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Abstract: We consider a situation where the state of a system is repre-
sented by a real-valued vector x ∈ R

n. Under normal circumstances, the
vector x is zero, while an event manifests as non-zero entries in x, pos-
sibly few. Our interest is in designing algorithms that can reliably detect
events — i.e., test whether x = 0 or x 6= 0 — with the least amount of
information. We place ourselves in a situation, now common in the signal
processing literature, where information on x comes in the form of noisy
linear measurements y = 〈a,x〉+ z, where a ∈ R

n has norm bounded by 1
and z ∈ N (0, 1). We derive information bounds in an active learning setup
and exhibit some simple near-optimal algorithms. In particular, our results
show that the task of detection within this setting is at once much easier,
simpler and different than the tasks of estimation and support recovery.
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1. Introduction

We consider a situation where the state of a system is represented by a real-
valued vector x ∈ R

n. Under normal circumstances, the vector x is zero, while
an event manifests as non-zero entries in x, possibly few. Our interest is in the
design of algorithms that reliably detect events — i.e., test whether x = 0 or
x 6= 0 — with the least amount of information. We assume that we may learn
about x via noisy linear measurements of the form

yi = 〈ai,x〉+ zi, (1)

where the measurement vectors ai’s have Euclidean norm bounded by 1 and
the noise zi’s are i.i.d. standard normal. Assuming that we may take a limited
number of linear measurements, the engineering is in choosing them in order
to minimize the false alarm and missed detection rates. We derive informa-
tion bounds, establishing some fundamental detection limits relating the signal
strength and the number of linear measurements. The bounds we obtain ap-
ply to all adaptive schemes, where we may choose the ith measurement vector
ai based on the past measurements, i.e., we may choose ai as a function of
(a1, y1, . . . , ai−1, yi−1).
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1.1. Related work

Learning as much as possible about a vector based on a few linear measure-
ments is one of the central themes of compressive sensing (CS) [4, 5, 8]. Most
of this literature, as it relates to signal processing, has focused on the tasks of
estimation and support recovery. Particularly in surveillance situations, how-
ever, it makes sense to perform detection before estimation because, as we shall
confirm, reliable detection is possible at much lower signal-to-noise ratios or,
equivalently, with much fewer linear measurements than estimation. This can
be achieved with much greater implementation ease and much lower computa-
tional cost than standard CS methods based on convex programming.

The literature on the detection of a high-dimensional signal is centered around
the classical normal mean model, based on observations yi = xi + zi, where
the zi’s are i.i.d. standard normal. In this model, only one noisy observation
is available per coordinate, so that some assumptions are necessary and the
most common one, by far, is that the vector x = (x1, . . . , xn) is sparse. This
setting has attracted a fair amount attention [7, 15, 16], with recent publications
allowing adaptive measurements [12]. More recently, a few papers [2, 10, 14]
extended these results to testing for a sparse coefficient vector in a linear system
with the aim of characterizing the detection feasibility. These papers work with
designs having low mutual coherence, for example, assuming that the ai’s are
i.i.d. multivariate normal. As we shall see below, such designs are not always
desirable. We also mention [13], which assumes that an estimator x̂ of x is
available and examines the performance of the test based on 〈x̂,x〉; and [17],
which proposes a Bayesian approach for the detection of sparse signals in a
sensor network for which the design matrix is assumed to have some polynomial
decay in terms of the distance between sensors.

We mention that the present paper may be seen as a companion paper to [1]
which considers the tasks of estimation and support recovery in the same setting.

1.2. Notation and terminology

Our detection problem translates into a hypothesis testing problem H0 : x = 0
versus H1 : x ∈ X , for some subset X ⊂ R

n \ {0}. A test procedure based
on m measurements of the form (1) is a binary function of the data, i.e., T =
T (a1, y1, . . . , am, ym), with T = ε ∈ {0, 1} indicating that T favors Hε. The
(worst-case) risk of a test T is defined as

γ(T ) := P0(T = 1) + max
x∈X

Px(T = 0),

where Px denotes the distribution of the data when x is the true underlying
vector. With a prior π on the set of alternatives X , the corresponding average
(Bayes) risk is defined as

γπ(T ) := P0(T = 1) + Eπ Px(T = 0),
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where Eπ denotes the expectation under π. Note that for any prior π and any
test procedure T ,

γ(T ) ≥ γπ(T ). (2)

For a vector a = (a1, . . . , ak),

‖a‖ =

(∑

j

a2j

)1/2

, |a| =
∑

j

|aj |,

and aT denote its transpose. For a matrix M,

‖M‖op = sup
a 6=0

‖Ma‖
‖a‖ .

Everywhere in the paper, x = (x1, . . . , xn) denotes the unknown vector, while
1 denotes the vector with all coordinates equal to 1 and dimension implicitly
given by the context.

1.3. Content

In Section 2 we focus on vectors x with non-negative coordinates. This situ-
ation leads to an exceedingly simple, yet near-optimal procedure based on a
measurement scheme that is completely at odds with what is commonly used
in CS. In Section 3 we treat the case of a general vector x and derive another
simple, near-optimal procedure. In both cases, the methods we suggest are non-
adaptive — in the sense that the measurement vectors are chosen independently
of the observations — yet perform nearly as well as any adaptive method. In
Section 4 we discuss our results and important extensions, particularly to the
case of structured signals.

2. Vectors with non-negative entries

Vectors with non-negative entries may be relevant in image processing, for exam-
ple, where the object to be detected is darker (or lighter) than the background.
As we shall see, detecting such a vector is essentially straightforward in every
respect. In particular, the use of low-coherence designs is counter-productive in
this situation.

The first thing that comes to mind, perhaps, is gathering strength across
coordinates by measuring x with the constant vector 1/

√
n. And, with a budget

of m measurements, we simply take this measurement m times.

Proposition 1. Suppose we take m measurements of the form (1) with ai =
1/

√
n for all i. Consider then the test that rejects when

m∑

i=1

yi > τ
√
m,
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where τ is some critical value. Its risk against a vector x is equal to

1− Φ(τ) + Φ(τ −
√
m/n|x|),

where Φ is the standard normal distribution function. Hence, if τ = τn → ∞,
this test has vanishing risk against alternatives satisfying

√
m/n|x| − τn → ∞.

Since we may chose τm → ∞ as slowly as we wish, in essence, the simple sum
test based on repeated measurements from the constant vector has vanishing
risk against alternatives satisfying

√
m/n|x| → ∞.

Proof. The result is a simple consequence of the fact that

1√
m

m∑

i=1

yi ∼ N (
√

m/n|x|, 1).

Although the choice of measurement vectors and the test itself are both
exceedingly simple, the resulting procedure comes close to achieving the best
possible performance in this particular setting, as the following information
bound reveals.

Theorem 1. Let X (µ, S) denote the set of vectors in R
n having exactly S non-

zero entries all equal to µ > 0. Based on m measurements of the form (1),
possibly adaptive, any test for H0 : x = 0 versus H1 : x ∈ X (µ, S) has risk at
least 1−

√
m/(8n)Sµ.

In particular, the risk against alternatives x ∈ X (µ, S) with
√
m/n|x| =√

m/nSµ → 0, goes to 1 uniformly over all procedures.

Proof. The standard approach to deriving uniform lower bounds on the risk is to
put a prior on the set of alternatives and use (2). We simply choose the uniform
prior on X (µ, S), which we denote by π. The hypothesis testing problem reduces
to H0 : x = 0 versus H1 : x ∼ π, for which the likelihood ratio test is optimal
by the Neyman-Pearson fundamental lemma. The likelihood ratio is defined

L :=
Pπ(a1, y1, . . . , am, ym)

P0(a1, y1, . . . , am, ym)
= Eπ exp

(
m∑

i=1

yi(a
T
i x)− (aTi x)

2/2

)
,

where Eπ denotes the expectation with respect to π, and the related test is
T = {L > 1}. It has risk equal to

γπ(T ) = 1− 1

2
‖Pπ − P0‖TV, (3)

where Pπ := Eπ Px (the π-mixture of Px) and ‖ · ‖TV is the total variation
distance [18, Th. 2.2]. By Pinsker’s inequality [18, Lem. 2.5]

‖Pπ − P0‖TV ≤
√
K(P0,Pπ)/2, (4)
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whereK(P0,Pπ) denotes the Kullback-Leibler divergence [18, Def. 2.5]. We have

K(P0,Pπ) = −E0 logL (5)

≤ −Eπ

m∑

i=1

E0

(
yi(a

T
i x)− (aTi x)

2/2
)

(6)

= Eπ

m∑

i=1

E0(a
T
i x)

2/2 (7)

=

m∑

i=1

E0

(
aTi Cai

)
(8)

≤ m‖C‖op, (9)

where C = (cjk) := Eπ(xx
T ). The first line is by definition; the second is by

definition of Px /P0, by the application of Jensen’s inequality justified by the
convexity of x → − logx, and by Fubini’s theorem; the third is by independence
of ai, yi and x (under P0), and by the fact that E(yi) = 0; the fourth is by
independence of ai and x (under P0) and by Fubini’s theorem; the fifth is because
‖ai‖ ≤ 1 for all i.

Since under π the support of x is chosen uniformly at random among subsets
of size S, we have

cjj = µ2
Pπ(xj 6= 0) = µ2 · S

n
, ∀j,

and

cjk = µ2
Pπ(xj 6= 0, xk 6= 0) = µ2 · S

n
· S − 1

n− 1
, j 6= k.

This simple matrix has operator norm ‖C‖op = µ2S2/n.
Coming back to the divergence, we therefore have

K(P0,Pπ) ≤ m · µ2S2/n,

and returning to (3) via (4), we bound the risk of the likelihood ratio test as
follows

γ(T ) ≥ 1−
√
K(P0,Pπ)/8 ≥ 1−

√
m/(8n)Sµ.

With Proposition 1 and Theorem 1, we conclude that the following is true in
a minimax sense:

Reliable detection of a nonnegative vector x ∈ R
n from m noisy linear measure-

ments is possible if
√

m/n|x| → ∞ and impossible if
√

m/n|x| → 0.

3. General vectors

When dealing with arbitrary vectors, the measurement vector 1/
√
n may not be

appropriate. In fact, the resulting procedure is completely insensitive to vectors
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x such that 〈1,x〉 = 0. Nevertheless, if one selects a measurement vector a from
the Bernoulli ensemble — i.e., with independent entries taking values ±1/

√
n

with equal probability — then on average, 〈a,x〉 is of the order of ‖x‖/√n. This
is true when the number of non-zero entries in x grows with the dimension n;
if we repeat the process a few times, it becomes true for any fixed vector x.

Proposition 2. Sample b1, . . . ,bh independently from the Bernoulli ensemble,
with h → ∞ slowly, and take m measurements of the form (1) with ai = bs for
i ∈ Is := [(m/h)(s − 1) + 1, (m/h)s), s = 1, . . . , h. Consider then the test that
rejects when

h∑

s=1

(
∑

i∈Is

yi

)2

> 2m. (10)

Its risk against a vector x satisfying (m/n)‖x‖2 ≥ 2h — averaged over the
Bernoulli ensemble — is bounded from above by 42/h. In particular, if h =
hm → ∞, this test has vanishing risk against such alternatives.

Since we may take hm increasing as slowly as we please, in essence, the test is
reliable when (m/n)‖x‖2 → ∞. Compared with repeatedly measuring with the
constant vector 1/

√
n as studied in Proposition 1, there is a substantial loss in

power when |x|2 is much larger than ‖x‖2. For example, when x has S non-zero
entries all equal to µ > 0, |x|2 = S‖x‖2.
Proof. For simplicity, assume that m/h is an integer and fix x throughout. For
short, let

Ys =
∑

i∈Is

yi = (m/h)〈bs,x〉+
√
m/hZs, Zs :=

√
h/m

∑

i∈Is

zi.

Note that the Zs’s are i.i.d.∼ N (0, 1), while the 〈bs,x〉’s are i.i.d. with mean
zero, variance ‖x‖2/n and fourth moment bounded by 6‖x‖4/n2 — which is
immediate using the fact that the coordinates of bs are i.i.d. taking values
±1/

√
n with equal probability. Proceeding in an elementary way, we have

E

(
h∑

s=1

Y 2
s

)
= (m2/h)E

(
〈b1,x〉2

)
+mE

(
Z2
1

)

= (m2/h)‖x‖2/n+m,

and

Var

(
h∑

s=1

Y 2
s

)

= (m4/h3) E
(
〈b1,x〉4

)
+ 6(m3/h2)E

(
〈b1,x〉2

)
E
(
Z2
1

)
+ (m2/h)E

(
Z4
1

)

≤ 6(m4/h3)‖x‖4/n2 + 6(m3/h2)‖x‖2/n+ 3(m2/h).

Therefore, by Chebyshev’s inequality, the probability of (10) under the null is
bounded from above by 3/h. Similarly, the probability of (10) not happening
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under an alternative x satisfying (m/n)‖x‖2 ≥ 2τ
√
h is bounded from above by

6(m4/h3)‖x‖4/n2 + 6(m3/h2)‖x‖2/n+ 3(m2/h)

((m2/h)‖x‖2/n−m)2

≤ 6(m2/h)‖x‖4/n2

(m‖x‖2/n)2/4 +
6(m3/h2)‖x‖2/n
h(m‖x‖2/n)/2 +

3h

h2

=
24

h
+

12

h
+

3

h
=

39

h
.

For this, we used the fact that

(m2/h)‖x‖2/n−m = (m/h)
(
(m‖x‖2/n)− h

)

≥ (m/h) max
(
(m‖x‖2/n)/2, h

)
.

Hence, this test has risk bounded above by 3/h+ 39/h = 42/h.

Again, this relatively simple procedure nearly achieves the best possible per-
formance.

Theorem 2. Let X±(µ, S) denote the set of vectors in R
n having exactly S

non-zero entries all equal to ±µ. Based on m measurements of the form (1),
possibly adaptive, any test for H0 : x = 0 versus H1 : x ∈ X±(µ, S) has risk at
least 1−

√
Sm/(8n)µ.

In particular, the risk against alternatives x ∈ X±(µ, S) with (m/n)‖x‖2 =
(m/n)Sµ2 → 0, goes to 1 uniformly over all procedures.

Proof. Again, we choose the uniform prior on X±(µ, S). The proof is then com-
pletely parallel to that of Theorem 1, now with C = µ2(S/n)I — since the signs
of the nonzero entries of x are i.i.d. Rademacher — so that ‖C‖op = µ2S/n.

With Proposition 2 and Theorem 2, we conclude that the following is true in
a minimax sense:

Reliable detection of a vector x ∈ R
n from m noisy linear measurements is

possible if
√

m/n‖x‖ → ∞ and impossible if
√

m/n‖x‖ → 0.

4. Discussion

In this short paper, we tried to convey some very basic principles about de-
tecting a high-dimensional vector with as few linear measurements as possible.
First, when the vector has non-negative entries, repeatedly sampling from the
constant vector 1/

√
n is near-optimal. Second, when the vector is general but

sparse, repeatedly sampling from a few measuring vectors drawn from a standard
random (e.g., Bernoulli) ensemble is also near-optimal. In both cases, choosing
the measuring vectors adaptively does not bring a substantial improvement.
And, moreover, sparsity does not help, in the sense that the detection rates
depend on |x| and ‖x‖, respectively.



554 E. Arias-Castro

4.1. A more general adaptive scheme

Suppose we may take as many linear measurements of the form (1) as we please
(possibly an infinite number), with the only constraint being on the total mea-
surement energy ∑

i

‖ai‖2 ≤ m. (11)

(Note that m is no longer constrained to be an integer.) This is essentially the
setting considered in [11, 12], and clearly, the setup we studied in the previous
sections satisfies this condition. So what can we achieve with this additional
flexibility?

In fact, the same results apply. The lower bounds in Theorem 1 and Theo-
rem 2 are proved in exactly the same way. (We effectively use (11) to go from (8)
to (9), and this is the only place where the constraints on the number and norm
of the measurement vectors are used.) Of course, Proposition 1 and Proposi-
tion 2 apply since the measurement schemes used there satisfy (11). However,
in this special case they could be simplified. For instance, in Proposition 1 we
could take one measurement with the constant vector

√
m/n1.

4.2. Detecting structured signals

The results we derived are tailored to the case where x has no known structure.
What if we know a priori that the signal x has some given structure? The most
emblematic case is when the support of x is an interval of length S. In the
classical setting where each coordinate of x is observed once, the scan statistic
(aka generalized likelihood ratio test) is the tool of choice [3]. How does the
story change in the setting where adaptive linear measurements in the form of
(1) can be taken?

Perhaps surprisingly, knowing that x has such a specific structure does not
help much. Indeed, Theorem 1 and Theorem 2 are proved in the same way. In the
case of non-negative vectors, we use the uniform prior on vectors with support an
interval of length S and nonzero entries all equal to µ, and the proof is identical,
except for the matrixC, which now has coefficients cjk = µ2 max(S−|j−k|, 0)/n
for all j, k. Because C is symmetric, we have

‖C‖op ≤ max
j

∑

k

|cjk| = µ2S2/n, (12)

which is exactly the same bound as before. In the general case, the arguments
are really identical, except that we use the uniform prior on vectors with support
an interval of length S and nonzero entries all equal to µ in absolute value. (Here
the matrix C is exactly the same.) Of course, Proposition 1 and Proposition 2
apply here too, so the conclusions are the same. Also, these conclusions hold in
the more general setup with measurements satisfying (11).

To appreciate how powerful the ability to take linear measurements in the
form of (1) with the constraint (11) really is, let us stay with the same task
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of detecting an interval of length S with a positive mean. On the one hand,
we have the simple test based on

∑
i yi studied in Proposition 1. On the other

hand, we have the scan statistic

max
t

t+S−1∑

i=t

yi,

with observations of the form

yi = xi + σzi, σ :=
√
n/m. (13)

While the former requires
√
m/n|x| → ∞ to be asymptotically powerful, the

scan statistic requires

lim inf
√
m/n|x| · (S log+(n/S))−1/2 ≥

√
2,

where log+(x) := max(log x, 1). With observations provided in the form of (13),
this is asymptotically optimal [3]. Note that (13) is a special case of (11). Hence,
the ability to take measurements of the form (1) allows to detect structured
signals that are potentially much weaker, without a priori knowledge of the
structure and with much simpler algorithms. Hardware that is able to take
linear measurements such as (1) is currently being developed [9].

4.3. A comparison with estimation and support recovery

The results we obtain for detection are in sharp contrast with the corresponding
results in estimation and support recovery. Though, by definition, detection is
always easier, in most other settings it is not that much easier. For example,
take the normal mean model described in the Introduction, assuming x is sparse
with S coefficients equal to µ > 0. In the regime where S = n1−β , β ∈ (1/2, 1),
detection is impossible when µ ≤ √

2r logn with r < ρ1(β), while support re-
covery is possible when µ ≥ √

2r logn with r > ρ2(β), for a fixed functions
ρ1, ρ2 : (1/2, 1) → (0,∞) [7, 15, 16]. So the difference is a constant factor in
the per-coordinate amplitude. In the setting we consider here, we are able to
detect at a much smaller signal-to-noise ratio than what is required for estima-
tion or support recovery, which nominally require at least m ≥ S measurements
regardless of the signal amplitude, where S is the number of nonzero entries in
x. In detection, however, we saw that m = 1 measurement may suffice if the
signal amplitude is large enough. Also, [1] shows that reliable support recov-
ery is impossible when µ

√
m/n → 0, while we saw that µS

√
m/n → ∞ and

µ
√
Sm/n → ∞ suffice for reliable detection in the nonnegative and general

cases, respectively. Therefore, having the ability to take linear measurements of
the form (1) in a surveillance setting, it makes sense to perform detection as de-
scribed here before estimation (identification) or support recovery (localization)
of the signal.
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4.4. Possible improvements

Though we provided simple algorithms that nearly match information bounds,
there might be room for improvement. For one thing, it might be possible to
reliably detect when, say,

√
m/n|x| is sufficiently large — for the case where

xj ≥ 0 for all j — without necessarily tending to infinity. A good candidate for
this might be the Bayesian algorithm proposed in [6].

More importantly, in the general case of Section 3, we might want to design
an algorithm that detects any fixed x with high-probability, without averaging
over the measurement design. This averaging may be interpreted in at least two
ways:

(A1) If we were to repeat the experiment many times, each time choosing new
measurement vectors and corrupting the measurements with new noise,
then for a fixed vector x, in most instances the test would be accurate.

(A2) Given the amplitudes |xj |, j = 1, . . . , n, for most sign configurations the
test will be accurate.

Interpretation (A1) is controversial as we do not repeat the experiment, which
would amount to taking more samples. And interpretation (A2) raises the is-
sue of robustness to any sign configuration. One way — and the only way we
know of — to ensure this robustness is to use a CS-like sampling scheme, i.e.,
choosing a1, . . . , am in (1) such that the matrix with these rows satisfies RIP-
like properties. This setting is studied in detail in [2], which in a nutshell says
the following. Take measurement vectors from the Bernoulli ensemble, say, but
hold the measurement design fixed. This is just a way to build a measurement
matrix satisfying the RIP and with low mutual coherence. In particular, this
requires that m is of order at least S logn, though what follows assumes that
m ≫ S(logn)3. Based on such measurements, the test based on

∑
i y

2
i is able to

detect when (
√
m/n)‖x‖2 → ∞, which is more stringent than what is required

in Proposition 2; while the test based on maxj=1,...,n |
∑

i aij yi| is able to detect

when lim inf
√
m/nmaxj |xj |(logn)−1/2 >

√
2, which, except for the log factor,

is what is required for support recovery. And this is essentially optimal, as shown
in [2].
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