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Simultaneous Bayesian Inference for
Skew-Normal Semiparametric Nonlinear
Mixed-Effects Models with Covariate

Measurement Errors

Yangxin Huang∗ and Getachew A. Dagne†

Abstract. Longitudinal data arise frequently in medical studies and it is a com-
mon practice to analyze such complex data with nonlinear mixed-effects (NLME)
models which enable us to account for between-subject and within-subject vari-
ations. To partially explain the variations, covariates are usually introduced to
these models. Some covariates, however, may be often measured with substantial
errors. It is often the case that model random error is assumed to be distributed
normally, but the normality assumption may not always give robust and reliable
results, particularly if the data exhibit skewness. Although there has been consid-
erable interest in accommodating either skewness or covariate measurement error
in the literature, there is relatively little work that considers both features simul-
taneously. In this article, our objectives are to address simultaneous impact of
skewness and covariate measurement error by jointly modeling the response and
covariate processes under a general framework of Bayesian semiparametric nonlin-
ear mixed-effects models. The method is illustrated in an AIDS data example to
compare potential models which have different distributional specifications. The
findings from this study suggest that the models with a skew-normal distribution
may provide more reasonable results if the data exhibit skewness and/or have
measurement errors in covariates.

Keywords: Bayesian approach, Covariate measurement errors, HIV/AIDS, Joint
models, Longitudinal data, Semiparametric nonlinear mixed-effects models, Skew-
normal distribution.

1 Introduction

Viral dynamic studies have a common structure in the sense that they use repeated
measures over a treatment period to assess rates of changes in viral load over time.
There has been substantial interest in estimating viral dynamic parameters in order to
acquire more comprehensive understanding of the pathogenesis of HIV infection and to
assess the effectiveness of antiretroviral treatment (Wu and Ding, 1999). Thus various
statistical modeling and analysis methods have been used, in conjunction with HIV dy-
namic models and also pharmacokinetic (PK) and pharmacodynamic (PD) models, for
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statistical inference and analysis. Some of those methods are linear mixed-effects (LME)
and nonlinear mixed-effects (NLME) modeling (Lunn et al., 2002; Wu et al., 1998; Wu
and Ding, 1999), nonparametric NLME modeling (Liu and Wu, 2007; Wu and Zhang,
2002), and Bayesian NLME modeling via Markov Chain Monte Carlo (MCMC)(Huang
et al., 2006; Huang and Dagne, 2010; Lunn et al., 2002). However, there is relatively
little work done on simultaneously accounting for the biases induced by the following
three issues.
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(a): Raw data of 44 subjects truncated at day 30
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(b): Complete raw data of 44 subjects
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Figure 1: Profiles of HIV viral load measurements (in natural log scale) from a group of
patients in an AIDS clinical study. Change in viral load during treatment is shown for
day 0 to day 30 (a) with the solid curve being the estimate of viral load trajectory from
a parametric model (B.9) and for day 0 to the end of study (b) with the solid curve
being the estimate of viral load trajectory from a semiparametric model (B.10).

Firstly, current HIV dynamic models (Wu et al., 1998; Wu and Ding, 1999) are
mostly developed to quantify short-term dynamics. For example, Figure 1(a) displays
the early stage trajectories based on the first 30-day viral load data (in natural log
scale) for 44 subjects enrolled in an AIDS clinical trial study (A5055) (Acosta et al.,
2004), while Figure 1(b) includes the complete (long-term) viral load data of the same
patients. In Figure 1(a) the solid curve is the average trajectory estimated from a
parametric model (B.9), and in Figure 1(b) the solid curve is the population estimate
obtained from a semiparametric model (B.10); both models are to be discussed in Sec-
tion 3.1. These models fit only the early stage of the viral load trajectory (Figure 1(a))
and are limited to interpreting earlier stage HIV dynamic data from AIDS clinical tri-
als. Moreover, as is seen from Figure 1(b), the viral load trajectory may change to
different shapes at later stages. This general phenomenon in HIV dynamics, as illus-
trated in the example presented in Figure 1, has motivated us to investigate long-term
HIV dynamic studies via a semiparametric model (B.10). Secondly, the commonly as-
sumed distribution for model random errors is normal, but this assumption may lack
the robustness against departures from normality and/or outliers and thus statistical
inference and analysis with normal assumption may lead to misleading results (Verbeke
and Lesaffre, 1996; Sahu et al., 2003). Specifically, the distributions of the outcomes
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in virologic response are skewed with a number of outliers. Figure 2 displays the dis-
tributions of repeated viral load (in natural log scale) and standardized CD4 cell count
measurements for 44 subjects enrolled in the A5055 (Acosta et al., 2004). It can be
seen that, for this data set to be analyzed in this paper, both the viral load response
(even after log-transformation) and CD4 covariate are highly skewed, and thus a nor-
mality assumption is not quite realistic. Thirdly, the NLME models have been used
in the the literature to account for both between-subject and within-subject variations
in response measurements associated with covariates (Wu et al., 1998; Wu and Ding,
1999). However, the covariates such as CD4 cell counts are often measured with sub-
stantial errors, and thus statistical inference ignoring measurement errors in covariates
may result in biased estimation results. To the best of our knowledge, there is relatively
little work done on simultaneously accounting for the biases induced by mismeasured
covariates and misspecified model error distribution under a Bayesian framework in con-
junction with semiparametric nonlinear mixed-effects (SNLME) models. It is not clear
how covariate measurement error and skewness of data may interact and simultaneously
influence inferential procedures.
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Figure 2: Histograms of viral load measured from RNA levels (in natural log scale) and
standardized CD4 cell count in plasma for 44 patients in an AIDS clinical trial study.

The main goal of this article is to investigate the effects of skewness in response and
covariate variables, and of measurement error in covariates, on statistical inference by
introducing skew-normal (SN) Bayesian semiparametric nonlinear mixed-effects (SN-
BSNLME) joint models. Specifically, we jointly consider an SN semiparametric non-
linear mixed-effects (SN-SNLME) model for response process and an SN linear mixed-
effects (SN-LME) model for the covariate process. In formulating this joint model, we
consider a multivariate SN distribution introduced by Sahu et al.(2003) which is suit-
able for a Bayesian analysis and also briefly discussed in Appendix A. The remainder
of the article is organized as follows. Section 2 introduces model setup in general forms
and investigates associated inference methods that simultaneously account for skewness
and covariate measurement error. In Section 3, we discuss the specific models for HIV
dynamics and CD4 covariate process, along with description of an AIDS clinical data
set that is used to illustrate the proposed methods and then report the results. Finally,
the paper concludes with discussion in Section 4.



192 Simultaneous Bayesian Inference for Skew-Normal Joint Models

2 Bayesian approach to joint models of response and co-
variate processes

2.1 SNLME joint model with a skew-normal distribution

In this section, we present the joint models in general forms, illustrating that our models
and methods may be applicable to other fields as well. Various covariate models were
investigated in the literature (Carroll et al., 2006; Liu and Wu, 2007; Wu, 2002). For
those covariate models, however, the commonly assumed distribution for random errors
is normal and this assumption may lack robustness against departures from normality.
We extend covariate models with measurement errors to have an SN distribution. For
simplicity, we consider a single time-varying covariate with measurement errors. Denote
the number of subjects by n and the number of measurements on the ith subject by
ni. Let zij be the observed covariate value for individual i at time tij (i = 1, . . . n; j =
1, . . . , ni). We consider the following LME covariate model with an SN distribution:

zij = uT
ijα + vT

ijai + εij (≡ z∗ij + εij), εi ∼ iid SNni

(
−

√
2/πδεi , τ

2Ini ,∆(δεi)
)

,

(B.1)
where zi = (zi1, . . . , zini)

T with zij being the covariate value for individual i at time tij ,
z∗i = (z∗i1, . . . , z

∗
ini

)T and z∗ij = uT
ijα + vT

ijai may be viewed as the true (but unobserv-
able) covariate value at time tij , uij and vij are l× 1 design vectors, α = (α1, . . . , αl)T

and ai = (ai1, . . . , ail)T are unknown population (fixed-effects) and individual-specific
(random-effects) parameter vectors, respectively, and εi = (εi1, . . . , εini)

T follows an SN
distribution with εij being the model error for individual i at time tij , τ2 is the unknown
within-individual scale parameter. The ni × ni skewness diagonal matrix ∆(δεi) =
diag(δεi1 , . . . , δεini

) and ni × 1 skewness parameter vector δεi = (δεi1 , . . . , δεini
)T . In

particular, if δεi1 = · · · = δεini
=̂δε, then ∆(δεi) = δεIni and δεi = δε1ni with 1ni =

(1, . . . , 1)T ; this indicates that we are interested in skewness of the overall data set, which
is the case to be used in real data analysis below. We assume that ai ∼ iid Nl(0,Σa),
where Σa is the unrestricted covariance matrix. Note that the model (B.1) may be
interpreted as an SN covariate measurement error model.

For the response process, we consider a general SNLME model which incorporates
possibly mismeasured time-varying covariates and model random error with an SN dis-
tribution:

yij = g(tij , β
†
ij , φ(tij)) + eij , ei ∼ iid SNni

(
−

√
2/πδei , σ

2Ini ,∆(δei)
)

,

β†ij = d†[z∗ij ,β
†, b†i ], φ(tij) = v[w(tij), hi(tij)], b†i ∼ iid Ns3(0,Σ†

b),
(B.2)

where yi = (yi1, . . . , yini)
T with yij being the response value for individual i at tij (i =

1, 2, . . . , n; j = 1, 2, . . . , ni), g(·), d†(·) and v(·) are known parametric functions, w(t)
and hi(t) are unknown nonparametric smooth fixed-effects and random-effects functions,
respectively, hi(t) are iid realizations of a zero-mean stochastic process, β†ij is s1 × 1
individual-specific time-dependent parameter vector, β† is s2× 1 population parameter
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vector (s2 ≥ s1), σ2 is the unknown within-subject scale parameter, ei = (ei1, . . . , eini)
T

is the vector of random errors, b†i is s3 × 1 vector of random effects (s3 ≤ s1), Σ†
b is

the unrestricted covariance matrix, the ni × ni skewness diagonal matrix ∆(δei) =
diag(δei1 , . . . , δeini

) and the ni × 1 skewness parameter vector δei
= (δei1 , . . . , δeini

)T .
In particular, if δei1 = · · · = δeini

=̂δe, then ∆(δei) = δeIni and δei = δe1ni . In the
model (B.2), we assume that the individual-specific parameters β†ij depend on the true
(but unobservable) value of covariate z∗ij rather than the observed covariate zij , which
may be measured with errors.

The SNLME model (B.2) reverts to an NLME model when the nonparametric
parts w(t) and hi(t) are constants. To fit model (B.2), we apply the regression spline
method. The main idea of a regression spline is to approximate w(t) and hi(t) by
using a linear combination of spline basis functions (Wu and Zhang, 2002). For in-
stance, w(t) and hi(t) can be approximated by a linear combination of basis functions
Ψp(t) = {ψ0(t), ψ1(t), ..., ψp−1(t)}T and Φq(t) = {φ0(t), φ1(t), ..., φq−1(t)}T , respec-
tively. That is,

w(t) ≈ wp(t) =
p−1∑

k=0

µkψk(t) = Ψp(t)T µp, hi(t) ≈ hiq(t) =
q−1∑

k=0

ξikφk(t) = Φq(t)T ξiq,

(B.3)
where µp and ξiq (q ≤ p) are the unknown vectors of fixed and random coefficients,
respectively. Based on the assumption of hi(t), we can regard ξiq as iid realizations
of a zero-mean random vector. For our model, we consider natural cubic spline bases
with the percentile-based knots. To select an optimal degree of regression spline and
numbers of knots, i.e., optimal sizes of p and q, the Akaike information criterion (AIC)
or the Bayesian information criterion (BIC) is often applied (Davidian and Giltinan,
1995; Wu and Zhang, 2002). Substituting w(t) and hi(t) by their approximations wp(t)
and hiq(t), we can approximate model (B.2) in a compact way as follows:

yij = g
(
tij , d

†[z∗ij , β
†, b†i ], v[Ψp(tij)T µp,Φq(tij)T ξiq]

)
+ eij ≡ g

(
tij , d(z∗ij , β, bi)

)
+ eij ,

(B.4)
where β = (β†T ,µT

p )T and bi = (b†Ti , ξT
iq)

T are the vectors of fixed-effects and random-
effects, respectively, and d(·) is a known but possibly nonlinear function. Thus, for
given Ψp(t) and Φq(t), we approximate the SN-SNLME model (B.2) by the following
SN-NLME model:

yi = gi(ti, βi) + ei, ei ∼ SNni

(
−

√
2/πδei , σ

2Ini ,∆(eei)
)

,

βij = d[z∗ij ,β, bi], bi ∼ Ns4(0,Σb),
(B.5)

where s4 = s3 + q, gi(ti,βi) = (g(ti1, βi1), . . . , g(tini , βini
))T with g(·) being a known

nonlinear function, ti = (ti1, . . . , tini)
T , βi = (βi1, . . . , βini

)T and Σb is an unstructured
covariance matrix. We assume that ei, εi, bi and ai are independent of each other.
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2.2 Simultaneous Bayesian inference for parameter estimation

In a longitudinal study, the longitudinal response and covariate processes are usually
connected physically or biologically. Although a simultaneous inference method based
on a joint likelihood for the covariate and response data may be favorable, the com-
putation associated with the joint likelihood inference in joint models of longitudinal
data can be extremely intensive and may lead to convergence problems (Liu and Wu,
2007; Wu, 2002). Here we propose a simultaneous Bayesian inference method for models
(B.1) and (B.5) based on an MCMC procedure for the covariate and response data. The
Bayesian joint modeling approach paves a way to alleviate the computational burdens
and to overcome convergence problems.

To carry out a Bayesian inference, prior distributions for unknown parameters in
the models (B.1) and (B.5) need to be assessed as follows:

α ∼ Nl(α0,Λ1), τ2 ∼ IG(ω1, ω2), Σa ∼ IW (Ω1, ν1), δεi
∼ Nni

(0,Γ1),
β ∼ Ns5(β0,Λ2), σ2 ∼ IG(ω3, ω4), Σb ∼ IW (Ω2, ν2), δei ∼ Nni(0,Γ2),

(B.6)
where s5 = s2+p, and the mutually independent Inverse Gamma (IG), Normal (N) and
Inverse Wishart (IW ) prior distributions are chosen to facilitate computations (Davidian
and Giltinan, 1995). The super-parameter matrices Λ1, Λ2, Ω1, Ω2, Γ1 and Γ2 can
be assumed to be diagonal for convenient implementation. Following Sahu et al.(2003)
and properties of the SN distribution, in order to specify the models (B.1) and (B.5)
for MCMC computation it can be shown by introducing two ni × 1 random variable
vectors wei = (wei1 , . . . , weini

)T and wεi = (wεi1 , . . . , wεini
)T based on the stochastic

representation for the SN distribution (see Appendix A for details) that zi and yi follow
the following distributions

zi|ai, wεi ; α, τ2, δεi ∼ Nni

(
z∗i + ∆(δεi)[wεi −

√
2/π1], τ2Ini

)
,

yi|ai, bi, wei ; α, β, σ2, δei ∼ Nni

(
gi + ∆(δei)[wei −

√
2/π1], σ2Ini

)
,

wεi ∼ Nni(0, Ini)I(wεi > 0), wei ∼ Nni(0, Ini)I(wei > 0),

(B.7)

where 1 = (1, . . . , 1)T , I(wei > 0) is an indicator function and wei ∼ Nni(0, Ini)
truncated in the space wei > 0; wεi can be defined similarly. An important advantage
of the above representations based on the hierarchical models (B.1) and (B.5) is that
they can be very easily implemented using the freely available WinBUGS software (Lunn
et al., 2000) and that the computational effort is equivalent to the one necessary to fit
the normal version of the model.

Let θ = {α, β, τ2, σ2,Σa,Σb, δεi , δei ; i = 1, . . . , n} be the collection of unknown
parameters in models (B.1) and (B.5), and f(·|·) and π(·) be a conditional density
function and a prior density function, respectively. Denote the observed data by D =
{(yi, zi), i = 1, . . . , n}. We assume that α, β, τ2, σ2,Σa,Σb, δεi , δei (i = 1, . . . , n) are
independent of each other, and thus we have π(θ) = π(α)π(β)π(τ2)π(σ2)π(Σa)π(Σb)∏

i π(δεi)π(δei). After we specify the models for the observed data and the prior dis-
tributions for the unknown model parameters, we can make statistical inference for the
parameters based on their posterior distributions under the Bayesian framework. The
joint posterior density of θ based on the observed data can be given by
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f(θ|D) ∝ {
n∏
i

∫ ∫
f(yi|ai, bi, wei

;α, β, σ2, δei
) f(wei

|wei
> 0)×

f(zi|ai, wεi
; α, τ2, δεi

) f(wεi
|wεi

> 0) f(ai|Σa) f(bi|Σb)daidbi}π(θ).
(B.8)

In general, the integrals in (B.8) are of high dimension and do not have closed form.
Analytic approximations to the integrals may not be sufficiently accurate. Therefore, it
is prohibitive to directly calculate the posterior distribution of θ based on the observed
data. As an alternative, MCMC procedures can be used to sample based on (B.8) using
the Gibbs sampler along with the Metropolis-Hasting (M-H) algorithm. The above
representations based on the models are useful as it allows to implement easily using
the WinBUGS codes (Lunn et al., 2000).

3 An Application to AIDS Studies

3.1 HIV dynamic models

Viral dynamic models can be formulated through a system of ordinary differential equa-
tions (ODE) for response variable, HIV RNA copies (viral load) (Huang et al., 2006;
Laveille et al., 2011; Wu et al., 1998; Wu and Ding, 1999). The biexponential model
derived from a system of ODE based on a compartmental analysis (Wu and Ding, 1999)
is the most popular model for HIV dynamics:

y(t) = ln{V (t)}+ e(t) = ln{exp[ρ1 − λ1t] + exp[ρ2 − λ2t]}+ e(t), (B.9)

where V (t) is the plasma HIV-1 RNA levels (viral load) at time t, λ1 and λ2 are
called the first- and second-phase viral decay rates, which may represent the minimum
turnover rate of productively infected cells and that of latently or long-lived infected
cells, respectively, exp(ρ1) + exp(ρ2) is the baseline viral load at time t = 0, which is
related to the parameters ρ1 and ρ2. It is of particular interest to estimate the viral
decay rates λ1 and λ2 because they quantify the antiviral effect and, hence, can be
used to assess the efficacy of the antiviral treatment. In estimating these decay rates,
only the early segment of the viral load trajectory data has been used (Wu and Ding,
1999). Since the viral load trajectory may change to different shapes in the late stages,
it may not be reasonable to assume that the second-phase decay rate remains constant
during long-term treatment. To model the long-term HIV dynamics, a semiparametric
biexponential model can be constructed as follows (Wu and Zhang, 2002):

y(t) = ln{V (t)}+ e(t) = ln{exp[ρ1 − λ1t] + exp[ρ2 − λ2(t)t]}+ e(t), (B.10)

where the second-phase decay rate λ2(t) is an unknown smooth function. Intuitively,
model (B.10) is more reasonable because it assumes that the decay rate can vary with
time as a result of drug resistance, pharmacokinetics, drug adherence and other relevant
clinical factors. Therefore, all data obtained during antiretroviral (ARV) treatment can
be used to fit model (B.10). This is a semiparametric model because of the mechanistic
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structure (two-exponential) with constant parameters (λ1, ρ1, ρ2) and a time-varying
parameter (λ2(t)) to capture the time-varying effects of the treatment over a longer
period. Actually, by including long-term viral load data, the estimate of λ1 can be
more accurate and reasonable compared with those obtained in previous studies (Wu
and Ding, 1999) after excluding long-term viral load data for modeling and analysis by
some ad hoc rules. In the mean time, this model enjoys the flexibility of a semiparametric
function for the second-phase decay rate λ2(t). The estimate of λ2(t) provides not only
an approximate turnover rate over time of long-lived/latently infected cells at the early
stage of treatment as the standard parametric model does, but also more importantly
describes how it may change over a long treatment period as driven by drug resistance,
non-compliance and other clinical determinants.

To model the covariate CD4 process, in the absence of theoretical rationale for the
CD4 trajectories, we consider empirical polynomial LME models for the CD4 process,
and choose the best model based on AIC and BIC values. Specifically, we consider the
covariate model (B.1) with uij = vij = (1, tij , . . . , t

l−1
ij )T and focus on linear (l = 2),

quadratic (l = 3) and cubic (l = 4) polynomials. The resulting AIC (BIC) values are
799.03 (821.74), 703.56 (744.42) and 766.18 (782.08), respectively. We thus adopted the
following quadratic polynomial SN-LME model (B.1) for the observed CD4 process:

zij = (α1 + ai1) + (α2 + ai2)tij + (α3 + ai3)t2ij + εij , (B.11)

where εi = (εi1, . . . , εini)
T ∼ iid SNni

(
−

√
2/πδε1ni , τ

2Ini , δεIni

)
, z∗ij = (α1 + ai1) +

(α2 + ai2)tij + (α3 + ai3)t2ij , α = (α1, α2, α3)T is a population (fixed-effects) parameter
vector, and ai = (ai1, ai2, ai3)T is an individual-specific (random-effects) vector with
normal distribution N3(0,Σa).

We employ the linear combinations of natural cubic splines with percentile-based
knots to approximate the nonparametric functions w(t) and hi(t). Following studies in
(Liu and Wu, 2007; Wu and Zhang, 2002), we set ψ0(t) = φ0(t) ≡ 1 and take the same
natural cubic splines in the approximations (B.3) with q ≤ p. The values of p and q
are determined based on the AIC/BIC which suggest the following function for βij4(tij)
with p = 3 and q = 1 in the model (B.3):

λij2(tij) = w(tij) + hi(tij) ≈ µ0 + µ1ψ1(tij) + µ2ψ2(tij) + ξi0, (B.12)

where µ = (µ0, µ1, µ2)T and ξi0 ≡ bi4.

Because viral load is measured on each subject repeatedly over the study period, the
measurements obtained from the same subject may be correlated, but they are assumed
independent between patients. In the present context of a semiparametric model, it is
straightforward to introduce the SNLME model in conjunction with the HIV dynamic
model (B.10) as follows:

yij = ln{exp[ρi1 − λij1tij ] + exp[ρi2 − λij2(tij)tij ]}+ eij ,
ρi1 = β1 + bi1, λij1 = β2 + β3z

∗
ij + bi2,

ρi2 = β4 + bi3, λij2(tij) = w(tij) + hi(tij),
(B.13)

where yij is the natural log-transformation of the viral load for the ith subject at time
tij (i = 1, 2, ..., n, j = 1, 2, ..., ni), within-individual random error ei = (ei1, . . . , eini)

T ∼
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SNni

(
−

√
2/πδe1ni , σ

2Ini , δeIni

)
, the covariate value z∗ij is referred to as a summary

of the true (but unobservable) CD4 value for the ith subject at time tij in association
with the model (B.11), βij = (ρi1, λij1, ρi2, λij2)T and β = (β1, β2, β3, β4, µ

T
3 )T are

individual parameters for the ith subject and population parameters, respectively, the
random-effects bi = (bi1, bi2, bi3, bi4)T ∼ N4(0,Σb). We note that the model (B.13)
accommodates a time-varying covariate CD4 into the first-phase decay rate and spec-
ifies an unknown nonparametric smooth function for the second-phase decay rate for
capturing viral rebound.

3.2 Analysis of AIDS data

We illustrate our methods using a real AIDS clinical data (Acosta et al., 2004). The
study consists of 44 HIV-infected patients who were treated with a potent ARV regimen.
RNA viral load was measured in copies/mL at study days 0, 7, 14, 28, 56, 84, 112, 140
and 168 of follow-up. The nucleic acid sequence-based amplification assay was used to
measure RNA viral load, with a lower limit of quantification (BDL) of 50 copies/mL. The
viral load measures below this limit are not considered reliable, and they are considered
left-censored. For dealing with left-censoring, substitution methods, such as BDL or
BDL/2 which produces biased results, have been suggested in the literature (Davidian
and Giltinan, 1995). The relatively better methods than substitution methods are to use
a Bayesian method, which treats the observations below the detection limit as missing
values, and simultaneously predicts them based on a predictive distribution (Gelman
et al., 2003) or a maximum likelihood method (Tobin, 1958), which takes into account
the proportion of observation below BDL and observed values above BDL. We will use
the Bayesian method in the analysis next due to the rationale of the paper. Covariates
such as CD4 and CD8 cell counts were also measured throughout the study on a similar
scheme. Figure 3 shows the measurements of viral load in natural log scale and CD4
cell count for three randomly selected patients. Both viral load and CD4 cell count
trajectories exhibit distinctive and important patterns throughout the time course.
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Figure 3: Profiles of viral load (response: solid curve) in natural log scale and CD4 cell
count (covariate: dotted curve) for three randomly selected patients. The horizontal
line is below the detectable level of viral load (3.91=ln(50)).

In this study, CD4 measurements are known with nonnegligible errors and ignor-
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ing covariate measurement errors can lead to severely misleading results in a statistical
inference. Some of the CD4 values were missing at viral load measurement time tij ,
possibly due to different CD4 measurement schemes as designed in the study (for exam-
ple, CD4 measurements were missed at day 7 displayed in Figure 3). Thus we assume
that the missing data in CD4 are missing at random (MAR) in the sense of Rubin
(1976), so that the missing data mechanism can be ignored in the analysis. A natu-
ral log-transformation for viral load data was used in the analysis in order to stabilize
the variation of measurement error and speed up the estimation algorithm. To avoid
very small (large) estimates which may be unstable, we standardize the time-varying
covariate CD4 cell counts (from each CD4 value we subtract the mean 375.46 and divide
by the standard deviation 228.57) and rescale the original time t (in days) so that the
time scale is between 0 and 1. As shown in Figure 2, the distributions of viral load in
natural log scale and CD4 cell count clearly indicate their asymmetric nature and it
seems adequate fitting a joint model with the SN distribution to the data set. Along
with this consideration, the following two statistical models with different distributions
of random errors for both the response model (B.13) and the covariate model (B.11)
are employed to compare their performance:

� Model I: A model with independent multivariate normal distributions of random
errors for both the covariate model and the response model;

� Model II: A model with independent multivariate SN distributions of random
errors for both the covariate model and the response model.

We will investigate the following two scenarios. Firstly, we investigate how an SN
distribution for model error contributes to the efficiency of parameter estimation in
comparison with a normal distribution, which is a special case of the SN distribution
with zero skewness. Secondly, we also estimate the model parameters by using the
‘naive’ method, which does not separate the measurement errors from the true CD4
values. That is, the ‘naive’ method only uses the observed CD4 values zij rather than
true (unobservable) CD4 values z∗ij in the response model (B.13). Thus we use it as
a comparison to the joint modeling method proposed in Section 2. This comparison
attempts to investigate how the measurement errors in CD4 contribute to parameter
estimation.

To carry out a Bayesian inference, we need to specify the values of the hyper-
parameters in the prior distributions. We assume weakly informative prior distributions
for all the parameters. In particular, (i) fixed-effects are taken to be independent normal
N(0, 100) for each component of the population parameter vectors α and β. (ii) For
the scale parameters σ2 and τ2 we assume a limiting non-informative inverse gamma
prior distribution, IG(0.01, 0.01) so that the distribution has mean 1 and variance 100.
(iii) The priors for the variance-covariance matrices of the random-effects Σa and Σb

are taken to be inverse Wishart distributions IW (Ω1, ν1) and IW (Ω2, ν2), where the
degree of freedom ν1 = ν2 = 4, and Ω1 and Ω2 are diagonal matrices with diagonal
elements being 0.01. (iv) For each of the skewness parameters δe and δε, we choose
an independent normal distribution N(0, 100), where we specify that δei = δe1ni and
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δεi = δε1mi to indicate that we are interested in skewness of both overall viral load data
and overall CD4 cell count data.

The MCMC sampler is implemented using WinBUGS software (Lunn et al., 2000),
and the program codes are available in Appendix B, where the initial values were chosen
from previous studies (Liu and Wu, 2007; Wu, 2002). In particular, the MCMC scheme
for drawing samples from the full conditional posterior distributions of all parameters in
both the response and covariate models is obtained by iterating between the following
two steps: (i) the Gibbs sampler is used to update α, β, τ2, σ2,Σa,Σb, δε, δe; (ii) we
update bi and ai (i = 1, 2, · · · , n) using the Metroplis-Hastings (M-H) algorithm. After
convergence was achieved using standard tools within WinBUGS (such as trace plots),
we retain the final MCMC samples for making statistical inference for the unknown
parameters. After an initial 50,000 burn-in iterations, every 40th MCMC sample is
retained from the next 400,000. Thus we obtain 10,000 samples from the posterior
distributions of the unknown parameters for further statistical inference. See articles
(Huang et al., 2006; Lunn et al., 2000) for detailed discussions of the Bayesian modeling
approach and the implementation of the MCMC procedures, including the choice of
the hyper-parameters, the iterative MCMC algorithm, the choice of proposal density
related to M-H sampling, sensitivity analysis, and convergence diagnostics.

3.3 Comparison of modeling results

The SN-BSNLME joint modeling approach in conjunction with the NLME response
model (B.13) and the covariate model (B.11) with different distribution specifications
for the random errors was used to fit the viral load and CD4 data simultaneously. Table
1 presents the population posterior mean (PM), the corresponding standard deviation
(SD) and 95% credible interval for fixed-effects parameters. The following findings are
observed for the estimated results. For parameter estimates of the response model, (i)
for both models the coefficient parameter β2 of time t has posterior means which are
positive and their corresponding 95% credible intervals (CI) do not contain zero. (ii)
For the coefficient parameter β3, where the corresponding covariate (true CD4 values)
is interacted with time t, the posterior mean for Model I is smaller than that based on
Model II. The results indicate that the covariate CD4 effect (β3) may be underestimated
if a normal distribution is assumed. (iii) For the scale parameter σ2, the posterior mean
(0.57) for Model II is much smaller than the estimate (1.87) of Model I. For parameter
estimates of the covariate model, (i) the estimate of intercept α1 based on Model I is
larger in absolute value than that based on Model II; however, the estimates of the
coefficients α2 and α3 are comparable for both Models. (ii) For the scale parameter τ2,
the estimated value (0.08) based on Model II is smaller than that (0.13) based on Model
I.

From the model fitting results, we have seen that, in general, both Model I and
Model II provided a reasonably good fit to the observed data for most patients in our
study, although the fitting for a few patients (<7%) was not completely satisfactory due
to unusual viral load fluctuation patterns for these patients, particularly for Model I. To
assess the goodness-of-fit of the proposed models, Figure 4 presents the diagnosis plots
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Model α1 α2 α3 β1 β2 β3 β4 σ2 τ2 δe δε

I(JM) PM -0.21 0.64 -0.26 8.26 25.9 7.20 2.19 1.87 0.13 – –
LCI -0.46 0.13 -0.80 7.72 19.2 0.03 -0.24 1.49 0.10 – –
UCI 0.03 1.15 0.27 8.79 33.4 15.4 4.33 2.38 0.13 – –
SD 0.13 0.26 0.28 0.28 3.58 3.86 1.17 0.24 0.15 – –

II(JM) PM -0.21 0.67 -0.33 8.13 22.2 9.63 2.68 0.57 0.08 1.86 0.24
LCI -0.49 0.12 -0.94 7.57 16.2 3.59 0.57 0.01 0.03 0.52 0.06
UCI 0.06 1.26 0.25 8.68 28.3 17.5 4.53 1.98 0.14 2.54 0.54
SD 0.14 0.29 0.31 0.28 3.11 3.58 1.00 0.53 0.03 0.68 0.26

II(NM) PM – – – 8.08 17.2 3.47 -0.34 0.41 – 2.08 –
LCI – – – 7.54 12.7 0.96 -0.45 0.01 – 0.39 –
UCI – – – 8.66 22.4 7.99 3.50 1.89 – 2.61 –
SD – – – 0.29 2.63 2.38 1.23 0.47 – 0.59 –

Table 1: Summary of estimated posterior means (PM) of population (fixed-effects), scale
and skewness parameters, corresponding standard deviation (SD) and lower limit (LCI)
and upper limit (UCI) of 95% equal-tail credible intervals (CI) from the four models
based on the joint modeling(JM) approach and the ‘naive’ method (NM) associated
with the model II.
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Figure 4: Goodness-of-fit: Observed values versus fitted values of ln(RNA) (top panel)
and SN or normal Q-Q plots with line (bottom panel).
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Figure 5: The individual fitted curves of viral load for three randomly selected patients
based on the joint models with a normal (dotted line) or SN (solid line) random error.
The respective vertical dotted line (normal) ended with ‘◦’ and solid line (SN) ended
with ‘•’ on each fitted value are the 95% credible interval (CI) associated with the fitted
value. The observed values are indicated by cross sign (×).

of the observed values versus the fitted values (upper panel) and SN or normal Q-Q
plots (lower panel) from Models I and II. It can be seen from Figure 4 (upper panel)
that the SN model provided a better fit to observed data, compared with the normal
model. This result can be also explained by examining the SN or normal Q-Q plots
of the residuals (lower panel) where both plots show the existence of outliers, but it is
clearly seen that Model II only has a few negative outliers and, thus, fits observed data
better than Model I. This finding is further confirmed by their standardized residual
sums of squares (RSS) which are 45.56 (SN random error) and 279.67 (normal random
error).

Figure 5 displays three randomly selected individual estimates of viral load trajecto-
ries along with the associated 95% confidence interval on each fitted value obtained by
using the joint modeling approach based on Models I (normal) and II (SN). The follow-
ing findings are observed from the joint modeling results. (i) The estimated individual
trajectories for Model II fit the originally observed values more closely than those for
Model I. (ii) Overall, the 95% CI associated with predicted values from Model I is wider
than the corresponding 95% CI from Model II. (iii) All the 95% CIs from Model II cover
the observed viral load values, while some of 95% CIs from Model I do not; for example,
for patient 39 whose observed value at day 112 is 10.57, the corresponding 95% CI from
Model II is (8.78, 11.18) with the fitted value 10.04, while the corresponding 95% CI
from Model I is (6.67, 9.83) with the fitted value 8.17 which does not cover the observed
value 10.57.

For selecting the better model that fits the data adequately, a Bayesian selection
criterion is used. This criterion, known as deviance information criterion (DIC), was
first suggested in a recent publication by Spiegelhalter et al.(2002). As with other
model selection criteria, we caution that DIC is not intended for identification of the
‘correct’ model, but rather merely as a method of comparing a collection of alternative
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formulations. In each of the two models with the specification of different distributions
for the random error, DIC can be used to find out how assumption of an SN distribution
contributes to virologic responses and parameter estimation in comparison with that of
a normal distribution. We find that the DIC value (1172.90) for Model I (with normal
random error) is larger than that (673.34) for Model II (with SN random error). As
mentioned before, it is hard to tell which model is ‘correct’ but which one fits data better.
Furthermore, the model which fits data better may be more accurate to describe the
mechanism of HIV infection and CD4 changing process, and thus needs more attention
for patient treatment. Therefore, based on the DIC criterion, the results indicate that
Model II is the better fitting model, supporting the contention of a departure from
normality. These results are consistent with those in diagnosis of the goodness-of-fit
displayed in Figure 4 indicating that Model II outperforms Model I. In summary, our
results may suggest that it is very important to assume an SN distribution for the
response model and the CD4 covariate model in order to achieve reliable results, in
particular if the data exhibit skewness. Along with these observations, we will further
report our findings in details only for the better Model II in Section 3.4.

3.4 Estimation results based on Model II

The estimated results presented in Table 1 based on a better model ( Model II) indicate
that the population CD4 trajectory may be approximated by the quadratic polynomial
ẑ(t) = 228.57(−0.21 + 0.67t− 0.33t2) + 375.46, where z(t) is in the original CD4 scale.
Figure 6 shows the estimated first- and second-phase viral decay rates of change (λ̂1 and
λ̂2(t)) in viral load and their correlation relationship. Thus, the population viral load
process may be approximated by V̂ (t) = exp(8.13− λ̂1t)+ exp(2.68− λ̂2(t)t). Since the
first-phase viral decay rate (λ1) is significantly associated with the true CD4 values (due
to the statistically significant estimate of β3), this suggests that the viral load change
V (t) may be significantly associated with the true CD4 values. Note that, although
the true association described above may be complicated, the simple approximation
considered here may provide a rough guidance and point to further research.

The analysis results suggest that the first-phase and second-phase viral decay rates
are always positive and negative, interactively, and they show a significantly negative
correlation (r = −0.976 with p-value p = 0.0089). The results in Figure 6 indicate that
the first-phase (the second-phase) decay rate increases (decreases) at the early stage
and then decreases (increases) at the late stage. This finding is biologically meaningful
and may reflect the viral load trajectory shown in Figure 1(b) on the rapid decay phase
and then a slow growth phase. The true CD4 process has a significantly positive effect
on the first-phase viral decay rate; this finding confirms that the CD4 covariate may be
a significant predictor on the first-phase viral decay rate during the process. More rapid
increase in CD4 cell count may be associated with faster viral decay in the early stage.
This may be explained by the fact that higher CD4 cell count suggests a higher turnover
rate of lymphocyte cells, which may cause a positive correlation between viral decay and
the CD4 cell count. In addition, the posterior means (0.57) of the within-subject scale
parameter (σ2) based on Model II is much smaller than that (1.87) based on Model
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Figure 6: The estimated curves of the first and second phase viral decay rates and their
correlation. The solid line in (c) is a robust (MM-estimator) linear regression fit. The
correlation coefficient (r) and p-values are obtained from a Spearman rank correlation
test.

I; it indicates that gain in significant efficiency for the skew-normal model relative to
the normal model is observed for the scale estimation. This is expected because high
variability, heaviness of the tails and the skewness are interrelated to a certain extent.

For the estimates of the skewness parameters, we found that the response model
skewness parameter δe based on Model II is estimated to be significantly positive and
fairly large (1.86). This confirms the positive skewness of the viral load as shown in
Figure 2 (left panel). We also check the residual distributions and plot density estimates
of residuals for both models (plots not shown here). It was indicated that the results
coincide with our assumption of residual distributions. That is, the residual appears
to be symmetrically distributed for Model I, while the residual follows a fairly positive
skew-distribution for Model II. The estimate of the covariate model skewness parameter
δε is 0.24 based on Model II which is consistent with the significantly positive skewness
of the CD4 cell count (see the right panel in Figure 2). Thus, it may suggest that
accounting for skewness is required to model the data when the data exhibit skewness.

We further compare two methods for estimation based on Model II: the proposed
joint modeling method and the ‘naive’ method where the raw (observed) CD4 values
zij , rather than the true (unobservable) CD4 values z∗ij , are substituted in the model
(B.13). This naive method ignores measurement errors in CD4 values and treats the
observed CD4 as true values. The results of the naive method associated with Model II
are shown in Table 1. It can be seen that the estimates of the parameters β1 and β2 are
similar for the two methods. However, there are important differences in the estimates
for the parameters β3 and β4. The naive method, which ignores measurement errors,
may substantially underestimate the covariate CD4 effect. The joint modeling method
appears to give larger standard deviations (SD) for the model parameters, probably
because it incorporates the variation from fitting the CD4 process. Thus, the difference
of the naive estimates and the joint modeling estimates, due to whether or not we ignore
potential CD4 measurement errors, indicates that CD4 measurement errors can not be
ignored in the analysis.



204 Simultaneous Bayesian Inference for Skew-Normal Joint Models

4 Discussion

For longitudinal data with heavy tail characteristics of viral load response and CD4
covariate, we have developed a general SN-BSNLME joint model with a skew-normal
distribution and measurement errors in covariates that may be preferred over those
with a normal distribution or ‘naive’ method in the sense that it produces more reliable
parameter estimates. The proposed method may have a significant impact on AIDS
research because, in the presence of skewness in the data and measurement errors in
covariates, appropriate statistical inference is important for making robust conclusions
and reliable clinical decisions. We believe that, to the best of our knowledge, this is
the first attempt in working on such general distributional structure for SN-BSNLME
models. Our proposed method is quite general and so can be used in other applications.
This kind of skew-normal modeling approach is important in many biostatistical ap-
plication areas, allowing accurate inference of parameters while adjusting for the data
with skewness.

The foregoing results indicate that in a two-phase HIV dynamic model, the analysis
results suggest that there may be a significantly positive relation between the first-phase
viral decay and the covariate CD4 values. This finding is consistent with those reported
by Liu and Wu (2007). Our result may be partially explained by the fact that the higher
CD4 value suggests a higher turnover rate of hymphocyte cells. This result is very
interesting and clinically important. Since the viral decay rates may reflect the efficacy
of antiretroviral treatment, the higher CD4 value may need less potent drug efficacy to
suppress virus replication so that a more potent drug regimen may not be necessary
to avoid side-effects of drug use. This also confirms the fact from the modeling point
of view that more rapid increase in CD4 cell count may be associated with faster viral
decay, whereas more rapid decrease in CD4 cell count may be associated with earlier
viral rebound. These findings may help improve understanding of the pathogenesis of
HIV infection and evaluation of antiretroviral treatments.

The results indicate that with the skew-normality assumption, there is potential
to gain efficiency and accuracy in estimating certain parameters when the normality
assumption does not hold in the data. The models considered in this paper can be easily
fitted using the MCMC procedure. Moreover, the proposed modeling approach is fitted
using the WinBUGS package that is available publicly. This makes our approach quite
powerful and accessible to practicing statisticians in the fields. This paper combined
new technologies in mathematical modeling and statistical inference with advances in
HIV/AIDS dynamics to quantify complex HIV disease mechanisms. The complex nature
of HIV/AIDS will naturally pose some challenges such as nonignorable missing data and
data with detection limit problems. We also notice that both the skew-normal and skew-
t distributions are in the class of skew-elliptical distributions. Thus one may consider a
skew-t distribution as an alternative in this study. An associate editor pointed out that
the study of the models separately considers occasion variation and assay error. While
interesting, this issue requires additional efforts and more data information. These
problems, however, are beyond the focus of this article, but a further study may be
warranted. We are actively investigating these problems, and hope that we can report
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these interesting results in the near future.
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Appendix A. Multivariate skew-normal distributions

Recently, there has been an increasing interest in finding more flexible methods to
represent features of the data as adequately as possible and to reduce unrealistic as-
sumptions. One approach for data modeling consists in constructing flexible parametric
classes of multivariate distributions that are different from the normal distribution. The
skew-elliptical distribution is an attractive class of asymmetric thick-tailed parametric
structure which includes the skew-normal (SN) distribution as a special case. Different
versions of the multivariate SN distributions have been considered and used in the lit-
erature (Arellano-Valle et al., 2006, 2007; Azzalini et al., 1996, 1999; Sahu et al., 2003
and among others). These studies demonstrated that the SN distribution has reasonable
flexibility in real data fitting, while it maintains some convenient formal properties of
the normal density. For more detailed discussions on properties and theories of the SN
distribution and its potential applications as well as differences among various versions
of SN distributions, see References listed above.

In this work, we consider a multivariate SN distribution introduced by Sahu et
al.(2003) which is suitable for straightforward Bayesian analysis through hierarchical
representations since it is built using a conditional method. In particular, it is relatively
easy to implement and provides an interesting alternative to other computationally chal-
lenging parametric or nonparametric models. For completeness, this section is started
by briefly summarizing the multivariate SN distribution that will be used in defining
the SN joint models considered in this paper. An m-dimensional random vector Y
follows an m variate SN distribution with location vector µ, m×m positive (diagonal)
dispersion matrix Σ and m × m skewness matrix ∆(δ) = diag(δ1, δ2, . . . , δm), if its
probability density function (pdf) is given by

f(y|µ,Σ, δ) = 2m|A|−1/2φm[A−1/2(y − µ)|Im]Φm[∆(δ)A−1(y − µ)|Im −∆(δ)A−1∆(δ)],

where δ = (δ1, δ2, . . . , δm)T is a skewness parameter vector, A = Σ + ∆2(δ), φm(y|V )
and Φm(y|V ) denote the pdf and the cumulative distribution function (cdf), respec-
tively, of Nm(0, V ). We denote this by Y ∼ SNm(µ,Σ,∆(δ)). The mean and covari-
ance matrix are given by E(Y ) = µ +

√
2/πδ, cov(Y ) = Σ + (1 − 2/π)∆2(δ). An

appealing feature of the pdf f(y|µ,Σ, δ) is that it gives an independent marginal when
Σ = diag(σ2

1 , σ2
2 , . . . , σ2

m). This pdf thus reduces to

f(y|µ,Σ, δ) =
∏m

i=1

[
2√

σ2
i +δ2

i

φ

{
yi−µi√
σ2

i +δ2
i

}
Φ

{
δi

σi

yi−µi√
σ2

i +δ2
i

}]
,

where φ(·) and Φ(·) are the pdf and cdf of the standard normal distribution, respectively.
In order to have a zero mean vector, we should assume the location parameter µ =
−

√
2/πδ, which is what we assume in this paper. By Proposition 1 of Arellano-Valle et

al.(2007), the SN distribution of Y has a convenient stochastic representation as follows:

Y = µ + ∆(δ)|X0|+ Σ1/2X1,

where X0 and X1 are two independent Nm(0, Im) random vectors. Note that the
expression above provides a convenient device for random number generation and for
implementation. Let w = |X0|; then w follows an m-dimensional standard normal
distribution Nm(0, Im) truncated in the space w > 0 (i.e., the standard half-normal
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distribution). Thus, following Sahu et al.(2003), a hierarchical representation of the
expression above is given by

Y |w ∼ Nm(µ + ∆(δ)w,Σ), w ∼ Nm(0, Im)I(w > 0).

It is noted that when δ = 0, the SN distribution reduces to usual normal distribution.
To better understand the shape of an SN distribution, plots of the univariate SN density
as a function of the skewness parameter can be found in (Huang and Dagne, 2010).

Appendix B. WinBUGS code for Model II: SN-BSNLME joint models

]] Variables in the dataset
] y[,1] = serial number
] y[,2] = arm
] y[,3] = time(day)
] y[,4] = id
] y[,5] = rna
] y[,6] = cd4
] y[,7] = logerna
] y[,8] = cij (censoring indicator)
] y[,9] = cd4 (standardized)
] y[,10]= time(day) (rescaled time between 0 and 1 dividing by max)
] Z[,1:3] (base functions)
] Begin of model
model
{
for (i in 1:n)
{
a2[i,1] <- 0
a2[i,2] <- 0
a2[i,3] <- 0
a2[i,4] <- 0
a3[i,1] <- 0
a3[i,2] <- 0
a3[i,3] <- 0
b[i,1:4]∼dmnorm(a2[i,1:4],Omega2[,])
a[i,1:3]∼dmnorm(a3[i,1:3],Omega3[,])
}
for (j in 1 : N)
{
] (1) Modelling CD4 via measurement errors model with SN
z.star[j]<-(alpha[1]+a[y[j,4],1])+(alpha[2]+a[y[j,4],2])*y[j,10]+
(alpha[3]+a[y[j,4],3])*y[j,10]*y[j,10]+delta2*(w2[j]-0.798)
w2[j]∼ dnorm(0,1)I(0,)
y[j,9]∼ dnorm(z.star[j],tau2)
] (2) SNLME response model with SN incorporating covariate measurement error
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betai1[j] <- beta[1]+ b[y[j,4],1]
betai2[j] <- beta[2]+beta[3]*z.star[j]+b[y[j,4],2]
betai3[j] <- beta[4]+ b[y[j,4],3]
betaij4[j]<- mu.not[1]+mu.not[2]*Z[j,2]+mu.not[3]*Z[j,3]+b[y[j,4],4]
dm1[j]<- betai1[j]-step(betai2[j]-betaij4[j])*betai2[j]*y[j,10]
dm2[j]<- betai3[j]-step(betai2[j]-betaij4[j])*betaij4[j]*y[j,10]
dm3[j]<- exp(dm1[j])
dm4[j]<- exp(dm2[j])
dm5[j]<- dm3[j] +dm4[j]
upper.limit[j]<-Below.detection*y[j,8]+upper.bound*(1-y[j,8])
mu[j]<-log(dm5[j]) + delta*(w[j]-0.798)
w[j]∼ dnorm(0, 1 ) I(0,)
y[j,7]∼ dnorm(mu[j], tau)I(,upper.limit[j])
] Residuals
fit[j]<-mu[j]
resid[j]<-y[j,7]-fit[j]
}
] Prior distributions of the hyper-parameters
] (1) Coefficients
for (l in 1:4){beta[l]∼ dnorm(0,1.0E-2)}
for (l in 1:3){mu.not[l]∼ dnorm(0,1.0E-2)
alpha[l]∼ dnorm(0,1.0E-2)}
] (2) Covariance matrix in random effects
Omega2[1:4,1:4] ∼ dwish(R2[,],4)
v2[1:4,1:4]<- inverse(Omega2[,])
Omega3[1:3,1:3] ∼ dwish(R3[,],3)
v3[1:3,1:3]<- inverse(Omega3[,])
] (3) Skewness parameters
delta ∼ dnorm(0.0, 0.01)
delta2 ∼ dnorm(0.0, 0.01)
] (4) Precision parameters
tau ∼ dgamma(0.01,0.01)
sigma.tau<- 1/tau
tau2 ∼ dgamma(0.01,0.01)
sigma.tau2 <- 1/tau2
} ] End of model
] Data inputed
list(n=44,N=310, Below.detection=3.912, upper.bound=500,
R2 = structure(.Data = c(1, 0,0,0,0,1,0,0,0,0,1,0,0,0,0, 1),.Dim = c(4,4)),
R3 = structure(.Data = c(1, 0,0,0,1,0,0,0,1),.Dim = c(3, 3)))


