 6= 0 and take p∗ =
inf
{
p ∈ N : F (p) (0) 6= 0

}
. It is plain that F (p∗) (0) > 0 since F is positive.

Then we should consider two cases. First if F (p∗) (0) = c < +∞ then a Taylor
development shows that F (s) ∼0 cs

p∗

. Taking:

F (s+ ρ (s))

F (s)
=
F (s+ ρ (s))

(s+ ρ (s))
p∗

sp
∗

F (s)

(s+ ρ (s))
p∗

sp∗

we see that the left hand side of the equation above tends to exp (1) whereas
the right hand side tends to 1.

Second if F (p∗) (0) = +∞ we clearly have F (s) /sp
∗ → +∞ when s → 0.

Take ε such that 1/ε > p∗ + 2. Since ρ′ (0) = 0 and ρ is positive we may pick
an s0 such that sup0≤u≤s0 ρ

′ (u) ≤ ε. From (1.16) we get:

F (s)

sp
≤ C

spρ2 (s)
exp

{
−
∫ 1

s

1

ρ (t)
dt

}
≤ C

ρ2+p (s)
exp

{
−
∫ 1

s

1

ρ (t)
dt

}

≤ C′

ρ2+p (s)
exp

{
−
∫ s0

s

1

ρ (t)
dt

}

where we assume that s ≤ s0. Then we have

exp

{
−
∫ s0

s

1

ρ (t)
dt

}
= exp

{
−
∫ s0

s

ρ′ (t)

ρ (t)

1

ρ′ (t)
dt

}
≤ exp

{
−1

ε

∫ s0

s

ρ′ (t)

ρ (t)
dt

}

= exp

{
1

ε
ln ρ (s)− 1

ε
ln ρ (s0)

}
.
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At last F (s) /sp ≤ C′′ [ρ (s)]
1
ε
−p∗−2 which contradicts the fact that F (s) /sp

∗ →
+∞.

We start the proof of Theorem 2.

Proof of Theorem 2. From Definition 1 and (1.12) we see that Theorem 2 holds
whenever for all x ∈ R:

lim
s→0

γ (s)σ (s)

γ (s+ xρ (s))σ (s+ xρ (s))
·

exp ((s+ xρ (s)) γ (s+ xρ (s))− sγ (s))
Λ (γ (s+ xρ (s)))

Λ (γ (s))
= expx.

We will more specifically prove below that when s decays to 0:

γ (s+ xρ (s)) /γ (s)σ (s+ xρ (s)) /σ (s) → 1, (4.1)

exp ((s+ xρ (s)) γ (s+ xρ (s))− sγ (s)− x)
Λ (γ (s+ xρ (s)))

Λ (γ (s))
→ 1. (4.2)

The two next lemmas are dedicated to showing that, in the line above the
fraction as well as the exponential both tend to 1 when s goes to zero and ρ
is chosen as in the Theorem.We just have to clarifiy formula (2.5) within the
Theorem. This stems directly from (1.12). Indeed from (1.13) and (1.14) we see
that σ2 = −∂r/∂γ and we just have to show that γr + logΛ (γ) =

∫ r

r0
γ (s) ds.

Elementary calculations yield:

∂ (γr + logΛ (γ))

∂r
= γ (r) .

Let r0 = EZ ·∑n
j=1 λj . Applying formula (1.13) at γ = 0 we notice that γ (r0) =

0 = logΛ (γ (r0)) and we conclude.

Lemma 2. Take ρ (s) = 1/γ (s) , then:

lim
s→0

exp ((s+ xρ (s)) γ (s+ xρ (s))− sγ (s)− x)
Λ (γ (s+ xρ (s)))

Λ (γ (s))
= 1.

Remark 11. Obviously γ has at least two (we do not need more) continuous
derivatives on a neighborhood of infinity (here ]1,+∞) for instance). It is also
strightforward to see that γ, which is strictly decreasing on ]1,+∞) , is also a C1

diffeomorphism on this set. Clearly lims→0 ρ (s) = 0 but from Lemma 2 p.431
in [41] it is plain that ρ (s) /s also tends to zero when s does which implies that
ρ′ (0) = 0. Indeed proving that ρ (s) /s tends to zero comes down to proving
that sγ (s) → +∞.

Proof of Lemma 2. Denote I (s) = sγ (s) + logΛ (γ (s)). We should prove that:

lim
s→0

I (s+ xρ (s))− I (s)− x = 0.
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Taylor’s formula gives:

I (s+ xρ (s))− I (s) = xρ (s) I ′ (s) +
x2

2
ρ2 (s) I ′′ (cs,x) (4.3)

where cs,x = c lies somewhere in [s, s+ xρ (s)] if x ≥ 0 and in [s+ xρ (s) , x] if
x < 0. From (1.14) we see that:

I ′ (s) = γ (s) + sγ′ (s) + γ′ (s)
∂ log Λ (γ (s))

∂γ
= γ (s) .

Hence (4.3) may be rewritten:

I (s+ xρ (s))− I (s) = x+
x2

2
ρ2 (s) γ′ (cs,x)

= x+
x2

2

γ′ (cs,x)

γ2 (s)
= x− x2

2

d (1/γ)

ds
(cs,x) ·

γ2 (cs,x)

γ2 (s)
.

We first show that γ2 (cs,x) /γ
2 (s) = ρ2 (s) /ρ2 (cs,x) is bounded above. We may

always write cs,x = s + tx (s) ρ (s) where −x ≤ tx (s) ≤ x for all s. Taylor’s
formula yields

ρ (s+ tx (s) ρ (s)) = ρ (s) + tx (s) ρ (s) ρ
′ (d) = ρ (s) (1 + tx (s) ρ

′ (d))

where d lies between s and s+ tx (s) ρ (s). Hence:

ρ (s)

ρ (cs,x)
=

1

1 + tx (s) ρ′ (d)
≤ 1

1− |x| ρ′ (d) .

The continuity of ρ′ at 0 and its nullity at 0 (see Remark 11) implies on a one
hand that the line above is bounded above for fixed x and s (hence d) going to
zero and also that:

d (1/γ)

ds
(cs,x) = ρ′ (cs,x) → 0.

At last, I (s+ xρ (s))− I (s) → x which finishes the proof of the Lemma.

Lemma 3. We have:

lim
s→0

γ (s+ xρ (s))σ (s+ xρ (s))

γ (s)σ (s)
= 1.

Proof of Lemma 3. Once again Taylor’s formula leads to:

γ (s+ xρ (s))σ (s+ xρ (s))− γ (s)σ (s)

γ (s)σ (s)
=

xρ (s)

γ (s)σ (s)
[γ′ (c)σ (c) + γ (c)σ′ (c)]

(4.4)
where c ∈ (s, s± xρ (s)). We will prove that [γ′ (c)σ (c) + γ (c)σ′ (c)] /γ2 (s)σ (s)
tends to zero. We cut the latter into two terms. First consider

ρ (s)

γ (s)σ (s)
γ′ (c)σ (c) =

γ′ (c)

γ2 (c)

γ2 (c)

γ2 (s)

σ (c)

σ (s)
.
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We proved above within the proof of the previous Lemma 2 that γ2 (c) /γ2 (s) is
bounded above. We proved as well that γ′ (c) /γ2 (c) tends to zero when c does.
Finally we should just control σ (c) /σ (s) . We have σ (c) = σ (s)+ (c− s)σ′ (ξ)
where ξ ∈ [s, c] hence

0 ≤ σ (c)

σ (s)
= 1 +

c− s

σ (s)
σ′ (ξ) ≤ 1 +

x

γ (s)σ (s)
σ′ (ξ) .

We see in [41], Lemma 2 p.431 that lims→0 γ (s)σ (s) = +∞ and that σ (s) ≤
sc−1

13 where c13 is some constant from which it is plain that supξ∈V0
|σ′ (ξ)| < +∞

where V0 is any neighborhood of 0. We deduce that σ′ (ξ) / [γ (s)σ (s)] tends to
zero which finally yields

ρ (s)

γ (s)σ (s)
γ′ (c)σ (c) → 0.

We turn to the second term in (4.4): ρ (s) γ (c)σ′ (c) /γ (s)σ (s) . We rewrite it:

γ (c)σ′ (c)

γ2 (s)σ (s)
=

1

γ (s) σ (s)

γ (c)

γ (s)
σ′ (c) .

As shown above from Lisfhits’ work: γσ → +∞, supc∈V0
|σ′ (c)| < +∞ and

γ (c) /γ (s) is bounded above and this second term also decays to zero. This
finishes the proof of Lemma 3.

Proof of Corollary 1. We focus on the right hand side of (2.5). First from√
−γ′ (r)/γ (r) =

√
2ρ′ (s) and the properties of the auxiliary function ρ at

Proposition 1 we have that ρ′ (s) → 0. Hence P (S < r) ≤ exp[−
∫ r0
r 1/ρ (s) ds]

for r tending to 0. From the direct part of Karamata’s theorem’s (see [5], p.26)∫ r0
r

1/ρ (s) ds ∼ cαr
1−α when α > 1 and

∫ r0
r

1/ρ (s) ds = ς (r) log (1/r) with
ς (r) → +∞ when r → 0 (see equation (1.5.8) in [5]). Finally when RV+ orRV1

hold −p log r−
∫ r0
r

1/ρ (s) ds always tends to −∞ whatever the choice of p.

Now we turn to the proof of the converse part of Theorem 2, namely Theo-
rem 4. It takes two steps.

First we should make sure that when λi = ρ
(
ϕ−1 (i)

)
,
∑
λi < +∞ which

will ensure that the random element defined by S =
∑
λiZi is well-defined.

Lemma 4. When λi = ρ
(
ϕ−1 (i)

)
,
∑
λi < +∞.

Proof. It is easily seen that ϕ−1 is non decreasing in a neighborhood of +∞.
Indeed it suffices to prove that ϕ is, which may be deduced from its definition
by studying its derivative. By the way one may also see that ϕ is concave. Now
since ϕ−1 is non decreasing it is enough to prove that:

∫ +∞

ρ
(
ϕ−1 (x)

)
dx < +∞

where the notation above means: the improper integral converges at infinity. Set
u = ϕ−1 (x) above then we should examine:

∫

0

ρ (u)ϕ′ (u)du.



1770 A. Mas

Integrating by part this comes down to ensuring first that ρ (u)ϕ (u) = u tends
to a finite limit as u tends to 0 which is plain and that

∫

0

ρ′ (u)ϕ (u) du =

∫

0

u
ρ′ (u)

ρ (u)
du < +∞

Now we are in a position to apply Karamata’s theorem to ρ′: since ρ is regularly
varying at 0 with index d ≥ 1 (since ρ′ (0) = 0), and monotone in a right neigh-
borhood of zero, ρ′ is also regularly varying with positive index (see Theorem
1.7.2.(b) p.39 in [5]). Then we can apply the direct part of Karamata’s Theorem
to ρ′ (see ibid. Theorem 1.5.11 (i) p.28 where the limit should be taken here at
zero) and limt→0 tρ

′ (t) /ρ (t) is finite which ensures that the integral above con-
verges and finally that

∑
λi < +∞. This completes the proof of Lemma 4.

Proof of Proposition 4. We start from (2.7) and denote a (·) = 1/λ (·) which
may be rewritten:

r =
∑

j≥1

1

a (j) + 2γ
.

Let us set Jγ = inf {j : a (j) ≥ γ} so that a (Jγ − 1) ≤ γ ≤ a (Jγ)

Jγ
3γ

+
∑

j≥Jγ+1

1

a (j) + 2γ
≤
∑

j≥1

1

a (j) + 2γ
≤ Jγ

2γ
+

∑

j≥Jγ+1

1

a (j) + 2γ

Jγ
3γ

+
1

3

∑

j≥Jγ

1

a (j)
≤ r ≤ Jγ

2γ
+
∑

j≥Jγ

1

a (j)

2

3
≤ rγ

Jγ
≤
(
0.5 +

(
J−1
γ + 1

))
.

The convexity of λ, hence of a yields
∑

j≥J 1/a (j) ≤ (Jγ + 1) /a (Jγ) hence for
r ↓ 0 that is for large γ (r):

2

3
≤ rγ

Jγ
≤ 3

2
. (4.5)

Now consider the function (of the variable γ): d (γ) = γr (γ) /a−1 (γ). It is
decreasing at least when γ ↑ +∞ since:

d′ (γ) =

(
r (γ)− γσ2

)

a−1 (γ)
− γr (γ)

[a−1 (γ)]2 · a′ (a−1 (γ))

is negative for r ↓ 0 that is for large γ. Finally we get rγ/a−1 (γ) → l ∈
[
2
3 ,

3
2

]

when γ tends to +∞. The first statement of the Theorem is resulting of the
latter limit. As a consequence when λ (x) ≻∞ exp (−xα), a (x) ≺∞ exp (xα) and

finally rγ ≻0 (log γ)1/α ≥ (log 1/r)1/α. At last we get γ (r) ≻0
1
r (log 1/r)

1/α

which finally yields for some constant c

exp

[
−
∫ r0

r

γ (s) ds

]
≤ c exp

[∫ r0

r

(log 1/s)1/α d (log 1/s)

]

= c exp
[
− (log 1/r)

1+1/α
]
.
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The last sentence of the Proposition, when the function λ is known, is easily
derived by noting that

∑
j≥1 1/ (a (j) + 2γ) ∼γ→+∞

∫ +∞

0
dx

a(x)+2γ .

Proof of Theorem 4. Pick an F0 in Γ0 with auxiliary function ρ0 and consider
the function

F ∗
0 (r) =

√
ρ′0 (r) /π exp

[
−
∫ r0

r

ds/ρ0 (s)

]

with r0 =
∑

i ρ
(
ϕ−1 (i)

)
. Note that

√
ρ′ (·) hence ρ′ (·) are ρ-self-neglecting

because:
ρ′ (r + xρ (r))

ρ′ (r)
→r→0 1.

Indeed ρ′ (r + xρ (r)) = ρ′ (r (1 + xρ (r) /r)), ρ′ is regularly varying with positive
index since ρ is itself regularly varying with index κ > 1, and ρ (r) /r → 0 lead
to

lim
r→0

ρ′ (r (1 + xρ (r) /r)) /ρ′ (r) = lim (1 + xρ (r) /r)κ−1 = 1.

This proves that F ∗
0 △ F0. It remains to show that F ∗

0 ∼0 P (S < ·). Like above
γ0 = 1/ρ0. Start from (2.7) that is r =

∑
j λj/ (1 + 2γ0λj) . Now, following the

proof of Proposition 4 we set J (r) = r/ρ0 (r) (we just make use of equation (4.5),
fix J (r) ρ0 (r) /r = 1 instead of bounding it above and below) and take a (·) =
J−1 (·) then finally S =

∑+∞
i=1 Zi/a (i). By construction P (S < ·) ∼ F ∗

0 .

Finally we turn to the proof of Theorem 5 and start with a Lemma. This
Lemma, its proof and the subsequent proof of the Theorem adapt the derivation
of Lemma 2.11.2 and Theorem 2.11.3 of [5].

Lemma 5. Let ρ be self-neglecting at 0. For x0 > 0 sufficiently small the se-
quence xn = xn−1 − ρ (xn−1) tends to 0.

Proof. First note that the sequence xn is decreasing since ρ ≥ 0 and notice from
the properties of self-neglecting functions (namely ρ (s) /s→ 0 when s→ 0) that
for a sufficently small x0 > 0, xn ≥ 0 for all n. The limit of xn exists, is denoted
l. Suppose that l > 0. Then ρ (l) > 0 and since ρ is a non decreasing function
ρ (xk) ≥ ρ (l) for all k. At last

xn = xn−1 − ρ (xn−1) = x0 −
n−1∑

k=0

ρ (xk) ≤ x0 − nρ (l) .

Letting n go to infinity xn goes to −∞ which contradicts xn ≥ 0 hence the
Lemma.

Proof of Theorem 5. Let xn be as in the preceding Lemma. Let p be a C∞

probability density on [0, 1] and set for xn+1 ≤ u ≤ xn

ε (u) =
lnφ (xn+1)− lnφ (xn)

xn − xn+1
p

(
xn − u

xn − xn+1

)
ρ (u) .

The proof takes three steps.
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We prove first that for all xn, φ (xn) = exp(
∫ 1

xn

ε(u)
ρ(u)du). In fact we may always

define ε (u), x0 ≤ u ≤ 1 such that φ (x0) = exp(
∫ 1

x0

ε(u)
ρ(u)du). Then assume that

φ (xk) = exp(
∫ 1

xk

ε(u)
ρ(u)du) for k = 0, 1, . . . , n. We have:

∫ 1

xn+1

ε (u)

ρ (u)
du =

∫ xn

xn+1

ε (u)

ρ (u)
du+

∫ 1

xn

ε (u)

ρ (u)
du

= lnφ (xn) +
lnφ (xn+1)− lnφ (xn)

xn − xn+1

∫ xn

xn+1

p

(
xn − u

xn − xn+1

)
du

= lnφ (xn)− (lnφ (xn+1)− lnφ (xn))

∫ 0

1

p (t) dt

= lnφ (xn+1) .

Second we prove that for xn+1 ≤ x ≤ xn limx→0 φ (x) /φ (xn) = 1. We note
that x = xn−λxρ (xn) where λx ∈ [0, 1] hence limx→0 φ (xn − λxρ (xn)) /φ (xn) =
1 uniformly with respect to λx ∈ [0, 1].

The third and last step is devoted to proving that |ε (u)| → 0 when u → 0.
Indeed for all xn+1 ≤ u ≤ xn,

|ε (u)| ≤ |p|∞
∣∣∣∣
lnφ (xn+1)− lnφ (xn)

xn − xn+1

∣∣∣∣ ρ (u) .

We focus on
∣∣∣∣
lnφ (xn+1)− lnφ (xn)

xn − xn+1

∣∣∣∣ ρ (u) =
ρ (u)

ρ (xn)
ln

φ (xn)

φ (xn+1)

=
ρ (xn − λuρ (xn))

ρ (xn)
ln

φ (xn)

φ (xn − ρ (xn))
.

Just like above ρ (xn − λuρ (xn)) /ρ (xn) → 1 since ρ is self-neglecting. Finally
by the definition of φ we get lnφ (xn) /φ (xn − ρ (xn)) → 0 which finishes the
proof of the Theorem.

4.2. Proofs of results of section 2.3

Proof of Proposition 5. We start with Vn (x0). It is simple to see that Vn (x0) =
nσ2

εEω
2
1,nwith:

ω1,n =
K (‖X1 − x0‖ /h)∑n
i=1K (‖Xi − x0‖ /h)

.

Computations like those carried out in [19] show that:

Eω2
1,n ∼ EK2 (‖X − x0‖ /h) / [nEK (‖X − x0‖ /h)]2

hence that (see (2.9)) Vn (x0) ∼ σ2
ε

n
EK2(‖X−x0‖/h)

[EK(‖X−x0‖/h)]
2 ∼ σ2

ε

nFx0
(h)which yields the

desired result by (1.8).
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We should now deal with Bn (x0) defined at (1.2). Ferraty, Mas, Vieu show
[19] that Bn (x0) is well approximated by:

[
E (r (X)− r (x0))K (‖X − x0‖ /h)

EK (‖X1 − x0‖ /h)

]2
. (4.6)

A Taylor development at order 2 shows that:

E(r(X) − r(x0))K (‖X − x0‖/h) = 〈r′(x0),MK,1(x0)〉+ tr [r′′(ξ)MK,2(x0)] /2

where r′ and r′′ stands for the first and second order Gâteaux derivative of r at
x0 and ξ = θX + (1− θ)x0 for some random θ ∈ (0, 1) . We first deal with the
first order term 〈r′ (x0) ,MK,1 (x0)〉. From PX−x0

≪ PX we see that:

E

[
(X − x0)K

(‖X − x0‖
h

)]
= E

[
Xfx0

(X)K

(‖X‖
h

)]

= E

[
X [fx0

(X)− fx0
(0)]K

(‖X‖
h

)]
+ fx0

(0)E

[
XK

(‖X‖
h

)]

We assumed that fi the density of xi is symmetric. This yields for all i:

E

[
〈X, ei〉K

(‖X‖
h

)]
=

∫ (∫
tK
(√

t2 + s2/h
)
fi (t) dt

)
gi (s) ds = 0

where gi is the density of
∑+∞

j=1,j 6=i λjx
2
j . Now

E

[
X [fx0

(X)− fx0
(0)]K

(‖X‖
h

)]
= E

[
X 〈f ′ (x0) , X〉K

(‖X‖
h

)]
+Rn

where Rn involves the second order derivative of fx0
and will be neglected. Then

denoting ∂irx0
= 〈r′ (x0) , ei〉

〈r′ (x0) ,MK,1 (x0)〉 ∼
+∞∑

i=1

∂irx0
E

[
〈X, ei〉 〈f ′ (x0) , X〉K

(‖X‖
h

)]

=

+∞∑

i=1

∂irx0
E


〈X, ei〉




+∞∑

j=1

∂jfx0
〈X, ej〉


K

(‖X‖
h

)
 .

Arguments based on the symmetry of the density of the 〈X, ei〉 lead to cancelling

E[〈X, ei〉 〈X, ej〉K(‖X‖
h )] for i 6= j and:

〈r′ (x0) ,MK,1 (x0)〉 ∼
+∞∑

i=1

∂irx0
∂ifx0

E

[
〈X, ei〉2K

(‖X‖
h

)]
.

Similar calculations show that:

tr [r′′ (x0)MK,2 (x0)] ∼ fx0
(0)

+∞∑

i=1

∂2iirx0
E

[
〈X, ei〉2K

(‖X‖
h

)]
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where ∂2iirx0
= 〈r′′ (x0) ei, ei〉 and finally denoting E[〈X, ei〉2K (‖X‖ /h)] =

vi (h)

E (r (X)− r (x0))K (‖X − x0‖ /h) ∼
+∞∑

i=1

(
∂2iirx0

fx0
(0)

2
+ ∂irx0

∂ifx0

)
vi (h) .

We can confine now to studying vi (h) in the right hand side just above
We seek an upper bound. Note that whenever ‖X‖ ≤ h we can assume that
for all i 〈X, ei〉 ≤ c

√
λih for some constant c. Then vi (h) ≤ c2λih

2F (h) . We
turn to a lower bound for vi (h). For simplicity we will make calculations with
K the naive kernel and with a modified norm. In fact we will take ‖X‖ =
|〈X, ei〉|+ |∑j 6=i 〈X, ej〉 | = |〈X, ei〉|+ Zi. Let 0 < c < c be two constants:

E

[
〈X, ei〉2K (‖X‖ /h)

]

≥ λicρ
2 (h)P

(√
λicρ (h) ≤ |〈X, ei〉| ≤

√
λicρ (h) , |〈X, ei〉|+ Zi ≤ h

)

≥ λicρ
2 (h)P

(
|〈X, ei〉| ∈

√
λiρ (h)

[√
c,
√
c
])

P

(
Zi ≤ h−

√
cλiρ (h)

)

≥ λicρ
2 (h)P

(
|〈X, ei〉| ∈

√
λiρ (h)

[√
c,
√
c
])

P

(
‖X‖ ≤ h−

√
cλiρ (h)

)

where the probabilities were split because |〈X, ei〉| and Zi are independent. Con-
sider first P

(
|〈X, ei〉| /

√
λi ∈ ρ (h)

[√
c,
√
c
])

≥ cρ (h) where c is some constant

independent of i if the distribution of all |〈X, ei〉| /
√
λi is bounded below in a

neighborhood of 0 which will be assumed here (it is true when X is gaussian).
Then lastly:

F
(
h−

√
cλiρ (h)

)
≥ F

(
h−

√
cλ1ρ (h)

)

which yields:

E

[
〈X, ei〉2K (‖X‖ /h)

]
≥ λiccρ

3 (h)P
(
‖X‖ ≤ h−

√
cλ1ρ (h)

)
.

From F (h − √
cλ1ρ(h))/F (h) → exp(−√

cλ1) we get that for a h close enough

to 0 E[〈X, ei〉2K (‖X‖ /h)] ≥ λic
′′ρ3 (h)F (h) where c′′ does not depend on n

or on i. Finally we get:

[
E (r (X)− r (x0))K (‖X − x0‖ /h)

EK (‖X1 − x0‖ /h)

]2

≥ c′′ρ6 (h)

[
+∞∑

i=1

λi

(
∂2iirx0

fx0
(0)

2
+ ∂irx0

∂ifx0

)]2
= c−ρ6 (h)

since η =
∑+∞

i=1 λi(
∂2
iirx0

fx0
(0)

2 + ∂irx0
∂ifx0

) 6= 0.

Proof of Theorem 3. We deal with Part I. The proof comes down to adapting
[54], Chapter 2, p.81) to our framework. We consider two distant hypotheses:
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r0 ≡ 0 and r1 (x) = 2(h∗)pK(‖x− x0‖ /h) with K ∈ Ep, compactly supported
and K (0) ≥ 1. Here h∗ is the solution of the equation (2.14). It is plain that
|r0(x0)− r1(x0)| ≥ 2 (h∗)

p
. Set z0i = (y0i , Xi) and z1i = (y1i , Xi), denote P0

(resp. P1) the distribution of the vector (z01 , . . . , z
0
n) (resp (z11 , . . . , z

1
n)) when the

regression function is r0 (resp. r1) and P0,i (resp. P1,i) the distribution of the
margin z0i (resp. z1i ). We are going to prove that the Hellinger-distance between
P0 and P1 H (P0,P1) is less than a given τ < +∞. Let f stand for the density
of U = ‖X − x0‖ /h. The function f is nothing but the first order derivative of
the small ball probability F. We first compute the Hellinger distance between
the margins of P0 and P1 by conditioning with respect to U . Let θ1 (U) =
2 (h∗)

p K (U):

H2 (P0,i,P1,i) ≡
∫ ∫ [

p1/2ε (t)− p1/2ε (t− θ1 (u))
]2
f (u)dtdu

≤ p∗

∫
θ21 (u) f (u) du = 4p∗ (h

∗)
2p

EK2 (U)

by Assumption (2.15). For n large enough and by (2.10) we deduce that:

H2 (P0,i,P1,i) ≤ 8p∗ (h
∗)

2p
F (h∗)K2 (1) ≤ c∗/n

where c∗ is some constant and we used (2.14). The decomposition of Hellinger
distance for product measures (see [54], p. 69). gives

H2 (P0,P1) = 2

(
1−

(
1− H2 (P0,1,P1,1)

2

)n)

≤ 2

(
1−

(
1− c∗

2n

)n)
≤ 2

(
1− exp

(
c∗

4

))

and H2 (P0,P1) ≤ τ with τ = 2 (1− exp (c∗/4)). This proves that Rn (x0) �
(h∗)

2p
where h∗ is defined within Lemma 1. And (2.14) ensures that Rn ≻

exp[−2p (log n)
α/(α+1)

] by straightforward calculations. Part II is treated the
same way since the proof relies only on the specific h∗ defined at (2.14).
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