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as to derive the statistical properties of the proposed estimators, we es-
tablish asymptotic results for sample expectiles of subordinated stationary
Gaussian processes with unit variance and correlation function satisfying
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quantile-based counterparts.
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1. Introduction

In the statistic literature, there has been a tremendous interest in analysis,
estimation and simulation issues pertaining to the fractional Brownian mo-
tion (fBm) [21]. This is due to the fact that the fBm process offers an ade-
quate modeling framework for nonstationary self-similar stochastic processes
with stationary increments and can be used to model stochastic phenomena
relating to various fields of research. A fractional Brownian motion (fBm),
denoted {BH(t), t ∈ R} with Hurst exponent 0 < H < 1, is a zero-mean
continuous-time Gaussian stochastic process whose correlation function satis-

fies E[BH(t)BH(s)] = σ2

2 (|t|2H + |s|2H − |t − s|2H) for all pairs (t, s) ∈ R × R
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and σ2 = E(BH(1)2). The fBm is H-self-similar i.e., for all α > 0, BH(αt)
d
=

αHBH(t), where
d
= means the equality of all its finite-dimensional probability

distributions. The process corresponding to the first-order increments of the fBm
is known as the fractional Gaussian noise (fGn) whose correlation function ρH(i)
is asymptotically of the order of |i|2H−2 for large lag lengths i. In particular,
for 1/2 < H < 1, the correlations are not summable, i.e.

∑+∞
i=−∞ |ρH(i)| = ∞.

This property is referred to as long-range dependence or long-memory whereas
the case 0 < H < 1/2 corresponds to short memory.

Several methods aimed at estimating the Hurst characteristic exponent or
long-memory exponent have been developed. Among these statistical methods
figure the Fourier-based methods such as the Whittle maximum likelihood esti-
mator (see e.g. Beran [6], Robinson [25]) or the spectral regression based esti-
mator [6]. The wavelet estimators have been also extensively investigated either
with an ordinary least squares [14], a weighted least squares (see e.g. Abry
et al. [1, 2], Bardet et al. [5], Soltani, Simard and Boichu [27]) or a maximum
likelihood (see e.g. [32, 24]) estimation schemes. Faÿ et al. [13] present a deep
analysis of Fourier and wavelet methods. Recently, the so-called discrete varia-
tions techniques (see e.g.Kent and Wood [19], Istas and Lang [18], Coeurjolly
[10]) have been introduced. Within this class of estimators, Coeurjolly [11] pro-
posed a new method based on sample quantiles to estimate the Hurst exponent
in the more general setting of locally self-similar gaussian processes. This esti-
mator has been proven robust when dealing with outliers [3]. The latter, often
encountered in real world applications, can induce a significant estimation bias.
Actually, to understand the rationale behind using quantiles when dealing with
outlying observations, let us recall some relevant concepts of robust statistics
theory. A central tool in the robustness assessment of a statistical estimator is
the so-called influence function (IF). Formally, let F be a distribution in Rd.
Contaminate F by by an ε amount of some distribution G where ε > 0 to
obtain F (ε,G) = (1 − ε)F + εG. The influence function of a functional T in

F is defined as [16, 17]: IF (x;T, F ) = limn→0+
T (F (ε,δx))−T (F )

ε where δx is the
Dirac delta distribution at x. The function IF (x;T, F ) measures the relative
influence on T of an infinitesimal point-mass contamination at x. Relying on
the IF, a key robustness measure, called the gross-error sensitivity of T at F ,
can be derived in the following manner: γ∗(T, F ) = supx|IF (x;T, F )|. It should
be noticed that the function γ∗(T, F ) is the maximum relative effect on T of
an infinitesimal point-mass contamination. Boundedness of γ∗(T, F ) reflects the
resistance against large changes in a few number of the observations e.g. gross
errors or outliers. The advantage of quantiles is that they have a bounded gross-
error-sensitivity allowing them to cope efficiently with the problem of outliers.
Nevertheless, this is not the only problem faced when dealing with estimation
issues. Indeed, data rounding is also a serious impediment. It is is common
in finance [7, 26], economics [30], computer science [22, 8] and computational
physics [29] and can lead to several misinterpretations. Data rounding is associ-
ated with another robustness measure known as local-shift sensitivity. The latter

is formally defined by: IF (x;T, F ) = supx 6=y
IF (y;T,F )−IF (x;T,F )

|y−x| . It detects the
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standardized maximal change in the estimator due to a wiggling of the sample
i.e. to small changes affecting the whole range of observations. Hence bounded
local shift sensitivity describes robustness against rounding-off and grouping
of the observations. Since their local shift sensitivity is unbounded, (see Ham-
pel et al. [16], Huber [17]), quantiles are unfortunately not robust against data
rounding. Newey and Powell [23] have introduced the so-called expectile which,
although similar to quantile, has a bounded local shift-sensitivity and thus can
handle the rounding issue.

In this paper, we derive a Bahadur-type representation for sample expectiles
of a subordinated Gaussian process with unit variance and correlation function
with hyperbolic decay. This allows us to investigate the statistical properties of
a new discrete variations estimator of the Hurst exponent of the fBm process. In
constructing this estimator, we rely mainly on the scale and location equivari-
ance properties of expectiles [23]. This key-property (also available for quantiles)
allows us to derive an estimate of the Hurst exponent close to the one proposed
in [10, 11]. Indeed, our new estimate is simply obtained by substituting the sam-
ple variance in [10] or the sample quantile in [11] by the sample expectile. To
sum up, our contribution is to have noticed that an equivariance property can
be used to estimate the Hurst exponent via expectiles and to propose original
proofs of its asymptotic properties. Moreover, We show via a simulation study
the robustness of the proposed estimator against data rounding.

The remainder of this paper is structured as follows: Section 2 deals with
asymptotic properties of sample expectiles for a class of subordinated station-
ary Gaussian processes with unit variance and correlation function satisfying
ρ(i) ∼ κ|i|−α (κ ∈ R) with α > 0. A short simulation study is conducted to
corroborate our theoretical findings. In Section 3, we discuss a sample expectile-
based estimator of the Hurst exponent and derive its statistical properties. We
then perform a simulation study in order to confirm the effectiveness of the
suggested estimation method.

2. Expectiles for subordinated Gaussian processes

2.1. A few notation

Given some random variable Z with mean µ, FZ is referred to the cumulative
distribution function of Z and ξZ(p) for p ∈ (0, 1) to its pth quantile. It is
well-known that the pth quantile of a random variable Z can be obtained by
minimizing asymmetrically the weighted mean absolute deviation

ξZ(p) := argminθ E
[
|p− 1Z≤θ|.|Z − θ|

]
.

In order to limit the local shift sensitivity of the pth quantile, Newey and Powell
[23] defined the notion of expectile denoted by EZ(p) for some p ∈ (0, 1). Rather
than an absolute deviation (function), a quadratic loss function is considered:

EZ(p) := argminθ E
[
|p− 1Z≤θ|.(Z − θ)2

]
. (2.1)
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We may note that the 50%-expectile if nothing else than the expectation of
Z. Newey and Powell [23] argued that providing E[Z] < +∞, then for every
p ∈ (0, 1) the solution of (2.1) is unique on the set IFZ

:= {x ∈ R : FZ(x) ∈
(0, 1)}. The expectile can also be defined as the solution of the equation E

[
|p−

1Z≤θ|.(Z − θ)
]
= 0.

A key property of the expectile is that it is scale and location equivariant
[23]. The scale equivariance property means that for Y = aZ where a > 0, the
pth expectile of Y satisfies:

EY (p) = aEZ(p) (2.2)

The pth expectile is location equivariant in the sense that for Y = Z + b
where b ∈ R, the pth expectile of Y is such that:

EY (p) = EZ(p) + b (2.3)

Now, let Z = (Z1, . . . , Zn) be a sample of identically distributed random
variables with common distribution FZ , the sample expectile of order p is defined
as:

Ê (p;Z) := argminθ
1

n

n∑

i=1

|p− 1Zi≤θ| . (Zi − θ)
2
.

2.2. Main result

In order to derive asymptotic results for Hurst exponent estimates based on
expectiles, we have to provide asymptotic results for sample expectiles of non-
linear functions of (centered) subordinated stationary Gaussian processes with
variance 1 and with correlation function decreasing hyperbolically. This will be
the setting of the rest of this section. Let {Yi}+∞

i=1 be such a Gaussian process
with correlation function ρ(·) satisfying ρ(i) ∼ κ|i|−α for κ ∈ R and α > 0. Let
Y = (Y1, . . . , Yn) a sample of n observations and h(Y) = (h(Y1), . . . , h(Yn))
its subordinated version for some measurable function h. We wish to provide
asymptotic results for the sample pth expectile defined by

Ê (p;h(Y)) := argminθ
1

n

n∑

i=1

∣∣p− 1h(Yi)≤θ

∣∣ . (h(Yi)− θ)
2
. (2.4)

Since the criterion is differentiable in θ, the sample pth expectile also satisfies
the following estimating equation ψn(Ê (p;h(Y)) ;h(Y)) = 0 with

ψn (θ;h(Y)) :=
1

n

n∑

i=1

∣∣p− 1h(Yi)≤θ

∣∣ . (h(Yi)− θ) . (2.5)

In the following, we need the two additional notation for Y ∼ N (0, 1)

ψh(Y )(θ; p) := E
[∣∣p− 1h(Y )≤θ

∣∣ .(h(Y )− θ)
]

ψ′
h(Y )(θ; p) := −E

[∣∣p− 1h(Y )≤θ

∣∣] = −p(1− Fh(Y )(θ))− (1 − p)Fh(Y )(θ),
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the latter quantity corresponding to the derivative of ψh(Y )(·, p) if it is well-
defined. Let us note that the pth expectile of h(Y ) satisfies ψh(Y )(Eh(Y )(p); p) =
0. We now present the assumption on the function h considered in our asymp-
totic result.

[A(h,p)] h(·) is a measurable function such that Eh(Y )2 < +∞ and such
that the function ψh(Y )(·, p) is continuously differentiable in a neighborhood of
Eh(Y )(p) with negative derivative at this point.

Such an assumption is in particular satisfied under the following one:
[A′(h)] h(·) is a measurable function such that Eh(Y )2 < +∞, h is not “flat”,
i.e. for all θ ∈ R the set {y ∈ R : h(y) = θ} has null Lebesgue measure.

Indeed, if h satisfies [A′(h)] then ψ(·, p) is differentiable in θ. And since,
Eh(Y )(p) belongs to the set Ih(Y ) = {x ∈ R : Fh(Y )(x) ∈ (0, 1)}, ψ′(Eh(Y )(p); p)
is necessarily negative. For the purpose of this paper, our main result will be
applied with h(·) = | · |β (with β > 0) or h(·) = log | · | which obviously satisfy
[A′(h)].

The nature of the asymptotic result will depend on the correlation structure
of the Gaussian process and on the Hermite rank, τ(p, θ) of the function

ψ̃(t; p, θ) :=
∣∣p− 1h(t)≤θ

∣∣ .(h(t) − θ)− ψh(Y )(θ; p).

We recall that the Hermite rank (see e.g. Taqqu [28]) corresponds to the smallest
integer such that the coefficient in the Hermite expansion of the considered
function is not zero. For the sake of simplicity, assume that the Hermite rank of
this function depends neither on θ nor p and denote it simply by τ . Again, this
could be weakened since we believe that the next result could be proved with the
following Hermit rank: infθ∈V(Eh(Y );p) τ(p, θ). As an example, the Hermite rank

of ψ̃(·, p, θ) is 1 for h(·) = · and (p, θ) ∈ (0, 1)×R and 2 for h(·) = | · |β (β > 0)
or log | · | for (p, θ) ∈ (0, 1)× R

+ \ {0}. We now present our main result stating
a Bahadur type representation for the sample pth expectile of a subordinated
Gaussian process.

Theorem 1. Let {Yi}+∞
i=1 a (centered) stationary Gaussian process with vari-

ance 1 and correlation function satisfying ρ(i) ∼ κ|i|−α (κ ∈ R), as |i| → +∞
with α > 0 and with a function h satisfying [A(h,p)]. Let h(Y) be the sample
(h(Y1), . . . , h(Yn)) of n observations of the subordinated process, then, for all
p ∈ (0, 1)

Ê (p;h(Y))− Eh(Y )(p) = −ψn

(
Eh(Y )(p);h(Y)

)

ψ′
h(Y )

(
Eh(Y )(p); p

) + oP (rn), (2.6)

where the sequence rn = rn(α, τ) is defined by

rn =





n−1/2 if ατ > 1
n−1/2 log(n) if ατ = 1

n−ατ/2 if ατ < 1.
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Proof. Let us simplify the notation for sake of conciseness: let Ê = Ê(p;h(Y)),
E = Eh(Y )(p), ψn(E) = ψn(Eh(Y )(p);h(Y)) and ψ′(E) = ψ′

h(Y )(Eh(Y )(p); p).
The first thing to note is that the sequence rn corresponds to the short-range or
long-range characteristic of the sequence ψ̃(h(Y1); p, θ), . . . , ψ̃(h(Yn); p, θ). More
precisely r2n corresponds to the asymptotic behavior of Eψn(E)2. Indeed, if
(cj)j≥0 denotes the sequence of the Hermite coefficients of the expansion of

ψ̃(·; p,E) in Hermite polynomials (denoted by (Hj(t))j≥0 and normalized in such
a way that E[Hj(Y )Hk(Y )] = j!δjk), we may have using standard developments
on Hermite polynomials (see e.g. Taqqu [28])

Eψn(E)2 =
1

n2

n∑

i,j=1

E
[
ψ̃(Yi; p,E)ψ̃(Yj ; p,E)

]

=
1

n2

n∑

i,j=1

∑

k1,k2≥0

ck1ck2

k1!k2!
E [Hk1(Yi)Hk2(Yj)]

=
1

n2

n∑

i,j=1

∑

k≥τ

c2k
k!
ρ(j − i)k

= O
( 1

n

∑

|i|≤n

|ρ(i)|τ

︸ ︷︷ ︸
=:ρn

)
= O(r2n). (2.7)

Let us define Vn := r−1
n (Ê − E) and Wn(E) := −r−1

n ψn(E)/ψ′(E). We just
have to prove that Vn −Wn(E) converges in probability to 0 as n→ +∞. The
proof is based on the application of Lemma 1 of Ghosh [15] which consists in
satisfying the two following conditions:
(a) for all δ > 0, there exists ε = ε(δ) such that P (|Wn(E)| > ε) < δ.
(b) for all y ∈ R and for all ε > 0

lim
n→+∞

P (Vn ≤ y,Wn(E) ≥ y + ε) = lim
n→+∞

P (Vn ≥ y + ε,Wn(E) ≤ y) = 0.

(a) is in particular fulfilled if we prove that EWn(E)2 = O(1) which follows
from (2.7) since EWn(E)2 = ψ′(E)−2r−2

n Eψn(E)2 = r−2
n ×O(ρn) = O(1).

(b) We consider only the first limit. The second one follows similar develop-
ments. We first state that the map ψn(·) is decreasing. Indeed, let θ ≤ θ′ and
denote by Zi(θ) the variable |p− 1h(yi)≤θ)|.(h(Yi)− θ). Then,

Zi(θ)− Zi(θ
′) =





(1− p)(θ′ − θ) if h(Yi) ≤ θ
p(θ′ − θ) if h(Yi) > θ
p(h(Yi)− θ) + (1 − p)(θ′ − h(Yi)) if θ < h(Yi) ≤ θ′.

Therefore, Zi(θ) − Zi(θ
′) ≥ 0 for the three cases which leads to the decreasing

of Zi(·) and ψn(·). Let y ∈ R, then also using the fact that ψn(Ê) = ψ(E) = 0
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and ψ′(E) < 0, we derive

{Vn ≤ y} = {Ê ≤ y × rn + E}
= {ψn(Ê) ≥ ψn(y × rn + E)}
= {ψ(y × rn + E)− ψn(y × rn + E) ≥ ψ(y × rn + E)− ψ(E)}
= {Wn(y × rn + E) ≤ yn},

where yn = r−1
n ψ′(E)−1(ψ(y×rn+E)−ψ(E)). Under the assumption [A(h,p)],

yn → y as n → +∞. Now, let Un := ψ′(E) (Wn(E)−Wn(y × rn + E)), explic-
itly given by

Un =
1

nrn

n∑

i=1

(
ψ̃(Yi; p,E + y × rn)− ψ̃(Yi; p,E)

)
.

Let cj,n the jth Hermite coefficient of the function

r−1
n

(
ψ̃(t; p,E + y × rn)− ψ̃(t; p,E)

)
,

then under the assumption [A(h,p)] and from the dominated convergence the-
orem we can prove that

cj,n
n→+∞−→ y E

[
|p− 1h(Y )≤E |Hj(Y )

]
=: c̃j .

Therefore for n large enough,

E[U2
n] =

1

n2

n∑

i,j=1

∑

k≥τ

c2k,n
k!

ρ(j − i)k

≤ 2

n

∑

|i|≤n

∑

k≥τ

c̃2k
k!
ρ(i)τ

= O(ρn) = O(r2n)

which leads to the convergence of Un to 0 in probability. For all ε > 0, there
exists n0(ε) such that for all n ≥ n0(ε), yn ≤ y + ε/2. Therefore for n ≥ n0(ε)

P (Vn ≤ y, Wn ≥ y + ε) = P (Wn(y × rn + E) ≤ yn, Wn ≥ y + ε)

≤ P (Wn(y× rn +E) ≤ y+ ε/2, Wn(E) ≥ y + ε)

≤ P (|Wn(y × rn + E)−Wn(E)| ≥ ε/2)
n→+∞→ 0,

which ends the proof.

In the case of short-range dependence, i.e. ατ > 1 then, using the Bahadur
type representation of expectiles, we derive immediately the following asymp-
totic normality for the sample expectile and some generalisations. This result
is based on standard central limit theorem for means of subordinated Gaussian
stationary processes [28, 4].Therefore the proof is omitted.
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Corollary 2.
(i) Under the assumptions of Theorem 1 with p ∈ (0, 1) and ατ > 1, then as
n→ +∞ √

n
(
Ê (p;h(Y))− Eh(Y )(p)

)
d−→ N (0, σ2(p)),

where

σ2(p) =
1

ψ′
(
Eh(Y )(p); p

)2
∑

i∈Z

∑

k≥τ

ck(p)
2

k!
ρ(i)k

and where ck(p) is the kth Hermite coefficient of the expansion of the function
ψ(h(·);Eh(Y )(p); p) in Hermite polynomials.

(ii) Let {Y 1
i }+∞

i=1 and {Y 2
i }+∞

i=1 two (centered) stationary Gaussian processes with
variances 1 and correlation functions (resp. cross-correlation functions) ρ1, ρ2

(resp. ρ12, ρ21) decreasing hyperbolically with exponents α1, α2 (resp. α12, α21).
Let p ∈ (0, 1), h a function satisfying [A(h,p)] and let h(Y1) and h(Y2) be the
samples of n observations of the two subordinated samples. If min(α1, α2, α12,
α21)× τ > 1, then as n→ +∞

√
n
(
Ê
(
p;h(Y1)

)
− Eh(Y )(p), Ê

(
p;h(Y2)

)
− Eh(Y )(p)

)T d−→ N (0,Σ).

where Σ is the (2, 2) matrix with entries Σab for a, b = 1, 2 given by

Σab =
1

ψ′
(
Eh(Y )(p); p

)2
∑

i∈Z

∑

k≥τ

ck(p)
2

k!
ρab(i)k. (2.8)

As it was established for sample quantiles [11], a non standard limit towards
a Rosenblatt process is expected in the other cases (ατ ≤ 1). This case is not
considered here.

2.3. Simulations

To illustrate a part of the previous results, we propose a short simulation study in
this section. The latent stationary Gaussian process we consider here is the frac-
tional Gaussian noise with variance 1, which is obtained by taking the discretized
increments from a fractional Brownian motion. The correlation function of the
fractional Gaussian noise with Hurst parameter (or self-similarity parameter)
H ∈ (0, 1) satisfies the hyperbolic decreasing property required in Theorem 1
with α = 2 − 2H . Discretized sample paths of fractional Brownian motion can
be generated exactly using the embedding circulant matrix method popularized
by Wood and Chan [31] (see also Coeurjolly [9]) which is implemented in the R

package dvfBm.
Figures 1 and 2 illustrate the convergence of the sample expectiles. Three h

functions are considered: h(·) = (·), (·)2 and log | · |. The related Hermite rank of

the function ψ̃ is respectively 1,2 and 2 for these three h functions. The sample
size of the simulation is fixed to n = 500. We can claim the convergence of the
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Fig 1. Boxplots of sample expectiles for expectiles of order p = 0.1, . . . , 0.9 based on m =
500 replications of fractional Gaussian noise with length n = 500 and with Hurst parmeter
H = 0.3 (left, α = 1.4) and H = 0.7 (right, α = 0.6). The h functions considered here is the
identity function (with Hermite rank 1). The curves correspond to the theoretical expectile
functions for Y ∼ N (0, 1).

sample expectile Ê(p;h(Y )) towards Eh(Y )(p) for all the values of α (or H),
p and for the three functions h considered. If we focus on h(·) = (·), we can
also remark a higher variance of the sample estimates for α = 0.6 compared to
α = 1.4. This is in agreement with the theory since for α = 0.6, ατ = 0.6 < 1
and the rate of convergence is lower than n−1/2 which means an increasing of
the variance. For the two other functions considered, then ατ is always greater
than 1 (it equals either 2.8 or 1.2 in our simulations) and we do not observe
such an increasing of the variance.

To put emphasis on this last point, Figure 3 shows in log-scale the average
(over the 9 order of expectiles considered in the simulation, i.e. p = 0.1, . . . , 0.9)
of the empirical variances in terms of n for the three h functions and for the
two values of α = 0.6 and α = 1.4. We clearly observe that as soon as ατ > 1,
the slope of the curves is close to −1 which agrees with the result presented
in Corollary 2 for example. When h(·) = 1 and α = 0.6, we observe that the
slope is about −0.6 which seems to agree with the convergence in n−ατ which
is expected from Theorem 1.

3. Estimation of the Hurst exponent using sample expectiles and
discrete variations

In this section, we propose a new method based on expectiles for estimating the
Hurst exponent of a fractional Brownian motion with scale parameter σ assumed
to be unknown. We derive from the previous section asymptotic results for this
new estimate and prove its efficiency via a short simulation study.
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Fig 2. Boxplots of sample expectiles for expectiles of order p = 0.1, . . . , 0.9 based on m = 500
replications of fractional Gaussian noise with length n = 500 and with Hurst parmeter H =
0.3 (left, α = 1.4) and H = 0.7 (right, α = 0.6). Two h functions with Hermite rank 2 have
been considered here: h(·) = (·)2 (top) and h(·) = log | · | (bottom). The curves correspond to
the theoretical expectile functions for Y 2 (middle) and log |Y | (bottom) where Y ∼ N (0, 1).

3.1. Estimation method and asymptotic results

Let X = (X(i))i=1,...,n be a discretized version of a fractional Brownian motion
process and let a be a filter of length ℓ + 1 and of order ν ≥ 1 with real
components i.e.:

ℓ∑

q=0

qjaq = 0, for j = 0, . . . , ν − 1 and

ℓ∑

q=0

qνaq 6= 0.



Expectiles for subordinated Gaussian processes 313

Fig 3. Means of empirical variances of sample expectiles in terms of n in log-scale based on
m = 500 replications of fractional Gaussian noise with parameters H = 0.3 (left, α = 1.4) and
H = 0.7 (right, α = 0.6). More precisely, we consider the vector of probability (0.1, . . . , 0.9)
for the orders of the expectiles and we compute σ̂2

n = 1/9 ×
∑9

i=1 σ̂
2
i,n

where σ̂2
i,n

is the

empirical variance for the expectile with order i/10 for the sample size n. Three choices of h
functions have been considered: h(·) = (·), (·)2 and log | · |.

Define also Xa to be the series obtained by filtering X with a, then:

Xa (i) =

ℓ∑

q=0

aqX (i− q) , for i ≥ ℓ+ 1

and X̃a as the normalized vector of Xa, i.e.:

X̃a =
Xa

E((Xa(1))2)1/2
.

It should be noticed here that the filtering operation allows to decorrelate the
increments of the discretized version of the fractional Brownian motion process.
Indeed, it may be proved (see e.g. Coeurjolly [10]) that: ρaH(i) ∼ kH |i|2H−2ν as
|i| → +∞.

Consider the sequence (am)m≥1 defined by:

ami =

{
aj if i = jm
0 otherwise

for i = 0, . . . ,mℓ,

which is the filter a dilated m times. It has been shown in Coeurjolly [10, 11]
that:

X̃a
m

=
Xa

m

σm

where σ2
m = m2Hσ2κaH and κaH = −1

2

∑ℓ
q,q′=0 aqaq′ |q − q′|2H .
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The following proposition allows us to construct an ordinary least squares
(OLS) estimator of the Hurst exponent H of a fBm process based on sample
expectiles.

Proposition 3. Let Ê(p;h(Xa
m

)) and Ê(p;h(X̃a
m

)) be the pth order sample
expectiles for the filtered series h(Xa

m

) and h(X̃a
m

) respectively. Here two posi-
tive functions h(·) are considered, namely: h(·) = |·|β for β > 0 and h(·) = log |·|.
We have:

Ê
(
p; |Xa

m |β
)
= σβ

mÊ
(
p; |X̃a

m |β)
)

(3.1)

and

Ê
(
p; log |Xa

m |
)
=

1

2
log(σ2

m) + Ê
(
p; log |X̃a

m |
)
. (3.2)

Proof. We have:

Ê
(
p; |Xa

m |β
)

= argminθ
1

n−mℓ

n−1∑

i=mℓ

|p− 1{|Xa
m (i)|β≤θ}|.(|Xa

m

(i)|β − θ)2

= argminθ
1

n−ml

×
n−1∑

i=ml

|p− 1{|X̃a
m(i)|β≤ θ

σ
β
m

}|.(|X̃a
m

(i)|β − θ

σβ
m

)2.

Setting θ′ = θ

σβ
m

, the proof of the first relation (3.1) follows easily. Using the

same methodology, we can demonstrate the result given by equation (3.2).

Remark 1. It should be stressed here that the scaling relationship relating the
theoretical pth expectiles for the series h(Xa

m

) and h(X̃a
m

) can be obtained
directly using the scale equivariance property (2.2) for h(·) = | · |β and the
location equivariance property (2.3) for h(·) = log | · |.

Now applying the logarithmic transformation to both sides of (3.1), we get:

log Ê
(
p; |Xa

m |β
)

= βH log(m) + log
(
σβ(κaH)β/2E|Y |β (p)

)

+ log



Ê
(
p; |X̃a

m |β
)

E|Y |β (p)


 . (3.3)

On the other hand, (3.2) can be reformulated in the following way:

Ê
(
p; log |Xa

m |
)

= H log(m) +
1

2
log(σ2κaH) + Elog |Y |(p)

+
(
Ê
(
p; log(|X̃a

m |)
)
− Elog |Y |(p))

)
. (3.4)

It is noteworthy here that we expect that log Ê(p; |X̃a
m |β)/E|Y |β (p) and

Ê(p; log(|X̃a
m |β)) − Elog |Y |(p) to converge towards 0 as n → ∞. Hence, based
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on equations (3.3) and (3.4), we opt for an OLS regression scheme. This allows
to derive the two following estimators of the Hurst index defined by:

Ĥβ =
AT

β||A||2
(
log Ê

(
p; |Xa

m |β
))

m=1,...,M
, (3.5)

and

Ĥ log =
AT

||A||2
(
Ê
(
p; log |Xa

m |
))

m=1,...,M
, (3.6)

where A is the vector of length M with components

Am = logm− 1

M

M∑

m=1

log(m),

for m = 1, . . . ,M for some M ≥ 2 whereas ||z|| for some vector z of length d

designates the norm defined by (
∑d

i=1 z
2
i )

1/2. We stress on the fact that M is
at least greater than 2 since assuming σ2 unknown requires at least two points
to estimate the slopes of the regressions (3.3) and (3.4). We also note that

estimated slopes Ĥβ and Ĥ log do not depend on σ2.
We would like to put the stress on the fact that from the scale and loca-

tion equivariance property of expectiles, (3.5) and (3.6) are really close to the
estimates developed in Coeurjolly [10, 11]. Indeed, the standard procedure de-
veloped in Coeurjolly [10] simply consists in replacing the sample expectile by
the sample variance (this method will be denoted by ST in Section 3.2). And
to deal with outliers, the procedure developed in Coeurjolly [11] consists in
replacing the sample expectile by either the sample median of (Xa

m

)2 or the
trimmed-means of (Xa

m

)2. These two last methods are denoted by MED and
TM in Section 3.2.

Finally, let us say a few words on the parameter M . The asymptotic re-
sults presented hereafter are valid for any value of M < +∞. However, since
Ê(p; |Xa

m |β) and Ê(p; log |Xa
m |) are based on n−mℓ observations a too large

value of M reduces the finite sample properties of the estimates. The problem
of setting this parameter has been considered in [10] for the method ST and we
follow the conclusion of this paper by choosing M = 5 dilated filters. We now
state the asymptotic results for these new estimates based on expectiles.

Proposition 4. Let a a filter with order ν ≥ 2, p ∈ (0, 1), β > 0 then as

n → +∞, Ĥβ and Ĥ log converge in probability to H. Moreover, the following
convergences in distribution hold

√
n
(
Ĥβ −H

)
d−→ N (0, σ2

β) and
√
n
(
Ĥ log −H

)
d−→ N (0, σ2

log),

where

σ2
β =

1

E|Y |β (p)2
× ATΣβA

β2‖A‖4 and σ2
log =

ATΣlogA

‖A‖4

and where the (M,M) matrices Σβ and Σlog are defined by (2.8).
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Proof. We only provide a sketch of the proof. We claim that once Theorem 1 and
Corollary 2 are established, the obtention of convergences stated in Proposition 4
are semi-routine. First of all, let us notice that

Ĥβ −H =
AT

β‖A‖2


log



Ê
(
p; |X̃a

m |β
)

E|Y |β






m=1,...,M

(3.7)

and

Ĥ log −H =
AT

β‖A‖2
(
Ê
(
p; log |X̃a

m |
)
− Elog |Y |(p)

)
m=1,...,M

. (3.8)

Since the functions | · |β and log | · | have Hermite rank 2 and since the correla-

tion function of the stationary sequence X̃a
m

decreases hyperbolically with an
exponent α = 2ν − 2H then for any m ∈ {1, . . . ,M}, Theorem 1 holds with
rn = n−1/2 (since ατ > 1 for all H ∈ (0, 1)). This ensures the convergence in
probability of the new estimates.

The cross-correlation between X̃a
m1

and X̃a
m2

is defined by

ρa
m1 ,am2

H (j) =
πa

m1 ,am2

H (j)

πam1 ,am1

H (0)1/2πam2 ,am2

H (0)1/2

with

πa
m1 ,am2

H (j) =

ℓ∑

q,r=0

aqar|m1q −m2r + j|2H .

Lemma 1 in Coeurjolly [11] states that for all m1,m2 the correlation function

ρa
m1 ,am2

H is also decreasing hyperbolically with an exponent α = 2ν − 2H , then
Corollary 2 may be applied to prove that

√
n
(
Ê
(
p; |X̃a

m |β
)
− E|Y |β

)
m=1,...,M

d−→ N (0,Σβ) (3.9)

and
√
n
(
Ê
(
p; log |X̃a

m |
)
− Elog |Y |

)
m=1,...,M

d−→ N (0,Σlog), (3.10)

where according to (2.8), the (M,M) matrices Σβ and Σlog are respectively
defined by

Σβ
m1m2

=
1

ψ′
(
E|Y |β (p); p

)2
∑

i∈Z

∑

k≥2

cβk (p)
2

k!
ρa

m1 ,am2

H (i)k (3.11)

Σlog
m1m2

=
1

ψ′
(
Elog |Y |(p); p

)2
∑

i∈Z

∑

k≥2

clogk (p)2

k!
ρa

m1 ,am2

H (i)k, (3.12)

where (cβk )k≥2 and (clogk )k≥2 are respectively the Hermite coefficients of the
functions | · |β and log | · |. The convergences (3.9) and (3.10) combined with (3.7)

and (3.8) and the use of the delta-method (for the convergence of Ĥβ) end the
proof.
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3.2. A short simulation study

In this section, we investigate the interest of the new estimators based on ex-
pectiles. We consider three different models in our simulations.

(a) standard fBm: non-contaminated fractional Brownian motion.
(b) fBm with additive outliers: we contaminate 5% of the observations of the

increments of the fractional Brownian motion with an independent Gaus-
sian noise such that the SNR of the considered components equals −20Db.

(c) rounded fBm: we assume the data are given by the integer part of a dis-
cretized sample path of an original fBm.

To fix ideas, Figure 4 provides some examples of discretized sample paths of
standard and contaminated fBm. The simulation results are presented in Ta-
bles 1 and 2. For these simulations, as suggested in Coeurjolly [10], we chose the
filter a = d4 corresponding to the wavelet Daubechies filter with order 4 (see
Daubechies [12]) and the maximum number of dilated filters M = 5. Also, in

other simulations not presented here, we have observed that the estimates Ĥβ

perform better than Ĥ log and, among all possible choices of β, the value β = 2
seems to be a good compromise. Therefore, we present only the result for this
latter estimator, that is Ĥβ with β = 2.

In a first step, we had observed a quite large sensitivity to the value of the
probability p defining the expectile. In order to have an efficient data-driven
procedure, we propose to choose the probability parameter p via a Monte-Carlo
approach as follows:

1. Estimate the parameters H and σ2 using the standard method (the es-
timation of σ2 is not described here but it may be found for example in
Coeurjolly [10]). Denote these estimates Ĥ0 and σ̂2

0 .

2. Generate B = 100 contaminated fBm with Hurst parameter Ĥ0 and scal-
ing coefficient σ̂2

0 , define a grid of probabilities (p1, . . . , pP ). For each new

replication, we estimate Ĥ0 with expectiles for all the pi. The optimal p,
denoted in the tables by popt, is then defined as the one achieving the
smallest mean squared error (based on the B = 100 replications).

The procedure based on expectiles, denoted E(p) in the results, is compared to
the standard method (ST) and to methods which efficiently deal with outliers,
that is methods MED and TM (the last one is calculated by discarding 5% of
the lowest and the highest values of (Xa

m

)2 at each scale m).
The standard fBmmodel is used as a control to show that all methods perform

well. As seen in the first two columns of Tables 1 and 2, this is indeed true. All
the methods seem to be asymptotically unbiased and have a variance converging
to zero. We can also remark that in this situation whatever the value of H ,
estimates based on expectiles exhibit a performance which is very close to the
one of the standard method (wich can also be viewed as the method based on
expectile with p = 0.5). Several types of expectiles are investigated. When the
discretized sample path of the fBm is contaminated by outliers, we recover the
results already shown in Coeurjolly [11], Achard and Coeurjolly [3] or Kouamo,
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Fig 4. Examples of discretized sample path of standard fBm (top), fBm with additive outliers
(middle) and rounded fBm (bottom) for n = 500 and with Hurst parameters H = 0.2 (left)
and H = 0.8 (right).
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Table 1

Empirical means and standard deviations of H estimates based on m = 500 replications of
non-contaminated and contaminated fractional Brownian motions with scale parameter

σ = .5, Hurst parameter H = 0.2 and sample size n = 500, 5000 are given between brackets.
Methods based on expectiles, quantiles and trimmed-means as well as the standard method
are considered. The filter a correspond to the Daubechies wavelet filter with order 4 (two
zero moments) and we set M = 5. According to a sample size and a model, the method

achieving the lowest mean squared error is printed in bold

Standard fBm fBm with additive outliers Rounded fBm

n = 500 n = 5000 n = 500 n = 5000 n = 500 n = 5000

E(p=0.2) 0.198 (0.033) 0.200 (0.011) 0.280 (0.062) 0.298 (0.024) 0.334 (0.036) 0.337 (0.011)

E(p=0.4) 0.198 (0.032) 0.200 (0.010) 0.288 (0.068) 0.309 (0.026) 0.298 (0.034) 0.300 (0.011)

E(p=0.6) 0.199 (0.032) 0.200 (0.010) 0.298 (0.076) 0.323 (0.029) 0.284 (0.035) 0.287 (0.011)

E(p=0.8) 0.199 (0.033) 0.200 (0.010) 0.311 (0.086) 0.349 (0.034) 0.275 (0.037) 0.277 (0.011)

E(p=popt) 0.199 (0.035) 0.200 (0.011) 0.314 (0.085) 0.368 (0.033) 0.249 (0.040) 0.240 (0.012)

MED 0.197 (0.048) 0.200 (0.016) 0.227 (0.050) 0.227 (0.016) 0.451 (0.158) 0.361 (0.119)

TM 0.206 (0.034) 0.201 (0.011) 0.222 (0.052) 0.225 (0.016) 0.294 (0.038) 0.289 (0.012)

ST 0.199 (0.032) 0.200 (0.010) 0.293 (0.072) 0.315 (0.027) 0.290 (0.034) 0.292 (0.011)

Table 2

Empirical means and standard deviations of H estimates based on m = 500 replications of
non-contaminated and contaminated fractional Brownian motions with scale parameter

σ = .5, Hurst parameter H = 0.8 and sample size n = 500, 5000 are given between brackets.
Methods based on expectiles, quantiles and trimmed-means as well as the standard method
are considered. The filter a correspond to the Daubechies wavelet filter with order 4 (two
zero moments) and we set M = 5. According to a sample size and a model, the method

achieving the lowest mean squared error is printed in bold

Standard fBm fBm with additive outliers Rounded fBm

n = 500 n = 5000 n = 500 n = 5000 n = 500 n = 5000

E(p = 0.2) 0.796 (0.044) 0.800 (0.014) 0.725 (0.065) 0.715 (0.024) 0.775 (0.049) 0.777 (0.014)

E(p = 0.4) 0.795 (0.043) 0.800 (0.013) 0.712 (0.072) 0.700 (0.027) 0.725 (0.048) 0.728 (0.014)

E(p = 0.6) 0.795 (0.042) 0.800 (0.013) 0.692 (0.083) 0.679 (0.032) 0.702 (0.048) 0.706 (0.013)

E(p = 0.8) 0.794 (0.043) 0.800 (0.014) 0.653 (0.105) 0.632 (0.042) 0.702 (0.049) 0.707 (0.014)

E(p = popt) 0.796 (0.045) 0.800 (0.014) 0.722 (0.073) 0.713 (0.027) 0.786 (0.058) 0.786 (0.018)

MED 0.799 (0.064) 0.800 (0.019) 0.817 (0.062) 0.816 (0.021) 1.242 (2.487) 0.903 (0.017)

TM 0.803 (0.045) 0.801 (0.014) 0.815 (0.052) 0.814 (0.017) 0.696 (0.048) 0.689 (0.014)

ST 0.798 (0.042) 0.800 (0.013) 0.703 (0.077) 0.691 (0.029) 0.710 (0.048) 0.714 (0.013)

Lévy-Leduc and Moulines [20]: methods based on medians or trimmed-means
are very efficient which is in agreement with the fact that quantiles have a finite
gross error sensitivity. The inefficiency of expectiles for such a contamination
is also coherent since expectiles have infinite gross error sensitivity. Finally,
the interest of the expectile-based method can be seen with the rounded fBm
corresponding to the last two columns of each table. In this situation, expectiles
are shown to be more efficient in terms of bias and its variance seems to be not
too much affected by this type of strong contamination. We also put the stress
on the interest and efficiency to choose the p value based on a Monte-Carlo
approach.

4. Conclusion

In this paper, we have established asymptotic theoretical results for the sam-
ple expectiles of a subordinated stationary Gaussian process with correlation
function ρ(i) ∼ κ|i|−α (κ ∈ R) with α > 0. A Bahadur-type representation has
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been derived implying, in some cases, a central limit theorem for the sample
expectile of the subordinated process. These results allowed us to study the sta-
tistical properties of a new class of estimators of the Hurst exponent of the fBm
process. This class is constructed exploiting the scale and location equivariance
properties of sample expectiles of discrete variations of a sample path of the
fBm process. A simulation study shows good finite sample properties for this
new class of estimators especially when dealing with data rounding. This satis-
factory performance of the estimators can be attributable to the boundedness
of the local shift sensitivity of expectiles.
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