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study the influence of the arrival processes on the departure processes can
be described in a linear and time-invariant model. This makes it possible to
apply cross-spectral techniques for multivariate point processes. The con-
struction of the estimators is then based on smoothed periodograms. We
prove asymptotic normality for the estimators. We present the statistical
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wards how the results can be generalized to feedforward systems of three
or more nodes and to systems with positive feedback probabilities at the
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1. Introduction

Stochastic networks are complex interacting systems with the typical application
fields computer and telecommunication networks, the internet, manufacturing
facilities, as well as dynamical population models and models of the neuro-
sciences. In all these fields there is an increasing interest in the statistical infer-
ence for system characteristics based on incomplete information of the working
systems. For a recent example, have a look at the applied comprehensive model-
ing and statistical analysis of internet voice communication presented in [33]. In
particular, knowledge of the distribution of the operating times at the nodes is
essential for specifying the performance behavior and for guaranteeing reliabil-
ity and quality standards of the systems. It is important to describe the speed
and potential monotonicity of service at the nodes and to classify the shape of
the service time distribution with respect to unimodality or multimodality. For
example, a unimodal service time density shows a homogeneous service behavior
whereas a bimodal density may indicate that there are two distinct customer
populations or breakdowns of the server. There is interest in both, paramet-
ric and nonparametric statistical inference for service time distributions. How-
ever, most of the currently applied techniques for service demand estimation
in queueing networks focus only on the first and second order moments of the
service times obtained e.g. by linear regression of measured utilization values.
Some efforts have been done in the recent past to extend queueing networks to
more general models with arbitrary distributions and/or nonrenewal processes,
but the service distribution estimation problem has remained unsolved up to
now.

Important contributions to a parametric analysis of queueing systems are
among others the following papers. In [23] the mean service and response times
of an IT system are inferred from measurements of the end-to-end delays of
the customers. The analysis is based on a mathematical programming formula-
tion. In [22] the traffic intensity in G/G/1 queueing systems is estimated based
on samples of the interarrival and service times of customers. The estimators
are shown to be consistent and asymptotically normal and corresponding confi-
dence intervals and tests are constructed. Moreover, a comprehensive literature
overview on parameter estimation problems in queueing systems is presented.
The construction of new confidence intervals for the mean sojourn times in
M/G/1-FCFS systems is achieved in [14]. The analysis is based on four dif-
ferent bootstrap procedures. A thorough simulation study is presented. In [15]
the analysis is extended to G/G/1-FCFS systems. In [30] traffic parameters
like the means of service and waiting times are estimated for various single
server systems as well as for queueing networks by sending and observing a
test stream. The research is motivated by the need to decide if incoming traffic
should be allowed to enter the system in ATM networks. [25] provides a re-
view of general parameter estimation problems for single queues and discusses
in particular maximum likelihood estimation, the method of moments and the
problem of hypothesis testing in this context. In [21] finite source discrete time
Geo/Geo/1/∞/N queues with parallel arrival streams of ordinary customers
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and of disasters which empty the system on their arrival are analyzed. Numer-
ical schemes to compute steady state probabilities of the system and perfor-
mance measures are derived. A numerical study illustrates the sensitivity of the
performance measures due to changes of the system’s parameters. In [13] a mod-
ification of the M/G/∞ system is studied as a model for data traffic generation
where the transmission rates may also be random. The statistical analysis in
particular concentrates on the influence of changes in the input parameters on
the long-range dependence of the accumulated traffic. The connection between
geometric coverage processes and queueing systems is exploited for the statis-
tical analysis in [16] and [17](mainly Chapter 2). By interpreting service times
in M/G/∞ systems as line segments, busy periods as clumps of segments and
idle periods as spacings between clumps, the relation between one dimensional
mosaic processes and M/G/∞ systems is established. Based on observations of
the busy periods of M/G/∞ systems then in particular estimators of the arrival
rate are studied and their efficiency is compared.

Next we give a brief literature overview on nonparametric estimation studies
for queueing systems. [18] bases the nonparametric analysis of M/G/∞ systems
on data of consecutive sequences of the busy and idle periods. The kernel-based
deconvolution approach relies on the trick to expand the characteristic function
of the busy period distribution before inversion. The main results are uniform
strong consistency for the estimators of the distribution function and the den-
sity function of the service time distribution. In a series of papers Pitts and
her coauthors contributed to the field of nonparametric inference for queues.
They successfully applied a powerful functional approach based on infinite -
dimensional versions of the delta method to various settings. [29] studies the
problem of estimating the stationary waiting time distribution function in the
GI/G/1 queue given random samples from the service and interarrival time dis-
tributions. The results are strong consistency and asymptotic normality for the
functional estimator. In [2] the arrival rate and the service time distribution
function in M/G/ ∞ systems are estimated in a parametric as well as in a non-
parametric setting. The analysis is based on data on the queue length process
which is either completely observable or just in terms of the idle and busy pe-
riods. [3] is devoted to the estimation of the arrival rate and the service time
distribution via its generating function in M/G/1 systems given observations of
the busy and idle periods of the server. [19] studies nonparametric inference for
the service time distribution from the workload process of M/G/1 systems. The
analysis exploits the underlying regenerative structure of the sampled workload
process and utilizes central limit theorems for regenerative processes and a de-
compounding approach for geometric random sums. In the early contribution [7]
Brillinger studies the problem of nonparametric estimation of the service time
distribution in a single G/G/∞ queue based on observations of the input and
output processes. His results are asymptotically normal estimators. He applies
in this paper the spectral theory of stationary processes. We refer to a thorough
presentation to his book [9] written in the context of time series.

To the best of our knowledge up to now there are no results in the important
case of nonparametric inference for stochastic networks with two or more nodes
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where dependencies between the components due to the moving customers must
be taken into consideration. With this paper we contribute to close this gap and
present a statistical analysis study of a feedforward network of nodes of type
G/G/∞. The external arrival processes of customers to these networks are mod-
elled as general point processes which may in particular show inner dependence.
At each node there are infinitely many servers which act independently from
each other according to a common general service time distribution. No waiting
of customers occurs. Once having left a node customers cannot enter it again
on their way through the network. Due to its general interarrival and service
times the model is of wide practical interest. Particularly, if nothing is known
about the structure of the arrival and service processes this model is often the
first choice. If the number of servers is unknown in the application it suggests
itself to assume infinitely many servers and thus, to equalize service and so-
journ times of customers at the nodes. We assume that we observe over a finite
stretch of time at each node the external arrival and external departure times
of customers only. It is here not possible to follow individual customer paths
through the system and directly assign the departures to the arrivals. Our aim
is to provide nonparametric estimators for the service time distributions at the
nodes as well as estimators for the unknown routing probabilities. In particu-
lar, we will estimate both, the characteristic functions and the densities of the
service time distributions. The crucial point in our approach is the observation
that in our tandem systems under study the influence of the arrival processes on
the departure processes can be described in a linear and time-invariant model.
Then the stochastic analysis of the system can be based on models for mul-
tivariate point processes and cross-spectral techniques for stationary processes
can be applied. The underlying Fourier analysis for stochastic processes orig-
inated from the search for hidden periodicities in the time course. As we will
see, spectral analysis is a powerful tool for studying inner dependency struc-
tures of multivariate processes as well as interrelations between two processes
since these properties are well represented in the frequency domain. Our work
is in particular a generalization of [7] to the multivariate case with a thorough
detailed definition of the mathematical point process framework.

The paper is organized as follows. In Section 2 we summarize the notations
used, in particular with respect to point processes. Section 3 describes the net-
work model under consideration (a tandem system of two nodes of type G/G/∞)
and its stochastical analysis. Section 4 is devoted to the study of general lin-
ear time-invariant models for multivariate point processes. We describe cross-
spectral methods for the estimation of characteristics of the model and prove
the main results about asymptotic normality for the estimators of the so-called
transfer function and the impulse-response function of the model. In Section 5
we show how the results from Section 4 can be applied in the setting of the
queueing system presented in Section 3. In particular, we develop estimators
for the characteristic functions and the (Lebesgue) densities of the service time
distributions at the nodes as well as for the routing probabilities of the model
and prove their respective asymptotic normality. Furthermore, we present the
multiple coherence as an indicator if service times and routing behavior are
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deterministic. In Section 6 we sketch how our statistical approach can be gen-
eralized to feedforward systems of more than two nodes and to tandem systems
with positive feedback probabilities at the nodes. In Section 7 we show and
discuss results from a simulation study.

2. Notation

In the paper we consider point processes on R to be random counting mea-
sures, i.e. we call a measurable mapping D from an underlying probability space
(Ω,F , P ) into the set of all nonnegative integer-valued boundedly finite mea-
sures on the Borel σ-algebra B(R) on R a point process. Equivalently, D can be
characterized by the sequence of its jump points D = (σD

k )k∈Z with the conven-
tion . . . ≤ σD

−2 ≤ σD
−1 < 0 ≤ σD

0 ≤ σD
1 ≤ . . .. The number of jumps of a point

process D in a Borel time set B ∈ B(R) can then be calculated as

D(B) =

∫
1B(t) dD(t) =

∫
1B(t)D(dt) =

∑

j∈Z

1B(σ
D
j ).

We assume that all considered point processes D are simple, i.e. the jump
points are distinct, σD

j 6= σD
j+1 for all j. Further, note that simple point pro-

cesses do not have any accumulation points so that the sequence of jump points
diverges and in finite time sets only a finite number of events occur.

We define n-variate point processesD on the space R as vectors whose compo-
nents are point processes on R, i.e., D(B) = (D1(B), . . . , Dn(B))t for B ∈ B(R),
where t denotes transposition. For further details on point processes we refer
the reader to [12].

The conditional expectation E[D(B)|A] of the random variable D(B) rela-
tively to the multivariate point process A is defined as the conditional expec-
tation of D(B) relatively to the σ-field generated by the random jump points
of all component processes of A. Note that there are at most countably many
such jump points since all Di are simple.

Further, we fix the following notation: F [µ] (λ) = 1
2π

∫∞

−∞
exp(−iλt) µ(dt)

denotes the Fourier transform of a finite measure µ at frequency λ ∈ R. For
real-valued functions h we define the Fourier transform for technical reasons
without the factor 1/(2π), i.e. F [h] (λ) =

∫∞

−∞ exp(−iλt)h(t)dt. En is the n-
dimensional identity matrix, On×m the n × m matrix with all entries equal
to zero and 1n is the n-dimensional vector with all components equal to 1.
NC

n (a,C) indicates an n-variate complex normal distribution with mean vector
a and variance-covariance matrix C. Moreover, for B ∈ B(R), let 1B(·) be the
indicator function defined by 1B(x) = 1 if x ∈ B and 1B(x) = 0 if x 6∈ B. For
B ∈ B(R) and u ∈ R we denote by B−u the set {b−u : b ∈ B}. As usual, we set
empty sums equal to zero. Furthermore, we assume for all processes and random
variables an underlying common probability space (Ω,F , P ) to be given.
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Fig 1. Tandem network of two nodes.

3. Tandem models of queues

We present here our approach and results in the framework of a stationary
tandem network of two G/G/∞ queues in series according to Figure 1. Gen-
eralizations of the model to tandem systems of more than two nodes and to
systems with positive feedback probabilities at the nodes are given in Section 6.

We assume that customers which enter the system to obtain service at the
nodes are indistinguishable. Customers arrive at nodes 1 and 2 from the outside
according to general stationary point processes A1 and A2 on the time axis R.
We denote the sequences of jump points of the input processes A1 and A2 by
(σA1

j )j∈Z and (σA2

j )j∈Z respectively with . . . ≤ σA1
−1 < 0 ≤ σA1

0 ≤ σA1
1 ≤ . . .

referring to the arrival times of customers from the outside to node 1 and . . . ≤
σA2
−1 < 0 ≤ σA2

0 ≤ σA2
1 ≤ . . . referring to the arrival times of customers from the

outside to node 2 respectively. We assume that the point processes A1 and A2

are simple, i.e. each jump point σAi

j of Ai refers to the arrival of exactly one

customer and the jump points are distinct, σAi

j 6= σAi

j+1 for all j and i = 1, 2.

At each node there are infinitely many servers, no waiting occurs. Service
at node i is provided for each customer according to a service time distribution
with (Lebesgue) density gi(·) on R+ (denoted in Figure 1 by “∼ gi(·)”), i = 1, 2.
We assume mean service times to be finite, i.e.

∫∞

0
t gj(t)dt < ∞ for j = 1, 2.

After the completion of service at node 1 a customer decides with probability
1−p1 to leave the system and with probability p1 to move on to node 2 to obtain
service there. After being served at node 2 all customers leave the system. We
assume here that p1 ∈ (0, 1]. For p1 = 0 the model would reduce to the single
node case considered in [7]. Note that for p1 = 1 we have no observations of the
departure process D1 which is no problem though since then the matrix H(·)
given in (7) shows a simple form which renders the estimation procedure facile.

We denote by D1 = (σD1

j )j∈Z and D2 = (σD2

j )j∈Z the external output pro-

cesses from node 1 and node 2 respectively where (σDi

j )j∈Z is the sequence of
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the successive time instants at which customers leave the system from node i,
i = 1, 2. Clearly, D1 and D2 are point processes on R.

We assume that the arrival processesA1 and A2 are independent of each other
and that all service times at nodes 1 and 2 are independent of each other and
of the inter-jump times of the processes A1 and A2. Furthermore, the routing
decisions of the customers after their respective services at node 1 are taken
independently of each other and of the past of the system.

We observe the incoming and outgoing customers of the system over the time
interval (0, T ], i.e., our observations are part of the sequences of jump points
of A1 = (σA1

j )j∈Z, A2 = (σA2

j )j∈Z, D1 = (σD1

j )j∈Z and D2 = (σD2

j )j∈Z. We
assume the system to be in steady state at time 0. However, the actual number
of customers at the nodes at time 0 is not known. The times of movements of
customers from node 1 to node 2 are not observable. Our aim is to construct
nonparametric estimators of the service time distributions given by the densities
g1(·) and g2(·) as well as an estimator of the routing probability p1. Note that
we aim high here since we cannot assign the departures to the arrival points and
directly measure the individual sojourn times of the customers in the system. If
we could, the estimation of g1(·) and g2(·) would be straightforward. In partic-
ular, for a customer leaving the system via the departure process D2 we cannot
tell if he has entered the system via A1 or via A2. Thus, at first it is not clear
at all if the unknown parameters are identifiable from the given observations.

The underlying point process structure of the system leads to the following
considerations: There is a jump of the output process D1 in a time Borel set
B ∈ B(R) if at least for one customer the sum of her arrival time σA1

j to node 1

and her service time γ
(1)
j at node 1 is in B and she decided to leave the network

after being served at node 1 instead of jumping on to node 2. Therefore, we
deduce for the output process D1:

D1(B) =
∑

j∈Z

1B(σ
A1

j + γ
(1)
j ) · Z(1−p1)

j , for B ∈ B(R), (1)

with random Bernoulli variables Z
(1−p1)
j ∼ Bern(1 − p1) and random variables

γ
(1)
j ∼ g1(·) for all j ∈ Z. All these random variables are independent from

each other. Here Z
(1−p1)
j corresponds to the customer’s routing decision after

the service at node 1 has expired. If Z
(1−p1)
j equals 1 she leaves the network,

otherwise she jumps on to node 2.

Taking the conditional expectation of (1) conditioned on the arrival process
A1 we obtain with the theorem of monotone convergence:

E
[
D1(B)

∣∣A1

]
=
∑

j∈Z

E

(
1B(σ

A1

j + γ
(1)
j )

∣∣∣A1

)
·E
(
Z

(1−p1)
j

)

= (1− p1)
∑

j∈Z

∫ ∞

0

1B(σ
A1

j + s) g1(s)ds



Nonparametric inference for stochastic feedforward networks 1677

= (1− p1)
∑

j∈Z

∫ ∞

0

1
B−σ

A1
j

(s)g1(s)ds

= (1− p1)

∫ ∫ ∞

0

1B−u(s)g1(s)ds dA1(u), for B ∈ B(R). (2)

Analogously we derive for the output process D2:

D2(B) =
∑

j∈Z

1B(σ
A1

j + γ
(1)
j + γ

(12)
j ) · (1− Z

(1−p1)
j )

+
∑

j∈Z

1B(σ
A2

j + γ
(2)
j ), for B ∈ B(R), (3)

with random variables γ
(12)
j ∼ g2(·) and γ

(2)
j ∼ g2(·) for all j ∈ Z, all indepen-

dent from each other. The reason behind is as follows. There are two different
explanations for a jump of D2 in a time set B ∈ B(R): Either for a customer

the sum of her arrival time σA1

j to node 1 and her consecutive service times γ
(1)
j

and γ
(12)
j at nodes 1 and 2 is in B and she decided after being served at node

1 to jump on to node 2. Or for a customer the sum of her external arrival time

σA2

j to node 2 and her service time γ
(2)
j at node 2 is in B.

Taking the conditional expectation of (3) conditioned on the arrival processes
A1 and A2 yields for B ∈ B(R):

E

[
D2(B)

∣∣∣∣
(
A1

A2

)]

= p1

∫ ∫ ∞

0

1B−u(s)(g1 ∗ g2)(s)ds dA1(u) +

∫ ∫ ∞

0

1B−v(t)g2(t)dt dA2(v).

(4)

Summarizing (2) and (4) in a matrix notation gives for B ∈ B(R),

E

[(
D1(B)

D2(B)

)∣∣∣∣
(
A1

A2

)]
=

∫ ∫
1B−u(s)h(s)ds d

(
A1

A2

)
(u) (5)

with matrix h(s) =

(
g1(s) · (1 − p1) 0
(g1 ∗ g2)(s) · p1 g2(s)

)
, s ∈ R+. (6)

For later purposes we compute the Fourier transform of the matrix h(·) component-
by-component,

H(λ) =

(
G1(λ) · (1− p1) 0
G1(λ) ·G2(λ) · p1 G2(λ)

)
for λ ∈ R, (7)

where Gj(λ) :=
∫∞

0
exp(−iλt)gj(t)dt for j = 1, 2.

We recognize that the influence of the vector A := (A1, A2)
t
of arrival pro-

cesses on the vector D := (D1, D2)
t of departure processes is given in a linear

time-invariant manner (for a precise definition see Section 4). We will study
general linear time-invariant relations between multivariate point processes in
the next section and then in Section 5 apply the results to the particular model
given by (5) and (6) to solve our nonparametric estimation problem.
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4. Linear time-invariant models for multivariate point processes

This section is devoted to the analysis of functional linear time-invariant re-
lations between two multivariate point processes. These kinds of models were
e.g. studied by Brillinger in the context of time series in [9], in the framework of
one-dimensional processes with stationary increments in [7] and were sketched
in the context of stationary interval functions in [6]. We provide here an analysis
in the general framework of multivariate point processes.

Consider a functional relation R between two multivariate point processes
A = (A1, . . . , An)

t and D = (D1, . . . , Dm)t on the space R,

D(B) =




D1(B)
...

Dm(B)


 = R




A1

...

An




(B) = R [A] (B), for B ∈ B(R).

Thus, the application of the relation R on the point process A on R yields a
new point process D on R which may have a different dimension.

The relation R is said to be linear if

R [α1A1 + α2A2] (B) = α1R [A1] (B) + α2R [A2] (B) for all B ∈ B(R)

for multivariate processes A1,A2 and constants α1, α2 ∈ R. Further, R is said
to be time-invariant if

R
[
Ãv
]
(B) = R [A] (B + v) for all B ∈ B(R),

where Ãv denotes the shifted point process defined by Ãv(B) := A(B + v) for
all B ∈ B(R) and v ∈ R. A linear, time-invariant operation R is also called an
m× n linear filter.

We will assume here that a linear filter does only describe the probability
structure of the influence of a multidimensional process A on the process D up
to some additional noise vector ε, which is independent from A, i.e.,

D(B) = R[A](B) + ε(B) with E(ε(B)) = 0 for all B ∈ B(R).
Taking conditional expectations conditioned on A on both sides of the equation
yields

E[D(B)|A] = R[A](B), B ∈ B(R).
The error process then can be expressed by

ε(B) = D(B)− E[D(B)|A], B ∈ B(R). (8)

We restrict ourselves here to the important class of m × n matrix linear filters
taking the form

R [A] (B) =

∫ ∫
1B−u(s)h(s) ds dA(u) + µ, B ∈ B(R), (9)
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where h is a nonnegative m× n-matrix with
∫∞

−∞ hij(u) du < ∞ for all (i, j) ∈
{1, 2, . . . ,m}×{1, 2, . . . , n} and µ is an n-dimensional real vector. The vector µ
plays the role of an additional linear trend with which in our model the number
of expected points of D given A may be shifted by a constant. The integral in
(9) is to be understood by components, i.e.,

R



A1

...
An


 (B)

=




∫ ∫
1B−u(s)h11(s) ds dA1(u)+. . .+

∫ ∫
1B−u(s)h1n(s) ds dAn(u)+µ1

...∫ ∫
1B−u(s)hm1(s) ds dA1(u)+. . .+

∫ ∫
1B−u(s)hmn(s) ds dAn(u)+µn


(B).

It is obvious that the operation R is time-invariant, but only linear if µ is the
zero vector. However, following Brillinger we call this model in all cases the
linear time-invariant model.

Altogether, our model takes the form

E

[
D(B)

∣∣∣A
]
=

∫ ∫
1B−u(s)h(s)dsA(du) + µ for B ∈ B(R) (10)

with multivariate point processes A and D.
As in cross-spectral analysis of stationary processes the matrix h(·) in (9) is

called the impulse-response function of the filter R. The Fourier transform of
h(·) taken component-by-component,

H(λ) =

∫ ∞

−∞

h(u) exp(−iλu)du for λ ∈ R, (11)

is called transfer function of R.
Our aim is to derive estimators for µ and H(·) and then for h(·) from obser-

vations of the point processes A and D in the time interval (0, T ]. The approach
is as follows: After having introduced the relevant notations we derive a crucial
relation between the matrix H(·) and spectral matrices of the point processes
A and D (see (ii) of Proposition 4.4 below). We then apply smoothed peri-
odograms as estimators for the spectra to plug-in estimators for H(·) given by
equation (19) below. We show under assumptions that these estimators H(T )(·)
are asymptotically normal in Theorem 4.10. Then, we define estimators for h(·)
based on the estimators H(T )(·) and prove under additional assumptions also
their asymptotic normality, see Theorem 4.11.

For the statistical analysis we make the following assumptions:

Assumption 4.1. The (n + m)-variate point process N := (A,D)
t
on R is

simple, stationary and shows existing moments of all orders, i.e., for all s ≥ 1,

E [Na1(B1) · . . . ·Nas
(Bs)] < ∞ for all a1, . . . , as ∈ {1, . . . , n+m} and for all

B1, . . . , Bs ∈ B(R)with finite Lebesgue measures.
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Stationarity of the process N implies that the cumulant measures of the
process decouple into so-called reduced cumulant measures and Lebesgue com-
ponents which only depend on the lag of the arguments (see e.g. [11] (Chapter
8) and [6]), i.e., for all k ≥ 1, a1, . . . , ak ∈ {1, . . . , n+m} and B1, . . . , Bk ∈ B(R)
we have

Cum
(
Na1(B1), . . . , Nak−1

(Bk−1), Nak
(Bk)

)

=

∫

Bk

∫

B1

. . .

∫

Bk−1

dC̆Na1 ...Nak
(t1 − tk, . . . , tk−1 − tk) dtk (12)

with k − 1-dimensional measures C̆Na1 ...Nak
(du1, . . . , duk−1) on B(Rk−1). Note

that the (reduced) cumulant measures are in general only signed measures.
(12) directly implies for the first moment measures that there are constant

vectors ηN ∈ Rn+m such that

EN(B) = E

(∫
1B(s)dN(s)

)
= ηN ·

(∫
1B(s)ds

)
. (13)

In particular, it follows that there are vectors ηA ∈ Rn and ηD ∈ Rm with

EA((0, t]) = ηA t and ED((0, t]) = ηD t.

Via the construction of measurable functions (13) can be extended in the
usual way for nonnegative measurable functions f : R → R:

E

(∫
f(s)dN(s)

)
= ηN ·

(∫
f(s)ds

)
. (14)

Moreover, it follows from (12) that for the covariance measures there exist for
a1, a2 ∈ {1, 2, . . . , n + m} reduced covariance measures C̆Na1Na2

(dt) such that
for nonnegative measurable functions f, g : R → R we have

Cov

(∫
f(s)dNa1(s),

∫
g(r)dNa2 (r)

)
=

∫ ∫
f(s+ t)g(s)dC̆Na1Na2

(t) ds.

(15)
In order to define Fourier transforms of the reduced covariance measures

we impose so-called mixing conditions on these measures which are kind of
asymptotic independence conditions on the increments of the point process N.

Assumption 4.2. The (n+m)-variate point process N := (A,D)
t
on R fulfills

Assumption 4.1 and for all k ≥ 2 and a1, . . . , ak ∈ {1, . . . , n +m} the reduced
cumulant measure of Na1 , . . . , Nak

satisfies

∞∫

−∞

. . .

∞∫

−∞

|uj| ·
∣∣∣C̆Na1 ...Nak

(du1, . . . , duk−1)
∣∣∣ < ∞ for all j ∈ {1, . . . , k − 1}.

Particularly, it follows that under Assumption 4.2, C̆Na1 ...Nak
(·) are (signed)

finite measures on Rk−1 for all k ≥ 2.
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Definition 4.3. The second-order spectra fNjNk
are defined as the Fourier

transforms of the reduced covariance measures:

fNjNk
(λ)=

1

2π

∫ ∞

−∞

exp(−iλu)C̆NjNk
(du) for λ∈R and j, k ∈{1, 2, . . . , n+m}.

For j = k, fNjNj
is real and nonnegative and called power spectrum, for j 6= k,

fNjNk
is complex-valued and called cross spectrum. For λ ∈ R we summarize

spectra of particular importance in the matrices

fDA(λ) :=
(
fDiAj

(λ)
)
(i,j)∈{1,...,m}×{1,...,n}

,

fAD(λ) :=
(
fAjDi

(λ)
)
(j,i)∈{1,...,n}×{1,...,m}

,

fAA(λ) :=
(
fAjAk

(λ)
)
(j,k)∈{1,...,n}×{1,...,n}

,

fDD(λ) := (fDiDl
(λ))(i,l)∈{1,...,m}×{1,...,m}.

We have fDA(λ)
t
= fAD(λ) for all λ ∈ R, since

2πfDiAj
(λ) =

∫ ∞

−∞

exp(−iλu)C̆DiAj
(du) =

∫ ∞

−∞

exp(iλu)C̆DiAj
(du)

=

∫ ∞

−∞

exp(iλ(−u))C̆DiAj
(−du) =

∫ ∞

−∞

exp(−iλu)C̆AjDi
(du)

= 2πfAjDi
(λ) for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.

Note that the error process ε given in (8) also defines a multivariate random
measure on B(R). With the corresponding matrix C̆εε of reduced covariance
measures we have for λ ∈ R,

fεε(λ) = F
(
C̆εε

)
(λ) =

1

2π

∫ ∞

−∞

exp(−iλt) C̆εε(dt).

Important properties of the model (10) are now summarized in the next
theorem.

Theorem 4.4. Let Assumption 4.2 be satisfied and suppose that for a fixed λ
the matrix fAA(λ) is not singular. For the point processes A and D of the model
(10) then holds

(i) ηD = H(0) · ηA + µ,

(ii) fDA(λ) = H(λ) · fAA(λ),

(iii) fεε(λ) = fDD(λ)− fDA(λ)fAA(λ)
−1

fAD(λ).

We first note that for a nonnegative function h on R and a measure C̆ on
B(R) the convolution h ∗ C̆ is defined by

(h ∗ C̆)(B) =

∫

B

∫
h(x− t)dC̆(t)dx for B ∈ B(R).

Thus, h∗ C̆ is a measure on B(R) with Lebesgue density
∫
h(x− t)dC̆(t), x ∈ R.
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Proof. The proof of (i) is straightforward: Choosing B = (0, 1] and taking the
mean on both sides of (10) yields with (14):

ηD = ED((0, 1]) =

(∫ ∫
1(−u,1−u](s)h(s)ds du

)
ηA + µ

=

(∫
h(s)

∫
1(−s,1−s](u)du ds

)
ηA +µ=

(∫
h(s)ds

)
ηA +µ=H(0)ηA +µ.

Note that the interchange of integral order in the third equation is valid due
to the theorem of Tonelli since by assumption each component of the matrix∫
h(s)ds is finite.
For the proof of (ii) we have on the one hand for i = 1, . . . ,m, j = 1, . . . , n

and for all B ∈ B(R) due to (15):

Cov(Di(B), Aj(B)) = Cov

(∫
1B(u)dDi(u),

∫
1B(t)dAj(t)

)

=

∫ ∫
1B(s+ t)1B(s)dC̆DiAj

(t)ds =

∫

B

∫

B−s

dC̆DiAj
(t)ds

=

∫

B

C̆DiAj
(B − s)ds. (16)

On the other hand we compute for i = 1, . . . ,m, j = 1, . . . , n and for all
B ∈ B(R):

Cov(Di(B), Aj(B)) = Cov
(
E

(
Di(B)

∣∣∣A
)
, Aj(B)

)

=
n∑

k=1

Cov

(∫ ∫
1B−u(s)hik(s)ds dAk(u),

∫
1B(t)dAj(t)

)

=

n∑

k=1

∫
1B(v)

∫ ∫
1B−v−t(s)hik(s)ds dC̆AkAj

(t) dv

=

n∑

k=1

∫

B

∫

B−v

∫
hik(x− t)dC̆AkAj

(t)dx dv

=

∫

B

n∑

k=1

(
hik ∗ C̆AkAj

)
(B − v) dv. (17)

We conclude from (16) and (17) that the measures C̆DiAj
(·) and

∑n
k=1

(
hik ∗

C̆AkAj

)
(·) are equal on B(R). This implies

(
fDA(λ)

)
ij
= fDiAj

(λ) =
1

2π

∫
exp(−iλt)C̆DiAj

(dt)

=

n∑

k=1

1

2π

∫
exp(−iλt)(hik ∗ C̆AkAj

)(dt) =

n∑

k=1

F
[
hik ∗ C̆AkAj

]
(λ)

=

n∑

k=1

Hik(λ) · fAkAj
(λ) =

(
H(λ) · fAA(λ)

)
ij
.
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For the proof of (iii) we set for a function h, h̃(x) := h(−x) for x ∈ R. Fix
i, j = 1, . . . ,m and B1, B2 ∈ B(R). We first note that due to (8),

Cov(Di(B1), Dj(B2))=Cov(εi(B1), εj(B2))+Cov
(
E[Di(B1)|A], E[Dj(B2)|A]

)
,

since

Cov

(
εi(B1),E[Dj(B2)|A]

)

= Cov

(
Di(B1),E[Dj(B2)|A]

)
− Cov

(
E[Di(B1)|A],E[Dj(B2)|A]

)
= 0.

Next we calculate with (15):

Cov(Di(B1), Dj(B2)) = Cov

(∫
1B1(s)dDi(s),

∫
1B2(t)dDj(t)

)

=

∫ ∫
1B1(s)1B2(s+ t)C̆DjDi

(dt)ds =

∫

B1

C̆DjDi
(B2 − s)ds.

Similarly, it follows:

Cov(εi(B1), εj(B2)) =

∫

B1

C̆εjεi(B2 − s)ds.

Furthermore we have:

Cov

(
E[Di(B1)|A], E[Dj(B2)|A]

)

=
n∑

k,l=1

Cov

(∫ ∫
1B1−u(s)hik(s)ds dAk(u),

∫ ∫
1B2−v(t)hjl(t)dt dAl(v)

)

=

n∑

k,l=1

∫ ∫ (∫
1B1−u(s)hik(s)ds

)(∫
1B2−u−v(t)hjl(t)dt

)
C̆AlAk

(dv)du

=

n∑

k,l=1

∫ ∫ (∫

B1

h̃ik(u− s)ds

)(∫
1B2−u(t)hjl(t− v)dt

)
C̆AlAk

(dv)du

=

n∑

k,l=1

∫ (∫

B1

h̃ik(u− s)ds

)
(hjl ∗ C̆AlAk

)(B2 − u)du

=
n∑

k,l=1

∫

B1

(∫
h̃ik(u− s)(hjl ∗ C̆AlAk

)(B2 − u)du

)
ds

=

n∑

k,l=1

∫

B1

(∫

B2−s

∫
h̃ik(x− t) d(hjl ∗ C̆AlAk

)(t) dx

)
ds

=

n∑

k,l=1

∫

B1

(
h̃ik ∗ hjl ∗ C̆AlAk

)
(B2 − s) ds.
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Putting all together yields that the measures C̆DjDi
(·) and C̆εjεi(·) +∑n

k,l=1(hjl ∗ C̆AlAk
∗ h̃ik)(·) are equal on B(R). This implies:

fεjεi(λ) =
1

2π

∫
exp(−iλt)dC̆εjεi(t)

= fDjDi
(λ)−

n∑

k,l=1

Hjl(λ)fAlAk
(λ)Hik(λ)

= fDjDi
(λ)−

n∑

k=1

(H(λ)fAA(λ))jk

(
H(λ)

t
)
ki

= fDjDi
(λ)−

(
H(λ)fAA(λ)H(λ)

t
)
ji
.

Thus, using (ii), fεε(λ) = fDD(λ) − fDA(λ)fAA(λ)
−1

fAD(λ).

Remark 4.5. (a) (i) and (ii) of Theorem 4.4 guarantee that the model (10) is
identifiable under the condition that the matrix fAA(λ) is invertible for λ ∈ R.
Then the transfer function H(λ) and the constant shift µ ∈ Rn can be deter-
mined provided that we have sufficient information about A and D. According
to (i) and (ii) the second-order spectral matrices together with the intensity
vectors ηD and ηA represent such information. The mean intensity vectors ηD

and ηA can be estimated by ED((0,T ])
T and EA((0,T ])

T respectively, see Proposition
5.6 below for a discussion of these estimators. For the construction of estimators
of the spectral matrices see below. Natural candidates for estimators of H(λ)
and µ then are given by

µ̂ = η̂D − Ĥ(0) · η̂A and Ĥ(λ) = f̂DA(λ) · f̂AA(λ)
−1

.

(b) In case of n = m = 1 the gain of the process D over the process A at
frequency λ is given by:

L(λ) := |H(λ)|.

If the error-process ε is equal to zero then (ii) and (iii) yield (compare with the
discussion of (37) below)

fDD(λ) = |H(λ)|2fAA(λ) = L(λ)2fAA(λ).

This explains the term gain since in the model (10) the amplitudes of the input
process A at particular frequencies are intensified by L.

The most common nonparametric estimators of second-order spectra are
based on the so-called periodogram

I
(T )
NjNk

(λ) :=
1

2πT

(∫ T

0

exp(−iλt)dNj(t)

)
·
(∫ T

0

exp(iλt)dNk(t)

)
for λ ∈ R,
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which results from taking the Fourier transform of the natural estimator C̆
(T )
NjNk

of the reduced covariance measure C̆NjNk
given by

C̆
(T )
NjNk

(du) :=
1

T

∫ T−u

0

dNj(t+ u)dNk(t), u ∈ R.

The periodogram is asymptotically unbiased, but unstable and not consistent. It
is known that the periodogram ordinates at distinct frequencies near a frequency
λ are asymptotically independent estimates of the spectrum (see e.g. [9], Theo-
rem 5.2.6 for the case of time series). This leads to the fruitful idea of smoothing
the periodogram in the neighborhood of λ by means of weighted averages of sev-
eral periodograms:

Definition 4.6. The smoothed periodogram at frequency λ ∈ R is given by

f
(T )
NjNk

(λ) :=
2π

BTT

∑

s∈Z\{0}

W

(
λ− 2πs/T

BT

)
I
(T )
NjNk

(2πs/T ) (18)

with a bandwidth BT ≥ 0 fulfilling BT → 0 as T → ∞ and a weight function
W which is of bounded variation, standardized, even and fulfills W (α) = 0 if
|α| > 0.5.

As well-known examples for the weight function W we mention the rectan-
gular kernel, the triangular kernel and the Epanechnikov kernel.

We recognize in Definition 4.6 the classical bias-variance trade-off of non-
parametric statistics: The sum in (18) is taken over all s 6= 0 with 2πs

T lying in

[λ− BT

2 , λ+ BT

2 ]. Thus, the larger BT is, the more periodograms are considered
for the estimation which reduces the variance. However, the larger BT is, the
more periodograms with frequencies 2πs

T are considered which show a significant
distance to λ. This can produce a higher bias. A way out is to let the bandwidth
BT go to zero in a speed controlled manner by postulating that BT → 0 and
BTT → ∞ as T → ∞.

The smoothed periodogram given by (18) is stable and consistent. For fur-
ther details and proofs for periodogram based estimators we refer to [9] (in the
context of time series). There are various other ways of estimating the spectrum.
We point to [4] for references and for a new approach to construct a shrinkage
estimator with a smaller L2-risk than the smoothed periodogram.

The next theorem shows that vectors of smoothed periodograms as defined
in Definition 4.6 are asymptotically normal. For a proof based on the cumulant
method see [7], Theorem 4.1.

Theorem 4.7. Let N be a multivariate point process on R satisfying Assump-
tion 4.2. Assume that for all j, k, |f ′′

NjNk
(λi)| < ∞ for i = 1, 2, . . . ,M. For

BT → 0, BTT → ∞ and B5
TT → 0 as T → ∞ we have

√
BTT







f
(T )
Nj1Nk1

(λ1)

...

f
(T )
NjM

NkM

(λM )


−




fNj1Nk1
(λ1)

...

fNjM
NkM

(λM )







D−→ NC

M

(
0, 2πΣ

∫
W (α)2dα

)
,
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where Σ is an M ×M matrix with

Σil = 1{λi=λl}fNji
Njl

(λi) fNki
Nkl

(−λi) + 1{λi=−λl}fNji
Nkl

(λi) fNki
Njl

(−λi) .

For simplifying computations with matrices and vectors we will use the fol-
lowing two notations: For an m × n matrix B = (bij)(i,j)∈{1,...,m}×{1,...,n} with

complex-valued entries we define the column vector vecB ∈ Cm·n as

vecB := (b11, . . . , bm1, b12, . . . , bm2, . . . , b1n, . . . , bmn)
t.

For B = (bij)(i,j)∈{1,...,m}×{1,...,n} and an s× t matrix V, the ms × nt Kro-

necker matrix-product B⊗V is defined as

B⊗V = (bij ·V)(i,j)∈{1,...,m}×{j=1,...,n}.

Useful properties of these two matrix notations are given in the following propo-
sition, see [26].

Proposition 4.8. Let the matrices B1,B2,B3,B4 and B5 have dimensions
m×n, n×p, o×u, p×v and u×w respectively. Let Ej denote the j× j identity
matrix. Then

(i) vec (B1 ·B2) = (Ep ⊗B1) vecB2 = (B2
t ⊗Em) vecB1,

(ii) (B2 ⊗B3) · (B4 ⊗B5) = (B2 ·B4)⊗ (B3 ·B5),

(iii) (B1 ⊗B3)
t = B1

t ⊗B3
t.

To estimate the transfer function H of the model (10) at frequency λ ∈ R we
use the plug-in estimator

H(T )(λ) = f
(T )
DA

(λ) f
(T )
AA

(λ)−1 (19)

with second-order spectral estimators f
(T )
NiNj

(λ), i, j ∈ {1, 2, n+m}, constructed
according to (18).

We proceed with a technical result which is essential for the proofs of the two
main results in this section:

Lemma 4.9. With the notations from above the following decomposition holds:

vec
(
H(T)(λ) −H(λ)

)

= vec
(
H(λ)

[
fAA(λ)− f

(T)
AA

(λ)
]
fAA(λ)−1

)

+ vec
([

f
(T)
DA

(λ) − fDA(λ)
]
fAA(λ)−1

)

+ (En ⊗H(λ)) ·
(
(f

(T )
AA

(−λ)−1 − fAA(−λ)−1)⊗En

)

· vec
([

fAA(λ) − f
(T)
AA

(λ)
])

+
(
(f

(T )
AA

(−λ)−1 − fAA(−λ)−1)⊗Em

)
· vec

([
f
(T)
DA

(λ)− fDA(λ)
)]

.
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Proof. Using Proposition 4.8 we have:

vec
(
H(T)(λ)−H(λ)

)

= vec

(
fDA(λ)

[
f
(T)
AA

(λ)−1 − fAA(λ)−1

]
+
[
f
(T)
DA

(λ)− fDA(λ)
]
f
(T)
AA

(λ)−1

)

= vec

(
fDA(λ)fAA(λ)−1

[
fAA(λ) − f

(T)
AA

(λ)
]
f
(T)
AA

(λ)−1

+
[
f
(T )
DA

(λ) − fDA(λ)
]
f
(T )
AA

(λ)−1

)

= vec
(
H(λ)

[
fAA(λ) − f

(T)
AA

(λ)
]
fAA(λ)−1

)

+ vec
([

f
(T)
DA

(λ)− fDA(λ)
]
fAA(λ)−1

)

+ vec
(
H(λ)

[
fAA(λ) − f

(T)
AA

(λ)
]
·
[
f
(T)
AA

(λ)−1 − fAA(λ)−1

])

+ vec
([

f
(T)
DA

(λ)− fDA(λ)
]
·
[
f
(T)
AA

(λ)−1 − fAA(λ)−1

])

= vec
(
H(λ)

[
fAA(λ) − f

(T)
AA

(λ)
]
fAA(λ)−1

)

+ vec
([

f
(T)
DA

(λ)− fDA(λ)
]
fAA(λ)−1

)

+ (En ⊗H(λ)) ·
(
(f

(T )
AA

(−λ)−1 − fAA(−λ)−1)⊗En

)

· vec
([

fAA(λ)− f
(T)
AA

(λ)
])

+
(
(f

(T )
AA

(−λ)−1 − fAA(−λ)−1)⊗Em

)
· vec

([
f
(T)
DA

(λ) − fDA(λ)
)]

.

We now turn to the first main result in this section. It shows the asymptotic
behavior of the estimator for the transfer function of the linear time-invariant
model (10). For an analogue in the framework of time series we refer to [9],
Theorem 8.8.1.

Theorem 4.10 (Asymptotic Normality for H(T )(λ)). Consider the linear time-
invariant model (10). Suppose N = (A,D)t satisfies Assumption 4.2. Assume
for λ ∈ R\{0} that fAA(λ) is not singular and |f ′′

NiNj
(λ)| < ∞ for all i, j ∈

{1, 2, . . . , n+m}. Let BT → 0, BTT → ∞ and B5
TT → 0 as T → ∞. Then, as

T → ∞, we have for the estimator of the transfer function H given by (19), for
λ ∈ R\{0},

√
BTT vec

(
H(T )(λ)−H(λ)

)

D−→ NC
mn

(
0, 2π

∫
W (α)2dα

(
fAA(−λ)−1 ⊗ fεε(λ)

))
.
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Proof. We divide the proof into 3 steps.

Step 1: Decomposition.

Lemma 4.9 implies:

√
BTT vec

(
H(T)(λ)−H(λ)

)

= vec
(
H(λ)

√
BTT

[
fAA(λ)− f

(T)
AA

(λ)
]
fAA(λ)−1

)

+ vec
(√

BTT
[
f
(T)
DA

(λ) − fDA(λ)
]
fAA(λ)−1

)

+ (En ⊗H(λ)) ·
(
(f

(T )
AA

(−λ)−1 − fAA(−λ)−1)⊗En

)

· vec
(√

BTT
[
fAA(λ)− f

(T)
AA

(λ)
])

+
(
(f

(T )
AA

(−λ)−1 − fAA(−λ)−1)⊗Em

)
· vec

(√
BTT

[
f
(T)
DA

(λ)− fDA(λ)
)]

.

(20)

Step 2: Asymptotic normality.

First we show that all components of the last two summands converge to zero

in probability: All components of the vectors vec
(√

BTT [fAA(λ)−f
(T)
AA

(λ)]
)
and

vec
(√

BTT [f
(T)
DA

(λ)− fDA(λ)]
)
are asymptotically normally distributed accord-

ing to Theorem 4.7. For the matrix f
(T )
AA

(−λ)−1 − fAA(−λ)−1 the following
inequality holds (Lemma of Dunford-Schwartz, see [31]):

‖f (T )
AA

(−λ)−1 − fAA(−λ)−1‖ ≤ ‖fAA(−λ)−1‖2 · ‖f (T )
AA

(−λ)− fAA(−λ)‖
1− ‖fAA(−λ)−1‖ · ‖f (T )

AA
(−λ)− fAA(−λ)‖

(21)

for some norm ‖·‖. Since ‖f (T )
AA

(−λ) − fAA(−λ)‖ is of order Op(BT
− 1

2 T− 1
2 )

and f
(T )
AA

(−λ)− fAA(−λ) componentwise converges to zero in probability, each

component of the matrix ((f
(T )
AA

(−λ)−1 − fAA(−λ)−1)⊗Em) converges to zero
in probability. Thus, each component of the last two summands in (20) is a
finite sum of asymptotically normally distributed variates multiplicated with
variates which converge in probability to zero. Then, by the Lemma of Slutsky
all components of the two summands converge to zero in probability.

The limiting distribution of
√
BTT vec(H(T)(λ) − H(λ)) therefore is com-

pletely described by the first two summands in (20). This shows the asymptotic
normality of

√
BTT vec(H(T)(λ) − H(λ)) due to Theorem 4.7. The asymp-

totic mean clearly is the zero vector because of the unbiasedness of f
(T )
DA

(λ)

and f
(T )
AA

(λ).

Step 3: Asymptotic variance-covariance matrix.

Using Proposition 4.8 we compute the asymptotic variance-covariance matrix
of

√
BTT vec

(
H(T)(λ)−H(λ)

)
as follows:
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vec
(
−H(λ)

√
BTT

(
f
(T)
AA

(λ)− fAA(λ)
)
fAA(λ)−1

)

+ vec
(√

BTT
(
f
(T)
DA

(λ) − fDA(λ)
)
fAA(λ)−1

)

=
(
fAA(−λ)−1 ⊗Em

) [
vec
(
−H(λ)

√
BTT

(
f
(T)
AA

(λ)− fAA(λ)
))

+ vec
(√

BTT
(
f
(T)
DA

(λ) − fDA(λ)
)) ]

=
(
fAA(−λ)−1 ⊗Em

)
·
(
−(En ⊗H(λ)), Emn

)

·


vec

(√
BTT (f

(T)
AA

(λ) − fAA(λ))
)

vec
(√

BTT (f
(T)
DA

(λ)− fDA(λ))
)

 .

This yields the asymptotic covariance matrix given by

(
fAA(−λ)−1 ⊗Em

)
·
(
−(En ⊗H(λ)), Emn

)
· S ·

(
−(En ⊗H(λ))

t

Emn

)

·
(
fAA(λ)

−1 ⊗Em

)
(22)

with (due to Theorem 4.7)

S = 2π

∫
W (α)2dα ·

(
fAA(−λ)⊗ fAA(λ) fAA(−λ)⊗ fAD(λ)
fAA(−λ)⊗ fDA(λ) fAA(−λ)⊗ fDD(λ)

)
.

Hence, (22) is equivalent to

(
−(fAA(−λ)−1 ⊗H(λ)), fAA(−λ)−1 ⊗Em

)
· S ·

(
−(fAA(−λ)−1 ⊗H(λ)

t
)

fAA(−λ)−1 ⊗Em

)

= 2π

∫
W (α)2dα

(
0nm×n2 ,

(
En ⊗

(
fDD(λ)− fDA(λ)fAA(λ)−1fAD(λ)

)))

·
(
−(fAA(−λ)−1 ⊗H(λ)

t
)

fAA(−λ)−1 ⊗Em

)

= 2π

∫
W (α)2dα ·

(
fAA(−λ)−1 ⊗

(
fDD(λ) − fDA(λ)fAA(λ)−1fAD(λ)

))

= 2π

∫
W (α)2dα ·

(
fAA(−λ)−1 ⊗ fεε(λ)

)
,

applying Theorem 4.4(iii) in the last line.

In the linear time-invariant model it will often be desirable to have an esti-
mate of the impulse-response function h(·) (time domain), rather than of the
transfer function H(·) (frequency domain) only. This will e.g. be important for
the statistical analysis of the stochastic tandem model in the next section. It
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follows from the definition of H(λ) in (11) that

h(u) =
1

2π

∫ ∞

−∞

exp(iλu)H(λ)dλ.

For estimation of h(u) we follow the suggestion of [7] in the univariate case and
use

h(T )(u) =
1− cos(CTu)

πCTu2

QT∑

q=−QT

exp(iuCT q)H
(T )(CT q), u ∈ R, (23)

for small CT and large QT . The factor 1−cos(CTu)
πCTu2 is inserted there and here

in the same manner as in [5]. CT plays the role of the bandwidth of the inter-
polation intervals. For the proof of the asymptotic normality of the estimator
h(T )(u) the crucial condition is the existence of a constant L1 < ∞ such that
supλ∈R‖fAA(λ)−1‖∞ ≤ L1.

In the following let for a matrix B, ‖B‖∞ denote the maximum absolute row
sum norm which is in particular sub-multiplicative and compatible with the
vector maximum norm ‖·‖∞.

Theorem 4.11 (Asymptotic Normality for h(T )(u)). Consider the linear time-
invariant model (10). Suppose that all assumptions of Theorem 4.10 are in force.
Further, assume that supλ∈R‖fAA(λ)−1‖∞ ≤ L1 < ∞,

∫
|u|2‖h(u)‖∞du < ∞

and
∫
|λ|r‖H(λ)‖∞dλ < ∞ for some r > 0. Moreover, let CT → 0, QTCT →

∞, Q3
TB

−1
T T−1 → 0, C4

TQTBTT → 0 and C−2r−2
T Q−2r−1

T BTT → 0 as T → ∞.
Then, as T → ∞, we have for the estimator of the impulse-response function h
given by (23), for u ∈ R,
√
C−2

T Q−1
T BTT vec

(
h(T )(u)− h(u)

)

D−→ NC
mn


0, 2π

∫
W (α)2dα

1

QT

QT∑

q=−QT

(
fAA(−CT q)

−1 ⊗ fεε(CT q)
)

 .

Note in particular that the asymptotic variance-covariance matrix is inde-
pendent of the argument u.

Proof. We divide the proof into 4 steps.
Step 1: Decomposition of vec

(
h(T)(u)

)
.

It follows from Lemma 4.9 that for all u ∈ R:

vec
(
h(T)(u)

)
=

1− cos(CTu)

πCTu2

QT∑

q=−QT

exp(iuCT q) vec (H(CT q))

+
1− cos(CTu)

πCTu2
ΓT (u)

+
1− cos(CTu)

πCTu2

QT∑

q=−QT

exp(iuCT q)ΦT (CT q) =: T1 + T2 + T3,
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where

ΓT (u) :=

QT∑

q=−QT

exp(iuCT q)

[
vec

(
H(CT q)

[
fAA(CT q)− f

(T)
AA

(CT q)
]

· fAA(CT q)
−1

)
+ vec

([
f
(T)
DA

(CT q)− fDA(CT q)
]
fAA(CT q)−1

)]

and

ΦT (CT q) := (En ⊗H(CT q)) ·
(
(f

(T )
AA

(−CT q)
−1 − fAA(−CT q)

−1)⊗En

)

· vec
([

fAA(CT q) − f
(T)
AA

(CT q)
])

+
(
(f

(T )
AA

(−CT q)
−1 − fAA(−CT q)

−1)⊗Em

)

· vec
([

f
(T)
DA

(CT q)− fDA(CT q)
)]

Step 2: Asymptotic behavior of term T1.
We first show that T1 = vec(h(u)) + (O(C3

TQT ) +O(C−r
T Q−r

T ))1mn.
Due to the assumptions we have for some r > 0 for each component j of

vec(H(λ)):

∞ >

∫ ∞

−∞

|λ|r |vec(H(λ))j | dλ ≥
∫ ∞

−∞

|λ|r |vec(H(λ))j |1{|λ|≥CTQT } dλ

≥ (CTQT )
r

∫ ∞

−∞

|vec(H(λ))j |1{|λ|≥CTQT } dλ

= (CTQT )
r

(∫ ∞

CTQT

|vec(H(λ))j | dλ+

∫ −CTQT

−∞

|vec(H(λ))j | dλ
)
.

This implies with Result 2.2 in [5](page 120) (note that Bohman’s term ϕ′′(0)
here corresponds to −

∫
u2|vec(h(u))j |du):

1− cos(CTu)

πCTu2

QT∑

q=−QT

vec(H(CT q))j exp(iuCT q)

≤ 1

2π

∫ CTQT

−CTQT

exp(iλu) vec(H(λ))j dλ+
1

12π
C3

TQT

∫
u2|vec(h(u))j | du

= vec(h(u))j −
1

2π

(∫ ∞

CTQT

exp(iλu) vec(H(λ))j dλ

+

∫ −CTQT

−∞

exp(iλu) vec(H(λ))j dλ

)
+O(C3

TQT )

≤ vec(h(u))j+

(∫ ∞

CTQT

|vec(H(λ))j | dλ+
∫ −CTQT

−∞

|vec(H(λ))j | dλ
)
+O(C3

TQT )

≤ vec(h(u))j +O(C−r
T Q−r

T ) +O(C3
TQT ).
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Thus, we have that T1 = vec(h(u))+
(
O(C−r

T Q−r
T ) +O(C3

TQT )
)
1mn. It remains

to note that

√
C−2

T Q−1
T BTT ·

(
O(C−r

T Q−r
T ) +O(C3

TQT )
)

= O(C−2r−2
T Q−2r−1

T BTT )
0.5 +O(C4

TQTBTT )
0.5,

which, by assumption, converges to 0 as T → ∞.

Step 3: Asymptotic behavior of term T3.

We first show that supQT

q=−QT
‖ΦT (CT q)‖∞ = oP

(
Q2ǫ

T B−1
T T−1

)
.

It holds:

QT

sup
q=−QT

‖ΦT (CT q)‖∞

≤‖fDA(CT q)‖∞ ‖fAA(CT q)
−1‖∞ ‖f (T )

AA
(−CT q)

−1 − fAA(−CT q)
−1‖∞

· ‖vec
(
fAA(CT q) − f

(T)
AA

(CT q)
)
‖∞

+‖f (T )
AA

(−CT q)
−1 − fAA(−CT q)

−1‖∞ ‖vec
(
f
(T)
DA

(CT q)− fDA(CT q)
)
‖∞.

We note that under the assumptions given, we have for any ǫ > 0 as T →
∞ that supQT

q=−QT
|f (T )

NiNj
(CT q) − fNiNj

(CT q)| = oP
(
Qǫ

TB
−1/2
T T−1/2

)
for any

components Ni, Nj of the point process N = (A,D)
t
(see Theorem 4.2 in [7]).

Using the Lemma of Dunford-Schwartz as in the proof of Theorem 4.10, see
(21), we conclude:

‖f (T )
AA

(−CT q)
−1 − fAA(−CT q)

−1‖∞ ≤ L2
1 oP

(
Qǫ

TB
−1/2
T T−1/2

)

1− L1 oP
(
Qǫ

TB
−1/2
T T−1/2

)

= oP
(
Qǫ

TB
−1/2
T T−1/2

)
,

since 1
1+oP (1) = OP (1). Further, the mixing conditions (Assumption 4.2) imply

that there is a constant K1 < ∞ such that supλ∈R‖fDA(λ)‖∞ ≤ K1. Thus, it
follows for any ǫ > 0:

QT

sup
q=−QT

‖ΦT (CT q)‖∞ ≤K1 L1 oP
(
Qǫ

TB
−1/2
T T−1/2

)
oP
(
Qǫ

TB
−1/2
T T−1/2

)

+ oP
(
Qǫ

TB
−1/2
T T−1/2

)
oP
(
Qǫ

TB
−1/2
T T−1/2

)

= oP
(
Q2ǫ

T B−1
T T−1

)
.

Further, this implies for T3:

T3=
1−cos(CTu)

πCTu2

QT∑

q=−QT

exp(iuCT q)ΦT (CT q)≤O(CTQT )oP
(
Q2ǫ

T B−1
T T−1

)
1mn,
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since (see [5] page 118)

1− cos(CTu)

πC2
Tu

2
=

1

2π

∫ 1

−1

exp(−itCTu)(1− |t|)dt≤ 1

2π

∫ 1

−1

| exp(−itCTu)|dt≤
1

π
.

Choosing ǫ < 0.5 we conclude for the asymptotic behavior of T3:
√
C−2

T Q−1
T BTT · T3 =

√
C−2

T Q−1
T BTT · oP

(
CTQ

2
TB

−1
T T−1

)
1mn

= oP (1) · O(Q1.5
T B−0.5

T T−0.5) 1mn,

which converges to 0 as T → ∞ since by assumption then Q3
TB

−1
T T−1 → 0.

Step 4: Asymptotic normality of term T2.
The term ΓT (u) determines the asymptotic behavior of vec(h(T )(u)). It di-

rectly follows from Theorem 4.7 that Γ(T )(u) is asymptotically normal of rate√
BTT with zero mean vector. Applying Theorem 4.7, Proposition 4.8 and the

fact that f t
AA

(λ) = fAA(−λ) for all λ, the asymptotic variance-covariance ma-
trix of ΓT (u) can be computed as follows. Note that in the computations below
we have left out the term 2π

∫
W (α)2dα to reduce the length of the equations.

Let asCov denote “asymptotic covariance”.

+QT∑

q1=−QT

+QT∑

q2=−QT

exp(iuCT (q1 − q2))BTT asCov

[

(
fAA(−CT q1)

−1 ⊗Em

)
vec
(
f
(T )
DA

(CT q1)
)

−
(
fAA(−CT q1)

−1 ⊗H(CT q1)
)
vec
(
f
(T )
AA

(CT q1)
)
,

(
fAA(−CT q2)

−1 ⊗Em

)
vec
(
f
(T)
DA

(CT q2 )
)

−
(
fAA(−CT q2)

−1 ⊗H(CT q2)
)
vec
(
f
(T )
AA

(CT q2)
) ]

=

+QT∑

q1=−QT

+QT∑

q2=−QT

exp(iuCT (q1 − q2))BTT

[

(
fAA(−CT q1)

−1 ⊗Em

)
· asCov

(
vec
(
f
(T)
DA

(CT q1 )
)
, vec

(
f
(T)
DA

(CT q2 )
))

·
(
fAA(−CT q2)

−1 ⊗Em

)

−
(
fAA(−CT q1)

−1 ⊗Em

)
· asCov

(
vec
(
f
(T)
DA

(CT q1 )
)
, vec

(
f
(T)
AA

(CT q2 )
))

·
(
fAA(−CT q2)

−1 ⊗H(CT q2)
t
)

−
(
fAA(−CT q1)

−1 ⊗H(CT q1)
)
· asCov

(
vec
(
f
(T)
AA

(CT q1 )
)
, vec

(
f
(T)
DA

(CT q2 )
))

·
(
fAA(−CT q2)

−1 ⊗Em

)

+
(
fAA(−CT q1)

−1 ⊗H(CT q1)
)
· asCov

(
vec
(
f
(T)
AA

(CT q1 )
)
, vec

(
f
(T)
AA

(CT q2 )
))

·
(
fAA(−CT q2)

−1 ⊗H(CT q2)
t
) ]



1694 C. Wichelhaus and R. Langrock

=

+QT∑

q1=−QT

+QT∑

q2=−QT

exp(iuCT (q1 − q2))1q1=q2

{

(
fAA(−CT q1)

−1⊗Em

)
·(fAA(−CT q1)⊗fDD(CT q1))·

(
fAA(−CT q1)

−1⊗Em

)

−
(
fAA(−CT q1)

−1 ⊗Em

)
· (fAA(−CT q1)⊗ fDA(CT q1))

·
(
fAA(−CT q1)

−1 ⊗ fAA(CT q1)
−1fAD(CT q1)

)

−
(
fAA(−CT q1)

−1 ⊗H(CT q1)
)
· (fAA(−CT q1)⊗ fAD(CT q1))

·
(
fAA(−CT q1)

−1 ⊗ Em

)

+
(
fAA(−CT q1)

−1 ⊗H(CT q1)
)
· (fAA(−CT q1)⊗ fAA(CT q1))

·
(
fAA(−CT q1)

−1 ⊗H(CT q1)
t
)}

+

+QT∑

q1=−QT

+QT∑

q2=−QT

exp(iuCT (q1 − q2))1q1=−q2

{

(
fAA(−CT q1)

−1 ⊗Em

)

·
(
fAD(−CT q1)⊗ fDA1(CT q1), . . . , fAD(−CT q1)⊗ fDAn

(CT q1)
)

·
(
fAA(CT q1)

−1 ⊗Em

)

−
(
fAA(−CT q1)

−1 ⊗Em

)

·
(
fAA(−CT q1)⊗ fDA1(CT q1), . . . , fAA(−CT q1)⊗ fDAn

(CT q1)
)

·
(
fAA(CT q1)

−1 ⊗ fAA(−CT q1)
−1fAD(−CT q1)

)

−
(
fAA(−CT q1)

−1 ⊗H(CT q1)
)

·
(
fAD(−CT q1)⊗ fAA1(CT q1), . . . , fAD(−CT q1)⊗ fAAn

(CT q1)
)

·
(
fAA(CT q1)

−1 ⊗Em

)

+
(
fAA(−CT q1)

−1 ⊗H(CT q1)
)

·
(
fAA(−CT q1)⊗ fAA1(CT q1), . . . , fAA(−CT q1)⊗ fAAn

(CT q1)
)

·
(
fAA(CT q1)

−1 ⊗ fAA(−CT q1)
−1fAD(−CT q1)

)}

=

+QT∑

q1=−QT

+QT∑

q2=−QT

exp(iuCT (q1 − q2))1q1=q2

{

(
fAA(−CT q1)

−1 ⊗ fDD(CT q1)
)

− 2
(
fAA(−CT q1)

−1 ⊗ fDA(CT q1)fAA(CT q1)
−1fAD(CT q1)

)

+
(
fAA(−CT q1)

−1 ⊗ fDA(CT q1)fAA(CT q1)
−1fAD(CT q1)

)}

+

+QT∑

q1=−QT

+QT∑

q2=−QT

exp(iuCT (q1 − q2))1q1=−q2

{

(
fAA(−CT q1)

−1fAD(−CT q1)⊗ fDA1(CT q1), . . . ,

fAA(−CT q1)
−1fAD(−CT q1)⊗ fDAn

(CT q1)
)
·
(
fAA(CT q1)

−1 ⊗Em

)
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−
(
En ⊗ fDA1(CT q1), . . . ,En ⊗ fDAn

(CT q1)
)

·
(
fAA(CT q1)

−1 ⊗ fAA(−CT q1)
−1fAD(−CT q1)

)

−
(
fAA(−CT q1)

−1fAD(−CT q1)⊗ fDA1(CT q1), . . . ,

fAA(−CT q1)
−1fAD(−CT q1)⊗ fDAn

(CT q1)
)
·
(
fAA(CT q1)

−1 ⊗Em

)

+
(
En ⊗ fDA1(CT q1), . . . ,En ⊗ fDAn

(CT q1)
)

·
(
fAA(CT q1)

−1 ⊗ fAA(−CT q1)
−1fAD(−CT q1)

)}

=

+QT∑

q1=−QT

+QT∑

q2=−QT

exp(iuCT (q1 − q2))1q1=q2

(
fAA(−CT q1)

−1 ⊗ fεε(CT q1)
)

=

+QT∑

q1=−QT

(
fAA(−CT q1)

−1 ⊗ fεε(CT q1)
)
.

Using again that 1−cos(CTu)
πCTu2 = O(CT ), the proof is complete.

5. Nonparametric estimation for the tandem model of two nodes

In this section we apply the results of the preceding section to the estimation
problem in the tandem network model (Figure 1) given by (5) and (6) as dis-
cussed in Section 2. We will in particular construct estimators for the Fourier
transforms G1 and G2, for the routing probability p1, for the densities g1 and
g2 and for the multiple coherence of the model. For all estimators we will prove
their respective asymptotic normality under appropriate conditions.

We see that the tandem model is represented by the linear time-invariant
model stated in (10) with µ = 0, the matrix h given by (6), and A and D being
two-dimensional stationary point processes. Due to Remark 4.5 the unknown pa-
rameters G1(λ), G2(λ) and p1 are identifiable provided that the spectral matrix
fAA(λ) is invertible, λ ∈ R.

Since by assumption the arrival processes A1 and A2 are stochastically in-
dependent of each other, fA1A2(λ) = 0 for all λ ∈ R, which yields the spectral
matrix fAA(λ), λ ∈ R, to be given by:

fAA(λ) =

(
fA1A1(λ) 0

0 fA2A2(λ)

)
, λ ∈ R.

Furthermore, the arrival process A2 at the second node has no influence on the
external departure processD1 of the first node and vice versa, thus fD1A2(λ) = 0
for all λ ∈ R. This implies:

H(λ)=

(
H11(λ) H12(λ)
H21(λ) H22(λ)

)
= fDA(λ) · (fAA(λ))−1

=

(
fD1A1(λ) 0
fD2A1(λ) fD2A2(λ)

)
·
(

1
fA1A1(λ)

0

0 1
fA2A2(λ)

)
=




fD1A1(λ)

fA1A1 (λ)
0

fD2A1(λ)

fA1A1 (λ)

fD2A2 (λ)

fA2A2(λ)


.

(24)
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Estimation of the Fourier transforms G1(·) and G2(·)

A comparison of (24) with (7) yields for the Fourier transform G2(·) of the
service density at the second node

G2(λ) = H22(λ) =
fD2A2(λ)

fA2A2(λ)
for λ ∈ R, (25)

and for the Fourier transform G1(·) of the service density at the first node

G1(λ) = H11(λ) +H21(λ) · (H22(λ))
−1

=
fD1A1(λ)

fA1A1(λ)
+

fD2A1(λ)

fA1A1(λ)
· fA2A2(λ)

fD2A2(λ)
for λ ∈ R. (26)

Remark 5.1. Considering the spectrum as a measure of coherence between the
respective processes the forms of G1(·) and G2(·) can be explained in an intuitive
way: G2(λ) describes at frequency λ the coherence between the external input
process A2 and the external output process D2 at node 2 after subtraction of
the inner coherence of the arrival process A2. G1(·) can be interpreted similarly.

In analogy to the last section we construct estimators ofG1(·) andG2(·) based
on smoothed periodograms as estimators for the spectra according to (18):

estimator for G2(λ) : G
(T )
2 (λ) =

f
(T )
D2A2(λ)

f
(T )
A2A2(λ)

, λ ∈ R, (27)

estimator for G1(λ) : G
(T )
1 (λ) =

f
(T )
D1A1(λ)

f
(T )
A1A1(λ)

+
f
(T )
D2A1(λ)

f
(T )
A1A1(λ)

· f
(T )
A2A2(λ)

f
(T )
D2A2(λ)

, λ ∈ R.

(28)

Theorem 5.2 (Asymptotic Normality forG
(T )
1 andG

(T )
2 ). Consider the tandem

model of queues given by (5) and (6) as described in Section 2. Assume that
mean service times at nodes 1 and 2 are finite, i.e.,

∫∞

0 t gi(t)dt < ∞ for i =
1, 2. Assume further that the arrival processes A1 and A2 are stationary, show
existing moments of all orders and satisfy the mixing conditions on their reduced
cumulant measures as stated in Assumption 4.2. Then the 4-dimensional point
process N = (A,D)t on R satisfies Assumption 4.2. Under the conditions that
for λ 6= 0, fA1A1(λ) 6= 0 and fA2A2(λ) 6= 0, |fD2A2(λ)|2 6= 0 and |f ′′

NiNj
(λ)| < ∞

for all i, j = 1, 2, 3, 4, the asymptotic behavior of the estimators G
(T )
1 (λ) and

G
(T )
2 (λ) given by (27) and (28) for T → ∞ is then characterized by

√
BTT

((
G

(T )
1 (λ)

G
(T )
2 (λ)

)
−
(
G1(λ)

G2(λ)

))
D−→ NC

2

(
0, 2π

∫
W (α)2dα ·Σ(λ)

)

for a sequence of bandwidths (BT )T≥0 satisfying BT → 0, BTT → ∞ and
B5

TT → 0 as T → ∞. The asymptotic variance-covariance matrix is given by
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Σ11(λ) =
fε1ε1(λ)

fA1A1(λ)
+

fε2ε1(λ)+fε1ε2(λ)

fA1A1(λ)H22(λ)
+

fε2ε2(λ)

fA1A1(λ)H
2
22(λ)

+
fε2ε2(λ)

fA2A2(λ)

H2
21(λ)

H4
22(λ)

,

Σ12(λ) = Σ21(λ) = − fε2ε2(λ)

fA2A2(λ)

H21(λ)

H2
22(λ)

and Σ22(λ) =
fε2ε2(λ)

fA2A2(λ)
.

Proof. In analogy to the proof of Theorem 3.1 in [7] it follows that the point
processN = (A,D)t on R fulfills Assumption 4.2 since the mean sojourn time in
the network is finite. By the delta method (see e.g. [32], Theorem 3.1) asymptotic
normality follows from Theorem 4.10 with the fact that

φ(vec(H(λ))) = φ((H11(λ), H21(λ), H12(λ), H22(λ))
t)

= (H11(λ) +H21(λ) ·H22(λ)
−1, H22(λ))

t = (G1(λ), G2(λ))
t

with the differentiable function φ : C4\(C3 × {0}) → C2 given by φ(x1, x2, x3,
x4)

t = (x1 + x2 · x−1
4 , x4)

t. The total derivative of the function φ at vec(H(λ))
is given by

φ
′

(vec(H(λ))) =

(
1 1

H22(λ)
0 −H21(λ)

H2
22(λ)

0 0 0 1

)

The asymptotic variance-covariance matrix can then be computed by

2π

∫
W (α)2dα · φ′

(vec(H(λ))) ·
(
fAA(−λ)−1 ⊗ fεε(λ)

)
· φ′

(vec(H(λ)))t

which yields the stated terms.

Remark 5.3. The importance of Theorem 5.2 for practical applications lies in
particular in the possible construction of approximate confidence intervals for
the parameters of interest. For example, under the conditions of Theorem 5.2,
an approximate (1− α)-confidence interval for Re(G1(λ)) is given by

[
Re(G

(T )
1 (λ)) − u1−α

2

√
π
∫
W (α)2dαRe(Σ11(λ))

BTT
,

Re(G
(T )
1 (λ)) + u1−α

2

√
π
∫
W (α)2dαRe(Σ11(λ))

BTT

]
.

Here u1−α
2

denotes the (1 − α
2 )-quantile of the real-valued standard normal

distribution. Clearly, the goodness of the approximation increases as T → ∞.

Example 5.4. Consider the case that the external arrival processes A1 and A2

are Poisson processes with constant intensities κ1 and κ2, i.e., the tandem sys-
tem under study consists of two nodes of type M/G/∞. It follows then for the
reduced covariance measures C̆AiAi

(du) = κiδ0(du) and thus the power spec-
tra are given by fAiAi

(λ) ≡ κi

2π , λ ∈ R, (see [11], Example 8.2(a)). Since the
intensities κi can directly be estimated by the observed arrival times of the pro-
cesses Ai, the estimation of the power spectra fAiAi

(λ) is here straightforward
without use of the periodograms, i = 1, 2. However, the estimation of the cross
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spectra (like fD1A1(λ)) cannot be simplified, although the departure processes
D1 and D2 are also Poisson processes with constant intensities (for a proof see
[1], Theorem 1.3 in Chapter IV.1).

Estimation of the routing probability p1

Now we turn to the estimation of the routing probability p1 in the tandem
network from Figure 1 in steady state. We first show how we can use the de-
veloped spectral theory to derive an asymptotically normal estimator. Equation
(7) directly yields an equation for the routing probability p1 in terms of the
components of the transfer function H(·):

p1 =
H21(λ)

H21(λ) +H11(λ)H22(λ)
, λ ∈ R.

It is interesting to see that the right hand side thus is independent of λ. However,
an estimator of the form

p̂
(T )
1 = p̂

(T )
1 (λ) =

H
(T )
21 (λ)

H
(T )
21 (λ) +H

(T )
11 (λ)H

(T )
22 (λ)

, λ ∈ R, (29)

formally depends on the frequency λ under consideration. Therefore, we make
a smoothing approach and define our estimator for p1 by the minimum of the

quadratic loss, i.e., p
(T )
1 shall minimize for a finite set L ⊂ R\{0} of λ values

∑

λ∈L

∣∣∣H(T )
11 (λ)−G

(T )
1 (λ) (1 − p1)

∣∣∣
2

+
∑

λ∈L

∣∣∣∣∣
H

(T )
21 (λ)

H
(T )
22 (λ)

−G
(T )
1 (λ) p1

∣∣∣∣∣

2

. (30)

Taking the derivative of (30) with respect to p1 yields:

2
∑

λ∈L

[
Re
(
H

(T )
11 (λ) −G

(T )
1 (λ)(1 − p1)

)
·Re(G(T )

1 (λ))

+ Im
(
H

(T )
11 (λ) −G

(T )
1 (λ)(1 − p1)

)
· Im(G

(T )
1 (λ))

]

− 2
∑

λ∈L

[
Re

(
H

(T )
21 (λ)

H
(T )
22 (λ)

−G
(T )
1 (λ) · p1

)
· Re(G(T )

1 (λ))

+ Im

(
H

(T )
21 (λ)

H
(T )
22 (λ)

−G
(T )
1 (λ) · p1

)
· Im(G

(T )
1 (λ))

]

= 2
∑

λ∈L

[
Re
(
H

(T )
11 (λ) ·G(T )

1 (−λ)
)

− |G(T )
1 (λ)|2 − Re

(
H

(T )
21 (λ)

H
(T )
22 (λ)

·G(T )
1 (−λ)

)
+ 2 p1 |G(T )

1 (λ)|2
]
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= 2
∑

λ∈L

[
Re

((
H

(T )
11 (λ) − H

(T )
21 (λ)

H
(T )
22 (λ)

)
·G(T )

1 (−λ)

)
− |G(T )

1 (λ)|2 + 2 p1|G(T )
1 (λ)|2

]

= 4
∑

λ∈L

[
−|G(T )

1 (λ)|2 +Re
(
H

(T )
11 (λ) ·G(T )

1 (−λ)
)
+ p1 |G(T )

1 (λ)|2
]
,

where the last equality is due to H
(T )
11 (λ) − H

(T )
21 (λ)

H
(T )
22 (λ)

= −G
(T )
1 (λ) + 2H

(T )
11 (λ).

The second derivative of the quadratic loss (30) with respect to p1 is positive

and thus, the optimal p
(T )
1 is given by

p
(T )
1 = 1−

∑
λ∈L Re

(
G

(T )
1 (λ) · f

(T )
D1A1

(−λ)

f
(T)
A1A1

(−λ)

)

∑
λ∈L |G(T )

1 (λ)|2
(31)

with G
(T )
1 (·) from (28) and f

(T )
A1A1

(·) and f
(T )
D1A1

(·) constructed according to (18).

Note that p
(T )
1 is by definition real valued. Since for all λ ∈ L

|G1(λ)|2 − Re
(
G1(λ) ·H11(−λ)

)
= |G1(λ)|2 − Re

(
G1(λ) ·G1(−λ)

)
(1− p1)

= p1 · |G1(λ)|2,

the estimator p
(T )
1 indeed quantifies the underlying true routing behavior of

customers in the tandem network.

Theorem 5.5 (Asymptotic Normality for p
(T )
1 ). Let the conditions of Theorem

5.2 be satisfied for all λ ∈ L. Then we have for the estimator p
(T )
1 from (31)

with a finite constant s2 ∈ R+ as T → ∞,

√
BTT

(
p
(T )
1 − p1

)
D−→ N1

(
0,

2π s2
∫
W (α)2dα

(∑
λ∈L |G1(λ)|2

)2
)
.

Proof. We have

p
(T )
1 =

∑
λ∈L

[
|G(T )

1 (λ)|2 − Re
(
G

(T )
1 (λ) ·H(T )

11 (−λ)
)]

∑
λ∈L |G(T )

1 (λ)|2
. (32)

Consider first the denominator of (32). Since
√
BTT (G

(T )
1 (λ)−G1(λ)) is asymp-

totically normal according to Theorem 5.2, |G(T )
1 (λ)|2 converges to |G1(λ)|2 in

probability for each λ ∈ L by the continuous mapping theorem. Thus, the de-
nominator converges in probability to

∑
λ∈L |G1(λ)|2.

Each summand of the numerator is presentable as function value of a differ-

entiable mapping ϕ of a finite set of spectral estimates f
(T )
DiAj

(λk) with i, j ∈
{1, 2}, λk ∈ R, k ∈ N, appropriate. Due to Theorem 4.7 the delta method yields
that √

BTT
(
|G(T )

1 (λ)|2 − Re
(
G

(T )
1 (λ) ·H(T )

11 (−λ)
))
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converges in distribution to a normal distribution with mean

|G1(λ)|2 − Re
(
G1(λ) ·H11(−λ)

)
= p1 · |G1(λ)|2

for each λ ∈ L. Thus, the numerator converges in distribution to a normal
distribution with mean p1 ·

∑
λ∈L |G1(λ)|2. The asymptotic variance term s2 can

be computed based on the derivative ϕ′ of the mapping ϕ involved following the
delta method by ϕ′Σϕ′t with Σ from Theorem 4.7. However, the term s2 is too
lengthy and complicated to be given here in explicit terms. By the lemma of
Slutsky the proof is complete.

An alternative estimator for the routing probability p1 based on observations
of the tandem system in the time interval (0, T ] can be constructed as

p̃1
(T ) = 1− D1((0, T ])

A1((0, T ])
. (33)

Intuitively, as T → ∞, the observed relative frequency of arrivals at node 1
which depart from the system after having been served at node 1 should tend
to the true routing probability 1− p1. Due to Theorem 4.4 we have

ED1((0, t]) = ηD1 t = (1− p1) η
A

1 t = (1− p1) EA1((0, t])

since H11(0) = G1(0)(1− p1) and H12(0) = 0. It follows: 1− p1 = ED1((0,t])
EA1((0,t])

.

The following result holds, see Theorem 1 in [8]:

Proposition 5.6. Let N be an m + n-variate point process on R satisfying
Assumption 4.2. Set

q
(T )
Na

:=
Na((0, T ])

T
for a ∈ {1, 2, . . . ,m+ n}.

Then we have for all k ≥ 1 and a1, . . . , ak ∈ {1, 2, . . . ,m+ n} as T → ∞:

√
T




q
(T )
Na1

− E(q
(T )
Na1

)

...

q
(T )
Nak

− E(q
(T )
Nak

)




D−→ Nk (0, 2πΓ) ,

with matrix Γ given by the entries Γaiaj
= fNai

Naj
(0) = 1

2π C̆Nai
Naj

(R).

Note that due to stationarity the mean E(q
(T )
Naj

) is independent of T for all j.

With q
(T )
A1

:= A1((0,T ])
T and q

(T )
D1

:= D1((0,T ])
T we thus have under the conditions

from Proposition 5.6 as T → ∞
√
T

(
q
(T )
D1

− ηD1
q
(T )
A1

− ηA1

)
D−→ N2

(
0, 2π

(
fD1D1(0) fD1A1(0)
fD1A1(0) fA1A1(0)

))
.

It follows an asymptotic result for the estimator p̃
(T )
1 of the routing probability

given by (33):
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Theorem 5.7 (Asymptotic Normality for p̃
(T )
1 ). Let N = (D1, A1) satisfy the

conditions of Proposition 5.6. Then we have as T → ∞:

√
T
(
p̃
(T )
1 − p1

)
D−→ N1

(
0, 2π

fD1D1(0) + (1− p1)
2fA1A1(0)

(ηA1 )2

)
.

Proof. The proof relies on a Taylor expansion analogously to the proof of The-
orem 4.10:

√
T
(
p̃1

(T ) − p1

)
=

√
T (q

(T )
D1

− ηD1 )
1

ηA1
−
√
T (q

(T )
A1

− ηA1 )
ηD1

(ηA1 )2
+ op(1).

We recognize for the asymptotic behavior of the estimator p̃
(T )
1 the optimal

parametric rate
√
T .

Estimation of the densities g1(·) and g2(·)

We now turn to the estimation of the service time densities g1(·) and g2(·). It
is clear from the structure of the impulse-response function h(u) defined in (6)
that without knowing the routing probability p1 the estimation of g1(·) and g2(·)
is a hard problem due to the convolution involved. As we have seen this was
not the case for the estimation of the Fourier transforms G1(·) and G2(·), a big
well-known advantage of estimation in the frequency domain. In this subsection,
we assume that p1 is known, which is no crucial restriction given that from the
previous subsection we have an estimate of p1 with rate

√
T at hand.

Then, clearly, appropriate estimators for g1(u) and g2(u) are

g
(T )
1 (u) :=

h
(T )
11 (u)

1− p1
=

1− cos(CTu)

πCTu2

1

1− p1

QT∑

q=−QT

exp(iuCT q)
f
(T )
D1A1

(CT q)

f
(T )
A1A1

(CT q)
,

(34)

g
(T )
2 (u) := h

(T )
22 (u) =

1− cos(CTu)

πCTu2

QT∑

q=−QT

exp(iuCT q)
f
(T )
D2A2

(CT q)

f
(T )
A2A2

(CT q)
, (35)

for u ∈ R with small CT and large QT .
As a direct corollary from Theorem 4.11 we obtain:

Theorem 5.8 (Asymptotic Normality for g
(T )
1 and g

(T )
2 ). Consider the tan-

dem model of queues given by (5) and (6) as described in Section 2. Sup-
pose that all assumptions of Theorem 5.2 are in force. Moreover, assume for
j = 1, 2 that infλ∈R fAjAj

(λ) ≥ 1
L1

for a constant L1 < ∞. In addition,

let
∫
|u|2‖h(u)‖∞du < ∞ and

∫
|λ|r‖H(λ)‖∞dλ < ∞ for some r > 0. Fur-

ther, consider CT → 0, QTCT → ∞, Q3
TB

−1
T T−1 → 0, C4

TQTBTT → 0 and
C−2r−2

T Q−2r−1
T BTT → 0 as T → ∞. Then, as T → ∞, we have for the esti-
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mators of the service time densities g1(·) and g2(·) given by (34) and (35) for
u ∈ R,

√
C−2

T Q−1
T BTT

((
g
(T )
1 (u)

g
(T )
2 (u)

)
−
(
g1(u)

g2(u)

))

D−→ NC
2


0, 2π

∫
W (α)2dα

1

QT

QT∑

q=−QT




fε1ε1(CT q)

fA1A1(CT q)
1

(1−p1)2
0

0
fε2ε2(CT q)

fA2A2(CT q)




.

Estimation of the multiple coherence

In the rest of this section we will take a closer look at the role of the error
process ε in our setting,

ε(B) =

(
ε1(B)
ε2(B)

)
=

(
D1(B)− E[D1(B)|A]
D2(B)− E[D2(B)|A]

)
, B ∈ B(R).

The multiple coherence of the output process Di with the input processes A1

and A2 at frequency λ ∈ R is defined as

|RDiA(λ)|2 :=
fDiA(λ)fAA(λ)−1fADi

(λ)

fDiDi
(λ)

, for i = 1, 2,

compare with [9] p.296, for the time series case.
The notion multiple coherence for processes is an analogy to the correlation

of random variables and represents a measure of a model’s goodness of fit. It
expresses the extent to which the output process Di is determined by the input
processes A1 and A2 through linear time-invariant operations. Theorem 4.4(iii)
implies that for i = 1, 2 and λ ∈ R,

fεiεi(λ) =
(
1− |RDiA(λ)|2

)
fDiDi

(λ). (36)

Since power spectral matrices are non-negative definite we have 0 ≤ |RDiA(λ)|2 ≤
1 for all λ ∈ R, i = 1, 2. We construct an estimator for the quantity |RDiA(λ)|2
in the obvious plug-in manner analogously to the estimator of the transfer func-
tion,

|R(T )
DiA

(λ)|2 :=
f
(T )
DiA

(λ)f
(T )
AA

(λ)−1f
(T )
ADi

(λ)

f
(T )
DiDi

(λ)
, for i = 1, 2,

with spectral estimators as defined in (18). We have the following asymptotic
result:

Theorem 5.9. If in addition to the conditions of Theorem 5.2 it holds fDiDi
(λ) >

0 for λ ∈ R, then the asymptotic behavior of the estimator |R(T )
DiA

(λ)|2 for i = 1, 2
is as T → ∞ given by:

√
BTT

(
|R(T )

DiA
(λ)|2 − |RDiA(λ)|2

)

D−→ N1

(
0, 4π

∫
W (α)2dα · |RDiA(λ)|2 ·

(
1− |RDiA(λ)|2

)2
)
.
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Proof. The proof runs analogously to the proof of Theorem 4.10. The main step
to show is:
√
BTT

(
|R(T )

DiA
(λ)|2 − |RDiA(λ)|2

)

=
√
BTT

[
f
(T )
DiA

(λ) − fDiA(λ)
]
fAA(λ)−1 fADi

(λ) fDiDi
(λ)−1

−fDiA(λ) fAA(λ)−1
√
BTT

[
f
(T )
AA

(λ)− fAA(λ)
]
fAA(λ)−1 fADi

(λ) fDiDi
(λ)−1

+fDiA(λ) fAA(λ)−1
√
BTT

[
f
(T )
ADi

(λ) − fADi
(λ)
]
fDiDi

(λ)−1

−|RDiA(λ)|2
√
BTT

[
f
(T )
DiDi

(λ) − fDiDi
(λ)
]
fDiDi

(λ)−1 + op(1).

In case of |RDiA(λ)|2 ≈ 0, relation (36) implies that the power spectrum of
the error process εi at frequency λ is nearly as large as the corresponding value
of the power spectrum of the output process Di. This case is called incoherent,
since the error variance is not reduced by the input processes A1 and A2.

In case of |RDiA(λ)|2 ≈ 1, called the perfectly coherent case, there is a
strong linear relationship between the input processes A1 and A2 and the output
process Di at frequency λ ∈ R and the spectrum of the error process εi at λ is
close to zero.

Thus, the multiple coherence |RDiA(λ)|2 is seen to provide a measure of the
degree of linear relationship between the process Di and the input processes A1

and A2 at frequency λ.
Recall the classical spectral representation theorem of Cramér for stationary

processes, see e.g. [9] or [10]. In a modified version it says that the stationary
process εi can be written in the form, for B ∈ B(R),

εi((0, t])− lim
s↑t
s 6=t

εi((0, s])

= E

(
εi((0, t])− lim

s↑t
s 6=t

εi((0, s])

)

︸ ︷︷ ︸
=0

+

∫ +∞

−∞

exp(iλt)K(λ) dZ(λ), (37)

with |K(λ)|2 = fεiεi(λ) for all λ ∈ R and a complex-valued stochastic process Z
with orthonormal increments. Note that εi((0, t])− lim s↑t

s 6=t
εi((0, s]) is the jump

level of εi at time point t. The spectral representation shows a decomposition of
the process into periodic components (sine and cosine) of frequencies λ and ran-
dom amplitudes with variance |K(λ)|2 = fεiεi(λ). It enlightens the meaning of
the name power spectrum: The value fεiεi(λ) gives the power of the component
of frequency λ.

Assuming that |RDiA(λ)|2 is close to 1 for almost all λ ∈ R, the error process
εi itself is reduced to a small quantity close to zero according to the spectral
representation (37). By definition of εi this implies the approximation,

Di(B) ≈ E[Di(B)|A] for B ∈ B(R).
Thus, for all time instants t the number of external departures from node i
is nearly equal to the expected number of external departures from node i
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upon complete knowledge of the arrival processes A1 and A2. Equality would
mean that the output process Di is entirely determined by the knowledge of
A1 and A2 which would imply that the service times are deterministic, i.e. the
service densities are Dirac measures, and that also the routing decisions are
deterministic, i.e. p1 equals 0 or 1. Clearly, the observed data of the external
arrival and departure processes would also indicate this situation.

6. Generalizations of the tandem model of two nodes

We sketch here how our statistical approach of the tandem model studied so far
can be extended to more general queueing models. We always assume that we
are able to observe all external arrival and external departure processes at the
G/G/∞ nodes of the networks, but have no information about the movements
of the customers between the nodes in the system. The aim is to estimate the
service time distributions at the nodes as well as the routing probabilities.

Feedforward models of more than two nodes

Let us consider a tandem system of three nodes according to Figure 2. The
structure of customer movements leads to the following equations for Borel
time sets B ∈ B(R):

D1(B) =
∑

j∈Z

1B(σ
A1

j + γ
(1)
j ) · Z(1−p12)

j ,

D2(B) =
∑

j∈Z

1B(σ
A1

j + γ
(1)
j + γ

(12)
j ) · (1− Z

(1−p12)
j ) · Z(1−p23)

j

+
∑

j∈Z

1B(σ
A2

j + γ
(2)
j ) · Z̃(1−p23)

j ,

D3(B) =
∑

j∈Z

1B(σ
A1

j + γ
(1)
j + γ

(12)
j + γ

(123)
j ) · (1− Z

(1−p12)
j ) · (1− Z

(1−p23)
j )

+
∑

j∈Z

1B(σ
A2

j + γ
(2)
j + γ

(23)
j ) · (1 − Z̃

(1−p23)
j ) +

∑

j∈Z

1B(σ
A3

j + γ
(3)
j ),

✲ ✍✌
✎☞
1

p12 ✲ ✍✌
✎☞
2

❄ ❄

❄

A1

D1

1− p12

∼ g1(·) ∼ g2(·)

D2

A2

3

∼ g3(·)
✍✌
✎☞

A3

D3❄

❄

✲
p23

1− p23 1

Fig 2. Tandem network of three nodes.
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with Bernoulli variables Z
(1−p12)
j ∼ Bern(1 − p12) and Z

(1−p23)
j , Z̃

(1−p23)
j ∼

Bern(1 − p23) as well as random variables γ
(1)
j ∼ g1(·), γ(12)

j , γ
(2)
j ∼ g2(·) and

γ
(123)
j , γ

(23)
j , γ

(3)
j ∼ g3(·), for all j ∈ Z. All random variables are independent

from each other. In a matrix notation this yields

E

[

D1(B)
D2(B)
D3(B)



∣∣∣∣



A1

A2

A3



]
=

∫ ∫
1B−u(s)h(s)ds d



A1

A2

A3


 (u), B ∈ B(R),

with 3 × 3 matrix h(·) having the component-by-component-wise computed
Fourier transform H(·):

H(λ) =




G1(λ)(1 − p12) 0 0
G1(λ)G2(λ)p12(1 − p23) G2(λ)(1 − p23) 0
G1(λ)G2(λ)G3(λ)p12p23 G2(λ)G3(λ)p23 G3(λ)


 for λ ∈ R.

(38)
(38) directly implies the following identification relations:

G3(λ) = H33(λ)

G2(λ) = H22(λ) +
H32(λ)

H33(λ)
p23 =

H32(λ)

H32(λ) +H22(λ)H33(λ)

G1(λ) = H11(λ) +
H21(λ)

H22(λ)
p12 =

H21(λ)

H21(λ) +H11(λ)H22(λ)
. (39)

Note that the equations for G1(λ) and p12 are exactly the same as in case of the
tandem system of two nodes (compare with Section 5). This is not surprising
since for these parameters the existence of a third node does not provide any
further information. From (39) estimators for the routing probabilities p12 and
p23 as well as for G1(λ), G2(λ) and G3(λ), for λ ∈ R, then can be constructed
and their respective asymptotic normality can be proved in analogy to Section
5. A further generalization to feedforward systems of more than three nodes is
possible in an obvious straightforward way.

Tandem models with feedback

Next we consider queueing systems with positive feedback probabilities at the
nodes, i.e., a customer may be served at the same node several times consecu-
tively before jumping on to another node. Let B ∈ B(R). The underlying point
process structure of the system given by Figure 3 implies that (note that clearly
p11 + p10 + p12 = 1 and p22 + p20 = 1):

D1(B) =
∑

j∈Z

1B


σA1

j + γ
(1)
j +

W
p11
j∑

l=1

γ
(11)
j,l


 · Z

p10
p10+p12

j ,

D2(B) =
∑

j∈Z

1B


σA1

j + γ
(1)
j +

W
p11
j∑

l=1

γ
(11)
j,l + γ

(12)
j +

W
p22
j∑

s=1

γ
(122)
j,s


 ·

(
1− Z

p10
p10+p12

j

)
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❄

✍✌
✎☞
1 ✲

p12 ✍✌
✎☞
2

❄ ❄

❄

A1

D1

p10

∼ g1(·) ∼ g2(·)

D2

p20

A2

✟
✠p22✛

☛
✡p11
✲

Fig 3. Tandem system of two nodes with feedback.

+
∑

j∈Z

1B


σA2

j + γ
(2)
j +

W̃
p22
j∑

s′=1

γ
(22)
j,s′


 ,

with Bernoulli variables Z
p10

p10+p12

j ∼ Bern( p10

p10+p12
) as well as random vari-

ables γ
(1)
j , (γ

(11)
j,l )l=1,2,...,W

p11
j

∼ g1(·), and γ
(12)
j , γ

(2)
j , (γ

(122)
j,s )s=1,2,...,W

p22
j

,

(γ
(22)
j,s′ )s′=1,2,...,W̃

p22
j

∼ g2(·) for all j ∈ Z. Furthermore, W p11

j are geometric ran-

dom variables with success probability (1−p11), i.e. P (W p11

j = N) = pN11(1−p11)

for N ≥ 0, for all j ∈ Z. Analogously,W p22

j and W̃ p22

j are geometric with success
probability (1 − p22) for all j ∈ Z. All random variables are independent from
each other. In a matrix notation this yields

E

[(
D1(B)
D2(B)

) ∣∣∣∣
(
A1

A2

)]
=

∫ ∫
1B−u(s)h(s)ds d

(
A1

A2

)
(u)

with matrix

h(s)

=

(
g1 ∗

∑∞
k=0 g

∗k
1 pk11p10 0

g1∗
∑∞

k=0 g
∗k
1 pk11∗g2∗

∑∞
s=0 g

∗s
2 ps22(1−p22)p12 g2∗

∑∞
s=0 g

∗s
2 ps22(1−p22)

)
(s)

for s ∈ R.
The corresponding transfer function H(·) is then (note that |G1(λ)|p11 < 1):

H(λ) =

(
p10G1(λ)

1−p11G1(λ)
0

p12G1(λ)
1−p11G1(λ)

p20G2(λ)
1−p22G2(λ)

p20G2(λ)
1−p22G2(λ)

)
for λ ∈ R.

This yields that for identification of the five unknown parameters p10, p12, p20,
G1(λ), G2(λ), λ ∈ R, there are just three equations at hand. With respect to

the routing probabilities we first observe that p12

p10
= H21(λ)

H11(λ)H22(λ)
, thus, if the



Nonparametric inference for stochastic feedforward networks 1707

feedback probability p11 is unknown we can just determine the ratio between p12
and p10, not their absolute values. Furthermore, it is technically and intuitively
clear that we cannot separate p11 and G1(λ) (and p22 and G2(λ) respectively)
here without any further information. Therefore, for tandem systems with pos-
itive feedback probabilities according to Figure 3 with our method we may just
identify the total sojourn time distributions of customers at the nodes, given by

Ğ1(λ) :=

∞∑

k=0

(1−p11)p
k
11G

k+1
1 (λ) =

(1−p11)G1(λ)

1− p11G1(λ)
and Ğ2(λ) :=

(1−p22)G2(λ)

1− p22G2(λ)
.

Asymptotically normal estimators for the unknown parameters may then be
constructed according to the relations

Ğ2(λ) = H22(λ), Ğ1(λ) = H11(λ) +
H21(λ)

H22(λ)
, and

p12
p10 + p12

=
H21(λ)

H21(λ) +H11(λ)H22(λ)
.

The case of queueing systems of two nodes with positive routing probability
p21 for jumping back from node 2 to node 1 is much more involved. The statis-
tical analysis of such stochastic networks of general topology is postponed to a
following paper.

7. Simulations

We illustrate in this section the practicality of the estimators derived with a
simulation study performed in R.We simulated the tandem network of two nodes
given in Figure 1 under the following conditions. The external input processes
A1 and A2 are assumed to be self-exciting processes with exponential decay (see
[20] and [27]), i.e., they are characterized by their conditional intensities (with
νi ≥ 0, τi < βi), for t ∈ R, i = 1, 2,

E

[
Ai((0, t])−lim

s↑t
s 6=t

Ai((0, s])
∣∣∣{σAi

j : σAi

j < t}
]
= νi+

∫ t

−∞

τi exp(−βi(t−u)) dAi(u).

These processes belong to the class of Hawkes’ processes which constitute the
binary analogues of autoregressive time series. They have been extensively ap-
plied in various fields in science and engineering such as e.g. statistical seismol-
ogy, auditory physiology, and electrical engineering, see [24]. With the chosen
exponential decay the corresponding intensity is a Markov process and the co-
variances of the sequence of jump intervals are positive and decreasing, see [27].
In [28] an algorithm to simulate the process is proposed which we have followed.
The advantage of this choice of arrival processes lies in the fact that we can
easily show the sensitivity of our estimators with respect to the inner depen-
dence of the arrival processes. If we increase βi, then the inner dependence of
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the process Ai decreases (compare with [28], Figures 7 and 9) and intuitively
the estimators should then behave in a better way.

The service times are chosen to be exponentially distributed with parameter
θ1 = 0.8 (node 1) and θ2 = 3 (node 2) respectively. The routing probability
is set equal to p1 = 0.6. The weight function W used in the calculations of
the smoothed periodograms as estimators for the spectra according to (18) is
assumed to be the triangular kernel given by

W (x) := (2− 4|x|) · 1[−0.5,0.5](x) for x ∈ R.

T is set to 20000. The bandwidth BT is taken of order O(T−0.25) fulfilling
the conditions of the theorems. The characteristic function of the exponential
distribution with parameter θ is explicitly computable. For the Fourier transform
of the service time distribution at node j follows for j = 1, 2: Gj(λ) =

θj
θj+iλ

which yields for its real part Re(Gj(λ)) =
θ2
j

θ2
j+λ2 and for its imaginary part

Im(Gj(λ)) =
−θjλ

θ2
j+λ2 .

In the plots for the estimation of the real and imaginary parts of the Fourier
transforms Gj(·) the black solid lines give the true functions and the dashed
lines display the estimated functions. In addition we have plotted confidence
intervals as grey solid lines. We have to stress here that these are just pointwise
confidence intervals given for each λ which we have connected (compare with
Remark 5.3). Up to now we have no uniform asymptotic normality results for
our estimators at hand and thus no uniform confidence bands (over all λ) are
available. Furthermore, we have estimated the entries of Σ which occur in the
calculation of the confidence intervals which is the reason for these intervals
sometimes being not sufficiently accurate. Nevertheless, the simulation results
illustrate the good quality of our estimators.

We present here results for two different parameter settings for the arrival
processes A1 and A2. In the first case called “β large” the processes are chosen
to show little inner dependence. Here τ1 = 0.4, β1 = 18, ν1 = 1.6 and τ2 =
0.2, β2 = 15, ν2 = 1.5. On the contrary in the second case called “β small” the
processes show more inner dependence, the parameters are set to τ1 = 1, β1 =
1.2, ν1 = 0.29 and τ2 = 0.9, β2 = 1, ν2 = 0.16. In both cases in our simulated
time interval approximately 30000 customers entered the network via A1 and
A2 respectively so that the situations can be well compared.

Figure 4 illustrates the different inner dependence structure of the processes
in the cases “β large” (above) and “β small” (below). Here a cross indicates a
customer having entered the system via the process A1 and a circle indicates
a customer having entered the system via A2. In case of “β small” the greater
inner dependence is shown by obvious clusters in the set of arrival points of A1

and A2, whereas in case of “β large” the occurrence of arrival points is more
regular.

Figures 5 and 7 present the estimators given in (27) and (28) for the real and
imaginary parts of G1(·) (above) and G2(·) (below) in case of “β large” and “β
small”. We observe that as expected the behaviour of the estimators is better in
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ββ1 == 18        ββ2 == 15

D2

A2

D1

A1

0 10 20 30 40 50 60

0 10 20 30 40 50 60

ββ1 == 1.2        ββ2 == 1

D2

A2

D1

A1

Fig 4. Illustration of the inner dependence of the arrival processes A1 and A2 in the cases
“β large” (above) and “β small” (below).
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Fig 5. Estimation of G1(·) and G2(·) for “β large”.
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Fig 6. Estimation of G1(·) based on p̃1
(T ) for “β large”.
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Fig 7. Estimation of G1(·) and G2(·) for “β small”.

case of “β large”. We notice that for “β small” the estimators are in particular
inaccurate in the frequency interval (0, 1), and since the asymptotic variance is
also estimated the confidence intervals are here also not satisfactory. Further-
more, note that in the definition of the estimator for G1(λ) the estimator for the
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Fig 8. Estimation of G1(·) based on p̃1
(T ) for “β small”.

cross-spectrum fD2A2(λ) appears in the denominator whose absolute value can
become very small. Simulations have shown that every time the absolute value
of fD2A2(λ) is near to zero the estimator for G1(λ) behaves badly, which is no

surprise. Thus, we have stabilized the estimator G
(T )
1 (·) in our simulations by

adding the small term 10−3 in the denominator of the second summand. Then

the behaviour of G
(T )
1 (·) is very good as Figures 5 and 7 show. An even better

estimation result for G1(·) can be achieved by computing the estimator p̃1
(T )

from (33) and plugging it into the term

G̃1

(T )
(λ) =

f
(T )
D1A1(λ)

f
(T )
A1A1(λ)

· 1

1− p̃1
(T )

, (40)

suggested by the relationH11(λ) = G1(λ)(1−p1), compare with (7). By standard
computations the following asymptotic result can be proved for the estimator

G̃1

(T )
(λ):

√
BTT

(
G̃1

(T )
(λ)− fD1A1(λ)

fA1A1(λ)
· 1

1− p1

)

D−→ NC

1

(
0, 2π

∫
W (α)2dα · fε1ε1(λ)

fA1A1(λ)
· 1

(1− p1)2

)
.

The corresponding plots are given in Figure 6 (“β large”) and 8 (“β small”).
Figure 9 is based on 200 Monte Carlo simulations for two different estimators

of the routing probability p1. The parameters for the arrival processes are chosen
as in case of “β small”, but with T = 2000. Instead of using the optimal esti-

mator p
(T )
1 defined in (31) we averaged the values of the estimator p̂1

(T ) given
in (29) over five different frequencies λ. This considerably reduced the compu-
tational complexity. The result is shown in Figure 9 (above). The plots below

correspond to the intuitive estimator p̃
(T )
1 given in (33). The histograms and the

q-q-plots show a very good performance for both estimators; as expected from
the theoretical results the intuitive estimator has a smaller variance.
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Fig 9. Estimation of the routing probability p1 based on 200 MC simulations.
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