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Abstract: Recent technological advances provide researchers with a way
of gathering real-time information on an individual’s movement through
the use of wearable devices that record acceleration. In this paper, we pro-
pose a method for identifying activity types, like walking, standing, and
resting, from acceleration data. Our approach decomposes movements into
short components called “movelets”, and builds a reference for each activity
type. Unknown activities are predicted by matching new movelets to the
reference. We apply our method to data collected from a single, three-axis
accelerometer and focus on activities of interest in studying physical func-
tion in elderly populations. An important technical advantage of our meth-
ods is that they allow identification of short activities, such as taking two
or three steps and then stopping, as well as low frequency rare(compared
with the whole time series) activities, such as sitting on a chair. Based on
our results we provide simple and actionable recommendations for the de-
sign and implementation of large epidemiological studies that could collect
accelerometry data for the purpose of predicting the time series of activities
and connecting it to health outcomes.
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1. Introduction

Accurate measurement of physical activity is necessary for understanding the
complex relationship between an individual’s health outcomes and his or her
behavior profile. Unfortunately, standard measures of activity such as question-
naires and diaries are based on self-reporting and are subject to known short-
comings. Moreover, these measures typically offer snapshots of activity and do
not reflect the dynamic nature of movement in the real world. Recently, progress
in sensor technologies and wearable computing devices have allowed researchers
to collect real-time information on movement through the use of accelerome-
ters. In this paper, we propose a method for predicting activity types, such as
walking, standing and sitting, from a multichannel accelerometer designed with
widespread deployment in observational studies in mind.

In early years, human activity function is assessed using measures of activities
of daily living that depend on retrospective self-report, despite well-documented
and substantial measurement error associated with these instruments [7, 18].
The results of these studies were highly impaired by problems associated with
self-reported activity data. Wearable sensors started to be deployed into studies,
since they allow for unbiased measurement in older populations with cognitive
or physical impairment. Moreover, the accuracy of sensors is not effected by
differences in sex, race/ethnicity or language, all well known sources of bias in
self-reports. This is particularly important in the study of aging populations,
both because issues with recall are more severe and because understanding phys-
ical activity accurately is central to the study of elderly populations in public
health [21]. The use of them to collect activity information in large-scale obser-
vational studies took a major step forward with the addition of the ActiGraph
to the National Health and Nutrition Examination Survey (NHANES) in 2003
[27]. Many published work have demonstrated these devices’ ability to monitor
human activity status[28, 5, 1, 25, 4, 20, 10, 6, 9, 15]. Some of them focused
on the quantification of total energy expenditure[28] or “activity counts”[15].
However, these devices (often combined with more sophisticated sensors) offer
the potential to assess more complex questions regarding real-world function
and more refined measures of specific activity types. Accelerometer, which is
the basic of these wearable sensors, were discussed in many literatures because
they are capable of accurately collecting adequate data for physical activity
monitoring[11, 5, 25]. Since avoiding laying a burden to the subjects is crucial
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in large scale observational study, developing methods to predict the physical
activity using accelerometry data becomes one of our major interests.

We base activity prediction on the idea that movements can be understood
in terms of smaller components, which we dub “movelets”. Briefly, given ac-
celerometer time series data, we decompose movements into short overlapping
segments; these movelets are the elements which make up motions and activi-
ties. Using data with known activity labels, movelets are organized by activity
type into “chapters”, or collections of movelets with the same activity label.
Predictions of unknown activity labels are made by finding the closest match,
defined in terms of squared error for all acceleration channels, of an unlabeled
movelet to those in chapters. Thus we build our method on the intuition that
movements with elements that look similar are likely to have the same labels.

Our data are generated using a single accelerometer positioned on the sub-
ject’s hip at the apex of the left iliac crest. The accelerometer is built on core
chip MMA7260Q by FreescaleTM, and records acceleration in three mutually
orthogonal directions for a wide range of sampling frequencies (time points per
second) and sensitivities (acceleration per unit of scale). Data were collected dur-
ing in-laboratory sessions in which subjects performed a collection of activities,
including resting, walking, and lying, repeated chair stands, lifting an object
from the floor, up-and-go, and standing to reclining on a couch. We observe
data for two subjects with two laboratory visits each. Sessions lasted roughly 15
to 20 minutes, and in that time each activity was replicated up to three times.
Both the data collection device and activities performed are compatible with
the needs of observational studies, especially of elderly populations: the single
accelerometer worn at the hip is unobtrusive and wearable in real time, and the
activities provide a useful understanding of physical movement. During the data
collection, an observer recorded activity start and stop times to provide a time
series of movement labels that accompanies the accelerometer signal.

The accelerometer output consists of 3 voltage time series, which are proxy
measures of acceleration. The time series vary by amplitude, frequency and
correlation along the time course of the corresponding activities. For example,
Figure 1 displays two segments of accelerometer data. In the first segment, the
subject stands, walks twenty meters, and stands. In the second segment, the
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Fig 1. Two segments of accelerometer data. First, a subject walks for approximately 20 second;
then, a subject preforms two replicates of ”Lie down / Rest / Stand up”. Acceleration in three
mutually orthogonal directions is shown, and activity labels are included.
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subject performs two replicates of lying down and standing up; during each
replicate, the subject lies from a standing position, rests for several seconds in
the lying position, and rises to a standing position. Three acceleration channels
or axes are shown, and activity labels are provided. From this figure, we see
that active periods, in which the subject is walking, rising or lying down, have
higher variability than inactive periods, in which the subject is resting in either
the standing or lying position. Walking is characterized by periodic acceleration
patterns for each axis, although there are differences in amplitude between axes.
Replicates of the “Chair Stand” activity display similar patterns, bolstering
the intuition that movements that share a label also appear similar visually.
Although there are two types of inactivity (standing and lying), the acceleration
time series corresponding to these two periods are characterized by low variation
around stable constants; however, the ordering and relative position of the axes
are different, due to a change in the orientation of the accelerometer with respect
to Earth’s gravity.

The goal of this work is to demonstrate the conceptual framework for the
movelet approach, rather than to describe the details of its application to a
large data set. The movelet prediction algorithm described in the paper is an
important first step in developing accelerometer-based biomarkers of activity
in large observational studies. Several strengths of this approach are illustrated
by the analysis of a few subjects at a few visits; at the same time, improve-
ments and refinements both in the statistical analysis and in the data collection
are suggested by our results. For instance, matching unlabeled movelets to ref-
erence chapters provides a fast and easily understood method for predicting
labels. However, results can be sensitive to the definition of the gold standard
of activity type - very often, the observer annotations disagree with the raw
accelerometer output. Additionally, the use of gyroscopic information, which is
included in many accelerometer devices, can give accelerometer output that is
robust to rotations of the device itself. These are important considerations in
designing a data collection method that will give useful information regarding
activity in observational studies. More importantly, our findings have already
led to changing the proposed design of the experiment for an ongoing and future
observational studies. Indeed, an investigator will now go to the home of study
participants, help install the device correctly, provide simple hands-on instruc-
tions, and ask the participants to perform a few well defined tasks. This process
will be videotaped for improving and assisting human annotation. The investi-
gator will then leave and study participants are then called on the phone and
asked to perform a few simple tasks for re-calibration. None of these features
was part of the original data collection protocol. We conclude that understand-
ing the inherent pitfalls and variability associated with even the most advanced
measuring technology can lead to dramatic improvements in the design of ex-
periments, data quality, and analysis. This paper, as a “proof-of-concept” work,
provides the first part of the story for accelerometry data.

Prediction of physical activity intensity and type has been under intense
methodological development in electronic engineering and computer science, but
to a lesser extent in statistics. Preece et al. [24] provided a nice review of the



Movelets: A dictionary of movement 563

current methods of activity prediction. Many prediction methods using either
raw or transformed accelerometer data exist, including “cut-point” or linear re-
gression [8, 11], quadratic discriminant analysis [23], artificial neural networks
[13, 14, 29, 30, 26], Markov Models [16, 23], unsupervised learning [19] and com-
bined methods [25, 2]. Previous work has often focused on activity types that
are not of interest in public health studies[23], such as using computer or brush-
ing of teeth, or has included multiple accelerometers placed at several locations
on a subject’s body [13, 14, 17]. A comparison of recent approaches was also ap-
plied to data generated using five biaxial accelerometers by Bao and Intille [3].
However, these approaches are unsuitable for application to accelerometer data
in public health studies, either because they require more sensors on subjects
or because they are not designed to detect short-term activities like standing
from a lying position. Moreover, prediction results from black-boxed machine
learning methods are usually difficult to examine and improve. This stimulates
us to find a method which could not only detect long term activities like walking
and vacuuming, but also short term activities like sitting down or lying down.

Our approach and taxonomy are inspired by the speech recognition litera-
ture [12], where words or parts of words are matched to known speech patterns.
However, the parallel with speech recognition should not be overstated given
the large differences between the two activities and measurement instruments.
First, speech is often recorded at much higher frequencies (between 8 and 16kHz)
than acceleration (10Hz in our dataset), providing density and detail to voice
recognition data [22]. Second, audio data is inherently single-channel while ac-
celeration is understood in three orthogonal directions, increasing the dimension
of the activity prediction problem. In natural speech most sounds and many full
words are repeated often, providing an ample training set on which to build a
prediction algorithm. In activity prediction, movements can be rarely performed
and infrequently observed, making the definition of a training set challenging.
Moreover, high fidelity audio recorders could be treated as thought they were
lossless reproductions of the original signal. In contrast, accelerometers are weak
proxies for activities that are complex and could be ambiguous.

The remainder of the paper is organized as follows. In Section 2 we describe
the movelet-based approach to predicting activity based on accelerometer data.
Section 3 details the application of our proposed method to the real data de-
scribed above. We close with a discussion in Section 4.

2. Methods

To predict activities based on accelerometer data, we first define a movelet
as a basic element of 3-axis time series data. Collections of movelets paired
with known labels (annotations) form chapters, which are in turn organized
into reference dictionaries of known movelets and their associated activities.
Classification of accelerometer data with unknown activity annotations is based
on decomposing the unlabeled data into component movelets, and then matching
each unlabeled movelet to these chapters. The label of the best matched chapter
is used as a preliminary prediction of the activity of the unlabeled movelet.
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2.1. Definitions

We observe data that is a collection of three time series representing the acceler-
ation in three mutually orthogonal axes. Though we have two subjects and each
with two visits, we actually treat them as 4 independent visits. Thus denote
the data by Xi(t) = {Xi1(t), Xi2(t), Xi3(t)}, t = 1, 2, . . . , Ti, where Ti is the
length of the accelerometer time series for visit i. Define an activity label time
series Li(t) such that Li(t) is a function mapping t to {Act1,Act2, . . . ,ActA},
t = 1, 2, . . . , Ti, where Acta denotes activity type a. Let Ti and Vi be a parti-
tion of observation time for visit i into training and validation sets, respectively.
Thus if t ∈ Ti, then Xi(t) belongs to the training dataset and has a known
activity label Li(t); otherwise Li(t) is unknown and is to be estimated. Training
sets contain continuous segments or blocks of time to include full examples of
each movement type.

Next we define movelets as elements of time series that characterize movement
in temporal windows with length H . More specifically, let

Mi(t) = {Xi(t),Xi(t+ 1), . . . ,Xi(t+H − 1)},

define the movelet of subject/visit i at time t ∈ {1, 2, . . . , (Ti −H + 1)}. Note
that movelets are made up of time series for all axes of the accelerometer output,
and summarizes the pattern of acceleration recorded from time t to t+H − 1.
The dimension of the movelet Mi(t) is 3H , because there are 3 concatenated
time series, and contains all the accelerometry information for a window of
movement of length H/10, because time is expressed in 10 Hz in our case. H is
usually chosen so that a movelet Mi(t) captures enough information to identify
a movement and is not too long to contain more than one type of activity as
well. Movelets Mi(t) with t ∈ T are paired with their known activity labels
and collected into activity-specific “chapters”. Thus, we define a chapter Ca as
a collection of movelets {Mi(t) : Li(t) = Acta} that share a common label.
An important characteristic of movelets is that they are overlapping moving
windows; in fact Mi(t) and Mi(t + 1) overlap everywhere, except at time t
and t + H . This is an important characteristic when there is uncertainty on
where the activity actually starts, because transitions between two activities
can be unclear particularly for elderly subjects. This happens to be a serious
problem even with the best in-lab human annotation. Allowing this sort of
obscure period in our movelets may help us solve the problem. One chapter
is constructed for each activity type; chapters are then combined to form a
subject-visit specific “dictionary” of movelets and their labels. Dictionaries are
distinct for subjects and visits to control for differences between the movement
patterns for different subjects and to account for changes in the orientation of
the accelerometer at different visits. This dictionary is used as a reference for
movelets Mi(t) with t ∈ V. Table 1 displays an example of a subject-specific
dictionary consisting of A chapters in total. Each chapter is constructed using
the training set and is made up of movelets, the short components of three-
axis accelerometer data. Usually for activities with well-defined beginning and
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Table 1

A subject-specific dictionary with with A chapters, one for each activity type. Each chapter
consists of movelets, short overlapping segments of three-axis accelerometer data, which are

illustrated in the far-right column of the table

Dictionary

Chapter Activity Movelets

C1 Activity 1 {Mi(t) : Li(t) = Act1}
● ●

● ●
●

● ● ●
● ●

● ● ● ●
● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●
●

● ●
●

● ● ●
● ●

●

● ● ●
● ● ● ● ●

● ●

● ● ● ● ● ● ● ● ● ●

● ●
●

● ● ●
● ●

●
●

● ●
● ● ● ● ●

● ● ●

● ● ● ● ● ● ● ● ● ● ... ...
●

● ● ●
● ●

●
● ● ●

● ● ● ● ●

● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ●
● ●

●
● ● ● ●

● ● ● ●

● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ●

C2 Activity 2 {Mi(t) : Li(t) = Act2}
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ... ...
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

...
...

...
...

CA Activity A {Mi(t) : Li(t) = ActA}

● ●
● ●

●
● ● ● ●

●● ● ● ● ●
● ● ● ● ●

● ●
● ● ● ● ● ● ●

●

●
● ●

●
● ● ● ●

● ●● ● ● ●
● ● ● ● ● ●

●
● ● ● ● ● ● ●

● ●

● ●
●

● ● ● ●
● ●

●
● ● ●

● ● ● ● ● ●
●

● ● ● ● ● ● ●
● ● ●

... ...
●

●
●

●
●

●
● ● ● ●

● ● ● ●
● ● ● ● ●

●

● ● ● ● ●
●

● ● ●
●

●
●

●
●

●
● ● ● ● ●

● ● ●
● ● ● ● ●

● ●

● ● ● ●
●

● ● ●
● ●

endings(standing up from chair, etc) one full replicate is used to construct a
chapter. For continuous activities(walking, sitting, etc.) we use a two-to-three-
second segment to build the chapter.

The definitions of movelets, chapters, and dictionaries given above provide
a useful analogy for our proposed classification method. Given unlabeled ac-
celerometer data that has been decomposed into movelets, we use the dictionary
as a reference by “looking up” an unlabeled movelet and finding its best match
among known movelets. The label associated with the best match, which is the
chapter title, is used to predict the unknown label. Matching, which is described
below, quantifies the intuition that movelets with similar visual appearances are
likely to be components of the same larger movement.

2.2. Matching and labeling

Given an unlabeled moveletMi(t0), we predict the label Li(t0) first by matching
Mi(t0) to a chapter in the dictionary described above. To be more specific, the
closest match for movelet Mi(t0) in the dictionary is Mi(t

′), where

t′ = argmin
t∈T

[D{Mi(t),Mi(t0)}] .

The distance function D(·, ·) is

D[Mi(t1),Mi(t2)] =
1

3

3
∑

p=1

√

√

√

√

H
∑

h=1

[Xip(t1 − 1 + h)−Xip(t2 − 1 + h)]2. (1)

Thus, distance between movelets averages the difference taken over all ac-
celeration axes. Based on this match, an estimate for the unknown label is
L∗

i (t0) = Li(t
′); that is, we take the label associated with the best dictionary

match and use it to estimate the unknown label. Figure 2 gives a schematic
of the matching process, in which an unlabeled movelet Mi(t

∗) is compared to
a dictionary with 4 chapters. The distance between Mi(t

∗) and all reference
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Smallest! 
We predict that Movelet_New 

is from Chapter 2. Thus 

Mi(t*) has label Act2.

D(Mi(t*), Mi(t'))

... ...

... ...

... ...

... ... Mi(t')

Mi(t*)

Fig 2. A display of matching an unlabeled movelet Mi(t∗) to 4 chapters in the dictionary.
Points in each chapter represent labeled movelets corresponding to the activity associated
with this chapter. The distance between the unlabeled Mi(t

∗) and each chapter is given by
the minimum distance between Mi(t

∗) and the movelets in each chapter. After Mi(t
∗) is

compared to all reference movelets in the dictionary, it is matched to Chapter 2 which provides
the smallest distance among all the 4 chapters.

movelets is calculated using the distance function (1). After Mi(t
∗) is compared

to all reference movelets in the dictionary it is matched to Chapter 2, because
movelet Mi(t

′) in Chapter 2 along with Mi(t
∗) provides the smallest distance.

After preliminary labels L∗

i (t), t ∈ V, are generated using the matching step,

a majority voting procedure is used to select final estimated labels L̂i(t). Each
element of {L∗

i (t), L
∗

i (t+1), . . . , L∗

i (t+H)} (t ∈ [0, Ti−H ]) is considered a sin-

gle vote, and the activity with the most votes in this set is the estimate L̂i(t).
An advantage of this procedure is that it smooths the predicted labels L̂i(t)
by taking into account the fact that movements are continuous, meaning that
neighboring movelets contain information about the current activity. Addition-
ally, because movelets decompose movements into their constituent parts, the
matching applies even when the duration of movements is variable. For instance,
two replicates of sitting from the standing position may take different amounts
of time, but will have similar movelet signatures.

2.3. Movement fingerprints and lazy movelets

To increase the accuracy of our dictionary-based classification method and de-
crease the computational burden of the looking-up process, each chapter must
be carefully constructed to include useful information while excluding redun-
dant or less useful movelets. With this in mind, chapters that were built in the
manner described above can be fine-tuned using the identification of what we
will label “fingerprint” and “lazy” movelets.

First, each chapter must include the signature movelets of the corresponding
activity. We refer to these defining movelets as “fingerprints” because they pro-
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Fig 3. The chapter “Standing from Lying”, which consists of 16 movelets. In dark grey is the
section of the acceleration data used to construct the chapter; in light grey are time points
with the same activity label, but that are excluded from the chapter as “lazy” movelets.

vide excellent prediction of a specific activity related to the chapter. Fingerprints
are thus the characteristic acceleration time series associated with a movement,
and are most often used when matching new movelets of the same activity. Sec-
ond, unnecessary or redundant information should be removed from the chapter.
For example, a chapter built on several seconds of walking will include many
near-identical movelets due to the periodic nature of the activity. Further, there
often exist “lazy” movelets which, contrary to fingerprints, are not commonly
matched to and do not usefully identify the activity; rather than aiding pre-
diction, these can be falsely matched to by movelets of other activities. Both
redundant and lazy movelets can be excluded from a chapter to increase compu-
tational performance and reduce the number of errors. Finally, some movements
share very similar movelets. These “ambiguous” movelets can lead to misclas-
sification due to very close matches in multiple chapters. In this situation, an
ambiguous movelet can be removed from one chapter so that matches will be
made to the remaining movelet; the choice of which movelet to retain will depend
on the relative importance of correctly classifying the two movements. The se-
lection of fingerprint and lazy movelets was done independently of performance
on the test set.

As an example of both fingerprints and lazy movelets, Figure 3 displays the
chapter for “Standing from Lying” from a movelet dictionary. We used only
the yellow-line-shaded region to construct the chapter, despite the fact that the



568 J. Bai et al.

areas shown in light gray are also labeled by a human observer as “Standing
from Lying”. The fingerprint of this activity is the pattern that the mid gray
time series goes down while the green one goes up. The movelets in the light gray
bands (not shaded by yellow lines) are lazy movelets, and do not distinguish this
activity from others. We removed the lazy movelets from the annotated time
period and built the library conservatively to make the chapter a more useful
reference for future unlabeled activities.

2.4. Summary

Movelet-based analysis of accelerometer data is built on the intuition that move-
ments with similar acceleration patterns at the elemental level are likely to
be generated by the same activity. Using this idea, we decompose movements
into overlapping segments and construct reference chapters and dictionaries;
given unlabeled time series, we match to the reference and use the best match
to predict the unknown activity type. Movement fingerprints are identified to
strengthen the construction of chapters and to aid in the basic understanding
of movements, while lazy movelets are eliminated to reduce classification error
and computation time. The result is a conceptually clear method for activity
prediction that is computationally feasible and scalable to large datasets.

3. Application to LIFEmeter data

We now apply our methods to data from two subjects, each with two visits.
Data were collected in the development of the LIFEmeter multi-sensor device,
intended to assess physical function in large-scale observational studies. The
subjects were community dwelling older adult participants in the LIFEmeter
study, ages 65 and older who had no history of cognitive dysfunction, lived in
the Baltimore area, and were capable of walking across a small room unassisted.
They were observed in a clinical setting, and performed physical activities that
are common in daily living. The following activities were selected as important
in understanding physical function in real-world setting: walking, standing from
sitting, standing from lying, sitting from standing, and lying from standing.
Three sedentary states (standing, sitting, and lying) were also annotated. Ta-
ble 2 lists all activities observed and provides abbreviations that will be used
through the remainder of this section.

An observer annotated the time points at which an activity was started and
completed, providing activity labels Lobs

i (t). Annotations were imperfect due to
early or late start and stop points, to rounding times to the nearest second,
and to misalignment. Obvious errors in the observed labels were detected and
corrected through comparison with the accelerometer output to create labels
used to construct movelet dictionaries and assess the predictive performance of
our algorithm.
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Table 2

A list of activities of interest, with abbreviates used in remaining Figures and text

Activity List

Activity Alias

Rest (Stand) Standing
Rest (Sit) Sitting
Rest (Lie) Lying
Standing from Chair CS Stand
Sitting Down from Standing CS Sit
Lying Down from Standing RS Lie
Standing from Lying RS Stand
Walking Walk

3.1. Constructing the dictionary

Following the method described in Section 2, we build a dictionary with 8 chap-
ters of activities for each subject and visit. First, we partitioned the accelerom-
eter data into training and validation sets Ti and Vi. Using the training set, we
decompose movements into movelets and organize by activity type. Our choice
of H is 10, based on the 10Hz sample rate of the device used in our data col-
lection. This is because each 1-second movelet contains just enough information
to identify a movement, and is not so long that it restricts the matching of an
unknown activity. We also tried other choices of H between 10 and 15 which
did not give substantially different results. We therefore conclude that, in gen-
eral, the methods is robust to the choice of H within a reasonable range (in our
case around 10). For activities with well-defined beginnings and endings, such
as “CS Stand” and “CS Sit”, we use the first replicate as training data and
reserve the remaining replicates as testing data. Chapters for these activities
contain between 5 and 30 movelets each, depending on the duration of the ac-
tivity. For continuous movements that lack well-defined beginnings and endings,
such as “Walk” or “standing”, we extract segments lasting 2 to 3 seconds that
are clearly labeled with a particular activity to build the corresponding chap-
ter. This is done to prevent chapters from becoming too large, and, since these
activities are periodic, to prevent redundant information from being included in
the reference.

3.2. Initial results

After constructing dictionaries for each subject and each visit using the train-
ing data, we predict activity labels L̂i(t) for s ∈ Vi by matching movelets to
the reference and implementing the majority voting step. Figure 4 details this
analysis. For the accelerometer data displayed in Figure 1 (one segment of walk-
ing and two replicates of lie-rest-stand), the lower panel of Figure 4 shows the
minimum distance between each unlabeled movelet and all movelets contained
in the reference chapters as a collection of distance curves. The preliminary la-
bels L∗

i (t) are taken to be the chapter title with smallest distance. Next, the

prediction L̂i(t) is determined via a majority vote in which each element of
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{L∗

i (t), L
∗

i (t+1), . . . , L∗

i (t+H)} (t ∈ [0, Ti−H ]) is considered a single vote. At
the top of Figure 4 are the observer-annotated (top colored bar) and predicted
labels (bottom color bar) that accompany the accelerometer data. A comparison
of the annotations and predictions indicates generally high agreement between
these time series. In particular, there is broad overlap between the prediction
and annotation of walking and resting periods as well as the location of the
shorter activities lying and standing. Moreover, there is generally reasonable
separation between the distance curve corresponding the the correct chapter
and the remaining chapters, indicating the ability of the movelet-based anal-
ysis to distinguish between activity types. In two regions, the distance curves
are zero – these depict the first replicate of the “Lie from Stand” and “Stand
from Lie” activities, and were used to construct their respective activity chap-
ters. Isolated misclassifications in the preliminary labels, such as those that take
place in the middle of walking period, are in effect smoothed by the majority-
voting step which prevents single activity labels from disagreeing with its neigh-
bors.

On the other hand, as shown in the right segment of Figure 4, the anno-
tated labels for the shorter activities have much longer time durations than
the predicted intervals. This is most likely due to a combination of early and
late stop points in the annotations and time spent transitioning between ac-
tivities. For example, when a subject is asked to sit from a standing position,
there is a brief pause as the new movement is begun; similarly, when rising to
a standing position, there is a short period of stabilization as the movement
is completed. The extent to which these transitions will appear in real-world
data, rather than in a controlled setting, is unclear. In these periods, the “true
activity” is not clearly defined but the annotations are seen to be conserva-
tive in starting and stopping short activities, whereas the predictions extend
neighboring (well-predicted) resting periods. This contrast can negatively affect
the apparent prediction accuracy, although many of the activities are correctly
identified.

Let V a
i be the amount of time spent performing activity a (measured by

Lobs
i (t)) and V̂ a

i be the predicted amount of time spent performing activity a.

For each subject and visit, in Table 3, we report V̂ a′

i /V a
i for all activities a, a′.

Table 3 reinforces the observations from Figure 4 that long continuous ac-
tivities, like resting and walking, are better predicted than short activities,
like standing from a chair. In fact, with the exception of subject 1 at visit
1, all resting states are accurately predicted more that 99% of the time, and
walking is accurately predicted between 68% and 80% of the time. However,
short activities seem to be fairly poorly predicted, and are often mistaken
for one of the resting states. Again, this apparent shortcoming stems from
two major factors: i. these activities are undertaken for very short periods,
so even minor misclassification can greatly impact results, and more impor-
tantly ii. the observer-provided annotations for these short activities are inac-
curate.
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Table 3

Comparison of observer-annotated labels Lobs
i

(s) and the predicted labels L̂i(s), expressed as
the proportion of the predicted time spent engaged in an activity and the time spent engaged

in the activity according to the annotated activity labels

Subject 1 Visit 1

Prediction
Truth Standing Sitting Lying CS Stand CS Sit RS Lie RS Stand Walk
Standing 78.3% 0 0 21.7% 0 0 0 0
Sitting 0 100% 0 0 0 0 0 0
Lying 0 0 100% 0 0 0 0 0
CS Stand 4.3% 30.5% 0 55.3% 0 0 6.4% 3.5%
CS Sit 11.9% 37.3% 0 23.1% 27.6% 0 0 0
RS Lie 0 0 22.9% 49.4% 0 27.7% 0 0
RS Stand 0 0 21.3% 59.8% 0 0 18.9% 0
Walk 9.6% 0 0 10.4% 0.5% 0 0 79.5%

Subject 1 Visit 2

Prediction
Truth Standing Sitting Lying CS Stand CS Sit RS Lie RS Stand Walk
Standing 96.8% 0 0 0 2.7% 0 0 0.4%
Sitting 0 99.9% 0 0 0.1% 0 0 0
Lying 0 0 100% 0 0 0 0 0
CS Stand 25.6% 25.6% 0 40.2% 8.5% 0 0 0
CS Sit 25.7% 12.8% 0 0 57.8% 3.7% 0 0
RS Lie 40.3% 0 14.9% 0 0 44.8% 0 0
RS Stand 0 0 21.1% 2.8% 39.4% 0 36.6% 0
Walk 18.8% 0 0 0.2% 0.6% 1.1% 0 79.3%

Subject 2 Visit 1

Prediction
Truth Standing Sitting Lying CS Stand CS Sit RS Lie RS Stand Walk
Standing 99.9% 0 0 0 0.1% 0 0 0
Sitting 0.7% 99.2% 0 0.1% 0.1% 0 0 0
Lying 0 0 100% 0 0 0 0 0
CS Stand 10.9% 16.4% 0 57.3% 0 0 10.0% 5.5%
CS Sit 11.1% 44.4% 0 4.6% 34.6% 5.2% 0 0
RS Lie 10.6% 0 50.6% 0 0 27.1% 11.8% 0
RS Stand 36.8% 0 24.6% 0 0 0 38.6% 0
Walk 22.1% 0 0 0.3% 0 0.2% 1.0% 76.4%

Subject 2 Visit 2

Prediction
Truth Standing Sitting Lying CS Stand CS Sit RS Lie RS Stand Walk
Standing 100% 0 0 0 0 0 0 0
Sitting 0 100% 0 0 0 0 0 0
Lying 0 0 100% 0 0 0 0 0
CS Stand 7.9% 40.4% 0 46.1% 0 0 0 5.6%
CS Sit 33.3% 20.6% 0 9.8% 35.3% 0 0 1.0%
RS Lie 42.6% 0 31.5% 0 0 25.9% 0 0
RS Stand 34.4% 0 34.4% 21.3% 0 0 9.8% 0
Walk 31.3% 0 0 0.1% 0 0 0 68.6%

3.3. Refined results

A comparison of our initial predictions, the observer defined annotations and the
raw accelerometer data indicate that a gold standard for Li(t), the true activity
labels associated with acceleration data, is not given by the observer’s anno-
tations Lobs

i (t). Thus, we next create a “combined observer” to define activity
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Table 4

Table of prediction agreement for both subjects and both visits, using the combined observer

Subject 1 Visit 1

Prediction
Truth Standing Sitting Lying CS Stand CS Sit RS Lie RS Stand Walk
Standing 85.8% 0 0 14.2% 0 0 0 0
Sitting 0 100% 0 0 0 0 0 0
Lying 0 0 100% 0 0 0 0 0
CS Stand 0 1.4% 0 93.0% 0 0 5.6% 0
CS Sit 4.2% 0 0 41.7% 54.2% 0 0 0
RS Lie 0 0 0 0 0 100% 0 0
RS Stand 0 0 22.6% 0 0 77.4% 0
Walk 0 0 0 3.7% 0 0 0 96.3%

Subject 1 Visit 2

Prediction
Truth Standing Sitting Lying CS Stand CS Sit RS Lie RS Stand Walk
Standing 98.8% 0 0 0 1.2% 0 0 0
Sitting 0 100% 0 0 0 0 0 0
Lying 0 0 100% 0 0 0 0 0
CS Stand 7.5% 0 0 75.0% 17.5% 0 0 0
CS Sit 4.2% 1.4% 0 0 88.8% 5.6% 0 0
RS Lie 0 0 16.7% 0 0 83.3% 0 0
RS Stand 0 0 0 8.0% 0 0 92.0% 0
Walk 13.2% 0 0 0 0.4% 1.1% 0 85.3%

Subject 2 Visit 1

Prediction
Truth Standing Sitting Lying CS Stand CS Sit RS Lie RS Stand Walk
Standing 99.8% 0 0 0 0 0 0.2% 0
Sitting 0 100% 0 0 0 0 0 0
Lying 0 0 100% 0 0 0 0 0
CS Stand 0 0 0 96.9% 0 0 3.1% 0
CS Sit 0 20.0% 0 7.8% 60.0% 12.2% 0 0
RS Lie 0 0 0 0 0 100% 0 0
RS Stand 0 0 0 0 0 0 100% 0
Walk 9.0% 0 0 0 0 0 1.1% 89.9%

Subject 2 Visit 2

Prediction
Truth Standing Sitting Lying CS Stand CS Sit RS Lie RS Stand Walk
Standing 100% 0 0 0 0 0 0 0
Sitting 0 100% 0 0 0 0 0 0
Lying 0 0 100% 0 0 0 0 0
CS Stand 0 0 0 100% 0 0 0 0
CS Sit 6.1% 0 0 20.4% 73.5% 0 0 0
RS Lie 0 0 0 0 0 100% 0 0
RS Stand 0 0 0 68.4% 0 0 31.6% 0
Walk 13.7% 0 0 0 0 0 0 86.3%

labels Lcom
i (t) by synthesizing information from the observer annotations and

raw accelerometer output. Primarily, this resulted in designating times between
two distinct activities as “transition times”, rather than misleadingly assigning
these periods to one or the other activity. The new activity labels are shown in
Figure 5, and a comparison of labels Lcom

i (t) and predictions L̂i(t) is given in
Table 4. All the tables demonstrate the large improvements in prediction accu-
racy that arise from improvements in the standard used to define true activity
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Fig 5. Comparison of “combined observer” annotations, based on observed-defined annota-
tions and an inspection of the raw accelerometer data, and predicted labels.

labels. We contend that these findings indicate that: 1) accurate labeling is cru-
cial to prediction algorithm training; 2) a large source of prediction inaccuracies
can reliably be traced to human labeling; and 3) prediction accuracy results re-
ported in the literature are hard to compare because data use different labeling
protocols.

The construction of the combined observer also illustrates the feedback from
the movelet-based prediction algorithm to the annotations. Periods that were
largely misclassified using Lobs

i (t) as a reference, and that were labeled as “tran-
sitions” in Lcom

i (t), are periods where the distance between an unlabeled movelet
and those in the reference dictionary is large. Thus, movelets that don’t match
well to any known reference can be quickly identified. In observational stud-
ies, this facilitates the recognition of movements that are not included in any
dictionary or are otherwise abnormal.

4. Discussion

Understanding physical activity is a key component in public health studies
of subject function. However, standard measures of physical function such as
activities of daily living questionnaires are subject to substantial measurement
error. Emerging accelerometer technologies allow the collection of real-time,
real-world activity data and may alleviate many of the issues with retrospective
self-report data collection.

In this paper we propose a method for activity classification built around
the “movelet” as a basic element of movements. Using movelets with known
activities, we construct reference chapters and dictionaries; given an unlabeled
movelet, we find its closest match in the reference and use the match’s label as
a basis for prediction. Thus, our method is built on the intuition that move-
ments with similar component acceleration patterns are likely to be generated
by the same activity. This allows the method, and the matches it provides, to
be quickly evaluated based on visual inspection of the accelerometer time series.
Moreover, the extension to large data sets in which subjects are observed for
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hours or days is direct, because activity prediction is local in time. Finally, our
method accurately predicts short activities, such as taking a few steps, as well
as relatively rare and low-frequency movements such as rising from a chair.

Several directions exist for improving the movelet-based method. Focusing on
the predictions for a single subject, transition models could naturally encode in-
formation about the order of movements and the likelihood of switching between
them. Similarly, smoothing the distance functions (shown in Figures 4 and 5)
would allow neighboring time points to influence the prediction at the current
time. In our analysis, the movelet lengths were chosen to be 1 second; the sensi-
tivity of predictions to this choice should be examined. Augmenting dictionaries
to include objects other than movelets, for instance by adding measures of mean
and variation, or to include sources of data other than the accelerometer, such
as recorded speech or location information from a GPS device, could improve
predictions. Our current method relies on models trained on each individual,
and the solution of this issue is under exploration. A statistical technique is
being developed to normalize the orientation of the devices across subjects, in
order to enable us to perform prediction using models trained by other subjects.
This will also increase our understanding of heterogeneity in acceleration pat-
terns between and within subjects. For instance, constructing a multi-subject
dictionary would necessitate an understanding of movement fingerprints across
several subjects.

Our results and methods suggest three improvements that could help the
deployment of this technology to large epidemiological studies. First, there is
an increasing need to minimize the effect of changes in accelerometer orienta-
tion that can occur during normal movements; this can perhaps be addressed
by taking advantage on gyroscopic capacities in the SHIMMERTMdevice. This
would facilitate interpretation of the accelerometry data, especially in realistic
scenarios where people wear these devices for extended periods of time, and also
might allow the construction of dictionaries for use in populations. Second, the
study could be more accurate if a human observer goes to the home of the par-
ticipants, explains the setting up, carefully instructs the placement of the device
and conducts a short testing period using a known sequence of common activi-
ties whose duration and type is carefully annotated. This would also resolve the
problem of requiring subject-specific training of prediction algorithms, which
was mentioned previously. It would also place a smaller burden on the partic-
ipants. Finally, replication and calibration pre-studies should be conducted to
ensure that prediction algorithms perform well on new subject or visit data.

The ability of technological solutions to improve the prediction of activity
from accelerometer output is currently being evaluated. In the next phase of
data collection, gyroscopic information will be used to normalize data to a con-
stant vertical orientation. This may reduce the sensitivity of the movelet ap-
proach to rotations of the device that naturally occur as it is worn, and could
also increase the comparability of movelets across subjects. Complementary im-
provements in the data collection via updated technology and in the activity
prediction through refinements of the movelet approach will be needed to con-
struct useful biomarkers of activity in large observational studies. The process
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of using and implementing new technologies in observational studies is a hard
process filled with potential pitfalls. However, we find this challenge to be well
worth undertaking by statisticians even before the beginning of the study in the
design phase.

References

[1] Atienza, A. A. and King, A. C. (2005). Comparing self-reported versus
objectively measured physical activity behavior: A preliminary investiga-
tion of older Filipino American Women. Research quarterly for exercise and
sport 76 358-362.

[2] Bai, J. (2011). Accelerometer-based prediction of activity for epidemiolog-
ical research Master’s thesis, Johns Hopkins University.

[3] Bao, L. and Intille, S. S. (2004). Activity recognition from user-
annotated acceleration data. In Proceedings of the 2nd International Con-
ference on Pervasive Computing 1-17. Springer.

[4] Boyle, J., Karunanithi, T., Wark, T., Chan, W. and Colavitti, C.

(2006). Quantifying functional mobility progress for chronic disease man-
agement In 28th Annul Conference of the IEEE Engineering in Medicine
and Biology Society 5916-5919.

[5] Bussmann, J. B., Martens, W. L., Tulen, J. H., Schasfoort, F. C.,
van den Berg-Emons, H. J. and Stam, H. J. (2001). Measuring daily
behavior using ambulatory accelerometry: the activity monitor. Behavior
Research Methods, Instruments, & Computers 33(3) 349-356.

[6] Ermes, M., Pärkka, J., Mäntyjärvi, J. and Korhonen, I. (2008).
Detection of Daily Activities and Sports With Wearable Sensors in Con-
trolled and Uncontrolled Conditions. IEEE Transactions on Information
Technology in Biomedicine 12 20-26.

[7] Feinstein, A. R., Josephy, B. R. and Wells, C. K. (1986). Scientific
and clinical problems in indexes of functional disability. Annals of Internal
Medicine 105 413-420.

[8] Freedson, P. S., Melanson, E. and Sirard, J. (1998). Calibration of
the Computer Science and Applications, Inc. accelerometer. Medicine &
Science in Sports & Exercise 30(5) 777-781.

[9] Grant, P. M., Dall, P. M., Mitchell, S. L. and Granat, M. H.

(2008). Activity-monitor accuracy in measuring step number and cadence
in community-dwelling older adults. Journal of Aging and Physical Activity
16 204-214.

[10] Grant, P. M., Ryan, C. G., Tigbe, W. W. andGranat, M. H. (2006).
The validation of a novel activity monitor in the measurement of posture
and motion during everyday activities. British Journal of Sports Medicine
40 992-997.

[11] Hendelman, D., Miller, K., Baggett, C., Debold, E. and Freed-

son, P. (2000). Validity of accelerometry for the assessment of moderate
intensity physical activity in the field. Medicine & Science in Sports &
Exercise 32 442-449.



Movelets: A dictionary of movement 577

[12] Jelinek, F. (1997). Statistical methods for speech recognition. the MIT
Press.

[13] Kiani, K., Snijders, C. J. and Gelsema, E. S. (1997). Computerized
analysis of daily life motor activity for ambulatory monitoring. Interna-
tional Journal of Technology Assessment in Health Care 5 307-318.

[14] Kiani, K., Snijders, C. J. and Gelsema, E. S. (1998). Recognition of
daily life motor activity calsses using an artificial neural network. Archives
of Physical Medicine and Rehabilitation 79 147-154.

[15] Kozey-Keadle, S., Libertine, A., Lyden, K., Staudenmayer, J. and
FREEDSON, P. S. (2011). Validation of wearable monitors for assessing
sedentary behavior. Medicine & Science in Sports & Exercise 43 1561.

[16] Krause, A., Sieiorek, D. P., Smailagic, A. and Farringdon, J.

(2003). Unsupervised, dynamic identification of physiological and activ-
ity context in wearable computing. In Proceedings of the 7th International
Symposiu on Wearable Computers (White Plains, NY) 88-97. IEEE Com-
puter Society.

[17] Mantyjarvi, J., Himberg, J. and Seppanen, T. (2001). Recognizing
human motion with multiple acceleration sensors. In Proceedings of the
IEEE International Conference on Systems, Man, and Cybernetics 747-
752. IEEE Press.

[18] McDowell, I. and Newell, C. (1987). Measuring Health: A Guide to
Rating Scales and Questionnaires. Oxford University Press, New York.

[19] Nguyen, A., Moore, D. and McCowan, I. (2007). Unsupervised Clus-
tering of Free-Living Human Activities using Ambulatory Accelerometry.
29th Annual Conference of the IEEE Engineering in Medicine and Biology
Society (Lyon) 4895-4898.

[20] Pärkka, J., Ermes, M., Korpipää, P., Mäntyjärvi, J., Peltola, J.
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