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Abstract: We consider Bayesian estimation of the location parameter
θ of a random vector X having a unimodal spherically symmetric den-
sity f(‖x − θ‖2) when the prior density π(‖θ‖2) is spherically symmetric
and superharmonic. We study minimaxity of the generalized Bayes esti-
mator δπ(X) = X + ∇M(X)/m(X) under quadratic loss, where m is the
marginal associated to f(‖x− θ‖2) and M is the marginal with respect to
F (‖x − θ‖2) = 1/2

∫∞
‖x−θ‖2 f(t) dt under the condition inft≥0 F (t)/f(t) =

c > 0 (see Berger [1]). We adopt a common approach to the cases where
F (t)/f(t) is nonincreasing or nondecreasing and, although details differ in
the two settings, this paper complements the article by Fourdrinier and
Strawderman [7] who dealt with only the case where F (t)/f(t) is nonde-
creasing. When F (t)/f(t) is nonincreasing, we show that the Bayes esti-
mator is minimax provided a ‖∇π(‖θ‖2)‖2/π(‖θ‖2) + 2 c2 ∆π(‖θ‖2) ≤ 0
where a is a constant depending on the sampling density. When F (t)/f(t)
is nondecreasing, the first term of that inequality is replaced by b g(‖θ‖2)
where b also depends on f and where g(‖θ‖2) is a superharmonic upper
bound of ‖∇π(‖θ‖2)‖2/π(‖θ‖2). Examples illustrate the theory.
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1. Introduction

Let X be a random vector in R
p with spherically symmetric density

f(‖x− θ‖2) (1.1)

around an unknown location parameter θ ∈ R
p which has a spherically sym-

metric prior

π(‖θ‖2). (1.2)

Consider estimation of the parameter θ under squared error loss

‖δ − θ‖2 , (1.3)

for p ≥ 3. We are mainly interested in the minimaxity of the generalized Bayes
estimator δπ(X) associated with the prior in (1.2).

Maruyama and Takemura [9] proved, through Baranchik type techniques that
the Bayes estimator corresponding to the fundamental harmonic prior is mini-
max for certain f in (1.1). Also Fourdrinier, Kortbi and Strawderman [3] showed
such minimaxity results for sampling and prior densities which are both mix-
tures of normals with a monotone likelihood ratio property when considered as
scale families.

By contrast, for spherically symmetric prior densities given in (1.2), Four-
drinier and Strawderman [7] did not utilize the Baranchik representation but
used the superharmonicity of the prior π more in the spirit of Stein [10]. Setting

F (t) =
1

2

∫ ∞

t

f(u)du, (1.4)
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they treated the case where the sampling densities are such that F (t)/f(t) is
nondecreasing in t and bounded from below by some positive constant c (that
is, the density in (1.1) belongs to the Berger class [1]). They proved that the
risk difference between δπ(X) and X is bounded above by

Eθ

[

2 c
∆M(X)

m(X)
− 2 c

∇M(X) · ∇m(X)

m2(X)
+

‖∇M(X)‖2
m2(X)

]

(1.5)

where Eθ denotes the expectation with respect to (1.1) and · denotes the inner
product in R

p. Then, thanks to the superharmonicity of π(‖θ‖2), they showed
it suffices to prove that

∀x ∈ R
p − 2 c

∇M(x) · ∇m(x)

m2(x)
+

‖∇m(x)‖2
m2(x)

≤ 0

in order for the risk difference in (1.5) to be non positive. In contrast, in this
paper, we demonstrate that

∇M(x) · ∇m(x) ≥ 0 , (1.6)

and thus, minimaxity of δπ(X) follows provided that

2 c
∆M(x)

m(x)
+

‖∇M(x)‖2
m2(x)

≤ 0 , (1.7)

for all x ∈ R
p. A benefit of this technique is that it allows us to also deal with the

case where F (t)/f(t) is nonincreasing, which constitutes a main contribution of
this paper.

Finally, we will see below that, as we need to deal with tractable expressions
for the derivatives of the marginals m and M , the membership of the prior
density π

(

‖θ‖2
)

in certain Sobolev spaces and the membership of the generating
function f in a particular superset of the Schwartz space will be required.

In Section 2, we develop the model and give preliminary calculations involving
the derivatives of the marginals related to f and F . Section 3 is devoted to the
first main result when F (t)/f(t) is nonincreasing while, in Section 4, we deal
with the case where F (t)/f(t) is nondecreasing. Section 5 contains examples
illustrating the theory developed in Sections 3 and Section 6 illustrates Section
4. Then we give, in Section 7, some concluding remarks and some perspectives.
Finally, the last section is an Appendix containing needed technical material.

2. Model and generalized Bayes estimators

Let X be a p×1 random vector having a spherically symmetric distribution as in
(1.1) about an unknown vector θ ∈ R

p which has a spherically symmetric prior
density as in (1.2). Consider estimation of the parameter θ under the quadratic
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loss in (1.3). As in [7], the generalized Bayes estimator is the posterior mean
and can be written as

δπ(X) = X +
∇M(X)

m(X)
(2.1)

where, for any x ∈ R
p,

m(x) =

∫

Rp

f(‖x− θ‖2)π(‖θ‖2) dθ (2.2)

is the marginal density and

M(x) =

∫

Rp

F (‖x− θ‖2)π(‖θ‖2) dθ (2.3)

with F (t) given in (1.4). Here ∇ denotes the gradient.
As mentioned above, our aim is to study the minimaxity of the Bayes esti-

mator δπ(X) in (2.1), which follows by proving that δπ(X) dominates X under
the loss (1.3). Of course, this only makes sense if the risk of X is finite, that is, if

E0(‖X‖2) < ∞. It is worth noting that this last condition, in fact, implies the
finiteness of the risk of the Bayes estimator δπ(X) (see Lemma A.1). As stated
in Section 1, this domination will be obtained as soon as Inequalities (1.7) and
(1.6) will be satisfied.

Note that (1.7) and (1.6) involve the derivatives of the marginals m and M
in (2.2) and (2.3). To express these derivatives conveniently, we will rely on
formulas of the type
∫

Rp

Dαψ
(

‖x− θ‖2
)

π(‖θ‖2) dθ = (−1)α
∫

Rp

ψ
(

‖x− θ‖2
)

Dαπ(‖θ‖2) dθ (2.4)

where ψ will be, either the function f , or the function F and where, for a multi-
index α = (α1, . . . , αp) (a p-uple of nonnegative integers) with lengh |α| =
α1 + · · ·+ αp, D

α is the corresponding partial derivative operator.
As proved in Blouza, Fourdrinier and Lepelletier [2], and used in Fourdrinier

and Lepelletier [4], general assumptions on ψ and π in order for Condition (2.4)
to be satisfied are that these functions belong to appropriate Sobolev spaces.
Thus it will be needed that the prior π(‖θ‖2) is in the Sobolev space

Wα,1
loc (R

p) =
{

u ∈ L1
loc(R

p)
/

∀β, |β| ≤ α, Dβu ∈ L1
loc(R

p)
}

and that the function ψ
(

‖x− θ‖2
)

is in the Sobolev space

Wα,∞(Rp) =
{

u ∈ L∞(Rp)
/

∀β, |β| ≤ α, Dβu ∈ L∞(Rp)
}

.

The aim of the membership in the above Sobolev spaces is mainly to control
the functions around the origin. However we also need some regularity in a
neighborhood of infinity and, to this end, we also assume that there exits r >
0 such that π(‖θ‖2) belongs to Cα

b (Rp \Br) (the space of functions α-times
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continuously differentiable and bounded on R
p \ Br where Br is the ball of

radius r centered at 0) and there exists ǫ > 0 such that ψ(‖x − θ‖2) is in
Sα,p+ǫ (Rp \Br) (the space of functions α-times continuously differentiable on
R

p \Br such that supx∈Rp\Br ;|β|≤α;γ≤p+ǫ ‖x‖γ
∣

∣Dβψ
(

‖x− θ‖2
)∣

∣ <∞).
Finally the sufficient conditions we use in order that formula (2.4) is satisfied

are

• the function θ 7−→ π(‖θ‖2) belongs to Wα,1
loc (R

p) ∩ Cα
b (Rp \Br) for a

certain r > 0.
• the function θ 7−→ F

(

‖x− θ‖2
)

belongs to Wα,∞(Rp) ∩ Sα,p+ǫ (Rp \Br)
for a certain ǫ > 0.

It is more convenient to express the above condition on F
(

‖x− θ‖2
)

in terms
of the generating function f . This is done in the following lemma whose the proof
is similar to the proofs of Lemma 5 and Lemma 6 in [4].

Lemma 2.1. Let α ≥ 1, x ∈ R
p fixed and r0 = max(2, 2 ‖x‖). Assume that,

for a certain ǫ > 0, we have f (t) ∈ Sα−1,p/2+1+ǫ (R+ \ {0}). Then the function
θ 7−→ F

(

‖x− θ‖2
)

belongs to Wα,∞(Rp) ∩ Sα,p+ǫ (Rp \Br0).

The derivatives of the marginalsm(x) andM(x) are involved through∇m(x),
∇M(x), ∆M(x). Clearly this is the highest order of derivation which matters
and it can be seen, for α = 2, that Lemma 2.1 applies to express these last
quantities as expectations with respect to the posterior distribution given x.
This is stated in the following lemma whose the proof follows directly from
(2.4), as in [6], for various values of α.

Lemma 2.2. Assume that, there exist r > 0 such that π(‖θ‖2) ∈ W 2,1
loc (R

p) ∩
C2

b (R
p \Br) and ǫ > 0 such that f (t) ∈ S1,p/2+1+ǫ (R+ \ {0}). We have

∇m(x)

m(x)
= Ex

[∇π(‖θ‖2)
π(‖θ‖2)

]

(2.5)

∇M(x)

m(x)
= Ex

[

F (‖x− θ‖2)
f(‖x− θ‖2)

∇π(‖θ‖2)
π(‖θ‖2)

]

(2.6)

∆M(x)

m(x)
= Ex

[

F (‖x− θ‖2)
f(‖x− θ‖2)

∆π(‖θ‖2)
π(‖θ‖2)

]

(2.7)

where Ex(·) denotes the conditional expectation of θ given x.

Similarly to what was noticed in [4], Lemma 2.1 and Lemma 2.2 still hold
when requiring only that the assumptions on the generating function f(t) are
satisfied except on a finite set T of values of t.

Note also that particular attention should be paid to the membership of the
priors to the Sobolev space in Lemma 2.2. As an example, the fundamental
harmonic prior π(‖θ‖2) = ‖θ‖2−p, although it is a smooth function in Rp \ {0},
is not in the Sobolev space W 2,1

loc (R
p) so that Equality (2.7) is not valid for that

prior. See Subsection 5.2 for more details.
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3. A minimaxity result for nonincreasing F(t)/f(t)

We can now formulate our first result about the minimaxity of the generalized
Bayes estimator δπ(X) in (2.1). This minimaxity will be obtained through im-
provement on the usual estimator X using a condition which relates the prior
π(‖θ‖2) and the generating function f(t).

Theorem 3.1. Assume that X has a spherically symmetric unimodal density
f(‖x − θ‖2) such that E0[‖X‖2] < ∞ and such that, for some ǫ > 0, the gen-
erating function f is in S1,p/2+1+ǫ (R+ \ {0}). Assume also that the function
F (t)/f(t) is nonincreasing and that c = limt→∞ F (t)/f(t) > 0.

Suppose that, for some r > 0, the spherical prior density π(‖θ‖2) in (1.2)
belongs to the space W 2,1

loc (R
p) ∩ C2

b (R
p \Br).

Then, under the quadratic loss (1.3), a sufficient condition for the Bayes
estimator δπ to dominate X (and hence to be minimax) is that

F 2(0)

f2(0)

∥

∥∇π(‖θ‖2)
∥

∥

2

π(‖θ‖2) + 2 c2 ∆π(‖θ‖2) ≤ 0 (3.1)

for all θ ∈ R
p.

Proof. First, note that Inequality (3.1) implies that ∆π(‖θ‖2) ≤ 0 and hence
that the prior density π(‖θ‖2) is superharmonic.

The proof consists in proving (1.7) and (1.6). Consider first (1.7). According
to Lemma 2.1, this inequality can be expressed as

∥

∥

∥

∥

Ex

[

F (‖x− θ‖2)∇π(‖θ‖2)
f(‖x− θ‖2)π(‖θ‖2)

]∥

∥

∥

∥

2

+ 2 cEx

[

F (‖x− θ‖2)∆π(‖θ‖2)
f(‖x− θ‖2)π(‖θ‖2)

]

≤ 0 .

Through Jensen’s inequality, it suffices to prove that

Ex

[

(

F (‖x− θ‖2)
f(‖x− θ‖2)

)2 ∥
∥

∥

∥

∇π(‖θ‖2)
π(‖θ‖2)

∥

∥

∥

∥

2
]

+2 cEx

[

F (‖x− θ‖2)∆π(‖θ‖2)
f(‖x− θ‖2)π(‖θ‖2)

]

≤ 0 . (3.2)

Now it is clear that, the conditions on f implying

∀t ∈ R+ 0 < c ≤ F (t)

f(t)
≤ F (0)

f(0)
,

the superharmonicity of π(‖θ‖2) entails that Inequality (3.2) holds as soon as

F 2(0)

f2(0)
Ex

[

∥

∥

∥

∥

∇π(‖θ‖2)
π(‖θ‖2)

∥

∥

∥

∥

2
]

+ 2 c2Ex

[

∆π(‖θ‖2)
π(‖θ‖2)

]

≤ 0 ,

and hence, as soon as

F 2(0)

f2(0)

∥

∥

∥

∥

∇π(‖θ‖2)
π(‖θ‖2)

∥

∥

∥

∥

2

+ 2 c2
∆π(‖θ‖2)
π(‖θ‖2) ≤ 0 ,

which is Condition (3.1). Therefore (1.7) is proved.
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We now turn our attention to Inequality (1.6). Note that F (t) is nonincreasing
and that, by unimodality of f(‖x − θ‖2), the function f(t) is nonincreasing in
t as well. As an immediate consequence of (2.5) and (2.6) in Lemma 2.1, the
right hand side of (1.6) equals, for any x ∈ R

p,

∇m(x) · ∇M(x) =

∫

Rp

f(‖x− θ‖2)∇π(‖θ‖2) dθ ·
∫

Rp

F (‖x− θ‖2)∇π(‖θ‖2) dθ

= 4

∫

Rp

f(‖x− θ‖2)π′(‖θ‖2) θ dθ ·
∫

Rp

F (‖x− θ‖2)π′(‖θ‖2) θ dθ

(3.3)

expressing the gradient of π(‖θ‖2). Now, by superharmonicity of the prior den-
sity π(‖θ‖2), we have π′(‖θ‖2) ≤ 0 so that, by Lemma A.2 in the Appendix,
each integral in (3.3) equals x multiplied by a non positive function. Hence the
right hand side of (3.3) is nonnegative and (1.6) is satisfied. This ends the proof
of Theorem 3.1.

4. The case where F(t)/f(t) is nondecreasing

In the case where the ratio F (t)/f(t) is nondecreasing, we need an additionnal
assumption on the prior π(‖θ‖2), that is, the function ‖∇π(‖θ‖2)‖2/π(‖θ‖2) is
bounded above by a superharmonic function. Note that the constant F (0)/f(0)
in (3.1) will be replaced by the constant d defined by

d2 =

∫ ∞

0

F 2(r2)

f2(r2)

2 πp/2

Γ(p/2)
rp−1 f(r2) dr , (4.1)

provided this integral is finite. This is stated in the following theorem.

Theorem 4.1. Assume that X has a spherically symmetric unimodal density
f(‖x−θ‖2) as in (1.1) such that E0[‖X‖2] <∞ and f(t) ∈ S1,p/2+1+ǫ(R+\{0}),
for some ǫ > 0. Assume also that the function F (t)/f(t) is nondecreasing and
bounded from below by a constant c > 0 and that the constant d in (4.1) is finite.

Suppose that, for some r > 0, the spherical prior density π(‖θ‖2) in (1.2) be-
longs to the space W 2,1

loc (R
p) ∩C2

b (R
p\Br) and is such that ‖∇π(‖θ‖2)‖2/π(‖θ‖2)

≤ g(‖θ‖2) where g(‖θ‖2) is a superharmonic function.
Then, under the quadratic loss (1.2), a sufficient condition for the Bayes

estimator δπ to dominate X (and hence to be minimax) is that

d2 g(‖θ‖2) + 2 c2∆π(‖θ‖2) ≤ 0 (4.2)

for all θ ∈ R
p, with d in (4.1).

Proof. Note that the conditions which have led, in Theorem 3.1, to Inequality
(1.6) remain unchanged; hence we just prove (1.7). Returning to Inequality (3.2),
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the first term can be written as

C(x) = Ex

[

(

F (‖x− θ‖2)
f(‖x− θ‖2)

)2 ∥
∥

∥

∥

∇π(‖θ‖2)
π(‖θ‖2)

∥

∥

∥

∥

2
]

=
1

m(x)

∫

Rp

(

F (‖x− θ‖2)
f(‖x− θ‖2)

)2 ∥
∥

∥

∥

∇π(‖θ‖2)
π(‖θ‖2)

∥

∥

∥

∥

2

f(‖x− θ‖2)π(‖θ‖2) dθ

=
1

m(x)

∫ ∞

0

∫

Sr,x

∥

∥∇π(‖θ‖2)
∥

∥

2

π(‖θ‖2) dUr,x(θ)

(

F (r2)

f(r2)

)2
2 πp/2

Γ(p/2)
rp−1 f(r2) dr

≤ 1

m(x)

∫ ∞

0

∫

Sr,x

g(‖θ‖2) dUr,x(θ)

(

F (r2)

f(r2)

)2
2 πp/2

Γ(p/2)
rp−1 f(r2) dr (4.3)

by assumption on ‖∇π(‖θ‖2)‖2/π(‖θ‖2) and where Ur,x is the uniform mea-
sure distribution on the sphere of radius r centered at x. Now, since g(‖θ‖2) is
superharmonic, the function

∫

Sr,x

g(‖θ‖2) dUr,x

is nonincreasing in r and, since F (r2)/f(r2) is nondecreasing in r, by the co-
variance inequality, it follows from the last inequality that

C(x) ≤ d2Ex

[

g(‖θ‖2)
π(‖θ‖2)

]

(4.4)

with d given by (4.1). Finally, using (4.4), by superharmonicity of π(‖θ‖2) and
the fact that F (t)/f(t) ≥ c > 0, Inequality (3.2) holds as soon as

d2Ex

[

g(‖θ‖2)
π(‖θ‖2)

]

+ 2 c2Ex

[

∆π(‖θ‖2)
π(‖θ‖2)

]

≤ 0,

which is satisfied as soon as (4.2) holds. This ends the proof of the theorem.

Remark 4.1. Bounding ‖∇π(‖θ‖2)‖2/π(‖θ‖2) by the superharmonic function
g(‖θ‖2) in the statement of Theorem 4.1 may appear somewhat ad hoc, but
it is quite useful in that it dramatically increases the class of priors to which
the theorem applies. To see this, note that, for a prior density of the form
(‖θ‖2 + b)−k with b > 0 and k > 0, we have

∥

∥

∥

∥

∇π(‖θ‖2)
π(‖θ‖2)

∥

∥

∥

∥

2

= 4 k2 ‖θ‖2 (‖θ‖2 + b)−k−2 ,

which is never superharmonic. However the upper bound

g(‖θ‖2) = (‖θ‖2 + b)−k−1

is superharmonic for p− 2 (k+2) ≥ 0. It is easily shown that Inequality (4.2) is
satisfied for p− (d2/c2 + 2) k − 2 ≥ 0. Thus the replacement of the assumption
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that ‖∇π(‖θ‖2)‖2/π(‖θ‖2) is superharmonic by superharmonicity of the upper
bound g(‖θ‖2) allows inclusion of priors of the form (‖θ‖2 + b)−k with b > 0.

Of additional interest is the fact that, if ‖∇π(‖θ‖2)‖2/π(‖θ‖2) has g(‖θ‖2) as
an upper bound, then Inequality (4.2) implies

d2
∥

∥∇π(‖θ‖2)
∥

∥

2

π(‖θ‖2) + 2 c2∆π(‖θ‖2) ≤ 0 ,

so that a natural candidate for g(‖θ‖2) is

g(‖θ‖2) = −2
c2

d2
∆π(‖θ‖2) ,

provided that the Laplacian ∆π(‖θ‖2) is subharmonic. This is formulated in the
following corollary.

Corollary 4.1. Assume that X has a spherically symmetric unimodal density
f(‖x−θ‖2) as in (1.1) such that E0[‖X‖2] <∞ and f(t) ∈ S1,p/2+1+ǫ(R+\{0}),
for some ǫ > 0. Assume also that the function F (t)/f(t) is nondecreasing and
bounded from below by a constant c > 0 and that the constant d in (4.1) is finite.

Suppose that, for some r > 0, the spherical prior density π(‖θ‖2) in (1.2)
belongs to the space W 2,1

loc (R
p) ∩C2

b (R
p \Br) and that the Laplacian ∆π(‖θ‖2)

is subharmonic.
Then, under the quadratic loss (1.2), a sufficient condition for the Bayes

estimator δπ to dominate X (and hence to be minimax) is that

d2
‖∇π(‖θ‖2)‖2
π(‖θ‖2) + 2 c2 ∆π(‖θ‖2) ≤ 0 (4.5)

for all θ ∈ R
p, with d in (4.1).

Proof. The corollary immediately follows, as in the proof of Theorem 4.1, from
the fact that the upper bound of C(x) in (4.3) is now

−2 c2Ex

[

∆π(‖θ‖2)
π(‖θ‖2)

]

,

thanks to Inequality (4.5) and to the superharmonicity of −∆π(‖θ‖2).
Corollary 4.1 is applicable to the above example of prior density since it

can be shown (see Subsection 6.2) that the bi-Laplacian of (‖θ‖2 + b)−k is
nonnegative for p− 2 (k + 3) ≥ 0. Also, it is easily seen that Inequality (4.5) is
satisfied for p− (d2/c2+2) k−2 ≥ 0 (equivalently k ≤ (p−2)/(d2/c2+2)). Note
that this is the same condition encountered for Inequality (4.2) to hold with
g(‖θ‖2) = (‖θ‖2 + b)−k−1. In each case, since d2/c2 ≥ 1, the latter inequality
predominates so that either bound gives the same result.

5. Illustrating Theorem 3.1

We first consider various examples of sampling densities. Then we provide gen-
eral conditions for prior densities, which are mixtures of normals, to belong to
the space W 2,1

loc (R
p) and to satisfy Condition (3.1).
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5.1. Sampling densities

In the following, we give examples of generating functions f(t) such that f ′(t) ≤
0 and such that F (t)/f(t) is nonincreasing and bounded from below by a con-
stant c > 0, with F (t) in (1.4). Note that, for these examples, it is guaranteed
that f ∈ S1,p/2+1+ǫ (R+ \ {0}) for some ǫ > 0 since the densities are elementary
functions of the exponential function. For each example, we provide the values
of F (0)/f(0) and of c = limt→∞ F (t)/f(t).

Example 1. Let

f(t) ∝ exp (−βt− γ)

(1 + exp (−β t− γ))
2

where β > 0 and γ > 0. As f(t) can be written as

f(t) ∝ g

(

exp

(

−1

2
(βt+ γ)

))

with g(x) = 1/x + x, it is clear that f ′(t) < 0 since g′(x) < 0 for 0 < x < 1.
Also we have

F (t) =

[

1

2 β

1

1 + exp (−β u− γ)

]∞

t

=
1

2 β

exp (−βt− γ)

1 + exp (−β t− γ)

and hence
F (t)

f(t)
=

1

2β
(1 + exp (−βt− γ))

which is nonincreasing in t. It follows then that

F (0)

f(0)
=

1 + e−γ

2β
(5.1)

and

c = lim
t→∞

F (t)

f(t)
=

1

2β
. (5.2)

Example 2. Let

f(t) ∝ 1

cosh(β t+ γ)

where β > 0 and γ > 0. Clearly, this function is nonincreasing since the hyper-
bolic cosine is nondecreasing, and hence, the sampling density f(‖x − θ‖2) is
unimodal. Also we have

F (t) =
1

2

∫ ∞

t

1

cosh (β u+ γ)
du

=

[

1

β
arctan(eβ u+γ)

]∞

t

=
1

β

[π

2
− arctan(eβ t+γ)

]

=
1

β
arctan(e−β t−γ) ,
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so that

F (t)

f(t)
=

1

β
arctan(e−β t−γ) cosh(β t+ γ) . (5.3)

The nonincreasing monotonicity of F (t)/f(t) can be comfortably found through
the one of f ′(t)/f(t). Indeed,

f ′(t)

f(t)
= −β tanh(β t+ γ)

is nonincreasing which implies that F (t)/f(t) is nonincreasing as well (see Four-
drinier and Strawderman [7]). As for the bounds of that function, first, it follows
from (5.3) that

F (0)

f(0)
=

1

β
arctan(e−γ) cosh(γ) . (5.4)

Secondly, expressing the hyperbolic cosine in (5.3) as

cosh(β t+ γ) = 1/2 {eβ t+γ + e−β t−γ}

it is clear that

c = lim
t→∞

F (t)

f(t)
=

1

2 β
lim
t→∞

eβ t+γ arctan(e−β t−γ)

=
1

2 β
lim
x→0

1

x
arctanx

=
1

2 β
. (5.5)

Example 3. Let

f(t) ∝ exp

(−βt
2

)

− a exp

(−βt
2c

)

where 0 ≤ a ≤ c < 1 and β > 0. We have

f ′(t) ∝ a

c
exp

(−βt
2c

)

− exp

(−βt
2

)

≤ 0 ,

for the range of a and c. We also have

F (t)

f(t)
=

1

β

exp
(

−βt
2

)

− a c exp
(

−βt
2c

)

exp
(

−βt
2

)

− a exp
(

−βt
2c

)

which is nonincreasing in t. Finally, we have

F (0)

f(0)
=

1

β

1− ac

1− a
(5.6)
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and

c = lim
t→∞

F (t)

f(t)
=

1

β
. (5.7)

Example 4. Let

f(t) ∝ (t+A) exp(− t

2
)

with A > 2. We have

f ′(t) ∝ (2−A− t) exp(− t

2
) ≤ 0

for the range of A. We also have

F (t)

f(t)
= 1 +

2

t+A

which is nonincreasing in t. Finally, we have

F (0)

f(0)
= 1 +

2

A
(5.8)

and

c = lim
t→∞

F (t)

f(t)
= 1 . (5.9)

5.2. Prior densities

Example 1 - Generalized t densities
A first basic example of spherical density prior is

π(‖θ‖2) = 1

(‖θ‖2 + b)k
(5.10)

with b > 0 and k > 0. Considering the membership of that density in the

Sobolev spaceW 2,1
loc (R

p), it is clear that for b > 0, the function θ 7→
(

‖θ‖2 + b
)−k

is indefinitely differentiable and is bounded, so that its membership in the
space W 2,1

loc (R
p) ∩ C2

b (R
p \Br) is automatically satisfied. As for the case b =

0, the membership in C2
b (R

p \Br) obviously remains and it can be directly
checked from the expression ‖θ‖−2k that the density belongs to the Sobolev
space W 2,1

loc (R
p) as soon as k < p/2 − 1, that is, p > 2 (k + 1) (see below an

alternative proof through Corollary 5.1).
Through straightforward calculations, it can be seen that Ineqality (3.1) is

expressed as

F 2(0)

f2(0)
× 4 k2

‖θ‖2
(‖θ‖2 + b)2

+ 2 c2 × −2 k

‖θ‖2 + b

(

p− 2 (k + 1)
‖θ‖2

‖θ‖2 + b

)

≤ 0
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which, after simplification, reduces to

(

2 (k + 1) + k
F 2(0)/f2(0)

c2

) ‖θ‖2
‖θ‖2 + b

≤ p

and hence to

2 (k + 1) + k
F 2(0)/f2(0)

c2
≤ p ,

that is, to

k ≤ p− 2
F 2(0)/f2(0)

c2 + 2
. (5.11)

Example 2 - General mixtures of normals
As the density prior in (5.10) is a mixture of normals densities, we consider

prior densities of the form

π(‖θ‖2) ∝
∫ ∞

0

tp/2 exp
(

−‖θ‖2 t
)

h(t) dt (5.12)

and we investigate conditions on the function h : R+ → R+ such that the
density in (5.12) belongs to W 2,1

loc (R
p) ∩ C2

b (R
p \Br), for some r > 0, and such

that Inequality (3.1) is satisfied. Thus we assume that the mixing function h
is such that the function t 7→ tp/2 h(t) has, for any s ≥ 0, a Laplace transform
L
(

tp/2 h(t)
)

(s) at s so that the prior in (5.12) can be seen as

π(‖θ‖2) ∝ L
(

tp/2 h(t)
)

(‖θ‖2) . (5.13)

Thus

L
(

tp/2 h(t)
)

(s) =

∫ ∞

0

tp/2 h(t) exp(−s t)dt

is analytic in the open interval (0,∞) so that the, for any n ≥ 1, the integral

∫ ∞

0

tp/2+n h(t) exp(−s t)dt

converges and we have

lim
t→0

tp/2+n h(t) = 0 (5.14)

and, for any u ≥ 0,

lim
t→∞

tp/2+n h(t) exp(−u t) = 0 . (5.15)

Also the prior in (5.12) is guaranteed to belong to the space C2
b (R

p \Br). How-
ever, as it is not a Laplace transform of a multivariate function, it remains to
deal with the membership of this prior in the Sobolev space W 2,1

loc (R
p).
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Note that formal derivatives of π(‖θ‖2) can be taken under the integral sign,
so that the membership of the prior in (5.12) in the Sobolev space W 2,1

loc (R
p) re-

duces to verifying the local integrability of the formal derivatives. Using straight-
forward calculations, we have successively, for i = 1, . . . , p,

∣

∣∂i(π(‖θ‖2))
∣

∣ ≤ 2 ‖θ‖
∫ ∞

0

tp/2+1 exp
(

−t‖θ‖2
)

h(t) dt ,

∣

∣∂ii(π(‖θ‖2))
∣

∣ ≤ 2

∫ ∞

0

tp/2+1 exp
(

−t‖θ‖2
)

h(t) dt

+ 4‖θ‖2
∫ ∞

0

tp/2+2 exp
(

−t‖θ‖2
)

h(t) dt

and, for j = 1, . . . , p and j 6= i,

∣

∣∂ji(π(‖θ‖2))
∣

∣ ≤ ‖θ‖2
∫ ∞

0

tp/2+2 exp
(

−t‖θ‖2
)

h(t) dt ,

where ∂i(.) and ∂ji(.) denote the partial derivative operators of the first and
second order respectively.

Clearly, to obtain the desired local integrability of π(‖θ‖2) and its partial
derivatives, it suffices to establish the local integrability of functions of the form

ψa,b(‖θ‖2) = ‖θ‖b
∫ ∞

0

tp/2+a exp
(

−t‖θ‖2
)

h(t) dt (5.16)

for a, b = 0, 1, 2. This is related to the behavior of h at ∞ and can be obtained
through an Abelian theorem which relates the behavior of a function at ∞ to
the behavior of its Laplace transform at 0. As can be seen, for instance, in
Corollary 1.a page 182 of Widder [11]), if α is a function of bounded variation
and normalized in any interval [0, b] of R (that is, such that, for any x, α(x) =
(α(x−) + α(x+))/2 and such that α(0) = 0) and if, for some γ ≥ 0, there exists
a constant A such that

α(t) ∼ Atγ

Γ(γ + 1)
t→ ∞ , (5.17)

then
∫ ∞

0

e−st dα(t) ∼ A

sγ
s→ 0+ ,

and hence
∫ ∞

0

e−st α(t) dt ∼ A

sγ+1
s→ 0+ , (5.18)

through an integration by parts. In the case where A = 0, Condition (5.17) and
Condition (5.18) should be understood as α(t) = o(tγ) and L(α)(s) = o

(

s−γ−1
)

respectively. With this result, we will prove the following lemma.
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Proposition 5.1. Let ψa,b(‖θ‖2) be a function as in (5.16). If there exist a
constant A and γ ≥ 0 such that

lim
t→∞

tp/2+a−γ h(t) =
A

Γ(γ + 1)
, (5.19)

then ψa,b(‖θ‖2) is locally integrable as soon as γ < (p+ b)/2− 1.

Proof. According to (5.16) the function ψa,b(‖θ‖2) can be expressed through
the Laplace transform L(tp/2+a h(u))(‖θ‖2) and what we have to show is that,
for any ball BR centered at 0 and of radius R,

∫

BR

ψa,b(‖θ‖2) dθ <∞

or, equivalently, for any c > 0,
∫ c

0

L
(

tp/2+a h(t)
)

(s) s(p+b)/2−1 ds < ∞. (5.20)

Now, according to Condition (5.19), Condition (5.17) is satisfied with α(t) =
tp/2+a h(t), and hence, according to (5.18), we have

L
(

tp/2+a h(t)
)

(s) ∼ A

sγ+1
, s→ 0+ ,

so that

L
(

tp/2+a h(t)
)

(s) s(p+b)/2−1 ∼ As(p+b)/2−γ−2 , s→ 0+ , (5.21)

Clearly, Condition (5.21) allows Condition (5.20) to be satisfied if and only if
(p+ b)/2− γ − 2 > −1, that is, if and only if γ < (p+ b)/2− 1.

We are now in a position to give condtions on the prior density in (5.12) to
belong to W 2,1

loc (R
p) ∩C2

b (R
p \Br).

Corollary 5.1. If there exist a constant A and γ ≥ 0 such that

lim
t→∞

tp/2+2−γ h(t) =
A

Γ(γ + 1)
, (5.22)

then the prior density in (5.12) belongs to W 2,1
loc (R

p) ∩ C2
b (R

p \Br) as soon
as γ < p/2 (Condition (5.22) being understood as tp/2+2−γ h(t) = o(1) when
A = 0).

In order that the generalized Bayes estimator δπ(X), associated to the prior
in (5.12), dominate X (and hence to minimax), it remains to give conditions
on the mixing density h so that Condition (3.1) is satisfied. We will see below
that the main assumption on h is that the function t 7−→ t h′(t)/h(t) is non
increasing. This condition has been noticed by [8] and [3] as being equivalent to
the property of nondecreasing monotone likelihood ratio when h is considered as
a scale family. The following proposition gives conditions on the mixing density
h for minimaxity to follow via Theorem 3.1.
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Proposition 5.2. Assume that the function t 7−→ t h′(t)/h(t) is nonincreasing.
Then Condition (3.1) is satisfied as soon as, for all t ≥ 0,

t
h′(t)

h(t)
≤ −ϕ0 (5.23)

where

ϕ0 =
1

2

(p+ 2)F 2(0)/f2(0) + 8 c2

F 2(0)/f2(0) + 2 c2
. (5.24)

Proof. Through straightforward calculations, we have

∥

∥

∥

∥

∇π(‖θ‖2)
π(‖θ‖2)

∥

∥

∥

∥

2

= 4 ‖θ‖2
(

π′(‖θ‖2)
π(‖θ‖2)

)2

and
∆π(‖θ‖2)
π(‖θ‖2) = 2

{

p
π′(‖θ‖2)
π(‖θ‖2) + 2 ‖θ‖2 π

′′(‖θ‖2)
π(‖θ‖2)

}

which are functions of the ratios

π′(‖θ‖2)
π(‖θ‖2) and

π′′(‖θ‖2)
π(‖θ‖2) .

Since

π′(‖θ‖2) = −
∫ ∞

0

tp/2+1 h(t) exp(−t ‖θ‖2) dt ,

we have
π′(‖θ‖2)
π(‖θ‖2) = E‖θ‖2 [−T ]

where E‖θ‖2 denotes the expectation with respect to the distribution of T with
density

t 7→ tp/2 h(t) exp(−‖θ‖2 t)
∫∞
0 up/2 h(u) exp(−‖θ‖2 u) du . (5.25)

On the other hand, by integration by parts, we can also express

π′(‖θ‖2) = −1

‖θ‖2
∫ ∞

0

[

p

2
+ 1 + t

h′(t)

h(t)

]

tp/2 h(t) exp(−t ‖θ‖2) dt

according to (5.14) and (5.15), so that

π′(‖θ‖2)
π(‖θ‖2) =

−1

‖θ‖2E‖θ‖2

[

p

2
+ 1 + T

h′(T )

h(T )

]

.

Therefore

∥

∥

∥

∥

∇π(‖θ‖2)
π(‖θ‖2)

∥

∥

∥

∥

2

= 2E‖θ‖2 [T ]E‖θ‖2

[

p+ 2 + 2T
h′(T )

h(T )

]

.
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Similarly, as

π′′(‖θ‖2) =
∫ ∞

0

tp/2+2 h(t) exp(−t ‖θ‖2) dt ,

an integration by parts leads to

π′′(‖θ‖2) = 1

‖θ‖2
∫ ∞

0

[

(p

2
+ 2

)

t+ t2
h′(t)

h(t)

]

tp/2 h(t) exp(−t ‖θ‖2) dt

so that

∆π(‖θ‖2)
π(‖θ‖2) = 2E‖θ‖2

[

−p T + (p+ 4)T + 2T 2 h
′(T )

h(T )

]

= 4E‖θ‖2

[

2T + T 2 h
′(T )

h(T )

]

. (5.26)

Thus Inequality (3.1) may be expressed as

F 2(0)

f2(0)
E‖θ‖2 [T ]E‖θ‖2

[

p+ 2 + 2T
h′(T )

h(T )

]

+ 4 c2E‖θ‖2

[

2T + T 2 h
′(T )

h(T )

]

≤ 0 .

(5.27)

Since, by assumption, t 7→ t h′(t)/h(t) is nonincreasing, by the covariance in-
equality, we have

E‖θ‖2

[

2T + T 2 h
′(T )

h(T )

]

≤ E‖θ‖2 [T ]E‖θ‖2

[

2 + T
h′(T )

h(T )

]

.

Hence (5.27) is satisfied as soon as, for all t,

F 2(0)

f2(0)

[

p+ 2 + 2 t
h′(t)

h(t)

]

+ 4 c2
[

2 + t
h′(t)

h(t)

]

≤ 0,

which can be seen to be equivalent to (5.23).

It is worth noting that, the upper bound of u h′(u) /h(u) given by Condition
(5.23) satisfies ϕ0 < −2 for p ≥ 3. Note that Fourdrinier and Strawderman
[7], to obtain the superharmonicity of priors π(‖θ‖2) in (5.12), required that
t h′(t) /t < −2, which is, of course satisfied here. However, they do not impose
a monotone likelihood ratio property on the mixing density h, which we require
in this paper.

Example of mixing densities
1- A simple example of mixing density h is given by

h(t) ∝ tk−p/2−1 exp (−b t)

where b ≥ 0 and k > 0. This mixing density gives rise to the prior
(

‖θ‖2 + b
)−k

considered in Example 1. We can retrieve the Sobolev membership of that prior
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applying Corollary 5.1. Indeed, when b = 0, with γ = k + 1, we see that the
prior belongs to the Sobolev space W 2,1

loc (R
p) as soon as k < p/2 − 1, that is,

p > 2 (k + 1). The case where b > 0 is obvious.
Now it is easy to see that h satisfies the monotonicity condition (5.23) required

in Proposition 5.2 since,

t
h′(t)

h(t)
= −b t+ k − p/2− 1

which nonincreasing in t. Thus, a sufficient condition to satisfy Inequality (5.23)
is

k − p

2
− 1 ≤ −ϕ0 .

which is, according to (5.24), equivalent to

0 < k ≤ (p− 2)
c2

F 2(0)/f2(0) + 2 c2
. (5.28)

Note that, as expected, the upper bound on k in (5.28) is smaller than the one
in (5.11) ((5.23) is a sufficient condition for (3.1)).

2- A constructive approach to obtain functions h satisfying (5.23).
Let ϕ be a nondecreasing and nonnegative function ϕ(t) such that a primitive

of the function t 7→ ϕ(t)/t exists. To any such function ϕ, associate a mixing
density

h(t) = exp

(

−
∫ t

t0

ϕ(u)

u
du

)

where t0 is some nonnegative number. It is clear that

t
h′(t)

h(t)
= −ϕ(t)

so that it suffices to choose ϕ such that ϕ(t) ≥ ϕ0 in order (5.23) to be satisfied.
Now, noticing that, h(t) is bounded from above by a positive multiple of

exp

(
∫ t

t0

−ϕ0

u
du

)

∝ t−ϕ0

so that, for γ < p/2, up to a positive multiplicative constant, h(t) tp/2+2−γ is
bounded from above by

t−ϕ0+p/2+2−γ ,

the needed Sobolev membership can be obtained using Corollary 5.1.
Note that the previous example corresponds to the choice of ϕ(t) = b t −

k + p/2 + 1 and to ϕ0 = −k + p/2 + 1. As another application, the choice of
ϕ(t) = a t2+b t+c with a, b and c being positive constants such that b2−4 a c < 0
leads to the mixing function h(t) ∝ exp(−a t2/2) exp(−b t) t−c.
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6. Illustrating Theorem 4.1

Here the improvement on the result of Fourdrinier and Strawderman [7] results
from weaker assumptions on the sampling density.

6.1. Sampling densities

In [7], examples of sampling densities are given which satisfy stronger conditions
than the assumptions of Theorem 4.1 (that is, F (t)/f(t) ≥ c > 0 and the nonde-
creasing monotonicity of F (t)/f(t)). In particular, they require nondecreasing
monotonicity of f ′(t)/f(t) (which implies the nondecreasing monotonicity of
F (t)/f(t)) in addition to the inequality

∫ ∞

0

f(t) tp/2 dt ≤ 4 c

∫ ∞

0

−f ′(t) tp/2 dt <∞ . (6.1)

Here, we adapt these examples in order that Condition (6.1) is not necessarily
satisfied, but nevertheless d as defined in (4.1) is finite.

Example 1. Consider the generating function

f(t) =
1

(2 π)p/2

∫ ∞

0

v−p/2 exp

(

− t

2v

)

g(v) dv (6.2)

corresponding to a variance mixture of normals, where g(v) is the mixing density
of a random variable V . In [7], it is proved that, provided that E[V −p/2] < ∞,
Condition (6.1) is equivalent to

E[V ]E[V −p/2]

E[V −p/2+1]
≤ 2 . (6.3)

Therefore relaxing Condition (6.3) on the mixing function g extends the scope
of sampling densities which gives rise to minimaxity of generalized Bayes esti-
mators in (2.1).

In [7], it is shown that, when the distribution of V is an inverse gamma
IG(α, β), with α > 0 and β > 0 (i.e. g(v) = βα/Γ(α) v−α−1 exp(−β/v)) Condi-
tion (6.1) reduces to p/2+1 ≤ α (with no role for β), so that the values of α for
which p/2 + 1 > α provide additional new examples of sampling densities. In
particular, if the distribution of X is a multivariate t with m degrees of freedom,
corresponding to α = β = m/2, relaxing Condition (6.3) gives rise to m < p+2
allowing the inclusion of more Student distributions. More precisely, it is shown
in Proposition A.1, that the constant d in (4.1) is finite and equals

d2 =
β2

(α− 1)(α− 2)

p/2 + α− 2

p/2 + α− 1
,

provided that α > 2, so that, in the Student case, we have

d2 =
m2

(m− 2)(m− 4)

p+m− 4

p+m− 2
,
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for m ≥ 5. Note that, when m goes to infinity, d goes to one, which corresponds
to the normal case.

Example 2. Consider the the generating function

f(t) = K exp
(

−α tβ
)

where α > 0, 0 < β ≤ 1 and K is the normalizing constant. In [7], it is shown
that, Condition (6.1) is satisfied for β in a neighborhood of the form (1 − ǫ, 1]
with ǫ > 0 and is not satisfied for β = 1/2.

For the constant d, we have

d2 ∝
∫ ∞

0

F 2(r2)

f(r2)
rp−1 dr

∝
∫ ∞

0

(∫∞
r2

exp(−α tβ) dt
)2

exp(−α r2β) rp−1 dr,

and, through the change of variable v = αtβ ,

d2 ∝
∫ ∞

0

(
∫∞
α r2β

v1/β−1 exp(−v) dv)2
exp(−α r2β) rp−1 dr.

Also, by the change of variable v = s+ α r2β , we obtain

d2 ∝
∫ ∞

0

exp(−α r2 β)

(
∫ ∞

0

(s+ α r2 β)1/β−1 e−s ds

)2

rp−1 dr ,

from the above expression. It is clear that these integrals are finite and hence d
is finite.

Example 3. Consider the generating function

f(t) = K exp (−α t+ β ϕ(t))

where α > 0, β > 0, ϕ(0) <∞, ϕ(t) ≥ 0, ϕ′(t) ≤ 0, ϕ′′(t) ≥ 0,
∫ ∞

0

exp(−α t) tp/2 |ϕ′(t)| dt <∞

and K is the normalizing constant.
In [7], it is shown that, Condition (6.1) reduces to
∫ ∞

0

f(t) tp/2 dt ≤ 4 c α

∫ ∞

0

f(t) tp/2 dt+ 4 c β

∫ ∞

0

−ϕ′(t) f(t) tp/2 dt . (6.4)

It is clear that, for small values of α and β, Inequality (6.4) cannot be satisfied.
However, we show below that the constant d is finite. We have

d2 ∝
∫ ∞

0

(∫∞
r2 exp(−αu+ β ϕ(u)) du

)2

exp(−αr2 + βϕ(r2))
rp−1 dr

≤
∫ ∞

0

∫∞
r2 exp(−2αu+ 2βϕ(u)) du

exp(−α r2 + β ϕ(r2))
rp−1 dr.
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Since, ϕ(·) is a nonincreasing positive function, ϕ(u) ≤ ϕ(0), and hence

d21 =

∫ ∞

0

∫∞
r2

exp(−2αu+ 2β ϕ(u)) du

exp(−αr2 + β ϕ(r2))
rp−1 dr

≤ exp(2βϕ(0))

∫ ∞

0

∫∞
r2

exp(−2αu) du

exp(−α r2 + β ϕ(r2))
rp−1 dr

=
1

2α
exp(2 β ϕ(0))

∫ ∞

0

exp(−β ϕ(r2)) exp(−α r2) rp−1 dr .

Also, by monotonicity of ϕ(·), we have ϕ(u) ≥ limu→+∞ ϕ(u) = µ, and so

d21 ≤ 1

2α
exp(2 β ϕ(0)− β µ)

∫ ∞

0

exp(−α r2) rp−1 dr .

By evaluating the above integral we obtain

d21 ≤ Γ(p/2)

4αp/2+1
exp(2 β (ϕ(0)− µ)),

which is finite, and hence d2 is finite.

6.2. Prior densities

Example 1 - Generalized t densities

We have seen, in Remark 4.1, that the prior π(‖θ‖2) =
(

‖θ‖2 + b
)−k

consid-
ered in (5.10) satisfies the conditions of Theorem 4.1 with g(‖θ‖2) = (‖θ‖2 +
b)−k−1, which is superharmonic for p − 2 (k + 2) ≥ 0. We also noticed that
Corollary 4.1 can be applied with g(‖θ‖2) = −2 c2/d2 ∆π(‖θ‖2), provided the bi-
Laplacian ∆(2)π(‖θ‖2) is nonnegative. To see this, note that, through straight-
forward calculations, we have

∆

(

1

(‖θ‖2 + b)k

)

=
−2 k

(‖θ‖2 + b)k+1

[

p− 2 (k + 1) +
2 (k + 1) b

‖θ‖2 + b

]

which is nonpositive for any θ when p− 2 (k + 1) ≥ 0. Hence

∆(2)

(

1

(‖θ‖2 + b)k

)

= −2 k

[

(p− 2 (k + 1))∆

(

1

(‖θ‖2 + b)k+1

)

+2 (k + 1) b∆

(

1

(‖θ‖2 + b)k+2

)]

and is nonnegative for any θ when p−2 (k+3) ≥ 0. Recall that condition (4.2) of
Theorem 4.1 and condition (4.5) of Corollary 4.1 give rise to the same stronger
restriction on the values of k, that is, k ≤ (p− 2)/(d2/(c2 + 2)).
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Example 2 - General mixtures of normals
Condition (4.5) will be satisfied modifying Proposition 5.2 in an obvious way.

Proposition 6.1. Assume that the function t 7−→ t h′(t)/h(t) is nonincreasing.
Then Condition (4.5) is satisfied as soon as, for any t ≥ 0,

t
h′(t)

h(t)
≤ −ϕ1 (6.5)

where

ϕ1 =
1

2

(p+ 2) d2 + 8 c2

d2 + 2 c2
. (6.6)

Then the constructive approach in Subsection 5.2 can be pursued choos-
ing a nondecreasing function ϕ such that ϕ(t) ≥ ϕ1 for any t ≥ 0 and such
that a primitive of t 7→ ϕ(t)/t exists. Indeed, it follows from the expression of
∆π(‖θ‖2)/π(‖θ‖2) in (5.26) that

∆π(‖θ‖2) =
∫ ∞

0

g(t) tp/2 exp
(

−‖θ‖2 t
)

dt

with
g(t) = 4 t (2 h(t) + t h′(t)) .

Therefore the bi-Laplacian can be expressed as

∆(2)π(‖θ‖2) =
∫ ∞

0

4 t (2 g(t) + t g′(t)) tp/2 exp
(

−‖θ‖2 t
)

dt ,

so that a sufficient condition for ∆(2)π(‖θ‖2) to be nonnegative is that, for all
t ≥ 0, 2 g(t) + t g′(t) ≥ 0. Now, noticing that g(t) = 4 t h(t)(2− ϕ(t)), it can be
checked that

2 g(t) + t g′(t) = 4 t h(t) [(ϕ(t)− 2) (ϕ(t) − 3) − t ϕ′(t)] .

Hence the required sufficient condition reduces to

(ϕ(t) − 2) (ϕ(t)− 3) − t ϕ′(t) ≥ 0 . (6.7)

Inequality (6.7) can be verified directly for the functions ϕ(t) = b t−k+p/2+1
and ϕ(t) = a t2 + b t + c considered at the end of Subsection 5.2, provided
−k + p/2− 2 ≥ 0, a > 0, b > 0, c ≥ 7/2 and b2 − 4 a c < 0.

7. Concluding remarks

In this paper, we have studied minimaxity of generalized Bayes estimators cor-
responding to a subclass of superharmonic priors π

(

‖θ‖2
)

when the sampling
density is spherically symmetric and is in Berger’s class, i.e. X ∼ f(‖x − θ‖2)
and F (‖x− θ‖2)/f(‖x− θ‖2) ≥ c > 0 where F (‖x− θ‖2) = 1/2

∫∞
‖x−θ‖2 f(t) dt.
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This article is closely related to Fourdrinier and Strawderman [7] in that they
too studied minimaxity in the same context. However, this paper differs from [7]
in several ways. First, while [7] considered only the case F (t)/f(t) nondecreas-
ing, we consider both the nondecreasing and the nonincreasing cases. Second,
the method of proof in this paper is quite different from that of [7]. Here, we
give conditions for minimaxity that depend jointly on the sampling density and
the prior density (and its derivatives) and are expressed through differential
inequalities for the prior distributions with coefficients that depend on f(·). In
[7], the conditions on the density and the prior were given separately and the
key differential inequality was in terms of f(·), not π(·). A third difference is
that the class of sampling densities, even when F (t)/f(t) is nondecreasing, is
considerably enlarged in the present paper. Section 6 indicates the degree to
which this paper extends the class covered by [7].

A main disadvantage of the results of this paper relative to [7] is that, when
the prior density is of the form π

(

‖θ‖2
)

= (‖θ‖2+ b)−k, [7] gives minimaxity for
k in the range [0, (p− 2)/2] and hence includes the fundamental harmonic prior
‖θ‖2−p. In this paper, the range of k is always contained in a proper subinterval
of [0, (p− 2)/3].

Appendix A: Miscellaneous results

In the following lemma, we prove that the finiteness of the risk of the generalized
Bayes estimator δπ(X) in (2.1) follows from that of X .

Lemma A.1. A sufficient condition for the risk of the Bayes estimator δπ(X)

in (2.1) to be finite is that E0[‖X‖2] <∞.

Proof. Recall that the risk of δπ(X) is finite if

Eθ

[

∥

∥

∥

∥

∇M(X)

m(X)

∥

∥

∥

∥

2
]

= Eθ

[

∥

∥

∥

∥

∫

Rp(θ −X) f(‖x− θ‖2)π(‖θ‖2) dθ
∫

Rp f(‖x− θ‖2)π(‖θ‖2) dθ

∥

∥

∥

∥

2
]

< ∞ .

Thus it suffices to prove that

Eθ

[

∫

Rp ‖θ −X‖2 f(‖x− θ‖2)π(‖θ‖2) dθ
∫

Rp f(‖x− θ‖2)π(‖θ‖2) dθ

]

<∞ . (A.1)

Now write
∫

Rp

π(‖θ‖2) f(‖x− θ‖2) dθ =
∫ ∞

0

∫

SR,x

π(‖θ‖2) dUR,x(θ)σ(S)R
p−1f(R2) dR,

(A.2)

where UR,x is the uniform distribution on the sphere SR,x of radius R and
centered at x and σ(S) is the area of the unit sphere. Through the change of
variable R =

√
v, the right hand side of (A.2) can be written as

∫ ∞

0

Sπ(
√
v, x) vp/2−1 f(v) dv,
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where

Sπ(
√
v, x) =

σ(S)

2

∫

S√

v,x

π(‖θ‖2) dU√
v,x(θ)

is nonincreasing in v by the superharmonicity of π(‖θ‖2).
Now we can express the quantity in brackets in (A.1) as

∫∞
o

Sπ(
√
v, x) f(v)vp/2 dv

∫∞
o

Sπ(
√
v, x) f(v)vp/2−1 dv

= E1[v]

≤ E2[v], (A.3)

where E1 is the expectation with respect to the density f1(v) proportional to

Sπ(
√
v, x) f(v)vp/2−1,

and E2 is the expectation with respect to the density f2(v) proportional to

f(v)vp/2−1.

Indeed the ratio f2(v)/f1(v) is nondecreasing by the monotonicity of Sπ(
√
v, x).

In (A.3), E2[v] is

E2[v] =

∫∞
o
f(v) vp/2 dv

∫∞
o f(v) vp/2−1 dv

,

which is finite as soon as
∫ ∞

o

f(v)vp/2dv <∞

that is,
E0[‖X‖2] <∞ .

The next lemma was used in the proofs of Theorems 3.1 and 4.1 to show
∇M · ∇m ≥ 0. A proof can be found in Fourdrinier and Righi [5].

Lemma A.2. Let x ∈ R
p fixed and let Θ a random vector in R

p with unimodal
spherically symmetric density f(‖θ − x‖2). Denote by Ex the expectation with
respect to that density and let g be a function from R+ into R.

Then there exists a function Γ from R
p into R such that

Ex

[

g
(

‖Θ‖2
)

Θ
]

= Γ(x) · x , (A.4)

provided this expectation exists. Moreover, if the function f is nonincreasing and
if the function g is nonnegative, then the function Γ is nonnegative.

In the following proposition, we provide an expression for the constant d in
(4.1) for Example 1 in Section 6.
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Proposition A.1. Let

f(t) =
1

(2 π)p/2

∫ ∞

0

v−p/2 exp

(

− t

2v

)

g(v) dv

be a generating function as in (6.2). If the mixing density g is the inverse gamma
density, g(v) = βα/Γ(α) v−α−1 exp(−β/v) with α > 0 and β > 0, then the
constant d in (4.1) is finite and equals

d2 =
β2

(α− 1)(α− 2)

p/2 + α− 2

p/2 + α− 1
, (A.5)

provided that α > 2.

Proof. First, note that, through Fubini’s theorem, for any t ≥ 0, we have, ac-
cording to (1.4) and (6.2),

F (t) =
1

(2 π)p/2

∫ ∞

0

v−p/2+1 exp

(

− t

2v

)

g(v) dv

so that, with g being the above inverse gamma density, we have

F (t)

f(t)
=

∫∞
0 v−p/2−α exp

(

− t/2+β
v

)

dv

∫∞
0
v−p/2−α−1 exp

(

− t/2+β
v

)

dv

=
t/2 + β

p/2 + α− 1
,

since

f(t) =
1

(2 π)p/2
βα

Γ(α)

∫ ∞

0

v−p/2−α−1 exp

(

− t/2 + β

v

)

dv

=
1

(2 π)p/2
βα

Γ(α)

Γ(p/2 + α)

(t/2 + β)p/2+α

and, according to (1.4) and through Fubini theorem, it is easily seen that

F (t) =
1

(2 π)p/2
βα

Γ(α)

∫ ∞

0

v−p/2−α exp

(

− t/2 + β

v

)

dv

=
1

(2 π)p/2
βα

Γ(α)

Γ(p/2 + α− 1)

(t/2 + β)p/2+α−1
.

Hence, according to (4.1) and through the change of variable t = r2, we have

d2 =
πp/2

Γ(p/2)

1

(p/2 + α− 1)2

∫ ∞

0

(t/2 + β)2 tp/2−1 f(t) dt

=
1

2p/2
1

Γ(p/2)

1

(p/2 + α− 1)2
βα

Γ(α)
Γ(p/2 + α)

∫ ∞

0

tp/2−1 (t/2 + β)−p/2−α+2 dt ,
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according to the above expression of f(t). Now, to evaluate the last integral,
making the change of variable (t/2)/(t/2+β) = u (which leads to t = 2 β u/(1−
u), t/2 + β = β/(1− u) and dt = 2 β/(1− u)2 du), we have

∫ ∞

0

tp/2−1 (t/2 + β)−p/2−α+2 dt

=

∫ 1

0

2p/2−1 βp/2−1

(

u

1− u

)p/2−1 (
1− u

β

)p/2+α−2
2 β

(1− u)2
du

= 2p/2 β2−α

∫ 1

0

up/2−1 (1− u)α−3 du

= 2p/2 β2−α Γ(p/2) Γ(α− 2)

Γ(p/2 + α− 2)
,

as soon as α > 2. Therefore d2 equals

d2 =
β2

(p/2 + α− 1)2
Γ(α− 2)

Γ(α)

Γ(p/2 + α)

Γ(p/2 + α− 2)

=
β2

(α− 2) (α− 1)

p/2 + α− 2

p/2 + α− 1
.
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