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Bertrand Clarke*

1 Overview

This paper makes a landmark contribution in three senses.

First, it provides many results that are fundamentally important in their own right.
I refer specifically to Theorems 3 and 8. Theorem 3 treats arbitrary loss functions by
breaking the integral into two terms, one, I;, where a difference of losses is bounded
and another, II;, where a bound on the moments of a difference of losses must be used.
(All notation here is the same as the author’s unless noted otherwise.) The treatment
of these two terms reveals the role of the relative entropy and how the tails of the loss
affect the risk, respectively. This is a proof that makes us wiser.

Another fundamentally important result is Theorem 8. It can be regarded as an ob-
servation pursuant to Theorem 3, however, Theorem 8 is conceptually different because
the true model need not be in the model class. This admission often goes under the
genteel name of model mis-specification or model uncertainty. Traditionally (say in the
80’s and 90’s if not before), many statisticians would argue ‘If I knew the true model
were not in the model class I was using, I would choose a different model class.” How-
ever, as most of us who have attempted applied problems have found, we routinely use
model classes on the grounds that we can get ‘reasonable’ answers. These days more
careful analysts will often say things like ‘I know the model is not true, but I think
the error in approximation is no more damaging than the other sources of variability,
at least for what I'm using the model to do.” By including Theorem 8, the author is
recognizing that we can’t assume the true model is in the class we are using so we have
to know how this affects our techniques. I hope that in the future it will be routine to
do this sort of analysis and commend the present author for his prescience.

Second, the paper provides a comprehensive overview of the cumulative risk in se-
quential prediction even though the main property of universality comes out of the
Bayesian consistency literature. Thus, this paper is a timely synthesis of many ideas —
some from the author and some scattered in various places throughout the literature.
The comprehensiveness draws a line from Condition 1 — a variant on information dense-
ness which goes back to Barronl (1986) — to the basic universality of Theorem 4. This
leads naturally to the predictive result of Theorem 3, the unique role of Bayes model
averaging (BMA), the issue of switching reference classes (a variation of the use of mul-
tiple parametric models in BMA), Theorem 8 for wrong-model analysis, and finally to a
general discussion of averaging for prediction versus prediction with expert advice. By
drawing together so many threads, I hope this paper will become a key reference for
researchers in the general area as well as for new researchers wanting to use or expand
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the results.

Third, the paper is unabashedly predictive. That is, the paper regards the goal
of prediction as the central task for a statistical method to accomplish well, implicitly
regarding concerns such as model identification and decision making as derived from
good prediction. This is important because it seems that the predictive perspective,
advocated in statistics at least as early as Dawid (1982), has been becoming more
widespread in recent years. This view is distinct from Frequentism or Bayesianism, but
often reflects a sort of merger of the two. The Bayesian angle is seen in the present
paper because the focus is on the marginal for the data and the Frequentist angle is
seen in taking the expectations over the whole sample space under a fixed parameter
value (when conditioning on the data at each stage of the prediction process would
be the standard Bayesian approach). Even prediction with expert advice — which is
intended to be distribution independent and hence neither Bayesian nor Frequentist —
is included in the predictive view as in Sec. 6.3. Overall, the predictive view is an
emerging perspective that may well continue to become more important in the coming
years and the present paper is helping to elucidate these very current developments.
For the interested reader, recent important publications are [Ebrahimi et al.| (2010) and
van Erven et all (to appear, 2012); a related approach is in [Clarke (2010).

Separate from these encomia, I want to present an example and a conjecture that
may permit a general asymptotic treatment of individual terms in EyD1 1 (Pp||Pw),
the central quantity the author examines. After all, it is not enough to look at the
cumulative risk. Prequentially, one is concerned with the risk at each stage of data
accumulation because one must issue a prediction at the end of each stage. Then, I
want to propose that the asymptotics for the individual terms can be used to obtain
stagewise versions of the author’s results.

2 Individual Risks

The author observes that (1/7)Eg D1 7(Py||Py) — 0 and that in fact

T-1
d
EyD17(Py||Py) = Y EgD(Py||Py(-|X")) ~ T +C, (1)
t=0

asymptotically, where C is a constant that can be identified, d is the dimension of 6,
and P! is the marginal for the data X* = (X3,...,X;). (Conditioning on X, means
the conditioning drops out.) Now, logT ~ Zthl 1/t suggests the individual terms
EgD(Py||Py(-|X*)) behave like d/(2t) asymptotically. In this section, we verify this in
the normal example and sketch a proof more generally.

2.1 The Normal Example

To find FyD(Py||P,(-]X*")), we have to find the predictive density for P, (-|X?), find its
relative entropy distance to the true density, and then take the expectation over Xt in
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the true density. For the normal example, suppose we have ¢ IID copies of X ~ N 6,?)
so that X = X; ~ N(0,0?) with 02 = v?/T. Assume that § ~ N(u,7?) in which v2, p,
and 72 are known. Let p = (1/7%) 4 (1/0?) and write

) = e = (5= )+ (5 )

Now, it is well known that (©|Z) ~ N(u(Z),1/p) and the predictive density for a new
outcome z is

1 2 2
7) — o (w=0)*/sv [ P o= (0-n(2))%/(2/p) 2
m(z|Z) /(2 e ) ( 2 >d9 (2)

Completing the square in 0 gives the identity

_8_72_L_2__1+/)V2_2
20— (@) - pgle—0)? =~ a)
R 2 N2 [z + pr°p(z)]?
9,2 (ﬂc (@) - e o2 (3)
where
x4 prPu(E)
142

Using (3) in (2) we get

V1 2 v2
m(z|z) = / 1+ . / +pu — 1 (g-a)? g
pv?)

v 2
5 2 (z +pv #( )2 7T+f+,,’;(zm>] )

= 7p X e_ 2U2 (x ey “(x)Z r+fiiﬁgi)]2> . (4)
21 (1 + pv?)

Completing the square in x gives the identity

1 [z + pv*u(Z))?
5t (f” R e v )
) 1 ) . 1/2 T 2 21/4 T 2
= g0 = g (e - T PR 0

where we also used 1 —1/(1+ pv?) = pr? /(1 + pv?). Now substitute (5) into (4). Since
the integral of (4)) over  must be one, we see that (5) must be one. So,

=) — 4 *m(mfﬂ(i))(z
m(z|Z) D] +py2)e ’

)

i.e., m(z|Z) is the density of a N (u(Z), (1 + pr?)/p) random variable.
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With mild abuse of notation, we can find the relative entropy between p(z:41|0) and
m(xe41|Z). It is

¢07u(x)
Duu(z),(1+pv2)/p(T)

Dip(aisalt) m(zeale)) = [ én,u(a)n da. )

where @, 2(-) is the normal density with mean a and variance b2. Writing in the form
of the normal densities in (6) and simplifying (using E(X —6)?/v? = 1 and adding and
subtracting ¢ in the exponent of ¢,z (14p2)/,(2)) gives that

D)o o) = 54 (B o - w0

Standard manipulations give that the expectation in the last term of (7)) is
2 2 2 2 2
B0 — (@) = (] O—mw?+ () = 8
0@ = (%) -0+ (2w 5 ®
Using (8) in (7)) gives

D(p(i41|0)[[m(ze11]7))
1.1 21 2
0 + pv n + pv

— 21
2 pv2 p

ESENES K

Since 02 = 12 /t, is easy to see that, as t — oo,

14 pv/? P 1 o? 72

1; L L — 0; d —— 1.
- 2(1 + pv?) T g2y B

pv?

Using these convergences in (9) we see that D(p(x¢41]0)||m(x¢41|Z)) in (0) is approxi-
mately 1/(2t) and in fact, careful examination of the derivation gives that

D(p(re ) m(zrsa|) = o + o (1) (10)

as t — oco. That is, the outer expectation in the sum in (1)) does not need to be taken;
the dependence on X drops out for the normal example. We suggest that analogous
results can be derived for other exponential families with conjugate priors.

2.2 A General Case

Having seen the normal case we are ready to conjecture that in general

EaDBIPIX) = 35 +0 (1) (1)



B. Clarke 41

where 0 is a d-dimensional real parameter. It’s not hard to give a heuristic argument.
Using asymptotic normality of the posterior, we get

) plalt) . p(al6) ., (al6)
! <fp<x|e'>w<9'|Xt>dod")”l (fpmwf)%,(tf(é))_l(e@‘”) 1 <p<x|é>>’ 12)

where [ (+) is the empirical Fisher information and 6 is the maximum likelihood estimator
(MLE). Tt may be possible to control the error in the first approximation. For instance,
Bickel and Yahav! (1969) use L', and [Clarke and Barron! (1988)(Appendix) and [Clarke
(1999)) use relative entropy. (Many other contributors use other modes of convergence.)
The second approximation might be formalized by using the rate of concentration of
the normal density since it’s set up for a Laplace approximation.

Given (12)), we can write

W'?)) — B, D(Py|P;) (13)

EgD(PgHPw(|Xt)) ~ E97tE9 In
p(z|0)

where the expectation over the t+ 1 random variable is denoted Ey and the expectation
over the first ¢ random variables is denoted Ejy ;. [Cencovl (1981) proved an expansion
for the risk of the MLE, Ep ,D(P||P;), with leading term d/(2t) and error O(n=%/2).

However, it is enough to note here that for fixed 6= é(xt), we have the Taylor expansion
1 A A N
D(Pi||Py) = 5(0—0)'1(0)(0 — 0) +o (10 =011, (14)

where () is the Fisher information at #. Expression (14) holds for  close to 0, a
property ensured by the consistency of the MLE. Now, using (14) in (13) we get

1 ~ A~
B D(Bpl[Pu(1XT) = 5 Bot(0 = 0)TO)(0 = 0)xpo-g)<s
+  Epo(]|0 — é||2)X\|e_é|\g5
p(z]6)
+ Ee,t/P($|9) 1nm><|\9_én>ad%

for 6 > 0, in which the last two terms are errors that must go to zero at rate o(1/t).

For the first term in (15) note that ¢( — 6)2I(6) converges (in distribution) to a
X3, the expectation converges to d (if uniform integrability is assumed, for instance).
Essentially, this is Wilks’ theorem in L! and versions of it are known cf. [Clarke and
Barron/ (1990)). In this way the first time might be controlled as d/(2t) + o(1/t). If one
assumes uniformity of the Taylor expansion in (14) over a small neightborhood of 8’s
and 6’s then similar arguments might give that the second term in (15) is

1 N
o]0~ 0120(1)x9_g<s

and hence also o(1/t).
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The third term in (I5) seems more difficult and will depend on letting 6 and 0 be
close enough to each other that p(z|0) /p(x|@) will be near one on a set of high probabiity.
This will give that |Inp(x|@)/p(z|0)| is near zero on a set of high probability. However,
we also want Py(]|§ — || > 6) — 0 at a suitable rate as t — co. For instance, Chebyshev
gives that

Pt =01 > 18) < 3B s =0 (1)

So, as long as the set on which p(z|0)/p(x|) is not small can be controlled (as it can
trivially when X and 6 are bounded), the conjecture should be true.

In principle, formalizing and justifying this sequence of approximations would lead
to a proof of (I1)), at least when the MLE exists and is asymptotically normal as it is
for instance with smooth, regular, full rank, exponential families equipped with smooth
priors on open parameter spaces.

3 Relation to Sancetta’s Paper

Asuming a result like (11)) can be proved for a large class of parametric families, what
does this have to do with the present paper? The possible answer is ‘quite a lot’.
Careful examination of the proof of Theorem 1, for instance, suggests we should be able
to get a version of the bound on sup, E D(Py||P,) given in the theorem (but not the
universality). Moreover, examining the proof of Theorem 3 suggests we should be able
to get a bound on

Sl;p EyNL(Zy, fi(w) — L(Zy, £2(0))],

asymptotically in ¢, merely by using the same hypotheses and technique of proof but
treating an I; and II; individually rather than taking their average over ¢t. Likewise for
the main bounds in Theorems 4, 5, 6, and 8, again apart from the universality clauses.
Thus, a development for the ¢-th stage risk can be developed analogously to the present
paper which focuses on the cumulative risk.

The key benefit of a development for the t-th stage risk is to reflect the fact that
prediction is stagewise and at each stage we have the opportunity to change our pre-
dictor. So, if the bound in Theorem 8 is large and the inequality is believed to be tight
we would be led to rechoose our predictive scheme. This would be a setting in which
varying classes of predictors, as envisaged in Theorem 6, would be natural. We would
want to use this to choose refinements of our predictors at each stage of a prequential
strategy to make sure our methods were homing in on good predictors.

As a penultimate point, note that the asymptotics demonstrated in this paper show
that universality is a link between Bayes consistency and prediction. However, the
concept of universality strikes me as weak. The author admits that in most regular
cases E'Dy 7(Py||P,) = O(InT) so that the universality in Definition 1 is handily
satisfied with room to spare: InT is quite small compared to T'. Are there important
cases where the rate of universality is much larger than (InT)/T so that the expected
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risk at stage ¢ is also much higher than d/(2t)? It would be nice to derive t-th stage
results analogous to (L1) for families with other rates of convergence.

Finally, as I see it, if one focusses on an individual stage of prediction, say the ¢-th,
then one is outside of the problem class for which universality is relevant. So, the goal of
Bayes consistency while germane to predictive performance remains distinct from how
one evaluates a predictor for actual usage. That is, Bayes consistency via cumulative
risk is a helpful perspective for good stagewise prediction but Bayes consistency per
se is conceptually disjoint from the goal of good stagewise prediction as encapsulated
by controlling individual risks such as (I1) or by extensions to the present paper as
suggested at the beginning of this section.
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