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Two-pronged Strategy for Using DIC to
Compare Selection Models with Non-Ignorable

Missing Responses

Alexina Mason∗, Sylvia Richardson† and Nicky Best‡

Abstract. Data with missing responses generated by a non-ignorable missing-
ness mechanism can be analysed by jointly modelling the response and a binary
variable indicating whether the response is observed or missing. Using a selection
model factorisation, the resulting joint model consists of a model of interest and
a model of missingness. In the case of non-ignorable missingness, model choice is
difficult because the assumptions about the missingness model are never verifiable
from the data at hand. For complete data, the Deviance Information Criterion
(DIC) is routinely used for Bayesian model comparison. However, when an anal-
ysis includes missing data, DIC can be constructed in different ways and its use
and interpretation are not straightforward. In this paper, we present a strategy for
comparing selection models by combining information from two measures taken
from different constructions of the DIC. A DIC based on the observed data likeli-
hood is used to compare joint models with different models of interest but the same
model of missingness, and a comparison of models with the same model of interest
but different models of missingness is carried out using the model of missingness
part of a conditional DIC. This strategy is intended for use within a sensitivity
analysis that explores the impact of different assumptions about the two parts of
the model, and is illustrated by examples with simulated missingness and an appli-
cation which compares three treatments for depression using data from a clinical
trial. We also examine issues relating to the calculation of the DIC based on the
observed data likelihood.

Keywords: Bayesian model comparison, deviance, DIC, missing response, non-
ignorable missingness, observed data likelihood, selection models, sensitivity an-
lalysis

1 Introduction

Missing data is pervasive in many areas of scientific research, and can lead to biased
or inefficient inference if ignored or handled inappropriately. A variety of approaches
have been proposed for analysing such data, and their appropriateness depends on the
type of missing data and the mechanism that led to the missing values. Here, we are
concerned with analysing data with missing responses thought to be generated by a non-
ignorable missingness mechanism. In these circumstances, a recommended approach is
to jointly model the response and a binary variable indicating whether the response is
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observed or missing. Several factorisations of the joint model are available, including
the selection model factorisation and the pattern-mixture factorisation, and their pros
and cons have been widely discussed (Kenward and Molenberghs 1999; Michiels et al.
2002; Fitzmaurice 2003). In this paper, attention is restricted to selection models with
a Bayesian formulation.

Spiegelhalter et al. (2002) (henceforth SBCV) proposed a Deviance Information
Criterion, DIC, as a Bayesian measure of model fit that is penalised for complexity. This
can be used to compare models in a similar way to the Akaike Information Criterion
(for non-hierarchical models with vague priors on all parameters, DIC ≈ AIC), with the
model taking the smallest value of DIC being preferred. However, for complex models,
the likelihood, which underpins DIC, is not uniquely defined, but depends on what is
considered as forming the likelihood and what as forming the prior. With missing data,
there is also the question of what is to be included in the likelihood term, just the
observed data or the missing data as well. For models allowing non-ignorable missing
data, we must take account of the missing data mechanism in addition to dealing with
the complication of not observing the full data.

Celeux et al. (2006) (henceforth CRFT) assess different DIC constructions for miss-
ing data models, in the context of mixtures of distributions and random effects models.
Daniels and Hogan (2008), Chapter 8, discuss two different constructions for selection
models, one based on the observed data likelihood, DICO, and the other based on the
full data likelihood, DICF . However, DICF has proved difficult to implement in prac-
tice. The purpose of this paper is to first examine issues of implementation and usability
of DICO and to clarify possible misuse. We then build on this to show how insights from
DICO can be complemented by information from part of an alternative, ‘conditional’,
DIC construction, thus providing the key elements of a strategy for comparing selection
models.

In Section 2, we introduce selection models and review the general definition of DIC,
before discussing how DICO and a DIC based on a likelihood that is conditional on the
missing data, DICC , can provide complementary information about the comparative fit
of a set of models. Issues concerning the calculation of DICO are discussed in Section
3, including choice of algorithm and sample size. In Sections 4 and 5 we describe the
use of a combination of DICO and DICC to compare models for simulated and real data
with non-ignorable missingness respectively, emphasising that this should be carried out
within the context of a sensitivity analysis rather than to select a single ‘best’ model.
We conclude with a discussion in Section 6.

2 DIC for selection models

We start this section by introducing the selection model factorisation, then discuss the
general formula for DIC, and finally look at different constructions of DIC for selection
models.
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2.1 Introduction to selection models

Suppose our data consists of a univariate response with missing values, y = (yi), and a
vector of fully observed covariates, x = (x1i, . . . , xpi), for i = 1, . . . , n individuals, and
let λ denote the unknown parameters of our model of interest. y can be partitioned into
observed, yobs, and missing, ymis, values, i.e. y = (yobs,ymis). Now define m = (mi)
to be a binary indicator variable such that

mi =
{

0: yi observed
1: yi missing

and let θ denote the unknown parameters of the missingness function. The joint distri-
bution of the full data, (yobs,ymis,m|λ, θ), can be factorised as

f(yobs,ymis,m|λ, θ) = f(m|yobs,ymis,θ)f(yobs,ymis|λ) (1)

suppressing the dependence on the covariates, and assuming that m|y, θ is conditionally
independent of λ, and y|λ is conditionally independent of θ, which is usually reasonable
in practice. This factorisation of the joint distribution is known as a selection model
(Schafer and Graham 2002). Both parts of the model involve ymis, so they must be
fitted jointly. Consequently assumptions concerning the model of interest will influence
the model of missingness parameters through ymis, and vice versa.

2.2 Introduction to DIC

Deviance is a measure of overall fit of a model, defined as -2 times the log likelihood,
D(φ) = −2logL(φ|y), with larger values indicating poorer fit. In Bayesian statistics
deviance can be summarised in different ways, with the posterior mean of the deviance,
D(φ) = E{D(φ)|y}, suggested as a sensible Bayesian measure of fit (Dempster 1973)
(reprinted as Dempster (1997)), though this is not penalised for model complexity.
Alternatively, the deviance can be calculated using a point estimate such as the posterior
means for φ, D(φ̄) = D{E(φ|y)}. In general we use the notation E(h(φ)|y) to denote
the expectation of h(φ) with respect to the posterior distribution of φ|y. However, in
more complex formula, we will occasionally use the alternative notation, Eφ|y(h(φ)).

SBCV proposed that the difference between these two measures, pD = D(φ)−D(φ̄),
is an estimate of the ‘effective number of parameters’ in the model. The DIC proposed by
SBCV adds pD to the posterior mean deviance, giving a measure of fit that is penalised
for complexity,

DIC = D(φ) + pD. (2)

DIC can also be written as a function of the log likelihood, i.e.

DIC = 2logL{E(φ|y)|y} − 4Eφ|y{logL(φ|y)}. (3)

More generally, if D̄ denotes the posterior mean of the deviance and D̂ denotes the
deviance calculated using some point estimate, then DIC = 2D̄−D̂. We will refer to D̂
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as a plug-in deviance, and the point estimates of the parameters used in its estimation as
plug-ins. The value of DIC is dependent on the choice of plug-in estimator. The posterior
mean, which is a common choice, leads to a lack of invariance to transformations of the
parameters (SBCV), and the reasonableness of the choice of the posterior mean depends
on the approximate normality of the parameter’s posterior distribution. Alternatives to
the posterior mean include the posterior median, which was investigated at some length
by SBCV, and the posterior mode, which was considered as an alternative by CRFT.

Further, in complex models we can define the prior and likelihood in different ways
depending on the quantities of interest, which will affect the calculation of both D̄ and
D̂ and hence DIC. The chosen separation of the joint density into prior and likelihood
determines what SBCV refer to as the focus of the model, and is operationalised by
the prediction problem of interest. For example, in a random effects model, if interest
lies in models that give good predictions for the observed units or clusters, then the
random effects should be included in the model focus. If interest lies in the population
parameters and models that give good predictions for new or ‘typical’ units, then the
random effects should not be included in the model focus but integrated out of the
likelihood (see also the discussion of model focus in Vaida and Blanchard (2005)).

For complete data, DIC is routinely used by Bayesian statisticians to compare mod-
els, a practice facilitated by its automatic calculation by the WinBUGS software, which
allows Bayesian analysis of complex statistical models using Markov chain Monte Carlo
(MCMC) techniques (Spiegelhalter et al. 2003). WinBUGS calculates DIC, taking D(φ)
to be the posterior mean of −2logL(φ|y), and evaluating D(φ̄) as -2 times the log like-
lihood at the posterior mean of the stochastic terms in the likelihood. However, other
values of DIC can be obtained by using different plug-ins or a different model focus.

When data include missing values, the possible variations in defining DIC are further
increased. Different treatments of the missing data lead to different specifications, and
there is also the question of what is to be included in the likelihood, just the observed
data or the missing data as well.

2.3 DIC based on the observed data likelihood

One construction of DIC is based on the observed data likelihood, L(λ, θ|yobs,m),

DICO = 2logL{E(λ, θ|yobs,m)|yobs,m} − 4Eλ,θ|yobs,m{logL(λ,θ|yobs,m)}

where

L(λ,θ|yobs,m) ∝
∫

f(yobs,ymis,m|λ,θ)dymis.

For a selection model, recalling Equation 1:

L(λ, θ|yobs,m) ∝
∫

f(yobs,ymis|λ)f(m|yobs,ymis,θ) dymis

= f(yobs|λ)Eymis|yobs,λ{f(m|yobs,ymis, θ)}.
(4)
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So the first term in the likelihood is the yobs part of the model of interest, f(yobs|λ),
and the second term evaluates the model of missingness by integrating over ymis. The
calculation of the expectation in Equation 4 creates complexity in the DICO computa-
tion.

The fit of the model of interest to yobs is optimised if this part of the model is
estimated in isolation, i.e. we assume ignorable missingness. As soon as we allow for
informative missingness by estimating the model of interest jointly with the model of
missingness, the fit of the model of interest part to yobs necessarily deteriorates. This is
because, in a selection model, the same model of interest is applied to both the observed
and the missing data, and so the λ estimates will depend on both yobs and the imputed
ymis. Since the latter are systematically different from the former under an informative
missingness model, the fit of the model of interest to the observed data will necessarily
be worse than if λ had just been estimated using yobs. Consequently, the value of the
part of the DICO attributable to the fit of the model of interest will increase when the
model of missingness departs from missing at random (MAR). This may partially or
completely offset any reduction in the part of DICO attributable to improvements in
the fit of the model of missingness (as happens in our simulated examples in Section
4 and application in Section 5). Thus, while DICO will indicate which selection model
best fits the observed data (yobs and m), it can be misleading when our true purpose
is to compare the fit of selection models to both the observed and missing data (yobs,
m and ymis). Neither DICO nor any other model selection criterion can answer this
question directly as they can never provide information about the fit to the missing data.
However, DICO can provide useful insight into the comparative fit of certain aspects
of these types of models. As we will show, reasonable comparisons can be made using
DICO by fixing the model of missingness part and using it to compare selection models
with different models of interest (conditional on the appropriateness of the missingness
model). Even so, we must still be careful how we use DICO, remembering that it only
tells us about the fit of a selection model to the observed data and nothing about its fit
to the missing data.

Because of the fact that the imputed ymis will depend on the model of missingness,
and DICO does not account for the fit to the missing data, we do not recommend using
DICO to compare selection models with different models of missingness. Hence, it would
be useful to have an additional model comparison measure that focusses on the missing
data. Clearly we cannot examine the fit of the model to the missing data as we can for
the observed data, but we do have information brought by the missingness indicator. We
would therefore like a DIC construction that allows us to use this additional information
and consider the fit of the model of missingness separately.
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2.4 Conditional DIC

An alternative option is a conditional DIC, which treats the missing data as additional
parameters (CRFT). This can be written as:

DICC = 2logL{E(λ, θ,ymis|yobs,m)|yobs,m}
− 4Eλ,θ,ymis|yobs,m{logL(λ, θ,ymis|yobs,m)}.

For selection models the likelihood on which this is based is

L(λ, θ,ymis|yobs,m) ∝ f(yobs,m|λ, θ,ymis)
= f(yobs|ymis,λ)f(m|yobs,ymis, θ).

(5)

For many examples, including all those discussed in this paper, f(yobs|ymis, λ) can
be simplified to f(yobs|λ). In this case DICC only differs from DICO in the second
term, f(m|yobs,ymis, θ), which is evaluated by conditioning on ymis rather than by
integrating over it. The plug-ins for DICC include the missing data, ymis, and can be
evaluated as E(λ, θ,ymis|yobs,m).

The DIC automatically generated by WinBUGS in the presence of missing data is
a conditional DIC, and WinBUGS produces DIC values for the model of interest and
model of missingness separately, and sums these to provide the overall DICC . This
DICC takes the missing observations as part of the model focus, rather than integrat-
ing them out as in DICO. As a consequence, this overall DICC does not focus on the
appropriate prediction problem, since, in general, the missing data (and the units for
which they arise) are not of direct interest in the joint selection model. Hence we do
not recommend using the overall DICC calculated by WinBUGS for evaluating selection
models. However, if we just consider the model of missingness, then the focus is on pre-
dicting the missingness for the sampled units in the dataset. The model of missingness
part of DICC treats ymis as extra parameters in the model of missingness, with the
model of interest acting as their prior distribution, which seems a natural construction
for considering the fit of the model of missingness separately. Thus, we propose that the
part of DICC relating to f(m|yobs,ymis, θ), can be used for comparing the fit of differ-
ent models of missingness for selection models with the same model of interest. While
there is no sense in considering this measure in isolation, we will see that it can provide
useful additional information when used in conjunction with DICO in the context of a
sensitivity analysis.

CRFT suggest a different formulation for a conditional DIC, which they call DIC8,
whereby the missing data are dealt with as missing variables rather than as additional
parameters. The idea of DIC8 is to first condition on the imputed ymis, calculating the
parameters of the model of interest and the model of missingness for each completed
dataset, denoted λ̂(yobs,m,ymis) and θ̂(yobs,m,ymis). Then integrate over ymis con-
ditional on the observed data (yobs,m) by averaging the resulting log likelihoods for
these datasets. It can be written as:

DIC8 = 2Eymis|yobs,m{logL(λ̂(yobs,m,ymis), θ̂(yobs,m,ymis),ymis|yobs,m)}
− 4Eλ,θ,ymis|yobs,m{logL(λ, θ,ymis|yobs,m)}.
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DIC8 differs from DICC in the plug-in part of the formula (first term), and cannot be
computed using only WinBUGS.

Although DIC8 is a conditional DIC, it does not have a clearly defined focus like
DICC (or DICO), but instead first includes the missing data in the model focus, and then
integrates over ymis. We argue that the resulting ambiguity of the prediction problem
that DIC8 addresses makes it difficult to recommend as a criterion for evaluating the
fit of selection models. However, at the request of a referee, we do consider a ‘partial’
DIC8 just for the model of missingness part of the model likelihood (f(m|yobs,ymis,θ))
and compare this with our recommended partial DICC for evaluating the fit of different
models of missingness for selection models with the same model of interest.

2.5 Strategy for using DIC to compare selection models

Suppose that we have a number of models of interest that are plausible for the ques-
tion under investigation, and a number of models of missingness that are plausible for
describing the missingness mechanism that generated the missing outcomes. Then our
proposed strategy is to fit a set of joint models, that combine each model of interest
with each model of missingness. DICO can then be used to compare models with the
same model of missingness, and the model of missingness part of DICC can be used to
compare models with the same model of interest. Hence, by combining complementary
information provided by the two DIC measures we contend that we can usefully assess
the comparative fit of a set of models, whereas this is not possible with a single DIC
measure.

3 Implementation of DICO and DICC

DICO cannot be computed using WinBUGS alone, because in general the required
expectations cannot be evaluated directly from the output of a standard MCMC run.
For these, either “nested” MCMC is required, or some other simulation method. In this
section, we discuss the steps involved in calculating DICO for a selection model where
f(y|β, σ) is the model of interest, typically a linear regression model assuming Normal
or t errors in our applications, and f(m|y, θ) is a commonly used Bernoulli model of
non-ignorable missingness. We also discuss some technical issues concerning the choice
of plug-ins for calculating both DICO and DICC .

3.1 Algorithm

Daniels and Hogan (2008) (henceforth DH) provide a broad outline of an algorithm for
calculating DICO, which we use as a starting point for our implementation which uses
the R software with calls to WinBUGS to carry out MCMC runs where necessary (the
code is available on http://www.bias-project.org.uk/). We start by describing our
preferred algorithm and then explain how and why it differs from the suggestions of
DH. We then discuss the checks that we consider necessary to ensure that the samples

http://www.bias-project.org.uk/�
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generated for its calculation are of sufficient length.

Our preferred algorithm, used to calculate the DICO for selection models imple-
mented in the examples in Sections 4 and 5, can be summarised by the following steps
(fuller detail is provided in the Appendix):

1. Call WinBUGS to carry out a standard MCMC run on the selection model, and
save samples of length K of the model of interest and model of missingness pa-
rameters, denoted β(k), σ(k) and θ(k), k = 1, . . . , K, (Ksample).

2. Evaluate the Ksample posterior means of the model parameters, β̂, σ̂ and θ̂.

3. For each member, k, of the Ksample, generate a sample of length Q of miss-
ing responses from the appropriate likelihood evaluated at β(k) and σ(k) using
f(yobs,ymis|β(k), σ(k)) (the sample associated with member k of the Ksample is
the Qsample(k)).

4. Next, for each member, k, of the Ksample, evaluate the expectation term from
Equation 4, Eymis|yobs,β(k),σ(k){f(m|yobs,ymis, θ

(k))}, by averaging over its asso-
ciated Qsample. Using these expectations, calculate the posterior mean of the
deviance, D̄, by averaging over the Ksample. (See step 4 in the Appendix for the
required equations.)

5. Generate a new Qsample of missing responses from the appropriate likelihood eval-
uated at the posterior means of the model of interest parameters using
f(yobs,ymis|β̂, σ̂). Evaluate the expectation term of the plug-in deviance by av-
eraging over this new Qsample, and calculate the plug-in deviance, D̂, using the
posterior means from the Ksample. (See step 5 in the Appendix for the required
equations.)

6. Finally, calculate DICO = 2D̄ − D̂.

The main differences between this algorithm and the DH proposal are in steps 3
and 4. DH propose using reweighting to avoid repeatedly generating samples for the
evaluation of the expectations required in step 4. An implementation using reweighting
involves generating a single Qsample of missing responses from the appropriate likeli-
hood evaluated at the posterior means of the model of interest parameters (as in step
5) instead of the multiple Qsamples at step 3. Step 4 then involves calculating a set
of weights for each member of the Ksample, and using these in the evaluation of the
expectation term. Fuller detail of the changes to these steps is provided in the Appendix.

The reweighting is a form of importance sampling, used when we wish to make
inference about a distribution f∗(·) using Monte Carlo integration, but instead have
available a sample, z(1), . . . , z(Q), from a different distribution f(·). The available sample
can be reweighted to make some inference based on f∗(·), using weights of the form

wq =
f∗(z(q))
f(z(q))

.
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Details of the equations for the weights required for calculating DICO using the reweight-
ing method are given in the Appendix. The success of importance sampling is known
to be critically dependent on the variability of the sampling weights (Peruggia 1997),
with greater variability leading to poorer estimates. For the method to be successful, we
require that the two distributions f(·) and f∗(·) are reasonably close, and in particular
that f(·) has a heavier tail than f∗(·) (Liu 2001; Gelman et al. 2004).

We have run both versions of the algorithm (with and without weighting) on some
examples and recommend the version without weighting because it (1) avoids effective
sample size problems associated with reweighting, (2) reduces instability and (3) has no
computational disadvantage. We now discuss each of these issues in more detail.

Effective sample size

In the calculation of DICO using reweighting, a set of sampling weights, w
(k)
q , is produced

for each member of the Ksample. We would like the effective sample size (ESS) of each
of these sets of weights to be close to the actual sample size, Q. Following Liu (2001),
Chapter 2, we define ESS as

ESS =
Q

1 + var(w)
(6)

where Q is the number of samples generated from a distribution, f(·), and var(w) is the
variance of normalised importance weights. A small variance is good as ESS approaches
the actual sample size, Q, when var(w) gets smaller. This variance can be estimated
by

Q∑
q=1

(wq − w̄)2

(Q− 1)w̄2
(7)

where w̄ is the mean of the sample of wqs. Using these formulae, a set of ESS values
can be calculated, one corresponding to each Ksample member. We found that the ESS
is highly variable in examples based on simulated data, including a sizeable proportion
which are sufficiently low to be of concern. By using an algorithm without reweighting,
we avoid potential problems associated with low ESS.

Stability

We would like the calculated value of DICO to be stable, and not depend on the random
number seed used to generate either the Ksample or Qsample. For an example based on
data with simulated missingness, we calculated DICO using the reweighted algorithm
with K = 2, 000 and Q = 2, 000. Firstly, we repeated the calculation four times,
using different random number seeds for generating the Ksample, but the same random
number seed to generate the Qsample. The variation between the DICO from the five
calculations (original and four repetitions) was small (less than 1). Note that in this case
although the Qsample is generated from the same random number seed, it will also differ
between runs due to the Ksample differences. Secondly, we repeated the calculation
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another four times, but using the same random number seed to generate the Ksample
and four different random number seeds for generating the Qsample. As the Ksample
is generated from the same random number seed, any differences are attributable to
variation in the Qsample. Both D̄ and D̂ now exhibit much larger variation, resulting
in a difference between the highest and lowest DICO of about 6 which is sufficiently
large to be a concern, given that rules of thumb suggest that differences of 3-7 in DIC
should be regarded as important (SBCV). (These results are shown in Table 11 of the
supplementary material, Section 6.) Repeating the exercise with Q increased to 10,000
lowered the variation only slightly.

Using the algorithm without reweighting resulted in much greater stability of D̄,
but D̂, and hence DICO, remained variable. A method for assessing this instability is
discussed in Section 3.2.

Computational time

One of the original reasons for using reweighting was to speed up the computation of
DICO, since our preferred method involves generating K+(K×Q)+Q samples, whereas
the importance sampling method just generates K +Q samples, and then reweights the
single Q sample for every replicate in the K sample. However, for equivalent sample sizes
we found that our implementation of both algorithms ran in about the same time, so
there appears to be no computational advantage to using reweighting in practice. This
is because the computational time saved in the reweighting algorithm by not generating
the extra samples is offset by evaluating the weights which also requires the calculation
of K ×Q model of interest likelihoods.

3.2 Adequacy of the size of the Qsample

As discussed above (see paragraph headed “Stability” in Section 3.1), we would like to
be sure that Q is large enough to ensure that the DICO resulting from our calculations
is stable. We have developed a method for checking the stability of our results using
subsets of the Qsample. These subsets are created by splitting the complete Qsample
in half, and then successively splitting the resulting subsets. D̄ and D̂ for each subset
and the full sample are then plotted against the size of the Qsample. (DICO could
also be plotted against Qsample size, but as it is a function of D̄ and D̂, it provides
no additional information.) The required extra calculations can be carried out with
negligible additional cost in running time.

Figure 1, presented in Section 4.1 below, provides examples of such plots, where
Q = 40, 000 and the sample is repeatedly split until a sample size of 2,500 is reached.
This gives 2 non-overlapping Qsamples of length 20,000, 4 non-overlapping Qsamples
of length 10,000, 8 non-overlapping Qsamples of length 5,000 and 16 non-overlapping
Qsamples of length 2,500. These plots show little variation in D̄ at each Q (all the
crosses are on top of each other), but a clear downwards trend as Q increases, which
converges towards a limit. However, D̂ exhibits instability that decreases as Q increases.
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A similar downwards trend to that seen in D̄, converging to a limit, is indicated by the
mean values of D̂.

We consider the Qsample size to be sufficient if our proposed deviance plot suggests
both D̄ and D̂ have converged to a limit and D̂ has stabilised. On this basis 40,000
appears an adequate sample size for calculating DICO for the model shown in the left
panel of Figure 1, but a higher Q might produce a more accurate DICO for the models
depicted in the middle and right panels of Figure 1. The plots for this and other
synthetic examples suggest that higher variability and slower convergence to a limit are
associated with poorer fitting models.

3.3 Plug-ins for calculating DIC

Calculation of any DIC involves calculation of a plug-in likelihood D̂ evaluated at a point
estimate of the model parameters that are in focus, and it is implicitly assumed that
this point estimate is a ‘good’ estimate. In situations where the posterior distribution
of the parameters in focus is approximately normal and reasonably precise, DIC is
likely to be robust to different choices of plug-ins. However, considerable care is needed
when calculating the plug-in deviance in situations where the parameters in focus are
poorly identified (for example, due to small sample size and weak or conflicting prior
information), since this can lead to difficulties in choosing a good point estimate. This is
a potential problem for our DICC , since this includes the missing data as parameters in
the model focus, and these may be only weakly identifiable. We therefore recommend
using a number of alternative plug-ins to calculate DICC for the missingness model,
and examining stability of the resulting DICC values to different choices. Plug-ins that
result in negative values for pD, or lead to DICC values that are inconsistent with those
based on alternative plug-ins, are indicative of problems, and the DICC for such models
should be interpreted with extreme caution.

In particular, we consider four different plug-ins for calculating DICC for the model
of missingness in our examples. Let the model of missingness be defined as

mi ∼ Bernoulli(pi),
logit(pi) = f(yi, θ),

θ ∼ prior distribution.
(8)

We use (1) the posterior means or (2) the posterior medians of (θ,ymis) as our plug-
in values (which we term “standard” plug-ins) or alternatively (3) the posterior mean
or (4) the posterior median of logit(pi) as plug-ins (which we term “link” plug-ins).
We carry out a number of checks concerning the appropriateness of these plug-ins for
our examples, which can be found in the supplementary material, Section 6. Results
reported for DICC in the main paper are based on the two alternative (i.e. standard
or link) posterior median plug-ins; for comparison, results based on the posterior mean
plug-ins for DICC are provided in the supplementary material, Section 6.

For DICO we must choose plug-ins that ensure consistency in the calculation of the
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posterior mean deviance and the plug-in deviance, so that missing values are integrated
out in both parts of the DIC. The standard plug-ins allow us to evaluate D̂ by integrating
over ymis in the model of missingness part of the joint likelihood as required. By
contrast, the link plug-ins are not appropriate as they do not allow averaging over a
sample of ymis values, and in fact would lead to the same plug-in deviance for the
model of missingness part of DICO as the one used for calculating DICC . Hence for
DICO, we only use posterior mean standard plug-ins, evaluated as E(λk|yobs,m) and
E(θk|yobs,m). (Note that posterior median standard plug-ins gave virtually identical
values of DICO and so are not reported here).

4 Illustration of strategy on simulated data

In this section we illustrate our proposed strategy using simulated bivariate Normal data,
and demonstrate the limitations of using only DICO for comparing selection models with
simulated time series data.

4.1 Bivariate Normal data

We now assess how DICO and the missingness part of DICC can be used to help compare
models, using simulated data with simulated missingness so that the correct model is
known. For this purpose, we generate a dataset of bivariate Normal data with 1000
records comprising a response, y, and a single covariate, x, s.t.

(
x

y

)
∼ N

((
0
1

)
,

(
1 0.5
0.5 1

))
. (9)

For this dataset the correct model of interest is

yi ∼ N(µi, σ
2) (10)

µi = β0 + β1xi

and the true values of the parameters are β0 = 1 and β1 = 0.5.

We then delete some of the responses according to the equation logit(pi) = −2 + yi,
which imposes non-ignorable missingness such that the probability of being missing
increases with the value of y, and ensures that the estimated probabilities always lie in
the range [0,1]. This results in 30% of the responses being missing.

Our investigation is based on fitting six joint models (JM1-JM6), as specified in Table
1, to this simulated dataset with simulated missingness. For JM1, both parts of the
model are correctly specified. However, JM2 has an inadequate model of interest, JM3
has an incorrect error distribution, JM4-JM5 have too complex a model of missingness,
and JM6 is a version of JM5 with a parameter constrained to the wrong sign. So we
consider three different models of interest and four different models of missingness. A
full implementation of our proposed strategy would involve fitting a set of joint models
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Table 1: Specification of joint models for the bivariate Normal simulated data

Model Model of Interest Model of Missingness
Name

JM1 yi ∼ N(µi, σ
2); µi = β0 + β1xi logit(pi) = θ0 + θ1yi

JM2 yi ∼ N(µi, σ
2); µi = β0 logit(pi) = θ0 + θ1yi

JM3 yi ∼ t4(µi, σ
2); µi = β0 + β1xi logit(pi) = θ0 + θ1yi

JM4 yi ∼ N(µi, σ
2); µi = β0 + β1xi logit(pi) = θ0 + θ1yi + θ2y

2
i

JM5a yi ∼ N(µi, σ
2); µi = β0 + β1xi logit(pi) =

{
θ0 + θ1yi : yi ≤ γ

θ0 + θ1γ + θ2(yi − γ): yi > γ

JM6ab yi ∼ N(µi, σ
2); µi = β0 + β1xi logit(pi) =

{
θ0 + θ1yi : yi ≤ γ

θ0 + θ1γ + θ2(yi − γ): yi > γ

a The change point in this piecewise regression, γ, is fixed to 0
b θ1 is constrained to be positive and θ2 is constrained to be negative

which pairs each model of interest with each model of missingness (twelve joint models),
and we do this in our real data application in Section 5.

Vague priors are specified for the unknown parameters of the model of interest: the β
parameters are assigned N(0,100002) priors and the precision, τ = 1

σ2 , a
Gamma(0.001,0.001) prior. Following Wakefield (2004) and Jackson et al. (2006), we
specify a logistic(0,1) prior for θ0 and a weakly informative N(0,0.68) prior for θ1 and
θ2, which corresponds to an approximately flat prior on the scale of pi. For JM6, θ1 is
constrained to be positive and θ2 is constrained to be negative.

We calculate the DICO for the three models with the same model of missingness
(JM1, JM2 and JM3) using the algorithm described in Section 3, with K = 2, 000 and
Q = 40, 000. The likelihoods used in the calculations are given in the supplementary
material, Section 6. The samples produced by the WinBUGS runs are from 2 chains of
25,000 iterations, with 20,000 burn-in and the thinning parameter set to 5. Based on the
Gelman-Rubin convergence statistic (Brooks and Gelman 1998) and a visual inspection
of the chains, the WinBUGS runs required for calculating DICO for the three models
all converged.

As discussed in Section 3.2, Figure 1 allows us to assess the adequacy of the length
of our Qsample for the different models by splitting it into subsets and plotting D̄ and
D̂ against the sample lengths. The scale ranges of the three plots are consistent, but
the magnitudes vary. Downward trends in the deviance estimates, converging towards a
limit, are shown for all models. In this example, as the DICO differ substantially between
models, we do not consider it necessary to further reduce the sampling variability by
increasing Q any more.
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Figure 1: Deviance plots for checking the adequacy of the Qsample length for JM1-JM3
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Recall that since the data and missingness are simulated, we know that JM1 is the
correct model. Table 2 shows the DICO for JM1-JM3, and two versions of an alternative
measure of overall fit, the mean square error (MSE) for the model of interest, as defined
by

MSE =
1
n

n∑

i=1

(yi − E(yi|β))2, (11)

where E(yi|β) is evaluated as the posterior mean of µi in Equation 10. One version
(obs) is based only on the observed data, and the other (all) uses both the observed
and missing data which is possible with this dataset because we have simulated the
missingness and know the true values of the missing yi. Based only on the observed
data, JM2 is clearly a very poor choice, but there is nothing to choose between JM1
and JM3. If the missing data are also brought into consideration, the message is the
same. In contrast to the MSE, DICO assesses the joint fit of both parts of the model,
penalised for complexity, although, as with MSE obs, the fit of the model of interest is
only considered with respect to the observed responses. Following our proposed strategy,
we only use DICO to compare models with the same model of missingness, i.e. JM1-
JM3, and DICO correctly suggests that JM1 is a better fitting model than JM2 or JM3.
However, if we calculate DICO for JM4-JM6 (see Table 2) and use DICO to compare
models with a different model of missingness, we would conclude that the other three
models fit slightly better than JM1.

We now look at the model of missingness part of DICC , to compare JM1 and JM4-
JM6, the four models with the same model of interest. In calculating DICC we are
not restricted in our choice of plug-ins for computational reasons as for DICO. So
we calculate two versions, one using the standard plug-ins and the other calculated
using link plug-ins, and look for broad consistency across the plug-ins. Inconsistency or
negative pD are taken as indicative of model problems. The DICC based on standard
plug-ins returns a negative pD for JM4 and there is inconsistency between the two
versions of DICC , so we have reservations about this model. A comparison of the model
of missingness DICC for the remaining three models (Table 3) suggests clearly that the
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Table 2: Comparison of DICO and MSE for JM1-JM6

standard plug-ins MSE

D̄ D̂ pD DICO alla obsb

JM1 2916.3 2907.4 8.8 2925.1 0.741 0.705
JM2 3145.1 3116.6 28.5 3173.7 0.998 0.884
JM3 2943.5 2936.4 7.1 2950.6 0.740 0.704

JM4 2908.6 2898.8 9.8 2918.4 0.746 0.710
JM5 2913.4 2905.2 8.1 2921.5 0.742 0.706
JM6 2917.2 2912.4 4.9 2922.1 0.772 0.668
a MSE based on all data (observed and missing)
b MSE based on observed data only

model of missingness in JM6 provides a much poorer fit than those for JM1 and JM5.
There is rather less to choose between JM1 and JM5, suggesting that while DICC is
useful in identifying substantially wrong models, it is a little too conservative in its
penalisation for complexity for distinguishing between a correct model and a slightly
over complex version of that model.

Table 3: Model of missingness DICC (calculated using posterior median plug-ins) and
DIC8 for the simulated bivariate normal data for JM1 and JM4-JM6

standard plug-ins link plug-ins

D̄ D̂ pD DICC D̂ pD DICC D̂ pD DIC8

JM1 1072.3 1032.2 40.2 1112.5 1033.3 39.1 1111.4 1070.4 2.0 1074.3
JM4 1060.3 1065.8 -5.5 1054.8 1050.6 9.7 1070.0 1057.3 3.0 1063.3
JM5 1069.3 1032.8 36.5 1105.8 1029.5 39.9 1109.2 1066.4 2.9 1072.3
JM6 1212.2 1186.8 25.5 1237.7 1193.5 18.7 1231.0 1208.3 4.0 1216.2

Table 3 also shows the model of missingness DIC8, the alternative formulation of
a conditional DIC suggested by CRFT, which was introduced in Section 2.4. The
posterior mean deviance is as for DICC and hence generated by WinBUGS, but some
additional calculations are required to produce the plug-in deviance. Firstly, the ymis

sample produced by the WinBUGS MCMC run is used to generate K complete datasets.
Then using the R software, the model of missingness logistic regression is fitted to each
complete dataset in turn to produce θ̂(yobs,m,ymis). (We are able to fit the model
of missingness separately as the likelihood factorises in the presence of the full data.)
Finally, the values of the partial DIC are averaged over the K simulated datasets. Fuller
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details of this algorithm are given in the Appendix.

The pD for DIC8 is close to the actual number of parameters (not including the
missing data) in the model of missingness for this example, which is consistent with
CFRT’s findings for mixture models. This suggests that, despite conditioning on the
missing data in the first part of its calculation, DIC8 behaves like a ‘population focused’
DIC that does not penalize at all the imputation of the missing data. The ordering of
the partial DIC8 resembles DICC , and suggests that we should favour JM4, as there
are no clear warnings from a negative pD or inconsistency. The appropriateness of this
alternative message depends on the question that we are trying to answer. However, in
general, the DICC , which focuses on identifying models that provide good predictions of
the missingness mechanism for the current set of sampling units, seems more appropriate
for our purposes than DIC8, which focuses on prediction for other sampling units subject
to the same missingness mechanism.

Summarising, if we use DICO to compare models with the same model of missingness,
we will prefer JM1 to JM2 and JM3, and if we use the partial DICC to compare different
missingness models with the same model of interest we will find JM1 and JM5 to be the
most plausible models. These two models give identical estimates of β0, 1.02 (0.94,1.11),
and very similar estimates of β1: 0.53 (0.46,0.60) from JM1 and 0.55 (0.48,0.63) from
JM5 (posterior mean with 95% interval in brackets). As there is little to choose between
JM1 and JM5 in terms of performance and DICC is inconclusive, we follow the principle
of parsimony and favour JM1. So in this example, a combination of DICO, DICC and
performance (correctly) point towards JM1 being the best model.

We now consider some simulated longitudinal data which mimics the basic structure
of the clinical trial data that we will analyse in Section 5, in order to illustrate why
DICO can be misleading if used in isolation, and should not be used to compare selection
models with different models of missingness.

4.2 Time series data

For our second simulation we generate response data, yit, for i = 1, . . . , 1000 individuals
at two time points, t = 1, 2, using the random effects model:

yit ∼ N(µit, σ
2)

µit = βi + ηt

βi ∼ N(γ, ρ2)

(12)

with σ = 1, η = −1, γ = 0 and ρ = 1. We then impose non-ignorable missingness
on yi2 according to the linear logistic equation, logit(pi) = yi2 − yi1, where pi is the
probability that yi2 is missing. So in this example, the missingness is dependent on the
change in yi between time points. Three joint models are fitted to this data, all with
a correctly specified model of interest, as given by Equation 12, but different models
of missingness as specified in Table 4. The priors are similar to those specified for
the models in Section 4.1, and all the models exhibit satisfactory convergence. The
model of interest parameter estimates show that mnar2 is closest to fitting the true
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data generating model (see Table 15 in the supplementary material, Section 6).

Table 4: Specification of the models of missingness for the simulated time series data

Model Name Model of Missingness equation

mar logit(piw) = θ0 + θ1yi1

mnar logit(piw) = θ0 + θ2yi2

mnar2 logit(piw) = θ0 + θ3yi1 + θ4(yi2 − yi1)

We calculate DICO for the three models as described in the previous section. A
Qsample length of 40,000 is adequate (see Figure 4 in the supplementary material,
Section 6). In Section 2.3 we discussed the limitations of DICO for comparing selection
models with different models of missingness and recommended that DICO is not used for
this purpose. Table 5 provides empirical support for this recommendation, as the correct
model (mnar2) clearly has the highest DICO. Although the higher value of D̂ for mnar2
compared with mar and mnar may seem counter intuitive, it reflects the discussion in
Section 2.3 about the deterioration in fit of the model of interest to the observed data
when a non-ignorable non-response mechanism is assumed (see supplementary material,
Section 6 for further detail). However, if instead we use the model of missingness part
of DICC , in line with our proposed strategy, we will conclude that the mnar2 model
best explains the missingness pattern regardless of the plug-ins chosen (Table 6). The
model of missingness part of DIC8 also suggests that we should favour mnar2.

Table 5: DICO for the simulated time series data

standard plug-ins

D̄ D̂ pD DICO

mar 5515.4 4788.3 727.1 6242.5
mnar 5462.7 4721.2 741.5 6204.1
mnar2 6004.0 5382.7 621.2 6625.2

These findings were replicated with two further datasets, randomly generated using
the same equations, and support our proposed two-measure strategy in preference to
using a single DIC measure for comparing selection models with suspected non-ignorable
missing responses.

We now examine this approach in a case study comparing three treatments of de-
pression using longitudinal data.
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Table 6: Model of missingness DICC and DIC8 for the simulated time series data

standard plug-ins link plug-ins

D̄ D̂ pD DICC D̂ pD DICC D̂ pD DIC8

mar 1198.0 1196.1 1.9 1199.9 1196.1 2.0 1200.0 1196.1 1.9 1199.9
mnar 1089.9 1051.5 38.4 1128.3 1051.5 38.4 1128.2 1087.8 2.1 1092.0
mnar2 813.7 675.4 138.4 952.1 677.6 136.2 949.9 810.7 3.0 816.7

5 Application

5.1 Description of HAMD data

As an application, we analyse data from a six centre clinical trial comparing three
treatments of depression, which were previously analysed by Diggle and Kenward (1994)
(DK) and Yun et al. (2007). DK found evidence of informative missingness given their
modelling assumptions. In this clinical trial, 367 subjects were randomised to one of
three treatments and rated on the Hamilton depression score (HAMD) on five weekly
visits, the first before treatment, week 0, and the remaining four during treatment,
weeks 1-4. The HAMD score is the sum of 16 test items and takes values between 0 and
50, where the higher the score the more severe the depression. In this example, we are
interested in any differences between the effects of the three treatments on the change
in depression score (HAMD) over time. Some subjects dropped out of the trial from
week 2 onwards, with approximately one third lost by the end of the study. Similar
numbers of subjects received each treatment (120, 118 and 129 for treatments 1, 2
and 3 respectively), but the levels and timing of drop-out differ. In particular, fewer
subjects drop out of treatment 3, and although the missingness percentage is similar for
treatments 1 and 2 by week 4, more of the drop-out occurs earlier for treatment 2.

The missing responses in the HAMD data force us to make modelling assumptions
that are untestable from the data, and no measure can tell the whole story regarding
model fit. In these circumstances we know that sensitivity analysis is essential, and
cover a range of options by proposing two different models of interest and three dif-
ferent models of missingness. Attempting to select a single ‘best’ model from the six
possible combinations would defeat the object of the sensitivity analysis, but we use our
two measure DIC strategy to help determine whether some of these models are more
plausible than others.

5.2 Models of interest for HAMD data

Exploratory plots indicate a downwards trend in the HAMD score over time, so for our
model of interest we follow DK and regress HAMD against time, allowing a quadratic
relationship and a different intercept for each centre. We use two variants of this model:
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an autoregressive model and a random effects model. In the first (AR), we specify

yiw = µiw + δiw

µiw = βc(i) + ηt(i)w + ξt(i)w
2

(13)

where i=individual, t=treatment (1,. . . ,3), c=centre (1,. . . ,6) and w=week (0,. . . ,4).
c(i) and t(i) denote the centre and treatment of individual i respectively. The δiws
follow a second-order autoregressive process defined by

δi0 = εi0,

δi1 = α1δi0 + εi1,

δiw = α1δi(w−1) + α2δi(w−2) + εiw, w ≥ 2

εiw ∼ N(0, σ2).

(14)

In the second (RE), we allow individual random effects on the intercept s.t.

yiw ∼ N(µiw, σ2)

µiw = βi + ηt(i)w + ξt(i)w
2

βi ∼ N(γc(i), ρ
2
c(i)).

(15)

The parameters capturing the treatment effects are η and ξ, and the treatment effects
will be displayed graphically. For both variants we assign vague priors to the unknown
parameters: giving the regression coefficients N(0,10000) priors and the precision ( 1

σ2 ) a
Gamma(0.001,0.001) prior. In the RE version, each γc(i) is assigned a N(0,10000) prior
and the hierarchical standard deviations ρc(i) are assigned noninformative uniform priors
(with an upper limit of 100) as suggested by Gelman (2005).

5.3 Models of missingness for HAMD data

We specify three models of missingness as detailed in Table 7, and assign a logistic prior
to θ0 and weakly informative Normal priors to all the other θ parameters as previously
discussed (Section 4.1). The simplest form of informative drop-out is given by MoM1
where missingness depends on the current value of the HAMD score, while the form of
MoM2 allows dependence on the previous week’s HAMD score and the change in the
HAMD score as parameterised by θ3. MoM3 has the same form as MoM2, but includes
separate θ for each treatment, which allows treatment to directly affect the missingness
process.

5.4 Comparison of joint models for HAMD data

Joint models combining the model of missingness MoM1 with the RE and AR models
of interest will be referred to as JM1(RE) and JM1(AR) respectively, and similarly
for models of missingness MoM2 and MoM3. Runs of these six joint models and the
models of interest estimated on complete cases only, CC(RE) and CC(AR), converged
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Table 7: Specification of the models of missingness for the HAMD data

Model Name Model of Missingness equation

MoM1 logit(piw) = θ0 + θ1yiw

MoM2 logit(piw) = θ0 + θ2yi(w−1) + θ3(yiw − yi(w−1))
MoM3 logit(piw) = θ0t(i) + θ2t(i)yi(w−1) + θ3t(i)(yiw − yi(w−1))

based on the Gelman-Rubin convergence statistic and a visual inspection of the chains.
Adding a missingness model makes little difference to the β or γ estimates, but there
are substantial changes in some of the η and ξ parameters associated with the effect of
treatment over time. The impact of these changes will be assessed shortly using plots
of the mean response profiles for each treatment.

The model of missingness parameter estimates are shown in Table 8. The positive
θ1 estimates for the JM1 models suggest that drop-out is associated with high HAMD
scores, while the negative θ3 in the JM2 models indicate that change in the HAMD score
is informative, with individuals more likely to drop-out if their HAMD score goes down.
These two complementary messages are that the more severely depressed subjects, and
those for whom the treatment appears most successful are more likely to drop-out.
The JM3 models provide some evidence that the missingness process is affected by the
treatment. These findings hold for both the AR and RE models.

Table 8: Parameter estimates for the model of missingness for the HAMD data

JM1(AR) JM2(AR) JM3(AR) JM1(RE) JM2(RE) JM3(RE)

θ0 -3.12(-3.72,-2.53)-3.19(-3.80,-2.62) -2.61(-3.22,-2.03)-3.10(-3.75,-2.50)

θ0(t1) -2.65(-3.91,-1.58) -2.22(-3.22,-1.31)

θ0(t2) -3.75(-5.20,-2.56) -3.79(-5.38,-2.41)

θ0(t3) -3.89(-5.10,-2.81) -3.57(-4.87,-2.38)

θ1 0.08 (0.04,0.11) 0.04 (0.01,0.08)

θ2 0.04 (0.00,0.09) -0.01 (-0.07,0.04)

θ2(t1) 0.04 (-0.04,0.12) -0.02 (-0.10,0.05)

θ2(t2) 0.01 (-0.10,0.10) -0.10 (-0.27,0.03)

θ2(t3) 0.08 (0.00,0.15) -0.01 (-0.12,0.09)

θ3 -0.14(-0.27,-0.02) -0.28(-0.39,-0.18)

θ3(t1) 0.00 (-0.21,0.27) -0.17(-0.32,-0.04)

θ3(t2) -0.34(-0.59,-0.10) -0.54(-0.87,-0.30)

θ3(t3) -0.08 (-0.28,0.08) -0.32(-0.54,-0.13)

Table shows the posterior mean, with the 95% interval in brackets

How much difference does the choice of model of interest make?

DH point out that correctly specifying the dependence structure in the model of interest
has increased importance when dealing with missing data. To see whether using AR or
RE as our model of interest makes a difference, we compare the mean response profiles
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for each pair of models (Figure 2). For JM1 and JM2 the solid (AR) and dashed (RE)
lines for each treatment show very small differences, which accentuate slightly for the
more complex JM3.

Figure 2: Modelled mean response profiles for the HAMD data - comparing the model
of interest
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How much difference does the choice of model of missingness make?

The impact of the addition of the MoM1 model of missingness to the AR model of
interest can be seen by comparing the CC (solid lines) and JM1 (dot-dash lines) in
Figure 3 and noticing a small upward shift of JM1; the impact is slightly less when the
RE model of interest is used. By contrast, the direction and magnitude of the shift from
CC varies according to treatment and week when either MoM2 (dashed lines) or MoM3
(dotted lines) is added to either model of interest.

5.5 Use of DICO to help with model comparison

DICO is calculated for the six HAMD models using the algorithm discussed in Section
3. The runs using MoM1 and MoM2 take approximately 5 hours on a desktop computer
with a dual core 2.4GHz processor and 3.5GB of RAM, while the more complex models
with MoM3 run in about 24 hours. The Ksample length is set to 2,000, formed from
2 chains of 110,000 iterations, with 100,000 burn-in and the thinning parameter set to
10, and Q is set to 40,000. Table 9 shows DICO for the six models for the HAMD data.
The likelihood for the model of missingness is calculated for the weeks with drop-out,
and for each of these weeks excludes individuals who have already dropped out.

Before discussing these results, we examine the adequacy of the Qsample, by splitting
it into subsets and plotting D̄ and D̂ against the sample lengths as described in Section 3.
From these plots for the six models (shown as Figure 5 in the supplementary material,
Section 6), we see that both D̄ and D̂ are stable and show little variation even for
small Q for both JM1 models. For the other models, trends similar to those exhibited
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Figure 3: Modelled mean response profiles for the HAMD data - comparing the model
of missingness
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In the RE plot, the JM2 and JM3 lines for treatment 3 are almost coincident.

Table 9: DICO for the HAMD data

standard plug-ins

D̄ D̂ pD DICO

JM1(AR) 9995.8 9978.6 17.2 10013.0
JM1(RE) 9663.2 9359.6 303.7 9966.9
JM2(AR) 9991.0 9965.5 25.5 10016.5
JM2(RE) 9680.6 9372.6 308.0 9988.5
JM3(AR) 9995.1 9965.0 30.1 10025.2
JM3(RE) 9698.1 9392.1 306.0 10004.2

by our synthetic data (see Figure 1) are evident, but again there is convergence to a
limit suggesting the adequacy of Q=40,000. As before, we also see that the instability
associated with small Q decreases with increased sample size. The trends and variation
are more pronounced for the RE models than the AR models.

Our investigation with simulated data suggests that DICO can give useful informa-
tion about the relative merits of the model of interest. For the HAMD example, DICO

provides consistent evidence that the random effects model of interest is preferable to
the autoregressive model of interest when combined with each model of missingness in
turn, as can be seen by DICO always being smaller for RE than AR for each of the
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three models of missingness.

5.6 Use of the model of missingness DICC to help with model com-
parison

We now turn to the model of missingness part of DICC , to see what additional infor-
mation it provides. The two versions shown in Table 10, based on the standard plug-ins
and the link plug-ins, provide a consistent message. For a given model of interest (AR
or RE) MoM2 and MoM3, used in the JM2 and JM3 models, clearly provide a better
fit to this part of the model than JM1, with evidence that JM3 is preferable to JM2,
i.e. a missingness model that allows treatment specific parameters.

Table 10: Model of Missingness DICC (calculated using posterior median plug-ins) for
the HAMD data

standard plug-ins link plug-ins

D̄ D̂ pD DICC D̂ pD DICC

JM1(AR) 698.6 695.5 3.1 701.7 695.9 2.7 701.3
JM2(AR) 653.4 648.4 5.0 658.3 652.5 0.9 654.3
JM3(AR) 626.0 617.8 8.2 634.2 607.4 18.6 644.6

JM1(RE) 719.6 717.6 2.0 721.7 718.4 1.3 720.9
JM2(RE) 547.5 514.6 32.9 580.4 516.3 31.2 578.7
JM3(RE) 521.6 478.0 43.6 565.2 480.9 40.7 562.4

5.7 Combined use of DICO and the model of missingness DICC

To conclude, within this sensitivity analysis, DICO suggests that the RE model of inter-
est is more plausible than the AR. For RE models, there are substantial improvements
in the model of missingness DICC for JM2 and JM3 over JM1, i.e. JM2 and JM3 better
explain the missingness pattern than JM1. If we wished to report the results of a single
model, then JM3(RE) would be the best option. However, JM2(RE) is also reasonably
well supported, so in the spirit of sensitivity analysis, we should report results from both
models with a RE model of interest and a model of missingness that depends on the
change in HAMD (either treatment specific or not). The results from these two models
are robust.

If we based our analysis of this clinical trial data on a complete case analysis, we
would conclude that treatment 2 lowers the HAMD score more than treatments 1 and
3 throughout the trial, and treatment 1 is more successful than treatment 3 in lowering
HAMD in the later weeks. The same conclusions are reached using our preferred joint
models, i.e. JM2(RE) and JM3(RE), but by the end of the study, treatment 2 appears
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a little more effective in lowering HAMD (compare the dotted lines with the solid lines
in the RE plot of Figure 3).

6 Discussion

For complete data, DIC is routinely used by Bayesian statisticians to compare models, a
practice facilitated by its automatic generation in WinBUGS. However, using DIC in the
presence of missing data is far from straightforward. The usual issues surrounding the
choice of plug-ins are heightened, and in addition we must ensure that its construction
is sensible. No single measure of DIC, or indeed combination of measures, can provide
a full picture of model fit since we can never evaluate fit to the missing data. However,
the use of two complementary measures can provide more information than one DIC
measure used in isolation. The model comparison strategy that we have developed
relies on using both DICO and the model of missingness part of DICC . A DIC based on
the observed data likelihood, DICO, can help with the choice of the model of interest,
and should be used to compare joint models built with the same model of missingness
but different models of interest. The model of missingness part of DICC , which uses
information provided by the missingness indicators, allows comparison of the fit of
different models of missingness for selection models with the same model of interest. In
view of the difficulty of choosing plug-ins that provide robust estimates of DICC , we
recommend that different plug-ins are used and inconsistency interpreted as flagging an
unreliable model.

DICO cannot be generated by WinBUGS, but can be calculated from WinBUGS
output using other software. DH provide an algorithm for its calculation, which we have
adapted and implemented for both simulated and real data examples. We recommend
performing two sets of checks: (1) that the plug-ins are reasonable (i.e. if posterior
means are used, they should come from symmetric, unimodal posterior distributions,
and they must ensure consistency in the calculation of the posterior mean deviance
and the plug-in deviance, so that missing values are integrated out in both parts of the
DIC) and (2) that the size of the samples generated from the likelihoods (Qsamples)
is sufficiently large to avoid overestimating DICO and problems with instability in the
plug-in deviance (we suggest plotting deviance against sample length and checking for
stability, as in Figure 1). Based on limited exploration of synthetic and real data, we
tentatively propose working with a Qsample of at least 40,000. Again based on our
experience, we tentatively suggest that even with a well chosen Qsample size, a DIC
difference of at least 5 is required to provide some evidence of a genuine difference in
the fit of two models, as opposed to reflecting sampling variability.

A model’s fit to the observed data can be assessed, but its fit to the unobserved
data given the observed data cannot be assessed. So, in using DICO we must remember
that it will only tell us about the fit of our model to the observed data and nothing
about the fit to the missing data. However, it does seem reasonable to use it to compare
joint models with different models of interest but the same models of missingness. DH
discussed an alternative construction (DICF ) for selection models based on the posterior
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predictive expectation of the full data likelihood, L(β,θ|yobs,ymis,m), and provided
a broad outline for its implementation. DICF may provide additional information for
model comparison, but its calculation is complicated as the expectation for the plug-
ins is conditional on ymis. We have found it to be computationally very unstable in
preliminary investigations (DH also noted similar computational problems; personal
communication).

An alternative to using DIC to compare models is to assess model fit using a set
of data not used in the model estimation, if available. In surveys, sometimes data is
collected from individuals who are originally non-contacts or refusals, and using this for
comparing model fit is particularly attractive as such individuals are likely to be similar
to those who have missing data. By contrast, alternatives such as K-fold validation will
only tell us about the fit to the observed data and as such provide an alternative to the
DICO part of the strategy. The link between cross-validation and DIC is discussed by
Plummer (2008).

Although the DICO and model of missingness DICC can provide complementary,
useful insights into the comparative fit of various selection models, it would be a mistake
to use them to select a single model. Rather our strategy should be viewed as a screening
method that can help us to identify plausible models. Even with straightforward data,
such as our first simulated example, the usual plug-ins are affected by skewness. This
skewness makes the interpretation of DIC more complicated, as we have to allow for
some additional variability that can obscure the message from the proposed strategy.
Given this and the lack of knowledge regarding the fit of the missing data, we emphasise
that DIC should never be used in isolation. Our DIC strategy should be used in the
context of a sensitivity analysis, designed to check that conclusions are robust to a
range of assumptions about the missing data. In summary, our investigations have
shown that these two DIC measures have the potential to assist in the selection of a
range of plausible models which have a reasonable fit to quantities that can be checked
and allow the uncertainty introduced by non-ignorable missing data to be propagated
into conclusions about a question of interest.

Appendix

Algorithm for calculating DICO

Our preferred algorithm for calculating DICO proceeds as follows: (f(y|β, σ) is the
model of interest, typically Normal or t in our applications, and f(m|y,θ) is a Bernoulli
model of missingness in a selection model)

1. Carry out a standard MCMC run on the joint model f(y,m|β, σ,θ). Save samples
of β, σ and θ, denoted by β(k), σ(k) and θ(k), k = 1, . . . , K, which we shall call
the Ksample.

2. Evaluate the posterior means of β, σ and θ, denoted by β̂, σ̂ and θ̂. (Evaluate
σ̂ on the log scale and then back transform, see discussion in Section 6 of the
supplementary material for rationale.)
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3. For each member of the Ksample, generate a sample y(kq)
mis , q = 1, . . . , Q, from the

appropriate likelihood evaluated at β(k) and σ(k), e.g. yk
mis ∼ N(Xβ(k), σ(k)2). We

denote the sample associated with member k of the Ksample as Qsample(k).

4. Then evaluate

h(k) = Eymis|yobs,β(k),σ(k){f(m|yobs,ymis, θ
(k))} ≈ 1

Q

Q∑
q=1

f(m|yobs,y
(kq)
mis , θ(k)).

Calculate the posterior expectation of the observed data log likelihood as

log L(β, σ, θ|yobs,m) ≈ 1
K

K∑

k=1

[
log L(β(k), σ(k)|yobs) + log h(k)

]
.

Multiply this by -2 to get the posterior mean of the deviance, denoted D̄.

5. Generate a new Qsample, y(q)
mis, q = 1, . . . , Q, using β̂ and σ̂. Evaluate the plug-in

observed data log likelihood using the posterior means from the Ksample as

log L(β, σ,θ|yobs,m) ≈ log L(β̂, σ̂|yobs)+log
(
Eymis|yobs,β̂,σ̂{f(m|yobs,ymis, θ̂)}

)

where

Eymis|yobs,β̂,σ̂{f(m|yobs,ymis, θ̂)} ≈ 1
Q

Q∑
q=1

f(m|yobs,y
(q)
mis, θ̂).

Multiply this plug-in log likelihood by -2 to get the plug-in deviance, denoted D̂.

6. Finally, calculate DICO = 2D̄ − D̂.

To implement an algorithm using reweighting as proposed by DH, alter steps 3-5 as
follows:

3. Generate a Qsample y(q)
mis, q = 1, . . . , Q, from the appropriate likelihood evaluated

at the posterior means, e.g. ymis ∼ N(Xβ̂, σ̂2) (as in step 5 of our preferred
algorithm).

4. For each value of (β(k), σ(k)) in the Ksample, and each value of y(q)
mis from the

Qsample, calculate the weight

w(k)
q =

f(y(q)
mis|yobs,β

(k), σ(k))

f(y(q)
mis|yobs, β̂, σ̂)

and evaluate

h(k) = Eymis|yobs,β(k),σ(k){f(m|yobs,ymis,θ
(k))} ≈

Q∑
q=1

w
(k)
q f(m|yobs,y

(q)
mis, θ

(k))

Q∑
q=1

w
(k)
q

.
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Calculate the posterior expectation of the observed data log likelihood and D̄ as
before.

5. There is no need to generate a further Qsample, simply use the Qsample generated
at the replacement step 3 to evaluate the plug-in observed data log likelihood and
D̂ as before.

Algorithm for calculating the plug-in deviance for the model of miss-
ingness part of DIC8

1. Carry out a standard MCMC run on the joint model f(y,m|β, σ,θ). Save sam-
ples of ymis, denoted by y(k)

mis, k = 1, . . . ,K, and use these to form K complete
datasets.

2. Fit the model of missingness part of the joint model, f(m|y, θ), to each complete
dataset to calculate θ̂(yobs,m,ymis).

3. Then average results from the K datasets to get the plug-in log likelihood:

Eymis|yobs,m{logf(m|yobs,ymis, θ̂(yobs,m,ymis))}

≈ 1
K

K∑

k=1

[
logf(m|yobs,y

(k)
mis, θ̂(yobs,m,y(k)

mis))
]
.

Multiply this plug-in log likelihood by -2 to get the plug-in deviance.
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Supplementary Material

1.1 Stability of DICO calculations

The results of the repeated DICO calculations described in the paragraph headed “Sta-
bility” in Section 3.1 are shown in Table 11.

Table 11: Variability in DICO calculated by the reweighted algorithm due to using a
different random number seed to generate the Ksample or Qsample, K=Q=2000

D̄ D̂ pD DICO

Original 2418.5 2411.0 7.4 2425.9

Repetition1a - Ksample seed changeda 2418.1 2410.8 7.3 2425.4
Repetition2a - Ksample seed changeda 2418.2 2411.0 7.2 2425.4
Repetition3a - Ksample seed changeda 2418.1 2410.9 7.2 2425.3
Repetition4a - Ksample seed changeda 2418.3 2411.0 7.4 2425.7

Repetition1b - Qsample seed changedb 2419.1 2410.4 8.8 2427.9
Repetition2b - Qsample seed changedb 2420.0 2413.5 6.4 2426.4
Repetition3b - Qsample seed changedb 2423.0 2416.0 7.0 2430.0
Repetition4b - Qsample seed changedb 2424.6 2417.6 7.0 2431.7

In this example, joint model JM1, as described in Table 1, has been repeatedly fitted
to a subset of real test score data taken from the National Child Development Study,
with simulated non-ignorable linear missingness.

a Each repetition uses a different random number seed to generate the Ksample, but
the same random number seed to generate the Qsample.

b Each repetition uses the same random number seed to generate the Ksample, but a
different random number seed to generate the Qsample.

1.2 The likelihood equations in the DICO calculations for the simulated
bivariate Normal example

The likelihood for the model of interest is calculated using

f(y|β) =
(
2πσ2

)−n
2 exp

(
− 1

2σ2

n∑

i=1

(yi − µi)
2

)
for JM1&JM2

and f(y|β) =
n∏

i=1

Γ
(

5
2

)

2σ
√

π

[
1 +

(
yi − µi

2σ

)2
]− 5

2

for JM3.

In the t4 distribution σ is a scale parameter, s.t. σ =
√

var
2 , where var is the variance

of the distribution. For all three models, the likelihood for the model of missingness is
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calculated using

f(m|y, θ) =
n∏

i=1

pmi
i (1− pi)1−mi

where pi =
eθ0+θ1yi

1 + eθ0+θ1yi
.

1.3 Skewness in the plug-ins

In calculating any DIC using posterior mean plug-ins, it is essential to check that these
posterior means come from approximately symmetric unimodal distributions. One pos-
sibility is a visual inspection of the posterior distributions of the proposed plug-ins and
a check that the coefficient of skewness, where

coefficient of skewness =

1
n

n∑
i=1

(xi − x̄)3

sd(x)3
, (16)

which is a measure of the asymmetry of a distribution, is close to 0.

Simulated bivariate Normal example

The coefficient of skewness of the posterior distribution for various plug-ins used in
calculating DICO and the model of missingness part of DICC for the simulated bivariate
Normal example are shown in Table 12. Mean and 95% interval values are given for ymis,
and the logitp for all individuals, observed individuals and missing individuals. As a
guide to interpreting the values for our Ksample of size 2,000, 95% of 10,000 simulated
Normal datasets with 2,000 members had skewness in the interval (-0.1,0.1). Even in
this straightforward simulated example, the usual plug-ins are affected by skewness,
sometimes badly. So, some caution is required in interpreting the DICO, and the use
of posterior medians rather than posterior means as our plug-ins for calculating DICC

seems prudent.

σ, log(σ) and τ are all included in the table, and the difference in their skewness
demonstrates sensitivity to the choice of the form of the scale parameter plug-in. This
provides evidence that using a log transformation for σ is appropriate as argued by
SBCV. (All our DIC calculations work with plug-in values for σ calculated on the log
scale.)

Simulated time series example

The coefficient of skewness of the posterior distribution for various plug-ins used in
calculating DICO and the model of missingness part of DICC for the simulated time
series data are shown in Table 13. The skewness for this example is generally less
problematic than for the bivariate Normal example.
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Table 12: Skewness of posterior distribution of plug-ins for the simulated bivariate
Normal data (skewness outside the interval (-1,1) highlighted in bold)

JM1 JM2 JM3 JM4 JM5 JM6

β0 0.09 -0.23 0.00 0.19 0.11 -0.08
β1 0.10 0.08 0.30 0.29 0.05
σ 0.30 0.72 0.20 0.33 0.34 0.09
log(σ) 0.19 0.59 0.09 0.21 0.22 0.01
τ 0.01 -0.34 0.14 0.04 -0.01 0.15
θ0 -0.47 -1.13 -0.45 -0.87 -0.16 0.10
θ1 0.27 -0.16 0.19 0.98 0.16 0.15
θ2 -0.29 0.08 -1.94
ymis

a -0.01 -0.06 1.83 -0.20 -0.12 0.13
(-0.11,0.08) (-0.14,0.01) (0.90,3.83) (-0.33,-0.07) (-0.32,0.08) (0.02,0.26)

logitp(all)a -0.19 -0.34 0.40 -0.05 -0.09 -1.19
(-0.48,0.25) (-1.58,1.18) (-0.45,2.49) (-1.60,1.44) (-0.43,0.35) (-4.80,0.08)

logitp(obs)a -0.33 -0.94 -0.31 -0.61 -0.24 -0.07
(-0.48,-0.03) (-1.61,-0.27) (-0.45,-0.04) (-1.63,-0.02) (-0.46,-0.05) (-0.30,0.11)

logitp(mis)a 0.13 1.04 2.03 1.24 0.26 -3.74
(-0.08,0.32) (0.82,1.28) (1.06,3.89) (0.96,1.63) (0.12,0.42) (-5.64,-1.32)

a mean value is shown, with 95% interval below in brackets
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Table 13: Skewness of posterior distribution of plug-ins for the simulated time series
data

mar mnar mnar2

η 0.097 0.105 -0.207
σ 0.143 0.126 -0.029
log(σ) 0.060 0.047 -0.135
τ 0.103 0.110 0.350
γ -0.040 -0.138 0.129
ρ 0.075 0.068 -0.045
θ0 -0.103 -0.578 0.049
θ1 -0.091
θ2 -0.499
θ3 0.249
θ4 0.283
ymis

a -0.002 0.009 0.050
(-0.090,0.083) (-0.114,0.122) (-0.121,0.205)

logitp(all)a -0.089 -0.199 -0.151
(-0.124,-0.031) (-0.587,0.235) (-0.450,0.352)

logitp(obs)a -0.093 -0.340 -0.336
(-0.125,-0.040) (-0.587,0.189) (-0.458,0.071)

logitp(mis)a -0.081 0.090 0.230
(-0.122,-0.017) (-0.100,0.287) (0.047,0.417)

a mean value is shown, with 95% interval below in brackets
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HAMD example

In our application, we find from looking at the coefficients of skewness for the posterior
distributions of the plug-ins (Table 14), that some are skewed, most notably for the two
JM3 models.

Table 14: Skewness of posterior distributions of plug-ins for the HAMD example

JM1(AR) JM2(AR) JM3(AR) JM1(RE) JM2(RE) JM3(RE)

β1/γ1
a 0.01 -0.03 -0.05 -0.01 -0.06 -0.05

β2/γ2
a -0.04 0.08 0.03 0.04 0.01 -0.01

β3/γ3
a 0.09 0.04 -0.06 0.01 0.07 0.07

β4/γ4
a -0.07 0.01 0.00 0.09 -0.08 0.01

β5/γ5
a -0.01 0.05 0.03 0.07 0.13 -0.06

β6/γ6
a 0.10 0.05 -0.01 0.00 -0.01 0.06

η1 -0.10 0.05 0.19 -0.07 0.06 0.08
η2 0.06 0.00 0.06 0.01 0.09 -0.01
η3 0.02 -0.01 0.02 0.02 0.04 -0.11
ξ1 0.04 -0.09 -0.11 0.08 -0.09 0.03
ξ2 -0.03 0.01 -0.04 -0.02 -0.12 0.00
ξ3 0.00 -0.02 -0.05 0.04 -0.03 0.09
θ0 -0.06 -0.08 -0.12 -0.16
θ0(t1) -0.41 -0.21
θ0(t2) -0.69 -0.35
θ0(t3) -0.22 -0.26
θ1 -0.01 0.00
θ2 -0.20 -0.21
θ2(t1) -0.04 -0.20
θ2(t2) -0.39 -0.90
θ2(t3) -0.09 -0.51
θ3 -0.05 -0.24
θ3(t1) 0.40 -0.13
θ3(t2) -0.04 -0.76
θ3(t3) -0.28 -0.43
σ 0.11 0.10 0.10 0.16 0.04 0.17
log(σ) 0.05 0.04 0.04 0.11 -0.03 0.09
ymis

b 0.00 0.04 0.10 0.00 0.09 0.09
(-0.09,0.09) (-0.06,0.14) (-0.04,0.29) (-0.09,0.09) (-0.04,0.20) (-0.09,0.26)

logitpb -0.06 -0.32 -0.57 -0.10 -0.32 -0.52
(-0.12,0.20) (-0.72,0.46) (-1.33,0.67) (-0.21,0.30) (-0.55,0.13) (-1.09,0.42)

a β for AR2 models and γ for RE models
b mean value is shown, with 95% interval below in brackets
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1.4 Parameter estimates for the simulated time series example

Parameter estimates for the model of interest part of the three models fitted to the
simulated time series data are shown in Table 15.

Table 15: Model of interest parameter estimates (posterior means, with 95% credible
intervals in brackets) for the simulated time series data

actual mar mnar mnar2

σ 1 0.88 (0.83,0.93) 0.89 (0.84,0.94) 1.06 (0.99,1.14)
ρ 1 1.14 (1.07,1.21) 1.18 (1.11,1.25) 1.00 (0.92,1.08)
γ 0 0.50 (0.35,0.65) 0.76 (0.59,0.93) -0.03 (-0.21,0.16)
η -1 -1.44 (-1.53,-1.35) -1.70 (-1.81,-1.58) -0.92 (-1.07,-0.78)

1.5 Breakdown of D̄ and D̂ from the DICO calculations for the simu-
lated time series data

As discussed in Section 2.3, when we allow for informative missingness, the fit of the
model of interest to yobs deteriorates. This is shown for the simulated time series data in
Table 16, which provides the two components of the mean deviance and plug-in deviance
separately. There are improvements in the fit of the model of missingness part, but for
this example they are insufficient to offset the deterioration in the model of interest
part.

Table 16: Model of interest and model of missingness contributions to D̄ and D̂ from
the calculation of DICO for the simulated time series data

D̄ D̂

moia momb moia momb

mar 4317.3 1198.0 3592.1 1196.1
mnar 4321.7 1141.0 3593.0 1128.2
mnar2 4902.1 1101.9 4333.8 1048.9
a moi = contibution from yobs part of model of interest;
b mom = contibution from model of missingness
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1.6 Model of Missingness DICC tables calculated using posterior mean
plug-ins

Table 17: Model of missingness DICC for the simulated bivariate normal data
standard plug-ins link plug-ins

D̄ D̂ pD DICC D̂ pD DICC

JM1 1072.3 1032.5 39.9 1112.2 1025.9 46.5 1118.8
JM4 1060.3 1077.2 -16.9 1043.4 979.8 80.5 1140.8
JM5 1069.3 1040.2 29.1 1098.5 1016.7 52.6 1122.0
JM6 1212.2 1187.8 24.4 1236.7 1207.8 4.4 1216.7

Table 18: Model of missingness DICC for the simulated time series data
standard plug-ins link plug-ins

D̄ D̂ pD DICC D̂ pD DICC

mar 1198.0 1196.1 1.9 1200.0 1196.1 1.9 1199.9
mnar 1089.9 1050.3 39.6 1129.5 1046.6 43.3 1133.2
correct 813.7 671.6 142.2 955.9 663.3 150.5 964.2

Table 19: Model of missingness DICC for the HAMD data
standard plug-ins link plug-ins

D̄ D̂ pD DICC D̂ pD DICC

JM1(AR) 698.6 695.5 3.1 701.8 694.3 4.3 703.0
JM2(AR) 653.4 649.5 3.9 657.3 636.5 16.9 670.2
JM3(AR) 626.0 621.8 4.2 630.2 583.1 42.9 668.9

JM1(RE) 719.6 717.8 1.9 721.5 716.3 3.3 723.0
JM2(RE) 547.5 517.7 29.8 577.3 511.2 36.3 583.8
JM3(RE) 521.6 480.4 41.2 562.8 464.6 57.0 578.6
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1.7 Adequacy of the Qsample length for the simulated times series
example

Plots of D̄ and D̂ against the Qsample lengths for the three models in the time series
simulation, as described in Section 4.2, are displayed in Figure 4. Separate plots are
used for the mean and plug-in deviances, to more easily assess the convergence towards
a limit and stability in D̂. These plots are only shown for the mnar and mnar2 models,
since by definition, the model of missingness for the mar model does not contain ymis

so there is no need to generate a Qsample.

Figure 4: Deviance plots for checking the adequacy of the Qsample length for the
simulated time series data
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1.8 Adequacy of the Qsample length for the HAMD example

Plots of D̄ and D̂ against the Qsample lengths for the six models in the HAMD example,
as described in Section 5.5, are displayed in Figure 5. The mean and plug-in deviances
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are shown on the same plot for the AR models, but separate plots are used for the
RE models, where the difference between the two deviances is much larger, to maintain
consistent scales.

Figure 5: Deviance plots for checking the adequacy of the Qsample length for the HAMD
data
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