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Copulas related to Manneville–Pomeau processes

Sílvia R. C. Lopes and Guilherme Pumi
Federal University of Rio Grande do Sul

Abstract. In this work, we derive the copulas related to Manneville–Pomeau
processes. We examine both bidimensional and multidimensional cases and
derive some properties for the related copulas. Computational issues, approx-
imations and random variate generation problems are addressed and simple
numerical experiments to test the approximations developed are also per-
formed. In particular, we propose an approximation to the derived copulas
which we show to converge uniformly to the true one. To illustrate the use-
fulness of the theory, we derive a fast procedure to estimate the underlying
parameter in Manneville–Pomeau processes.

1 Introduction

The statistics of stochastic processes derived from dynamical systems has seen a
grown attention in the last decade or so (see Chazottes et al. (2005) and references
therein). The relationship between copulas and areas such as ergodic theory and
dynamical systems also have seen some development, especially in the last few
years (see, for instance, Kolesárová et al. (2008)). In this work, our aim is to con-
tribute with the area by identifying and studying the copulas related to random
vectors coming from the so-called Manneville–Pomeau processes, which are ob-
tained as iterations of the Manneville–Pomeau transformation to a specific chosen
random variable (see Definitions 2.1 and 2.2). We cover both, bidimensional and
n-dimensional cases, which share a lot more in common than one could expect.

The copulas derived here depend on a probability measure which has no closed
formula. In order to minimize this deficiency, we propose an approximation to the
copula which we show to converge uniformly to the true copula. The copula also
depend on several functions which have to be approximated as well, so the ap-
proximation depends on several intermediate steps. The results related to the con-
vergence of the proposed approximation presented here are far more general than
we need and actually allows one to change these intermediate approximations and
still obtain the uniform convergence result for the approximated copula. We also
address problems related to random variate generation of the copula and present
the results of some simple numerical experiments in order to assess the stability
and precision of the intermediate approximations. The usefulness of the theory
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is illustrated by a simple application to the problem of estimating the underlying
parameter in Manneville–Pomeau processes.

The paper is organized as follows: in the next section, we briefly review
some concepts and results on Manneville–Pomeau transformations and processes
and on copulas. Section 3 is devoted to determine the copulas related to any
pair (Xt ,Xt+h) from a Manneville–Pomeau process and to explore some conse-
quences. In Section 4, the multidimensional extensions are shown. In Section 5,
an approximation to the copulas derived in Section 3 is proposed. This approxima-
tion, which is shown to converge uniformly to the true copula, is then applied to
exploit some characteristics of the copulas related to Manneville–Pomeau process
through statistical and graphical analysis. Some computational and random variate
generation problems are also addressed. In Section 6, we illustrate the usefulness
of the theory by deriving a fast procedure to estimate the underlying parameter in
Manneville–Pomeau processes. Conclusions are reserved to Section 7.

2 Some background

In this section, we shall briefly review some basic results on Manneville–Pomeau
transformations and related processes as well as some concepts on copulas needed
later. We start with the definition of the Manneville–Pomeau transformation.

Definition 2.1. The map Ts : [0,1] −→ [0,1], given by

Ts(x) = x + x1+s(mod 1)

for s > 0, is called the Manneville–Pomeau transformation (MP transformation,
for short).

In what follows, λ shall denote the Lebesgue measure in I := [0,1] and the k-
fold composition will be denoted, as usual, by T k

s = Ts ◦ · · · ◦ Ts . Figure 1 shows
the plot of the MP transformation for the values of s ∈ {0.5,1,10}. The plots show

Figure 1 Plot of the Manneville–Pomeau transformation for different values of s ∈ {0.5,1,10}.
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the usual behavior of the MP transformations: for any s, they are increasing and
differentiable functions by parts in I . Furthermore, for any s > 0, the function T k

s

will have exactly 2k parts.
Pianigiani (1980) shows the existence of a Ts-invariant and absolutely con-

tinuous measure with respect to the Lebesgue measure in I which will be de-
noted henceforth by μs . However, the proof uses Perron–Frobenius operator the-
ory and is, for practical purposes, non-constructive so that an explicit form for a
Ts-invariant measure is unknown. However, this measure will be a Sinai–Bowen–
Ruelle (SBR) measure in the sense that the weak convergence

1

n

n−1∑
k=0

δT k
s (x)(A) −→ μs(A) (2.1)

holds for almost all x ∈ I and all μs -continuity sets1 A, where δa(·) is the Dirac
measure at a.

As a dynamical system, the triple (I,μs, Ts) is exact (that is, limk→∞(μs ◦
T k

s )(A) = 1, for all positive μs -measurable sets A) which implies ergodicity and
strong-mixing. When s < 1, μs is a probability measure, while if s ≥ 1, μs is
no longer finite, but σ -finite (see Fisher and Lopes (2001)). Furthermore, it can
be shown that μs has a positive, bounded continuous Radon–Nikodym derivative
dμs = hs(x)dx, fact that will be useful later. For further details in the theory of MP
transformations and related results, we refer to Pianigiani (1980), Young (1999),
Maes et al. (2000) and Fisher and Lopes (2001). For applications, see Zebrowsky
(2001), Olbermann et al. (2007) and Lopes and Lopes (1998).

Definition 2.2. Let s ∈ (0,1) and let U0 be a random variable distributed accord-
ing to (the probability measure) μs . Let ϕ : [0,1] −→ R be a function in L1(μs).
The stochastic process given by

Xt = (ϕ ◦ T t
s )(U0) for all t ∈ N,

is called a Manneville–Pomeau process (or MP process, for short).

The MP process, as defined above, is stationary since μs is a Ts -invariant mea-
sure and μs � λ. It is also ergodic since μs is ergodic for Ts . By its turn, an
n-dimensional copula is a distribution function whose marginals are uniformly
distributed on I . The copula literature has grown enormously in the last decade,
especially in terms of empirical applications and have become standard tools in
financial data analysis (see Nelsen (2006) and references therein). The next theo-
rem, known as Sklar’s theorem, is the key result for copulas and elucidates the role
played by them. See Schweizer and Sklar (2005) for a proof.

1Recall that a Borel set A is a μ-continuity set if μ(∂A) = 0, where ∂A denotes the boundary of
A. The measure theoretical results applied here can be found, for instance, in Royden (1988). A good
reference in weak convergence of probability measures is Billingsley (1999) and for results related
to ergodic theory, see Pollicott and Yuri (1998).
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Theorem 2.1 (Sklar’s theorem). Let X1, . . . ,Xn be random variables with
marginals F1, . . . ,Fn, respectively, and joint distribution function H . Then, there
exists a copula C such that,

H(x1, . . . , xn) = C(F1(x1), . . . ,Fn(xn)) for all (x1, . . . , xn) ∈ R
n.

If the Fi ’s are continuous, then C is unique. Otherwise, C is uniquely determined
on Ran(F1) × · · · × Ran(Fn), where for a function f , Ran(f ) denotes the range
of f . The converse also holds. Furthermore,

C(u1, . . . , un) = H
(
F

(−1)
1 (u1), . . . ,F

(−1)
n (un)

)
for all (u1, . . . , un) ∈ In,

where for a function F , F (−1) denotes its pseudo-inverse given by F (−1)(x) :=
inf{u ∈ Ran(F ) :F(u) ≥ x}.

The next theorem, whose proof can be found, for instance, throughout Nelsen
(2006), shall prove very useful in what follows. Except stated otherwise, the mea-
sure implicit to phrases like “almost sure,” “almost everywhere” and so on will be
the (appropriate) Lebesgue measure.

Theorem 2.2. Let X and Y be continuous random variables with copula C. If f is
an almost everywhere decreasing function then Cf (X),Y (u, v) = u − CX,Y (u,1 −
v). Furthermore, if f1 and f2 are functions increasing almost everywhere, then
Cf1(X),f2(Y )(u, v) = CX,Y (u, v).

For an introduction to copulas, we refer the reader to Nelsen (2006). For more
details and extensions to the multivariate case with emphasis in modeling and de-
pendence concepts, see Joe (1997). The theory of copulas is also intimately related
to the theory of probabilistic metric spaces (see Schweizer and Sklar (2005) for
more details in this matter).

3 Copulas and MP processes: Bidimensional case

In this section, we shall investigate the bidimensional copulas associated to pairs
of random variables coming from MP processes which we shall call MP copulas.
As we will see later, the multidimensional case is very similar to the bidimensional
case, so we shall give special attention to the latter.

First, let {Xn}n∈N be an MP process with parameter s ∈ (0,1) and ϕ ∈ L1(μs)

be an increasing almost everywhere function. Throughout this section and in the
rest of the paper, we shall treat s ∈ (0,1) as a given fixed number. Let

F0(x) := P(U0 ≤ x) = μs([0, x]).
Since μs � λ, μs is non-atomic and, therefore, F0 is (uniformly) continuous.
The existence of a positive Radon–Nikodym density for μs also shows that F0
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is increasing and its inverse is well defined. Let Ft be the distribution function of
T t

s (U0), for all t ∈ N. For x ∈ I , notice that

Ft(x) := P
(
T t

s (U0) ≤ x
) = μs((T

t
s )−1([0, x])) = μs([0, x]) = F0(x), (3.1)

since μs is a Ts-invariant measure.
In what follows, we shall need the solution for the inequality T t

s (X) ≤ y, y ∈
(0,1), in X, for X a random variable taking values in I . Now, since each of the 2t

parts of T t
s is one-to-one in its domain, the inverse of T t

s will also be continuous
by parts and each part will also be a one-to-one function in its domain. Let 0 =
at,0, . . . , at,2t = 1 be the end points of each part of T t

s . We shall call each interval
[at,k, at,k+1) a node of T t

s , for k = 0, . . . ,2t −1 and t > 0. The (piecewise) inverse
of T t

s can be conveniently written as

(T t
s )−1 : I −→ I 2t

,
(3.2)

y 	−→ (Tt,0(y), . . . , Tt,2t−1(y)),

where Tt,k(y) denotes the inverse of T t
s restricted to its kth node, for all k ∈

{0, . . . ,2t − 1}. Notice that both Tt,k and at,k depend on s for each k, but since
no confusion will arise, and for the sake of simplicity, we shall omit this de-
pendence from the notation as we shall do in several other occasions. Now, the
solution of the inequality T t

s (X) ≤ y in X can be determined and is given by
X ∈ At,0(y) ∪ · · · ∪ At,2t−1(y), where

At,k(y) = [at,k, Tt,k(y)], (3.3)

which is a proper closed subinterval of [at,k, at,k+1), for each k = 0, . . . ,2t − 1.
Notice that At,k(y) (whose dependence on s was omitted from the notation) is
just the inverse image of [0, y] by the transformation T t

s restricted to the node
[at,k, at,k+1). We can now use this result to prove the following useful lemma.

Lemma 3.1. Let X be a random variable taking values in I and let Ts be the MP
transformation with parameter s > 0. Then, for any t ∈ N and x ∈ I ,

P
(
T t

s (X) ≤ x
) = P

(
X ∈

2t−1⋃
k=0

At,k(x)

)
=

2t−1∑
k=0

P
(
X ∈ At,k(x)

)
,

where At,k’s are given by (3.3).

Proof. The result follows easily from what was just discussed and from the fact
that the intervals At,k’s are (pairwise) disjoints. �

As for the copulas related to MP processes, in view of the stationarity of the MP
process, the following result follows easily.
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Proposition 3.1. Let {Xn}n∈N be an MP process with parameter s ∈ (0,1) and
ϕ ∈ L1(μs) be an almost everywhere increasing function. Then, for any t, h ∈ N,

CXt,Xt+h
(u, v) = CX0,Xh

(u, v),

everywhere in I 2.

Proof. As a consequence of the stationarity of {Xt }t∈N, if we let the joint distri-
bution of the pair (Xp,Xq), for any p,q ∈ N, p �= q , be denoted by H̃p,q(·, ·),
it follows that for all x, y ∈ (0,1), t ∈ N and h ∈ N

∗ := N \ {0}, H̃t,t+h(x, y) =
H̃0,h(x, y). Now, upon applying Sklar’s theorem and (3.1), it follows that

CXt ,Xt+h
(u, v) = H̃t,t+h(F

−1
t (u),F−1

t+h(v))

= H̃0,h(F
−1
0 (u),F−1

h (v)) = CX0,Xh
(u, v),

for all (u, v) ∈ I 2. �

Corollary 3.1. Let Ts be the MP transformation for some s ∈ (0,1), μs be a Ts -
invariant probability measure and let U0 be distributed as μs . Then, for any t, h ∈
N, h �= 0,

C
T t

s (U0),T
t+h
s (U0)

(u, v) = CU0,T
h
s (U0)

(u, v)

everywhere in I 2.

Proof. Immediate from Theorem 2.2 applied to Proposition 3.1. �

Now we turn our attention to determine the copula associated to any pair of
random variables (Xp,Xq), p,q ∈ N, obtained from an MP process with ϕ an
increasing almost everywhere function. For the sake of simplicity, let us introduce
the following functions: let h be a positive integer and for k = 0, . . . ,2h − 1, let
Fh,k : I → [F0(ah,k),F0(ah,k+1)] be given by

Fh,k(x) := F0(Th,k(F
−1
0 (x))).

Notice that for each k, Fh,k(0) = F0(ah,k) and Fh,k(1) = F0(ah,k+1) and Fh,k is a
one to one, increasing and uniformly continuous function.

Proposition 3.2. Let {Xn}n∈N be an MP process with parameter s ∈ (0,1), ϕ ∈
L1(μs) be an increasing almost everywhere function and let F0 be the distribution
function of U0. Then, for any t, h ∈ N, h �= 0 and (u, v) ∈ I 2,

CXt ,Xt+h
(u, v) =

(
n0−1∑
k=0

Fh,k(v) − F0(ah,k)

)
δN∗(n0)

(3.4)
+ min{u, Fh,n0(v)} − F0(ah,n0),

where {ah,k}2h

k=0 are the end points of the nodes of T h
s , n0 := n0(u;h) = {k :u ∈



328 S. R. C. Lopes and G. Pumi

[F0(ah,k),F0(ah,k+1))} ∈ {0, . . . ,2h − 1} and δN∗(x) equals 1, if x ∈ N
∗ and 0,

otherwise.

Proof. By Propositions 3.1 and 2.2, it suffices to derive the copula of the pair
(U0, T

h
s (U0)). So let again {Xn}n∈N be an MP process with parameter s ∈ (0,1)

and ϕ ∈ L1(μs) be an increasing almost everywhere function and let H0,h(·, ·)
denote the distribution function of the pair (U0, T

h
s (U0)). Notice that

H0,h(x, y) = P
(
U0 ≤ x,T h

s (U0) ≤ y
) = P

(
U0 ≤ x,U0 ∈

2h−1⋃
k=0

Ah,k(y)

)

= P

(
U0 ∈ [0, x] ∩

2h−1⋃
k=0

Ah,k(y)

)
= P

(
U0 ∈

2h−1⋃
k=0

[[0, x] ∩ Ah,k(y)
])

=
2h−1∑
k=0

P
(
U0 ∈ [0, x] ∩ Ah,k(y)

)
for any x, y ∈ (0,1). Now let n1 := n1(x;h) = {k :x ∈ [ah,k, ah,k+1)} ∈ {0, . . . ,

2h − 1} and assume for the moment that n1 ≥ 1. Since Ah,k(y) = [ah,k, Th,k(y)],
it follows that

H0,h(x, y) =
n1−1∑
k=0

P
(
U0 ∈ Ah,k(y)

) + P
(
U0 ∈ Ah,n1(y) ∩ [ah,n1, x])

=
n1−1∑
k=0

μs(Ah,k(y)) + μs

([ah,n1, Th,n1(y)] ∩ [ah,n1, x])

=
n1−1∑
k=0

μs([ah,k, Th,k(y)]) + μs([ah,n1,min{x, Th,n1(y)}]),

which can be written, since F0(x) = μs([0, x]) is increasing, as

H0,h(x, y) =
n1−1∑
k=0

[F0(Th,k(y)) − F0(ah,k)]

+ min{F0(x),F0(Th,n1(y))} − F0(ah,n1).

If n1 = 0, the summation is absent of the formula and we have

H0,h(x, y) = min{F0(x),F0(Th,0(y))} − F0(ah,0),

so that, in any case, we have

H0,h(x, y) =
(

n1−1∑
k=0

[F0(Th,k(y)) − F0(ah,k)]
)
δN∗(n1)

+ min{F0(x),F0(Th,n1(y))} − F0(ah,n1).
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Now upon applying Sklar’s theorem, it follows that

CU0,T
h
s (U0)

(u, v)

= H0,h(F
−1
0 (u),F−1

h (v)) = H0,h(F
−1
0 (u),F−1

0 (v))

=
(

n0−1∑
k=0

Fh,k(v) − F0(ah,k)

)
δN∗(n0) + min{u, Fh,n0(v)} − F0(ah,n0),

where n0 := n0(u;h) = n1(F
−1
0 (u);h) = {k :u ∈ [F0(ah,k),F0(ah,k+1))}. The re-

sult now follows from Proposition 3.1. �

Remark 3.1. Notice that the copula (3.4) can be expressed in terms of μs as

CXt ,Xt+h
(u, v) =

(
n0−1∑
k=0

μs([ah,k, Th,k(F
−1
0 (v))])

)
δN∗(n0)

(3.5)
+ μs([ah,n0,min{F−1

0 (u), Th,n0(F
−1
0 (v))}]),

which will prove useful in Section 5. Also, expression (3.5) is helpful if one desires
to verify directly that the marginals of (3.4) are indeed uniform.

In the next proposition, we address the case where ϕ is an almost everywhere
decreasing function. In view of Theorem 2.2, one could, at first glance, think that
a result like CX0,Xh

= CXt ,Xt+h
would not hold anymore, but in fact it still does, as

it is shown in the next proposition.

Proposition 3.3. Let {Xn}n∈N be an MP process with parameter s ∈ (0,1), ϕ ∈
L1(μs) be an almost everywhere decreasing function and let F0 be the distribution
function of U0. Then, CX0,Xh

(u, v) = CXt,Xt+h
(u, v) everywhere in I 2 and, for any

t, h ∈ N and h �= 0,

CXt ,Xt+h
(u, v) = u + v − 1 +

(
n0−1∑
k=0

[Fh,k(1 − v) − F0(ah,k)]
)
δN∗(n0)

(3.6)
+ min{1 − u, Fh,n0(1 − v)} − F0(ah,n0),

for all (u, v) ∈ I 2, where {ah,k}2h

k=0 are the end points of the nodes of T h
s and

n0 := n0(u;h) = {k :u ∈ (1 − F0(ah,k+1),1 − F0(ah,k)]}.
Proof. Since the inverse of an almost everywhere decreasing function is still de-
creasing almost everywhere and Xt = ϕ(T t

s (U0)), upon applying Theorem 2.2
twice, it follows that

C
T t

s (U0),T
t+h
s (U0)

(u, v) = Cϕ−1(Xt ),ϕ−1(Xt+h)(u, v) = u − CXt,ϕ−1(Xt+h)(u,1 − v)

= u − (
1 − v − CXt,Xt+h

(1 − u,1 − v)
)
,
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or, equivalently (changing u by 1 − u and v by 1 − v),

CXt ,Xt+h
(u, v) = u + v − 1 + C

T t
s (U0),T

t+h
s (U0)

(1 − u,1 − v). (3.7)

Now (3.6) follows upon applying Proposition 3.2 with the identity map and substi-
tuting equation (3.4) into (3.7). As for the equality CX0,Xh

(u, v) = CXt,Xt+h
(u, v),

Corollary 3.1 and Theorem 2.2 applied to (3.7) yield

CXt ,Xt+h
(u, v) = u + v − 1 + CU0,T

h
s (U0)

(1 − u,1 − v)

= u + v − 1 + Cϕ−1(ϕ(U0)),ϕ
−1(ϕ(T h

s (U0)))
(1 − u,1 − v)

= Cϕ(U0),ϕ(T h
s (U0))

(u, v) = CX0,Xh
(u, v),

everywhere in I 2, as desired. �

Remark 3.2. In view of the “stationarity” results of Theorems 3.1 and 3.3, a cop-
ula associated to a pair (Xt ,Xt+h) from an MP process will be referred to as lag h

MP copula.

The copulas in (3.4) and (3.6) are both singular, as it can be readily ver-
ified, since ∂2CXt ,Xt+h

(u, v)/(∂u∂v) = 0 everywhere in I 2 on both cases.
So the question that naturally arises is, for each h, what is the support of
CXt ,Xt+h

? The question is addressed in the next proposition, which will be use-
ful in Sections 5 and 6. For simplicity, for a given MP process and h > 0, let
�+
h,k, �

−
h,k : [F0(ah,k),F0(ah,k+1)) → I be functions defined by

�+
h,k(x) = x − F0(ah,k)

F0(ah,k+1) − F0(ah,k)
and �−

h,k(x) = F0(ah,k+1) − x

F0(ah,k+1) − F0(ah,k)

for all k = 0, . . . ,2h − 1. Notice that, for each k, �+
h,k is the linear function con-

necting the points (F0(ah,k),0) and (F0(ah,k+1),1), while �−
h,k connects the points

(F0(ah,k),1) and (F0(ah,k+1),0).

Proposition 3.4. Let {Xn}n∈N be an MP process with parameter s ∈ (0,1), for
ϕ1 ∈ L1(μs) an almost everywhere increasing function and let {Yn}n∈N be an MP
process with parameter s ∈ (0,1), for ϕ2 ∈ L1(μs) an almost everywhere decreas-
ing function. Also let F0 be the distribution function of U0. Then, for any t, h ∈ N,
h > 0,

supp{CXt ,Xt+h
} =

2h−1⋃
k=0

{(u, �+
h,k(u)) :u ∈ [F0(ah,k),F0(ah,k+1))} (3.8)

and

supp{CYt ,Yt+h
} =

2h−1⋃
k=0

{(u, �−
h,k(u)) :u ∈ [F0(ah,k),F0(ah,k+1))}. (3.9)
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Proof. Let R = [u1, u2] × [v1, v2] be a rectangle in I 2 and let its CXt ,Xt+h
-

volume be denoted by VCX(R). Let k ∈ {0, . . . ,2h − 1} be fixed and suppose that
ui ∈ [F0(ah,k),F0(ah,k+1)]. This implies that n0 = k for all four terms in VCX(R),
hence the summands and constants on the copula cancel out so that we have

VCX(R) = min{u1, Fh,k(v1)} + min{u2, Fh,k(v2)} − min{u1, Fh,k(v2)}
− min{u2, Fh,k(v1)}

= VM

([u1, u2] × [Fh,k(v1), Fh,k(v2)]),
where M(u,v) = min{u, v} is the Frechèt upper bound copula whose support is
the main diagonal in I 2. Observing that by the definition of Fh,k , [u1, u2] ×
[Fh,k(v1), Fh,k(v2)] ⊂ [F0(ah,k),F0(ah,k+1)]2, VCX(R) > 0 if, and only if, R ∩
{(u, �+

h,k(u)) :u ∈ [F0(ah,k),F0(ah,k+1))} �= ∅.
Analogously, denoting the CYt ,Yt+h

-volume of R by VCY(R), if ui ∈ [1 −
F0(ah,k),1 − F0(ah,k+1)], we have

VCY(R) = min{1 − u1, Fh,k(1 − v1)} + min{1 − u2, Fh,k(1 − v2)}
− min{1 − u1, Fh,k(1 − v2)} − min{1 − u2, Fh,k(1 − v1)}

= VM

([1 − u1,1 − u2] × [Fh,k(1 − v2), Fh,k(1 − v1)]). (3.10)

Since [1 − u1,1 − u2] × [Fh,k(1 − v1), Fh,k(1 − v2)] ⊂ [F0(ah,k),F0(ah,k+1)]2,
we observe that VCY(R) will be positive if, and only if, R ∩ {(u, �−

h,k(u)) :u ∈
[F0(ah,k),F0(ah,k+1))} �= ∅ (notice the terms 1 − vi in expression (3.10), for

i = 1,2). Now (3.8) and (3.9) follow by observing that I = ⋃2h−1
k=0 [F0(ah,k),

F0(ah,k+1)] = ⋃2h−1
k=0 [1 − F0(ah,k+1),1 − F0(ah,k)]. �

Remark 3.3. We end up this section by noticing that as an application of Propo-
sitions 3.1 and 3.3, together with the so-called copula version of Hoeffding’s
lemma (see Nelsen (2006)), we can show in a rather different way that an MP
process is weakly stationary. Let FXt be the distribution function of Xt and no-
tice that FXt (x) = FX0(x), for all t ∈ N, by the stationarity of {Xt }t∈N and since
CXt ,Xt+h

(u, v) = CX0,Xh
(u, v), the result follows immediately.

4 Multidimensional case

In this section, we are interested in extending the results from the previous section
to the multidimensional case, that is, in this section we are interested in deriv-
ing the copulas associated to n-dimensional vectors (Xt1, . . . ,Xtn), t1, . . . , tn ∈ N,
coming from an MP process with ϕ an increasing almost everywhere function.
In view of Theorem 2.2, it suffices to derive the copula associated to the vector
(T

t1
s (U0), . . . , T

tn
s (U0)). It turns out that there are more similarities between the
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bidimensional and multidimensional cases than one could expect. In fact, an ex-
pression very similar in form to (3.4) holds for the multidimensional case as well.

Let {Xn}n∈N be an MP process with parameter s ∈ (0,1) and ϕ ∈ L1(μs) be an
almost everywhere increasing function. For the sake of simplicity, we shall use the
following notation: let a, b ∈ N, a < b, we shall write xa:b := (xa, . . . , xb) and for a
function f , f (xa:b) := (f (xa), . . . , f (xb)). Again we shall denote the distribution
function of U0 by F0.

Theorem 4.1. Let {Xn}n∈N be an MP process with parameter s ∈ (0,1), with
ϕ ∈ L1(μs) an almost everywhere increasing function. Let t1, . . . , tn ∈ N and set
hi := ti − t1. Then, for all (u1, . . . , un) ∈ In,

CXt1 ,...,Xtn
(u1, . . . , un) =

(
n0−1∑
k=0

F0(bhn,k(F
−1
0 (u2:n))) − F0(ahn,k)

)
δN∗(n0)

(4.1)
+ min{u1,F0(bhn,n0(F

−1
0 (u2:n)))} − F0(ahn,n0),

where n0 := n0(u1, n) = {k :u1 ∈ [F0(ahn,k),F0(ahn,k+1))}, {ahn,k}2h

k=0 are the end

points of the nodes of T
hn
s , for i = 2, . . . , n, j = 0, . . . ,2hi − 1, Thi,j is given by

(3.2) and for a vector (x2, . . . , xn) ∈ In−1, bhn,k(x2:n) = mini=2,...,n{ci(xi;hn, k)},
with

ci(xi;hn, k) =
{

ahn,k, if Bi(xi;hn, k) = ∅;
Bi(xi;hn, k), otherwise.

and

Bi(xi;hn, k) = min
j=0,...,2hi −1

{Thi,j (xi) : Thi,j (xi) > ahn,k and ahi,j < ahn,k+1}.

Proof. Let {Xn}n∈N be an MP process with parameter s ∈ (0,1) with ϕ ∈ L1(μs)

an almost everywhere increasing function and suppose, without loss of gener-
ality, that 0 < t1 < · · · < tn. In view of Theorem 2.2, it suffices to work with
the vector (T

t1
s (U0), . . . , T

tn
s (U0)). Let Ht1,...,tn be the distribution function of

(T
t1
s (U0), . . . , T

tn
s (U0)). Let hi = ti − t1, for each i = 1, . . . , n, and notice that

hi > 0 since t1 < ti , for all i = 2, . . . , n. Let (x1, . . . , xn) ∈ (0,1)n and for the sake
of simplicity, let Yt1 := T

t1
s (U0), so that we have

Ht1,...,tn(x1, . . . , xn)

= P
(
T t1

s (U0) ≤ x1, . . . , T
tn
s (U0) ≤ xn

)
= P

(
Yt1 ≤ x1, T

h2
s (Yt1) ≤ x2, . . . , T

hn
s (Yt1) ≤ xn

)
= P

(
Yt1 ∈ [0, x1], Yt1 ∈

2h2−1⋃
k=0

Ah2,k(x2), . . . , Yt1 ∈
2hn−1⋃
k=0

Ahn,k(xn)

)
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= P

(
Yt1 ∈ [0, x1]

n⋂
i=2

[2hi −1⋃
k=0

Ahi,k(xi)

])

= P

(
U0 ∈

n⋂
i=2

2hi −1⋃
k=0

[[0, x1] ∩ Ahi,k(xi)
])

, (4.2)

where Ahi,k’s are given by (3.3) and the last equality is a consequence of the Ts -
invariance of μs . For k = 0, . . . ,2hn−1, let

Ãhn,k(x2:n) = Ahn,k(xn)

n−1⋂
i=2

[2hi −1⋃
j=0

Ahi,j (xi)

]
.

In order to simplify the notation, for i = 2, . . . , n and k = 0, . . . ,2hn − 1, let
Bi(xi;hn, k) be as in the enunciate. Notice that, for each k and i, Bi(xi;hn, k)

is either empty or the smallest Thi,j (xi) which is greater than ahn,k and such that
the correspondent Ahi,j (xi) has non-empty intersection with Ahn,k(xn). Let

ci(xi;hn, k) =
{

ahn,k, if Bi(xi;hn, k) = ∅;
Bi(xi;hn, k), otherwise.

Then, for each k = 1, . . . ,2hn − 1, setting bhn,k(x2:n) = mini=2,...,n{ci(xi;hn, k)},
it follows that

Ãhn,k(x2:n) = [ahn,k, bhn,k(x2:n)],
which is a closed subset of [ahn,k, ahn,k+1]. Also notice that, from the defini-
tion of bhn,k(x2:n), we could have Ãhn,k(x2:n) = {ahn,k}, in which case we set
Ãhn,k(x2:n) = ∅ (although from a measure-theoretical point of view, this correc-
tion makes no difference). Again we are omitting the dependence in s from the no-
tation on both, bhn,k and Ãhn,k . Each bhn,k(x2:n) determines the smallest Thi,j (xi)

that lies on the kth node of T
hn
s (which has the smallest nodes among all T

hi
s ’s),

so that Ãhn,k’s are just the intersection of all Ahi,k(xi)’s with end point in the kth
node of T

hn
s . Also notice that the Ãhn,k’s are pairwise disjoints. One can rewrite

(4.2) as

Ht1,...,tn(x1, . . . , xn) = P

(
U0 ∈

2hn−1⋃
k=0

[
Ãhn,k(x2:n) ∩ [0, x1]]

)
. (4.3)

Now, let n1 := n1(x1;n) = {k :x1 ∈ [ahn,k, ahn,k+1)} ∈ {0, . . . ,2hn − 1}, and as-
sume for the moment that n1 ≥ 1. Then (4.3) becomes

Ht1,...,tn(x1, . . . , xn)

=
n1−1∑
k=0

P(U0 ∈ Ãhn,k(x2:n)) + P(U0 ∈ Ãhn,n1(x2:n) ∩ [ahn,n1, x1])
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=
n1−1∑
k=0

μs([ahn,k, bhn,k(x2:n)]) + μs([ahn,n1,min{x1, bhn,n1(x2:n)}])

=
n1−1∑
k=0

[F0(bhn,k(x2:n)) − F0(ahn,k)]

+ min{F0(x1),F0(bhn,n1(x2:n))} − F0(ahn,n1).

If n1 = 0, then

Ht1,...,tn(x1, . . . , xn) = min{F0(x1),F0(bhn,0(x2:n))} − F0(ahn,0).

In any case, we can write

Ht1,...,tn(x1, . . . , xn) =
(

n1−1∑
k=0

F0(bhn,k(x2:n)) − F0(ahn,k)

)
δN∗(n1)

+ min{F0(x1),F0(bhn,n1(x2:n))} − F0(ahn,n1).

Recall that the distribution function of T t
s (U0) is also F0 by the Ts -invariance

of μs . Now applying Sklar’s theorem, it follows that,

CXt1 ,...,Xtn
(u1, . . . , un) = Ht1,...,tn(F

−1
0 (u1), . . . ,F

−1
0 (un))

=
(

n0−1∑
k=0

F0(bhn,k(F
−1
0 (u2:n))) − F0(ahn,k)

)
δN∗(n1)

+ min{u1,F0(bhn,n0(F
−1
0 (u2:n)))} − F0(ahn,n0),

where n0 := n1(F
−1
0 (u1), n) = {k :u1 ∈ [F0(ahn,k),F0(ahn,k+1))}, which is the de-

sired formula. �

Remark 4.1. Notice that the proof of Theorem 4.1 from equation (4.3) on is ex-
actly the same as the one in Proposition 3.2 with the obvious notational adapta-
tions.

Now we turn our attention to the case where ϕ is an almost everywhere decreas-
ing function. In view of Theorem 2.2, one cannot expect a simple expression for
the copula. What happens is that the copula in this case will be the sum of the
lower dimensions copulas related to the iterations T k

s (U0), as the next proposition
shows.

Proposition 4.1. Let {Xn}n∈N be an MP process with parameter s ∈ (0,1), and
ϕ ∈ L1(μs) be an almost everywhere decreasing function. Let t, h1, . . . , hn ∈ N,
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0 < h1 < · · · < hn and set Y0 := U0 and Yk := T
hk
s (U0). Denote the copula as-

sociated to the random vector (Xt ,Xt+h1, . . . ,Xt+hn) by Ct. Then the following
relation holds

Ct(u0, . . . , un)

= 1 − n +
n∑

i=0

ui +
n∑

i=0

n∑
j=i+1

CYi,Yj
(1 − ui,1 − uj ) + · · ·

+ (−1)n−1 (4.4)

×
n∑

k1=0

n∑
k2=k1+1

· · ·
n∑

kn−1=kn−2+1

CYk1 ,...,Ykn−1
(1 − uk1, . . . ,1 − ukn−1)

+ (−1)nCU0,Y1,...,Yn(1 − u0, . . . ,1 − un),

everywhere in In+1.

Proof. Let t, h1, . . . , hn ∈ N, 0 < h1 < · · · < hn, t �= 0. Set Y0 := U0, Yk :=
T

hk
s (U0) and yk := ϕ(xk). We have

HX0,Xh1 ,...,Xhn
(x0, x1, . . . , xn)

= P(U0 ≥ y0, Y1 ≥ y1, . . . , Yn ≥ yn)

= P(U0 ≥ y0|Y1 ≥ y1, Y2 ≥ y2, . . . , Yn ≥ yn)P(Y1 ≥ y1, . . . , Yn ≥ yn)

= P(Y1 ≥ y1, . . . , Yn ≥ yn) − P(U0 ≤ y0, Y1 ≥ y1, . . . , Yn ≥ yn). (4.5)

Upon applying a long chain of a conditioning argument on both terms in (4.5), we
arrive at

HX0,Xh1 ,...,Xhn
(x0, x1, . . . , xn)

= 1 −
n∑

i=0

F0(yi) +
n∑

i=0

n∑
j=i+1

HYi,Yj
(yi, yj ) + · · ·

(4.6)

+ (−1)n−1
n∑

k1=0

n∑
k2=k1+1

· · ·
n∑

kn−1=kn−2+1

HYk1 ,...,Ykn−1
(yk1, . . . , ykn−1)

+ (−1)nHU0,Y1,...,Yn(y0, . . . , yn).

A simple calculation (using the Ts -invariance of μs) shows that, for all t ∈ N
∗ and

x ∈ (0,1),

FXt (x) = 1 − F0(ϕ(x)) and F−1
Xt

(x) = ϕ−1(
F−1

0 (1 − x)
)
,

so that, the result follows upon applying Sklar’s theorem to (4.6) (recall that yk =
ϕ(xk)). �
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Remark 4.2. Notice that the copula in Proposition 4.1 can be explicitly calculated
since (4.4) is written as sums of the copulas of vectors containing U0 and T t (U0)

for different t’s, so that the desired formulas can be deduced in terms of the copulas
in Theorem 4.1.

5 Numerical approximations to the MP copulas

The MP copulas derived in the last sections do not have readily computable formu-
las, especially because μs does not have explicit expression and because even ap-
parently simple tasks like determining the discontinuity points of T h

s or to compute
explicit formulas for the branches of T h

s can be highly complex ones. However, one
can still study the copulas derived in the last sections by using appropriate approx-
imations to the functions appearing in the copula expression. Besides the invariant
measure μs , computation of the bidimensional copulas so far discussed also in-
volves computation of the quantile function F−1

0 , the inverse of T h
s and the end

points {ah,k}2h

k=0 of the nodes of T h
s .

In this section our goal is to derive simple approximations to these functions
in order to obtain an approximation to the copula itself, which we shall prove
to converge uniformly in its arguments to the true copula. The approximations
presented here are simple ones, usually a linear interpolation based on a grid of
values, but the technique and results we shall use and prove here are stronger and
cover a wide range of approximations, for instance, all results hold if we use some
type of spline interpolation instead of a linear one. This is so because the functions
to be approximated are generally very smooth. We also evaluate the stability and
performance of the approximations by simple numerical experiments.

5.1 Approximation to μs

We start with an approximation to μs . In this direction, there are at least two
ways to compute approximations to μs . One way is by using the ideas and results
outlined in Dellnitz and Junge (1999), which are based on a discretization of the
Perron–Frobenius operator by means of a Garlekin projection type approximation
in order to compute the eigenvectors of the discretized operator corresponding to
the eingenvalue 1. Although it can be used to approximate any SBR measure, the
method is especially suited to approximate and study (almost) cyclical behavior of
dynamical systems. However, its complexity makes the efficient implementation
troublesome. A much simpler idea, which we shall adopt here, is to approximate
the measure by truncating equation (2.1) for a reasonably large value of n. That is,
we consider the approximating measure

μn(A; s, x0) = 1

n

n−1∑
k=0

δT k
s (x0)

(A) (5.1)
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Figure 2 Performance of the approximation (5.1) for truncation points n ∈ {300,000;1,000,000;
3,000,000} (top, middle and bottom, resp.) and 50 different initial points for s = 0.5. The measured
sets are (left) [0.1,0.2] and (right) [0.4,0.6]. All plots within the same set are in the same scale.

which converges in a weak sense to μs as n tends to infinity, for almost all ini-
tial points x0 ∈ I and all μs -continuity sets A. The iterations of Ts are known
to be unstable with respect to the initial point in the sense that, given a small
ε > 0 and a point x ∈ (0,1), the trajectories T k

s (x) and T k
s (x + ε) become far

apart exponentially fast. The approximation (5.1), however, is quite stable with
respect to the initial point x0 for large n. For instance, in Figure 2 we show
the measure of the sets [0.1,0.2] and [0.4,0.6] obtained by using μn(·; s, x0)

with s = 0.5, for 50 different initial points x0 and 3 different truncation points
n ∈ {300,000;1,000,000;3,000,000}. All plots are in the same scale (within set) in
order to make comparison possible. In Table 1, we show basic statistics related to
Figure 2. Notice that, in average, the 1,000,000 and 3,000,000 iteration cases are
very similar and all cases are fairly stable with respect to the initial points (observe
the scale).

Next question is how good is the approximation (5.1)? One way to test this
is by testing whether the approximation is invariant under Ts . For given initial
points, say x1, . . . , xk and some interval [a, b], we calculate μn([a, b]; s, xi) and
μn(T

−1
s ([a, b]); s, xj ). If the difference between the two quantities is small for dif-

ferent pairs (xi, xj ), one can conclude that the approximation is reasonably good.
In Table 2, we present the difference |μn([a, b]; s, xi)−μn(T

−1
s ([a, b]); s, xj )| for

7 different initial points and 3 different sets [a, b]. The truncation point was taken
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Table 1 Summary statistics for the data presented in Figure 2

Set n 300,000 1,000,000 3,000,000

[0.2, 0.3] [min,max] [0.12511, 0.13067] [0.12431, 0.12901] [0.12688, 0.12825]
range 0.00556 0.00470 0.00137
mean 0.12790 0.12775 0.12777

[0.4, 0.6] [min,max] [0.15349, 0.16092] [0.15326, 0.15944] [0.15676, 0.15857]
range 0.00743 0.00618 0.00181
mean 0.15792 0.15771 0.15771

to be 3,000,000 and s = 0.5. From Table 2, we conclude that the approximation
(5.1) performs very well in all cases and that it can be taken to be Ts -invariant. As
expected, when xi = xj the differences are the smallest (<10−8 in all cases).

In the remaining of this section, we shall assume that s ∈ (0,1) has been fixed
and x0 ∈ (0,1) has been chosen so that the approximation (5.1) converges to μs .

Table 2 Difference |μn([a, b]; s, xi) − μn(T −1
s ([a, b]); s, xj )| for different values of x0 and sets

[a, b]. The truncation point was taken to be n = 3,000,000 and s = 0.5. The initial points are
(x1, . . . , x7) = (π,π/(

√
2 + 1),π

√
2,π + √

2,
√

7,π + √
7,

√
11 + √

7)(mod 1)

initial x1 x2 x3 x4 x5 x6 x7

[0.05, 0.2] x1 0.00000 0.00019 0.00040 0.00008 0.00004 0.00062 0.00022
x2 0.00019 0.00000 0.00020 0.00027 0.00024 0.00043 0.00042
x3 0.00040 0.00000 0.00000 0.00047 0.00044 0.00022 0.00062
x4 0.00008 0.00030 0.00047 0.00000 0.00003 0.00070 0.00015
x5 0.00004 0.00020 0.00044 0.00003 0.00000 0.00066 0.00018
x6 0.00062 0.00043 0.00022 0.00070 0.00066 0.00000 0.00084
x7 0.00022 0.0004 0.00062 0.00015 0.00018 0.00084 0.00000

[0.3, 0.8] x1 0.00000 0.00019 0.00011 0.00009 0.00052 0.00036 0.00155
x2 0.00019 0.00000 0.00008 0.00028 0.00033 0.00016 0.00136
x3 0.00011 0.00008 0.00000 0.00020 0.00041 0.00024 0.00144
x4 0.00009 0.00028 0.00020 0.00000 0.00061 0.00045 0.00164
x5 0.00052 0.00033 0.00041 0.00061 0.00000 0.00016 0.00103
x6 0.00036 0.00016 0.00024 0.00045 0.00016 0.00000 0.00119
x7 0.00155 0.00136 0.00144 0.00164 0.00103 0.00119 0.00000

[0.7, 0.95] x1 0.00000 0.00011 0.00005 0.00012 0.00003 0.00012 0.00089
x2 0.00011 0.00000 0.00016 0.00022 0.00013 0.00022 0.00078
x3 0.00005 0.00016 0.00000 0.00006 0.00003 0.00006 0.00094
x4 0.00012 0.00022 0.00006 0.00000 0.00009 0.00000 0.00100
x5 0.00003 0.00013 0.00003 0.00009 0.00000 0.00009 0.00091
x6 0.00012 0.00022 0.00006 0.00000 0.00009 0.00000 0.00101
x7 0.00089 0.00078 0.00094 0.00100 0.00091 0.00101 0.00000
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Since no confusion will arise, we shall drop s and x0 from the notation and write
the approximation (5.1), based on a size n iteration vector, just by μn(·).
5.2 Approximating F−1

0 and the nodes of T h
s

In order to approximate F−1
0 , one can use an empirical version based on the same

iteration vector from which μn is derived. First, we need to define an approxi-
mation to F0 from which an approximation to F−1

0 will be derived. Let F̂n be the
empirical distribution based on a size n iteration vector (x0, Ts(x0), . . . , T

n−1
s (x0))

and let x1, . . . , xn be the jump points2 of F̂n. Consider the set Ln := {0 =
x0, x1, . . . , xn, xn+1 = 1}. Given x ∈ I \ Ln, there exists a k ∈ {0, . . . , n} such that
x ∈ (xk, xk+1). We define the approximate value of F0(x), denoted by Fn(x), as
the linear interpolation of x between the points (xk, F̂n(xk)) and (xk+1, F̂n(xk+1)),
that is, we set

Fn(x) :=
(

F̂n(xk+1) − F̂n(xk)

xk+1 − xk

)
x + F̂n(xk)xk+1 − F̂n(xk+1)xk

xk+1 − xk

. (5.2)

If x ∈ Ln, we simply define Fn(x) := F̂n(x). Notice that, for each n, Fn : I → I

is a one-to-one, increasing and uniformly continuous function, so that its inverse,
F−1

n , is well defined and is also one-to-one and uniformly continuous. In the next
proposition, we show that Fn(x) → F0(x) and F−1

n (x) → F−1
0 (x), both limits

being uniform in x.

Proposition 5.1. Let F̂n denote the empirical distribution based on an iteration
vector (x0, Ts(x0), . . . , T

n−1
s (x0)) and let x1, . . . , xn be the jump points of F̂n. Let

Fn be the approximation (5.2) based on {x1, . . . , xn} and F−1
n be its inverse. Then,

Fn(x) −→ F0(x) and F−1
n (x) −→ F−1

0 (x),

uniformly in x.

Proof. By the Glivenko–Cantelli theorem, F̂n(x) → F0(x) uniformly in x ∈
[0,1], so that, given ε > 0, one can find n0 := n0(ε) > 0 such that if n > n0,
then |F̂n(x) − F0(x)| < ε uniformly in x. Now, for x ∈ (0,1) (if x equals 0 or 1,
the result is trivial), there exists a k ∈ {1, . . . , n} such that x ∈ [xk, xk+1). Hence, if
n > n0

|Fn(x) − F0(x)| ≤ |Fn(x) − F̂n(x)| + |F̂n(x) − F0(x)|
< |F̂n(xk+1) − F̂n(xk)| + ε

≤ sup
i=1,...,n−1

{|F̂n(xi+1) − F̂n(xi)|} + ε

≤ 1

n
+ ε,

2By the choice of x0, there will be exactly n jump points.
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uniformly in x. To show the convergence of the inverse, let y ∈ [0,1] and ε > 0 be
given and notice that F−1

n being uniformly continuous, one can find a δ := δ(ε) > 0
such that

|x − y| < δ �⇒ |F−1
n (x) − F−1

n (y)| < ε.

Now, since Fn converges uniformly to F0, there exists n1 := n1(ε) > 0 such that,

n > n1 �⇒ |Fn(x) − F0(x)| < δ

for all x ∈ I . Also, since F0 is one to one, there exists v0 ∈ [0,1] such that y =
F0(v0). Therefore, if n > n1

|F−1
n (y) − F−1

0 (y)| = |F−1
n (F0(v0)) − v0| = |F−1

n (F0(v0)) − F−1
n (Fn(v0))| < ε

and since n1 is independent of y, the desired convergence follows. �

As for the end points {ah,k}2h

k=0 of the nodes of T h
s , let {x1, . . . , xm} ∈ (0,1),

xi �= xj and consider the set {T h
s (x1), . . . , T

h
s (xm)}, for m > 0 sufficiently large.3

Note that ah,0 = 0 and ah,2h = 1, for any h. Let D = {i :T h
s (xi) > T h

s (xi+1)} ⊂
{1, . . . ,m}. The set D contains the indexes i ∈ {1, . . . ,m} for which the interval
[xi, xi+1] contains a discontinuity of T h

s . Let {dj }2h−1
j=1 denote the ordered elements

of D, so that the interval [xdj
, xdj+1] contains the j th discontinuity of T h

s . Now
consider the function T ∗

i,h;s : [xdi
, xdi+1] → [0,2] given by T ∗

i,h(x; s) := T h−1
s (x)+

(T h−1
s (x))1+s and notice that we can write

T h
s (x) = T ∗

i,h(x; s) − δ[1,2](T ∗
i,h(x; s)).

Since there is a discontinuity of T h
s in the interval [xdi

, xdi+1], we have T ∗
i,h(xdi

;
s) ≤ 1 and T ∗

i,h(xdi+1; s) ≥ 1 and since T ∗
i,h is continuous and increasing, there

exists a point x ∈ [xdi
, xdi+1] such that T ∗

s (x; s) = 1, which is precisely ah,i .
With this in mind, let am

h,i denote the approximation to ah,i obtained from
{x1, . . . , xm} by using a linear interpolation between the points (xdi

, T ∗
i,h(xdi

; s))
and (xdi+1, T

∗
i,h(xdi+1; s)). That is, am

h,i is given by

am
h,i = xdi

+ xdi+1 − xdi

T ∗
i,h(xdi+1; s) − T ∗

i,h(xdi
; s)

(
1 − T ∗

i,h(xdi
; s)) (5.3)

for all di ∈ D. Clearly am
h,i −→

m→∞ah,i , since |xdi+1 − xdi
| −→
m→∞ 0 and by the conti-

nuity of T ∗
i,h, for each i ∈ {1, . . . ,2h − 1}.

3By “sufficiently large” we mean that m should be at least large enough to guarantee that the

set {T h
s (x1), . . . , T h

s (xm)} reflects the 2h − 1 discontinuities of T h
s , or, in other words, m ≥ 2h.

The limits in m taken for an approximation are understood to be in terms of partitions, that is,
we start with a sufficiently large set of points, say Im = {x1, . . . , xm} and consider refinements of
the form Im+1 = Im ∪ {xm+1}, . . . , Im+k = Im+k−1 ∪ {xm+k}. Suppose that Rm := R(Im) is an
approximation based on Im. For a sequence of refinements {Ik}∞k=m+1, we consider the sequence
{R(Ik)}∞k=m+1. Whenever the last limit exists, we set limm→∞ Rm = limk→∞ R(Ik).
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5.3 Approximating Th,k

Concerning the approximation of Th,k , we shall use an argument based on an em-
pirical inverse and linear interpolation, but we shall also need a doubling argu-
ment in order to improve accuracy of the approximation near the discontinuities
and guarantee the uniform convergence of the approximation to its target. So let
{0 = x1, . . . , xm = 1} ∈ I , xi < xj and consider the set {T h

s (x1), . . . , T
h
s (xm)}, for

m > 0 sufficiently large. Given y ∈ [0,1], recall that the inverse image of y by
T h

s is a size 2h vector denoted by (Th,0, . . . , Th,2h−1). Let again D = {i :T h
s (xi) >

T h
s (xi+1)} ⊂ {1, . . . ,m} and {di}2h−1

i=1 be the ordered points in D. Suppose that we

know exactly or have good estimates for the nodes {ah,k}2h

k=0 of T h
s (for instance,

we could use {am
h,k}2h

k=0, as described before, based on the same set {x1, . . . , xm}
considered here). For i = 0, . . . ,2h − 1, let pi = di+1 − di + 2 and let

Rh,i = {
x

(1)
h,i , . . . , x

(pi)
h,i

} := {am
h,i, xdi+1, . . . , xdi+1, a

m
h,i+1}

and

Ih,i = {
y

(1)
h,i , . . . , y

(pi)
h,i

} := {0, T h
s (xdi+1), . . . , T

h
s (xdi+1),1}.

Given y ∈ [0,1], for each i = 0, . . . ,2h − 1, there exists a y
(k)
h,i ∈ Ih,i such that

y ∈ [y(k)
h,i , y

(k+1)
h,i ). We define the approximation T m

h,i(y) of Th,i(y), as being the

linear interpolation of y between the points (x
(k)
h,i , y

(k)
h,i ) and (x

(k+1)
h,i , y

(k+1)
h,i ). That

is, for each i = 0, . . . ,2h − 1,

T m
h,i(y) = x

(k)
h,i + x

(k+1)
h,i − x

(k)
h,i

y
(k+1)
h,i − y

(k)
h,i

(
y − y

(k)
h,i

)
. (5.4)

Notice that if y equals 0 or 1, we have T m
h,i(y) = Th,i(y). Also, as the partition

{x1, . . . , xm} increases, |xk+1 −xk| −→
m→∞ 0 and the uniform continuity of T h

s clearly

implies T m
h,i(y) −→

m→∞ Th,i(y), for each y ∈ [0,1], for i = 0, . . . ,2h − 1. More is

true: the convergence is actually uniform in y, as we show in the next proposition.

Proposition 5.2. Let T m
h,k be the approximation of Th,k given by (5.4) based on a

partition Rm. Then,

T m
h,k(y) −→ Th,k(y)

for each k = 0, . . . ,2h − 1, as m goes to infinity (i.e., as the partition gets thinner).
Moreover, the convergence is uniform in y ∈ [0,1].
Proof. Given ε > 0, the uniform continuity of Th,k implies the existence of a δ :=
δ(ε) > 0 such that

|x − y| < δ �⇒ |Th,k(x) − Th,k(y)| < ε
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for all x ∈ [0,1]. Let R0 = {0 = x1, . . . , xm0 = 1} ∈ I for a sufficiently large m0 ∈
N

∗ such that

sup
i=1,...,m0−1

{|xi+1 − xi |} < δ.

For m > m0, let Rm = {x∗
1 , . . . , x∗

m} ⊃ R0 be a size m refinement of R0. Given
y ∈ (0,1), for each i = 0, . . . ,2h − 1, let T m

h,i be the approximation (5.4) based on
Rm. By construction and since y ∈ (0,1), it follows that

Th,i

(
x

(k)
h,i

) ≤ T m
h,i(y) < Th,i

(
x

(k+1)
h,i

)
and Th,i

(
x

(k)
h,i

) ≤ Th,i(y) < Th,i

(
x

(k+1)
h,i

)
,

so that

|T m
h,i(y) − Th,i(y)| ≤ ∣∣Th,i

(
x

(k+1)
h,i

) − Th,i

(
x

(k)
h,i

)∣∣
≤ sup

j=1,...,m0−1
{|Th,i(xj+1) − Th,i(xj )|} < ε

for all y ∈ (0,1). If y ∈ {0,1}, by construction Th,i(y) = T m
h,i(y), so that the result

follows uniformly for all y ∈ [0,1], as desired. �

5.4 Approximating the lag h MP copula

With these approximations in hand, we can now define the approximation for the
copula CXt ,Xt+h

when ϕ is almost everywhere increasing given in Proposition 3.2
but in the form (3.5). For (u, v) ∈ I 2, n > 0 and m ≥ 2h, we set

Cm,n(u, v;h) =
(n∗

0−1∑
k=0

μn([am
h,k, T m

h,k(F
−1
n (v))])

)
δN∗(n∗

0)

(5.5)
+ μn([am

h,n0
,min{F−1

n (u), T m
h,n0

(F−1
n (v))}]),

where n∗
0 := n0(m,n) = {k :u ∈ [Fn(a

m
h,k),Fn(a

m
h,k+1))} and limm,n→∞n∗

0 = n0
since Fn converges uniformly to F0 and am

h,k converges to ah,k . In the next theorem
we establish the convergence of the approximation (5.5) to the true copula.

Theorem 5.1. Let Cm,n(u, v;h) be given by (5.5). Then, for all (u, v) ∈ I 2, t ≥ 0
and h > 0

lim
n→∞ lim

m→∞Cm,n(u, v;h) = lim
m→∞ lim

n→∞Cm,n(u, v;h) = lim
m,n→∞Cm,n(u, v;h)

and the common limit is CXt ,Xt+h
(u, v) (given by (3.4)). Furthermore, the above

limits are uniform in (u, v) ∈ I 2.

The proof of Theorem 5.1, is a consequence of the following stronger lemma.
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Lemma 5.1. Let {μn}n∈N be a sequence of probability measures defined in I such
that μn

w−→μ. Let fn : I → I be a sequence of continuous functions converging
uniformly to a function f : I → I . Let {am}m∈N be a sequence of real numbers such
that am ∈ [0,1] for all m and am → a. Also let gm : [am,1] → I be a sequence
of continuous functions converging uniformly to a function g : I → I , Sm,n(v) :=
[am,gm(fn(v))] and S(v) := [a, g(f (v))]. Then,

lim
m→∞ lim

n→∞μn(Sm,n(v)) = lim
n→∞ lim

m→∞μn(Sm,n(v))

= lim
m,n→∞μn(Sm,n(v)) = μ(S(v))

uniformly in v ∈ I .

Proof. For all m,n > 0 and v ∈ [0,1], let Sm,n(v) and S(v) be as in the enunciate
and let

Sn(v) := [a, g(fn(v))] and Sm(v) := [am,gm(f (v))].
Notice that all sets just defined are μ-continuity sets for all m, n and v. Since the
convergence of fn to f is uniform, we have

lim
m,n→∞gm(fn(v)) = lim

n→∞ lim
m→∞gm(fn(v)) = lim

m→∞ lim
n→∞gm(fn(v)) = g(f (v))

for all v, so that, both, the iterated and the double limits exist and Sm,n(v) → S(v),
for all v ∈ [0,1]. Also notice that we have δSm,n(x) ≤ δI (x) uniformly in m, n and
x, and since μn converges weakly to μ and I is a μ-continuity set, it follows that∫

δI (x)dμn −→
∫

δI (x)dμ.

Now, in one hand, since Sm,n(v) → Sm(v) for all v and δSm,n ≤ δI , by the Lebesgue
convergence theorem, it follows that

μn(Sm,n(v)) =
∫

δSm,n(x)dμn −→
n→∞

∫
δSm(x)dμ,

and, since δSm ≤ δI and
∫

δI dμ < ∞, by the Lebesgue dominated theorem, we
conclude that ∫

δSm(x)dμ −→
m→∞

∫
δS(x)dμ = μ(S(v)),

which shows that limm→∞ limn→∞μn(Sm,n(v)) = μ(S(v)) and the convergence
holds uniformly in v ∈ (0,1). On the other hand, since δSm,n ≤ δI and

∫
δI dμn <

∞, by the Lebesgue dominated theorem, it follows that

μn(Sm,n(v)) =
∫

δSm,n(x)dμn −→
m→∞

∫
δSn(x)dμn,
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and, since δSn ≤ δI and
∫

δI dμn → ∫
δI dμ, by the Lebesgue convergence theorem

we conclude that, ∫
δSn(x)dμn −→

n→∞

∫
δS(x)dμ = μ(S(v)),

that is, limn→∞ limm→∞μn(Sm,n(v)) = μ(S(v)), which also holds uniformly in v.
Since the iterated limits are established, in order to finish the proof we need to
show that the double limit exists and is equal to the iterated ones. Let ε > 0 be
given. Since μ � λ, the Radon–Nikodym theorem implies the existence of a non-
negative continuous function h, which will be bounded since we are restricted to
the interval I , such that, for any A ∈ B(I ),

μ(A) =
∫
A

h(x)dλ ≤ Mλ(A),

where M = supx∈I {h(x)} < ∞. Now, since am → a, one can find m1 := m1(ε) >

0 such that, if m > m1,

am ∈ K1(ε) :=
[
a − ε

10M
,a + ε

10M

]
and

μ(K1(ε)) ≤ Mλ

([
a − ε

10M
,a + ε

10M

])
= ε

5
.

The uniform convergence of gm to g implies the existence of m2 := m2(ε) > 0
such that, if m > m2, |gm(x) − g(x)| < ε/(20M), for all x ∈ I , or equivalently,
taking x = fn(v), if m > m2

gm(fn(v)) ∈
[
g(fn(v)) − ε

20M
,g(fn(v)) + ε

20M

]
.

Now, the uniform continuity of g implies the existence of a δ := δ(ε) > 0 such that

|x − fn(v)| < δ �⇒ |g(x) − g(fn(v))| < ε

20M
.

But since fn converges to f uniformly, there exists a n1 = n1(δ) > 0 such that

n > n1 �⇒ |fn(v) − f (v)| < δ

for all v so that, taking x = f (v), for n > n1, we have

g(fn(v)) ∈
[
g(f (v)) − ε

20M
,g(f (v)) + ε

20M

]
for all v ∈ I . Hence, if we take m > m2 and n > n1,

g(fn(v)) − ε

20M
∈

[
g(f (v)) − ε

10M
,g(f (v))

]
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and

g(fn(v)) + ε

20M
∈

[
g(f (v)), g(f (v)) + ε

10M

]
so that, setting

K2(ε) :=
[
g(f (v)) − ε

10M
,g(f (v)) + ε

10M

]
for m > m2 and n > n1, it follows that

gm(fn(v)) ∈
[
g(fn(v)) − ε

20M
,g(fn(v)) + ε

20M

]
⊆ K2(ε)

for all v ∈ I . Also observe that

μ(K2(ε)) ≤ Mλ

([
g(f (v)) − ε

10M
,g(f (v)) + ε

10M

])
≤ ε

5
.

The convergence of μn to μ implies the existence of n2 := n2(ε) > 0 such that if
n > n2 (Ki(ε) is a μ-continuity set)

|μn(Ki(ε)) − μ(Ki(ε))| < ε

5
for i = 1,2. Also, if we set Fn(x) = μn([0, x]) and F0(x) = μ([0, x]), then F0
is continuous (since μ � λ), Fn → F0, and, by Pólya’s theorem, there exists a
n3 := n3(ε) > 0 such that, if n > n3

sup
x∈I

{|Fn(x) − F0(x)|} <
ε

10
.

Now, notice that, if n > n3

|μn(S(v)) − μ(S(v))| ≤ |Fn(g(f (v))) − F0(g(f (v)))| + |Fn(a) − F0(a)|
≤ 2 sup

x∈I

{|Fn(x) − F0(x)|} <
ε

5

for all v ∈ I . Observe further that, by construction, if m > max{m1,m2} and n >

n1,

Sm,n(v) \ S(v) ⊂ K1(ε) ∪ K2(ε)

for all v so that, setting n0 = n0(ε) := max{m1,m2, n1, n2, n3}, if m,n > n0, we
have

|μn(Sm,n(v)) − μ(S(v))|
≤ |μn(Sm,n(v)) − μn(S(v))| + |μn(S(v)) − μ(S(v))|
< |μn(K1(ε)) + μn(K2(ε))| + ε

5
≤ |μn(K1(ε)) − μ(K1(ε))| + μ(K1(ε)) + μ(K2(ε))

+ |μ(K2(ε)) − μn(K2(ε))| + ε

5
< ε
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for all v, which implies the existence of the double limit, equality with the iterated
ones and the desired uniform convergence. �

Proof of Theorem 5.1. First notice that taking fn = F−1
n , gm = T m

h,k , am = am
h,k ,

it follows from Lemma 5.1 that

μn([am
h,k, T m

h,k(F
−1
n (v))]) −→

m,n→∞μ([ah,k, Th,k(F
−1
0 (v))])

for each k = 0, . . . , n0 − 1. It remains to show that

lim
m,n→∞μn([am

h,n0
,min{F−1

n (u), T m
h,n0

(F−1
n (v))}])

= μ([ah,n0,min{F−1
0 (u), Th,n0(F

−1
0 (v))}]),

and that the iterated limits exist and are equal to the double limit. First, since
we can write min{u, v} = u+v

2 − |u−v|
2 , it is routine to show that if fn → f uni-

formly, with fn and f uniformly continuous and gm → g uniformly, with gm and
g uniformly continuous, we have min{fn(u), gm(fn(v))} converging uniformly to
min{f (u), g(f (v))} in n, m, u and v. So, the problem simplifies to show that if
am → a, gm,n(u, v) is a sequence of functions such that gm,n(u, v) → g(u, v) uni-
formly in u, v,n,m and am ≤ gm,n(u, v) for all u, v,n,m and μn

w−→μ, then

lim
m,n→∞μn([am,gm,n(u, v)]) = μ([a,g(u, v)]),

uniformly in u and v and the double limit above is equal to the iterated limits.
A similar argument to the one used in Lemma 5.1 to establish the existence and
equality of the iterated limits can be used to show the existence and equality of
the iterated limits in this case. As for the double limit, let M be as in the proof of
Lemma 5.1. By the uniform convergence of gm,n(u, v) to g(u, v) and since gm,n

and g are uniformly continuous for all m,n, it follows that there exists m1 :=
m1(ε) > 0, depending on ε only, such that, if m,n > m1,

gm,n(u, v) ∈ K(ε) :=
[
g(u, v) − ε

10M
,g(u, v) + ε

10M

]
for all u and v and μ(K(ε)) ≤ ε/5. The rest of the proof is carried out
by mimicking the proof of Lemma 5.1 with the obvious adaptations. Iden-
tification of gm,n(u, v), g(u, v), am and a with min{F−1

n (u), T m
h,n0

(F−1
n (v))},

min{F−1
0 (u), Th,n0(F

−1
0 (v))}, am

h,n0
and ah,n0 , respectively, completes the proof. �

Remark 5.1. Notice that neither the convergence proved in Lemma 5.1 nor the
one in Theorem 5.1 is uniform in m and n.

As for the case when ϕ is almost everywhere decreasing, we observe that, in
view of (3.7), the function

C∗
m,n(u, v;h) = u + v − 1 + Cm,n(1 − u,1 − v;h)
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is an approximation to the copula in (3.6). Clearly C∗
m,n converges to the true

copula as m and n tends to infinity (view either as an iterated or a double limit)
and the convergence is uniform in (u, v).

5.5 Implementation and random variate generation

The implementation of the approximations so far discussed is routine. All the ap-
proximations we mentioned can share the same iteration vector, which further im-
proves the efficiency and precision of the task and greatly reduces the computa-
tional burden. In the top panel of Figure 3, we show the three dimensional plot of
the lag 1 and 2 MP copula for values of s ∈ {0.1,0.4}. The respective level plots
are shown in the bottom panel of Figure 3. Notice the non-exchangeability of the
copulas in all cases.

Obtaining random samples from an MP copulas is a trivial task in view of
Proposition 3.4. There we show that the support of an MP copula is the union of
graphs of certain linear functions. The following algorithm can be used to gener-
ate a pair of variates from a bidimensional MP copula for ϕ an almost everywhere
increasing function.

1. Generate an uniform (0,1) variate u.
2. Let κ0 denote the index for which u ∈ [F0(ah,κ0),F0(ah,κ0+1)] and set v =

�+
h,κ0

(u).
3. The desired pair is (u, v).

In practice the Ts -invariant probability measure is unknown and F0 has to be
approximated. Furthermore, most of times the nodes related to T h

s , for h > 0,
s ∈ (0,1) cannot be analytically obtained. However, we can apply the approxi-
mations developed in this section together with the algorithm above to obtain ap-
proximated samples from MP copulas. In Figure 4, we show 500 approximated
sample points from a lag 1 and 2 MP copula for s ∈ {0.1,0.4} and ϕ an almost ev-
erywhere. Obvious modifications in the algorithm, allow handling the case where
ϕ is an almost everywhere decreasing function.

Remark 5.2. For small values of the lag, the resemblance of the sample to a piece-
wise continuous function is very clear, but this is not always the case as it can be
seen in Figure 5, where we show 500 approximated sample points of the lag 4, 5
and 7 MP copulas for s = 0.2. This is a general principle, for a fixed sample size
the higher the lag, the harder to distinguish the support of the copula based on the
sample, since the number of branches of T h

s grow as fast as 2h. For instance, for
h = 7 in Figure 5 is difficult to say that the sample came from a singular copula at
all.
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Figure 3 From left to right, three dimensional plots of the lag 1 MP copula for s ∈ {0.1,0.4} and lag 2 MP copula for the same parameters (top panel)
and respective level sets (bottom panel) obtained from approximation (5.5).
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Figure 4 From left to right: 500 approximated sample points from a lag 1 MP copula for
s ∈ {0.1,0.4} (top panel) and lag 2 MP copula for the same parameters (bottom panel).

6 Application

In this section, we apply the theory developed in Section 3 to the problem of es-
timating the parameter s in MP processes. This problem have been studied before
in Olbermann et al. (2007), where the authors adapt and apply several estimation
methods from the classical theory of long-range dependence to the problem of es-
timating the parameter s. In this section, we propose an estimator for the parameter
s based on the ideas developed in Section 3, which is both, precise and fast.

Figure 5 Left to right: 500 approximated sample points from the lag 4, 5 and 7 MP copulas for
s = 0.2.
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The mathematical framework is as follows. Let s ∈ (0,1) and consider the as-
sociated MP process {Xn}n∈N for ϕ the identity map. Suppose we observe a real-
ization x1, . . . , xN from Xn and our goal is to estimate the unknown parameter s.

Let a := a(s) ∈ (1
2 ,

√
5−1
2 ) denote the discontinuity point of the MP transformation

and notice that s and a are related by

a + a1+s = 1 ⇐⇒ s = log(1 − a)

log(a)
− 1.

Hence, the problem of estimating s is equivalent to the problem of estimating a.
To define the proposed estimator, we start by observing that Proposition 3.4

for h = 1 implies that the lag 1 MP copula’s support is given by the graph of the
piecewise linear function

�(x) :=

⎧⎪⎪⎨⎪⎪⎩
x

F0(a)
, if x ∈ [0,F0(a)),

x − F0(a)

1 − F0(a)
, if x ∈ [F0(a),1],

so that, any (independent or correlated) sample from a lag 1 MP copula consists
of points scattered through the lines defined by � (see Figure 4). The discontinuity
point of the function � is precisely F0(a). Let yi = F0(xi), for i = 1, . . . ,N , and
consider the series {ui := (yi, yi+1)}N−1

i=1 . By Sklar’s theorem, {ui}N−1
i=1 is a (corre-

lated) sample from the lag 1 MP copula, so all points should lie in the graph of the
function �.

These considerations suggest the following procedure to obtain s based on a
path x1, . . . , xN of Xn within a given accuracy ε > 0. We choose s0 ∈ (0,1) as
an initial guess for s and calculate ŷi = Fn(xi; s0), i = 1, . . . ,N , where Fn is the
approximation of F0 given in (5.2). Next, we define {ûi := (ŷi , ŷi+1)}N−1

i=1 , from
which we estimate the slope of the two branches of the approximated sample from
the lag 1 MP copula obtained this way. The discontinuity point (and hence s) can
then be easily calculated. In this manner, we obtain an estimative s̃ which can be
compared to s0. If s0 is close to the true value s, then the difference between s̃ and
s0 should be small. If not, we choose another starting value and repeat the operation
until obtain the desired accuracy. This leads to an optimization procedure to obtain
s within a predefined accuracy.

To illustrate the procedure, Figure 6(a) shows a sample path of an MP pro-
cess for s = 0.2, with N = 200 while Figure 6(b) shows the sample path yi =
Fn(xi;0.2), i = 1, . . . ,N . From {yi}Ni=1, we construct the sequence {ui}N−1

i=1 ,
where ui = (Fn(yi; s),Fn(yi+1; s)), i = 1, . . . ,N − 1, for the correctly specified
s = 0.2 and for s = 0.3. Figure 6(c) presents the graph of {ui}N−1

i=1 obtained from
the correct specification of s, while Figure 6(d) shows the graph of the misspeci-
fied one. In Figures 6(c) and 6(d), the solid lines represent the respective theoretical
support of the copula given in Proposition 3.4. Some distortion in the points can
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(a) (b)

(c) (d)

Figure 6 (a) Sample path x1, . . . , x200 of an MP process with s = 0.2 starting at
√

5(mod 1).
(b) Sample path yi = Fn(xi). Plot of ui = (yi , yi+1) for the (c) correct and (d) misspecified s. The
solid lines correspond to the theoretical support of the respective lag 1 MP copula.

be seen given to the use of the approximation Fn instead of the theoretical F0, es-
pecially in lower quantiles. From Figure 6(d), it is clear that the line obtained from
the sequence {ui}N−1

i=1 and the theoretical one for the chosen value of s0, namely,
0.3, do not match, while for the correct specified one in Figure 6(c), they do.

The procedure just outlined is, however, computationally expensive given the
fact that to calculate the approximation Fn with reasonable stability and accuracy,
for each s, it requires the construction of an iteration vector of large size (see
Figure 2 and Table 1). Such an optimization procedure can easily take hundreds
of evaluations, depending on the desired accuracy, and hence, can be a very time
consuming task.

To overcome this difficulty, observe that in Figures 6(a) and 6(b), little dif-
ferences can be seen between them. In fact, since F0 is a smooth distribution,
an alternative is to apply the previous argument to the points v̂i := (xi, xi+1),
i = 1, . . . ,N . There will certainly be some distortion in the lines due to the ab-
sence of F0, but we expect to be able to estimate the discontinuity point a based
on vi by similar idea as before.

As an illustration, Figure 7 shows the plots of vi = (xi, xi+1), for i = 1, . . . ,199,
based on MP processes with s ∈ {0.2,0.4,0.6,0.8} all starting at

√
5(mod 1). The

solid lines correspond to the lines joining the points (0,0) and (a,1) and joining
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(a) (b)

(c) (d)

Figure 7 Plot of vi = (xi , xi+1), i = 1, . . . ,199 from a sample path of an MP process with
(a) s = 0.2, (b) s = 0.4, (c) s = 0.6 and (d) s = 0.8. The solid lines correspond to the lines joining
the points (0,0) and (a,1) and joining (a,0) and (1,1), where a denotes the correct discontinuity
point of the respective MP transformation.

(a,0) and (1,1), where a denotes the correct discontinuity point of the respective
MP transformation. From the graphs in Figure 7, we see the identification of the
line based on vi with the correct line, especially in the second branch of the graph.

That is so because a ∈ (1
2 ,

√
5−1
2 ), so that the second branch, being smaller, is less

affected by the distortion due to the absence of F0.
In order to assess the performance of the estimation procedure, we perform

the following experiment. We randomly select 100 initial points4 in (0,1) and
for each initial point we generate a path (of size N = 200) of an MP process for
s ∈ {0.1,0.15, . . . ,0.95}. For each path, say x1, . . . , x200, we perform the proposed
estimation procedure. In order to estimate a, we applied two methods: the first one
is a simple least squares method applied to the points lying in the second branch of
(xi, xi+1). The second method is the following: let (xm0, xm0+1) and (xm1, xm1+1)

denote the points among the ones lying on the second branch of {(xi, xi+1)}N−1
i=1

for which xm0 is minimum and xm1 is maximum. We define the estimator of a, say

4Tables with the initial values applied in our experiments and the complete simulation results are
available upon request.
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â, as

â = −B

A
, where A := xm1+1 − xm0+1

xm1 − xm0

and B := xm0+1 − Axm0 . (6.1)

For reference, in the subsequent we shall call this the min–max procedure. Geo-
metrically, â is the inverse image of 0 by the linear function joining (xm0, xm0+1)

and (xm1, xm1+1).
Table 3 summarizes the experiment results by presenting the mean, range, stan-

dard deviation (st.d.) and mean square error (mse) of the results. Figures 8(a)
and 8(b) present graphically the results for both methods for s ∈ {0.1,0.5,0.9}
while in Figures 8(c) and 8(d), the histogram of the results for s = 0.5 are pre-
sented. From Table 3 and Figure 8, we see that the min–max procedure (MM)
outperforms the least squares estimates (LS) obtained. Some bias can be seen for
both estimates, especially when s increases.

The min–max procedure can be carried out even for time series of sample size
as small as 20, as long as the second branch of {(xi, xi+1)}N−1

i=1 contains at least 2
points, which does not always happen (for instance, for N = 110, a sample path
of an MP process with s = 0.8 starting at

√
74(mod 1) has only one point in the

second branch). In such a situation, a straightforward adaptation of the min–max
procedure can be applied to the first branch and still yields reasonable estimates.
The closer to 0 and 1 the points xm0 and xm1 in (6.1) are, respectively, the better
the estimation performance.

7 Conclusions

In this work, we derive the copulas related to Manneville–Pomeau processes for
almost everywhere monotonic functions ϕ. In the bidimensional case, we find that
the copulas of any random pair (Xt ,Xt+h) depend only on the lag h and are sin-
gular. The support of the copulas is derived as well.

As for the multidimensional case, when ϕ is increasing almost everywhere,
the functional form of the copulas are very similar to the ones derived in the
bidimensional case. We conclude that the copulas of vectors (Xt1, . . . ,Xtn) and
(U0, T

t2−t1
s (U0), . . . , T

tn−t1
s (U0)) are the same. When ϕ is decreasing almost ev-

erywhere, we find that the copulas of an n-dimensional random vector from an MP
process can be deduced from the ones derived for the increasing case.

The copulas derived here depend on the Ts-invariant measure μs which has no
explicit formula. For the bidimensional case, we propose an approximation to the
copula which is shown to converge uniformly to the true copula. From this ap-
proximation, we are able to present plots of the copulas for different parameters
and lags and to present a simple algorithm to generate approximated samples from
the copulas. Some simple numerical calculation are presented to test the steps of
the approximation. To illustrate the usefulness of the theory, we derive a fast esti-
mation procedure of the underlying parameter s in Manneville–Pomeau processes.
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Table 3 Summary statistics of the experiment results. Presented are the mean estimate (ŝ), the range, the standard deviation (st.d.) and the mean square
error values (mse) of the estimates. The min–max procedure is denoted by MM while LS denotes the least squares

Proc. s ŝ range st.d. mse s ŝ range st.d. mse

MM
0.10

0.1008 [0.1000,0.1024] 0.0006 0∗
0.55

0.5581 [0.5500,0.5888] 0.0069 0.0001
LS 0.1087 [0.1056,0.1128] 0.0017 0.0001 0.6036 [0.5501,0.6287] 0.0142 0.0031
MM

0.15
0.1516 [0.1500,0.1597] 0.0015 0∗

0.60
0.6091 [0.6000,0.6451] 0.0090 0.0002

LS 0.1632 [0.1573,0.1710] 0.0026 0.0002 0.6545 [0.6012,0.7023] 0.0186 0.0033
MM

0.20
0.2023 [0.2001,0.2101] 0.0021 0∗

0.65
0.6600 [0.6501,0.6927] 0.0087 0.0002

LS 0.2179 [0.2098,0.2315] 0.0038 0.0003 0.7089 [0.6579,0.7584] 0.0197 0.0039
MM

0.25
0.2534 [0.2501,0.2632] 0.0027 0∗

0.70
0.7125 [0.7001,0.7726] 0.0119 0.0003

LS 0.2730 [0.2636,0.2875] 0.0049 0.0006 0.7646 [0.7038,0.8170] 0.0226 0.0047
MM

0.30
0.3036 [0.3000,0.3128] 0.0028 0∗

0.75
0.7621 [0.7502,0.8019] 0.0110 0.0003

LS 0.3272 [0.3128,0.3410] 0.0052 0.0008 0.8177 [0.7505,0.8612] 0.0246 0.0052
MM

0.35
0.3544 [0.3500,0.3669] 0.0039 0∗

0.80
0.8165 [0.8001,0.8659] 0.0131 0.0004

LS 0.3835 [0.3550,0.4024] 0.0078 0.0012 0.8781 [0.8005,0.9449] 0.0277 0.0069
MM

0.40
0.4050 [0.4000,0.4214] 0.0049 0∗

0.85
0.8677 [0.8500,0.9428] 0.0151 0.0005

LS 0.4367 [0.4082,0.4570] 0.0078 0.0014 0.9307 [0.8507,1.0111] 0.0297 0.0074
MM

0.45
0.4556 [0.4501,0.4703] 0.0046 0.0001

0.90
0.9172 [0.9002,0.9704] 0.0141 0.0005

LS 0.4909 [0.4702,0.5174] 0.0102 0.0018 0.9774 [0.9011,1.0477] 0.0306 0.0069
MM

0.50
0.5065 [0.5001,0.5189] 0.0051 0.0001

0.95
0.9706 [0.9500,1.0517] 0.0189 0.0008

LS 0.5475 [0.5059,0.5746] 0.0111 0.0024 1.0371 [0.9500,1.1641] 0.0384 0.0090

Note: 0∗ means that the mse is smaller than 5 × 10−5.
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(a) (b)

(c) (d)

Figure 8 Plot of the estimated values for s ∈ {0.1,0.5,0.9} for 100 random initial points by using
(a) the least squares procedure and (b) the min–max procedure. The dashed lines correspond to the
correct value of s. Also shown the histogram of the estimated values for s = 0.5 by using (c) the least
squares procedure and (d) the min–max procedure.
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