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Universality of Bayesian Predictions

Alessio Sancetta∗

Abstract. This paper studies the theoretical properties of Bayesian predictions
and shows that under minimal conditions we can derive finite sample bounds for the
loss incurred using Bayesian predictions under the Kullback-Leibler divergence. In
particular, the concept of universality of predictions is discussed and universality
is established for Bayesian predictions in a variety of settings. These include
predictions under almost arbitrary loss functions, model averaging, predictions in
a non-stationary environment and under model misspecification.
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1 Introduction

Bayesian prediction is based on the natural principle that new collected evidence should
be used to update predictions in a forecasting problem. Bayes’ rule satisfies optimality
properties in terms of information processing (e.g. Zellner (1988), Zellner (2002), Clarke
(2007)) and Bayesian estimation requires weaker conditions for consistency than other
methods like maximum likelihood estimation (e.g. Strasser (1981)). Predictions based
on Bayes’ rule lead to forecasts that perform uniformly well over the whole parameter
space. Forecasts satisfying this property will be called universal. This requires only a
mild condition on the prior, i.e. the prior needs to be information dense at the “true
value” (e.g. Barron (1988), Barron (1998)). It is a remarkable fact that this condition
is not sufficient for consistency of posterior distributions (e.g. Diaconis and Freedman
(1986), Barron (1998)).

There is a rich statistical literature on consistency of Bayesian procedures (e.g. Bar-
ron (1998), for a survey) to which the results in this paper are related. However, the
present discussion will also bring together ideas and results from a rich literature on
information theory (e.g. Merhav and Feder (1998)), artificial intelligence (e.g. Cesa-
Bianchi and Lugosi (2006), Hutter (2005)), and game theory (e.g. see special issue in
Games and Economic Behavior, Vol. 29, 1999). It is not possible to provide a review
of the results in all these areas. However, each result presented here will be followed by
a discussion of related references.

The focus of the paper is theoretical. However, its conclusions have clear practical
implications for the use of Bayesian prediction and provide guidelines for the choice of
prior. The choice of prior is not crucial as long as it satisfies some general conditions.
Under additional smoothness conditions on the likelihood w.r.t. the unknown parame-
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2 Bayesian Predictions

ter, the optimal choice of prior is known to be related to the information matrix (i.e. an
exponential tilt of Jeffreys prior) and more details can be given (see Clarke and Barron
(1990), for exact conditions), but will not be discussed here.

1.1 Background and Notation

Let Z1, ..., Zt be random variables each taking values in some set Z and with joint law
Pθ where θ ∈ Θ, for some set Θ. Denote by Pθ (•|Ft−1) the law of Zt conditional on the
sigma algebra Ft−1 generated by (Zs)s<t, where F0 is assumed to be trivial. It follows
that

Pθ

(
zt
1

)
=

t∏
s=1

Pθ (zs|Fs−1)

where zt
1 := (z1, ..., zt) and the above are understood as distribution functions. Assume

that Pθ is absolutely continuous with respect to a sigma finite measure µ and define its
density (w.r.t. µ) by pθ. When θ ∈ Θ is unknown, the integrated likelihood is

pw

(
zt
1

)
=

∫

Θ

pθ

(
zt
1

)
w (dθ)

where w is a prior probability measure on subsets of Θ. Then, the Bayesian predictive
density at zt is

pw (zt|Ft−1) =
pw (zt

1)
pw

(
zt−1
1

) (1)

where 0/0 := 0. In a prediction context, the sequential loss incurred by using pw (zt|Ft−1)
in place of pθ (zt|Ft−1) can be measured by the relative entropy (or interchangeably
Kullback-Leibler (KL) divergence)

Dt (Pθ‖Pw) :=
∫

Z
pθ (z|Ft−1) ln

(
pθ (z|Ft−1)
pw (z|Ft−1)

)
µ (dz)

= Eθ
t−1 [ln (pθ (Zt|Ft−1))− ln (pw (Zt|Ft−1))]

where Eθ
t is expectation w.r.t. Pθ (•|Ft−1) and define D1,T (Pθ‖Pw) :=

∑T
t=1 Dt (Pθ‖Pw)

as the prequential KL divergence (e.g. Dawid (1984), Dawid (1992), Dawid (1998)).
Previously, for ease of notation, z is used in place of zt. Letting Eθ be the unconditional
expectation w.r.t. Pθ, it follows that

EθD1,T (Pθ‖Pw) =
∫

ZT

pθ

(
zT
1

)
ln

(
pθ

(
zT
1

)

pw

(
zT
1

)
)

µ
(
dzT

1

)
,

which is the joint KL divergence. The Bayesian estimator pw

(
zT
1

)
arises as the solution

to the problem infP

∫
Θ
EθD1,T (Pθ‖P ) w (dθ) where the inf runs over all distribution

functions.

Here, universality of prediction shall be defined as follows:
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Definition 1. Predictions based on pw are universal with respect to {Pθ : θ ∈ Θ} if

sup
θ∈Θ

EθD1,T (Pθ‖Pw)
T

→ 0.

Definition 1 is quite forgiving in the sense that it only requires the KL divergence to
be sublinear in T , i.e. o (T ). Hence, the term universality is understood in a wide sense
in order to accommodate subsequent results to be presented in due course. It is well
known that for the KL divergence the exact rate of growth is O (ln T ) for most regular
cases (see Clarke and Barron (1994), for details).

The δ-information neighbourhood of Pθ is denoted by

BT (θ, δ) :=
{
θ′ ∈ Θ : EθD1,T (Pθ‖Pθ′) ≤ δ

}
, (2)

or for notational convenience BT (θ) = BT (θ, δ), whichever is felt to be more appropriate
for the situation. The prior w is said to be information dense (at θ) if it assigns strictly
positive probability to each information neighbourhood of size δ, i.e. w (BT (θ, δ)) >
0 for any δ > 0. Information denseness of the prior is often used in the Bayesian
consistency literature (e.g. Barron (1998), Barron et al. (1999)). Note that the standard
definition of BT (θ, δ) is in terms of either the individual or the joint relative entropy
divided by T (e.g. Barron (1998)). For reasons that will become apparent later, we
are working with the joint entropy. Hence, information balls of joint entropy less than
or equal to δ in this paper would correspond to balls of entropy less than δ/T in the
literature.

Information denseness of w is related to the following quantity:

RT (θ) := inf
δ>0

{δ − ln w (BT (θ, δ))} ,

where RT (θ) /T is the resolvability index (e.g. Barron (1998)). A candidate δ in the
above display is of the form δ = δT T where δT → 0 as T → ∞. It can be shown that
if w is information dense, then, RT (θ) /T → 0 as T → ∞ (Lemma 2). The following
condition ensures that supθ∈Θ EθD1,T (Pθ‖Pw) goes to zero.

Condition 1.

lim
T→∞

sup
θ∈Θ

RT (θ)
T

= 0.

Hence, we can summarize the above remarks through the following well-known result
(e.g. Barron (1998)).

Theorem 1. Using the notation in (2)

sup
θ∈Θ

EθD1,T (Pθ‖Pw) ≤ sup
θ∈Θ

inf
δ>0

{δ − ln w (BT (θ, δ))}

so that under Condition 1, predictions based on pw are universal, i.e.

sup
θ∈Θ

1
T
EθD1,T (Pθ‖Pw) → 0.
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The upper bound is derived under no assumptions on the prior w and the r.h.s. can
be infinite. Condition 1 makes sure that the bound is o (T ) as T →∞.

As a simple application of Theorem 1, consider the autoregressive process

Zt = θZt−1 + Xt

where (Xt)t∈N is an iid sequence with distribution function P (x) so that Pθ (z|Ft−1) =
P (z − θZt−1), and Z0 = z is given. If [0, 1] ⊆ Θ, under Condition 1, we obtain univer-
sality even when θ = 1, i.e. the Bayesian prediction performs uniformly well without
the need to worry about the possible presence of a unit root, and Theorem 1 gives a
finite sample upper bound for the loss in the prediction. For example, in the Holder
continuity case to be discussed in (29) (e.g. Xt is Gaussian noise, Cauchy, etc.), the
resolvability index is O (lnT/T ).

The proof is just a consequence of the chain rule property of the KL divergence. It
is instructive to sketch the proof of Theorem 1, as it will be needed later.

Proof.[Theorem 1] By definition,

pw (zt|Ft−1) =
∫

Θ

pθ (zt|Ft−1)w (dθ|Ft−1) (3)

where

w (dθ|Ft) =
w (dθ|Ft−1) pθ (Zt|Ft−1)∫
Θ

w (dθ|Ft−1) pθ (Zt|Ft−1)
(4)

and w (dθ|Ft) is the posterior probability written in sequential form, more commonly
written as

w (dθ|Ft) =
w (dθ) pθ (Zt

1)∫
Θ

w (dθ) pθ (Zt
1)

.

The above display together with (3) imply that

pw (ZT |FT−1) =

∫
Θ

pθ

(
ZT

1

)
w (dθ)∫

Θ
pθ

(
ZT−1

1

)
w (dθ)

,

so
T∑

t=1

ln pw (Zt|Ft−1) = ln pw

(
ZT

1

)
, (5)

because the sum telescopes and F0 is trivial. Choosing a ball B (θ) := BT (θ) as in (2),
one can bound the expectation of the above display,

Eθ ln
∫

Θ

pθ′
(
ZT

1

)
w (dθ′) ≥ Eθ ln

∫

B(θ)

pθ′
(
ZT

1

)
w (dθ′)

[because pθ

(
ZT

1

)
is non-negative]

≥ Eθ ln
(
pθ

(
Zt

1

))− δ + ln w (B (θ)) (6)
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noting that

ln
∫

B(θ)

pθ′
(
ZT

1

)
w (dθ′) = ln

∫

B(θ)

pθ′
(
ZT

1

) w (dθ′)
w (B (θ))

+ ln w (B (θ)) .

Hence,

EθD1,T (Pθ‖Pw) = Eθ
T∑

t=1

Eθ
t−1 [ln (pθ (Zt|Ft−1))− ln (pw (Zt|Ft−1))]

= Eθ
[
ln pθ

(
ZT

1

)− ln pw

(
ZT

1

)]

[by (5)]
≤ δ − ln w (B (θ))

by (6). Given that the above bound holds for any δ > 0 (with the r.h.s. possibly infinite)
we can take supθ∈Θ infδ on both sides and obtain the result. ¥

Information denseness and Condition 1 are slightly stronger than needed. In fact
the following weaker condition would suffice: there is a set AT := AT (θ, δT T ) ⊆ Θ such
that

Eθ ln pθ

(
ZT

1

) ≤ Eθ ln
(∫

AT

pθ′
(
ZT

1

) w (dθ′)
w (AT )

)
+ δT T (7)

and {δT T − ln w (AT )} /T → 0 as T → ∞. This clearly resembles the index of resolv-
ability and requires δT → 0. It turns out that the set BT (θ, δ) ⊆ AT (θ, δ) for any
δ > 0.

The following summarizes the above remarks:

Lemma 2. An information dense prior w (at θ) implies limT→∞RT (θ) /T = 0 and
the latter implies (7) with limT→∞ {δT T − ln w (AT )} /T = 0.

In practice, the verification of the above conditions is almost equivalent. Given that
the index of resolvability provides an upper bound in most of the results, we shall use
this as the default condition. Moreover, for two results to be stated (Theorem 6 and 7),
(7) will not be sufficient. This suggests that Condition 1 is the relevant assumption to
make for universality in a general framework.

By direct inspection of (2), the infimum RT (θ) is obtained by δ = 0 if Θ is finite
and w puts strictly positive mass to each element of Θ (see the proof of Theorem 4,
for details). Section 6.6 provides remarks on how to check Condition 1 in an important
special case.

The plan of the paper is as follows. Section 2 illustrates an important consequence of
universality for prediction under loss functions satisfying a moment bound. Sections 3
and 4 show universality results for model averaging and predictions in a non-stationary
environment. Section 5 shows how the results of the paper change under model mis-
specification. Further discussion including remarks about the conditions can be found
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in Section 6 . While outlines of proofs are included in the text, proofs of technical
lemmata are relegated to the appendix.

2 Predictions for Arbitrary Loss Functions

The KL divergence satisfies a chain rule for jointly distributed random variables and is
minimized (i.e. equal to zero) only when its arguments are the same. These are the
essential properties used in the proof of Theorem 1. Another crucial property is that
the KL divergence provides an upper bound for the L1 norm of two densities. Let p
and q be densities absolutely continuous with respect to a dominating measure µ. By
Pinsker’s inequality, the L1 norm is bounded as follows,

(∫
|p− q| pdµ

)2

≤ 2
∫

ln
(

p

q

)
pdµ (8)

(Pinsker (1964), Csiszar (1967)). Using the bound (8) we can show that universality has
important implications for convergence of Bayesian predictions based on loss functions
satisfying some moment conditions.

Suppose that (Zt)t∈N is a sequence of random variables with values in Z. The
problem is to find a prediction f ∈ F for Zt+1, where F is a prespecified set. The
framework is as follows: observe Z1, ..., Zt and issue the prediction ft+1 ∈ F. Finally,
Zt+1 is revealed and a loss L (Zt+1, ft+1) is incurred, where the loss takes values in R+

(the non-negative reals). The infeasible ideal goal is to minimize Eθ
tL (Zt+1, f) w.r.t.

f ∈ F, i.e. to find
ft+1 (θ) := arg inf

f∈F
Eθ

tL (Zt+1, f) . (9)

As in the previous section, we suppose that we only know the class {Pθ : θ ∈ Θ}, but not
under which θ expectation is taken. Hence, the problem is one of finding a prediction
that performs well for any θ ∈ Θ and the given loss function. By suitable definition
of Z and L, the framework allows extra explanatory variables on top of autoregressive
variables.

Example 1. Suppose that Zt := (Yt, Xt) and Z = R× R, and

L (Zt+1, f) = |Yt+1 − f |2 .

Then, this is the usual problem of forecasting under the square loss using an autore-
gressive process plus an explanatory variable. In fact, if Pθ (•|Ft) = Pθ (•|Yt, Xt) is
Gaussian with mean θyYt + θxXt and finite variance, then,

ft+1 (θ) = θyYt + θxXt

= arg inf
f∈R

Eθ
t |Yt+1 − f |2 ,

as the conditional mean is the minimizer of the conditional mean square error (e.g.
Harvey (1993)).
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Since θ is unknown, in (9) the feasible prediction is obtained by replacing the expec-
tation w.r.t. Pθ (•|Ft) with expectation w.r.t. Pw (•|Ft). This leads to the prediction

ft+1 (w) := arg inf
f∈F

Ew
t L (Zt+1, f) (10)

where Ew
t stands for expectation with respect to Pw (•|Ft). We shall see that, as a

consequence of universality, this prediction satisfies some desirable properties. Note
that Eθ

t−1 [L (Zt, ft)− L (Zt, ft (θ))] ≥ 0 by construction, because ft (θ) is the predictor
that minimizes the loss L under expectation w.r.t. Pθ (•|Ft−1). In particular, using (8),
the goal is to show that universality implies

1
T

T∑
t=1

Eθ
t−1 [L (Zt, ft)− L (Zt, ft (θ))] → 0

in L1 (Pθ) and consequently in Pθ-probability for any θ ∈ Θ under a moment condition.

Condition 2. There is an r > 1 such that

sup
θ∈Θ

sup
t>0

Eθ
[
Eθ

t−1L (Zt, ft (w))r + Ew
t−1L (Zt, ft (θ))r]

< ∞.

If Θ is compact and the loss function uniformly integrable in t with respect to
(Pθ)θ∈Θ, then we only need to worry about establishing a moment bound for all θ.
Further remarks on Condition 2 will be found in Section 6.7.

We have the following result:

Theorem 3. Under Condition 2,

sup
θ∈Θ
Eθ 1

T

T∑
t=1

Eθ
t−1 [L (Zt, ft (w))− L (Zt, ft (θ))]

= o







sup
θ∈Θ

infδ>0 {δ − ln w (BT (θ, δ))}
T




(r−1)/2r

 .

Hence, if Condition 1 holds as well, the r.h.s. converges to zero.

Remark 1. Theorem 3 says that (10) leads to an average conditional prediction error
asymptotically equal (in L1 (Pθ)) to the average conditional prediction error obtained
using the unfeasible predictions f1 (θ) , ..., fT (θ). It is possible to write a proper upper
bound in terms of constants that depend on the moments of the loss function only.

Merhav and Feder (1998) show how to relate the left hand side of Theorem 3 to the
joint relative entropy in the case of bounded loss functions. (See also Hutter (2005),
ch.3, for related results for bounded losses.) The present result relates the expected
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difference of the loss functions to the resolvability index in the more general case of
unbounded loss.

The proof for bounded loss uses the fact that the loss is non-negative and that ft (w)
is the minimizer of Ew

t−1L (Zt, f). Hence, adding and subtracting

Ew
t−1 [L (Zt, ft (w))− L (Zt, ft (θ))] ,

one can bound Eθ
t−1 [L (Zt, ft (w))− L (Zt, ft (θ))] with the L1 distance between pθ and

pw (conditional on Ft−1). By (8), this can be bounded by the square root of the relative
entropy. Hence, we can invoke Theorem 1. The slower convergence (dependent on an r
moment of the loss function) results from truncating an unbounded loss. Here are the
details:

Proof. [Theorem 3] Define ∆t (w, θ) := L (Zt, ft (w))− L (Zt, ft (θ)).
Then Ew

t−1∆t (w, θ) ≤ 0 because ft (w) is the minimizer of Ew
t−1L (Zt, f). Define the

sets

Mw := {L (Zt, ft (w)) ≤ M}

and

Mθ := {L (Zt, ft (θ)) ≤ M}

and denote their complements by M c
w and M c

θ . If A is a set, directly use A in place of
its indicator function. By this remark, adding and subtracting Ew

t−1∆t (w, θ),

Eθ
t−1∆t (w, θ) = Ew

t−1∆t (w, θ) +
(
Eθ

t−1 − Ew
t−1

)
∆t (w, θ)

≤ (
Eθ

t−1 − Ew
t−1

)
[L (Zt, ft (w)) {Mw} − L (Zt, ft (θ)) {Mθ}]

+
(
Eθ

t−1 − Ew
t−1

)
[L (Zt, ft (w)) {M c

w} − L (Zt, ft (θ)) {M c
θ}]

≤ (
Eθ

t−1 − Ew
t−1

)
∆t (w, θ) {|∆t (w, θ)| ≤ M}

+
[
Eθ

t−1L (Zt, ft (w)) {M c
w}+ Ew

t−1L (Zt, ft (θ)) {M c
θ}

]

[by non-negativity of the loss function]
=: It + IIt.
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Summing over t, dividing by T , and taking expectation, for M > 0,

Eθ 1
T

T∑
t=1

It = Eθ 1
T

T∑
t=1

∫

Z
∆t (w, θ) {|∆t (w, θ)| ≤ M}

× [pθ (z|Ft−1)− pw (z|Ft−1)] µ (dz)

≤ Eθ 1
T

T∑
t=1

M

∫

Z
|pθ (z|Ft−1)− pw (z|Ft−1)|µ (dz)

≤ Eθ 1
T

T∑
t=1

M
√

2Dt (Pθ‖Pw)

[by Pinsker’s inequality]

≤ M

√√√√2Eθ
1
T

T∑
t=1

Dt (Pθ‖Pw)

[by Jensen’s inequality and concavity of the square root function]

= M

√
2

1
T
EθD1,T (Pθ‖Pw).

Taking expectation inside the sum, bounding the empirical average with the supremum
and using Holder’s inequality,

sup
θ∈Θ

Eθ 1
T

T∑
t=1

IIt ≤ sup
θ∈Θ

sup
t>0

[
EθEθ

t−1L (Zt, ft (w))r]1/r [
EθEθ

t−1 {M c
w}

](r−1)/r

+ sup
θ∈Θ

sup
t>0

[
EθEw

t−1L (Zt, ft (θ))r]1/r [
EθEw

t−1 {M c
θ}

](r−1)/r

= o
(
M−(r−1)

)

by Condition 2 using the fact that on the r.h.s. the first term in each product is finite
while the second term in the product is o (M−r) because the existence of an rth moment
implies tails that are o (M−r) (e.g. Serfling (1980), Lemma 1.14). Hence,

Eθ 1
T

T∑
t=1

(It + IIt) ≤ M

√
2

1
T
EθD1,T (Pθ‖Pw) + o

(
M−(r−1)

)

= o

(∣∣∣∣
1
T
EθD1,T (Pθ‖Pw)

∣∣∣∣
(r−1)/2r

)

setting M = o
(∣∣ 1

T E
θD1,T (Pθ‖Pw)

∣∣−1/2r
)
. Taking supθ, and substituting in an appli-

cation of Theorem 1 gives the universality result. ¥

The rest of the paper will focus on extending Theorem 1 to different scenarios.
However, as a consequence of the established universality of predictions, results for
arbitrary loss will be stated as corollaries without proof.
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3 Universality of Bayesian Model Averaging

Parameter uncertainty in the model {Pθ : θ ∈ Θ} can be extended to model uncertainty.
It is convenient to suppose K parameter spaces Θ1, ..., ΘK within which each model is
indexed, e.g. {Pθ : θ ∈ Θk} is model k. We shall define K := {1, , 2...,K}. The Bayesian
predictive density under model uncertainty is given by

pm (Zt|Ft−1) :=
∑

k∈K
pwk

(Zt|Ft−1) m (k|Ft−1) (11)

where

m (k|Ft) =
pwk

(Zt|Ft−1)m (k|Ft−1)∑
k∈K pwk

(Zt|Ft−1)m (k|Ft−1)

pwk
(zt|Ft−1) :=

∫

Θk

pθ (zt|Ft−1) dwk (θ|Ft−1)

and wk, m are probability measures on subsets of Θk and K, respectively. By induction,
we have

pm

(
Zt

1

)
:=

∑

k∈K
pwk

(
Zt

1

)
m (k) .

In this case, universality of the Bayesian prediction is understood as in Definition 1
where Θ :=

⋃
k∈KΘk. In general, we only require the following to hold:

Condition 3. m (k) > 0 for any k ∈ K.

Hence, we can state the following:

Theorem 4. We have the following upper bound,

max
k∈K

sup
θ∈Θk

EθD1,T (Pθ‖Pm) ≤ max
k∈K

sup
θ∈Θk

inf
δ>0

{δ − ln wk (BT (θ, δ))− ln m (k)} ,

so that under Condition 1 and 3, the predictions are universal, i.e.

max
k∈K

sup
θ∈Θk

EθD1,T (Pθ‖Pm)
T

→ 0.

Proof. [Theorem 4] By Condition 3,

Eθ ln pm

(
Zt

1

)
= Eθ ln

∑

k∈K
Pwk

(
Zt

1

)
m (k) ≥ Eθ ln Pwk

(
Zt

1

)
+ ln m (k)

as each term in the sum is positive. We can then proceed exactly as in the proof of
Theorem 1 with the extra error term − ln m (k). ¥
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Corollary 1. Let Em be expectation with respect to Pm and ft+1 (m) as in (10) using
Em. If

max
k∈K

sup
θ∈Θk

sup
t>0

[
Eθ

t−1L (Zt, ft (m))r + Em
t−1L (Zt, ft (θ))r]

< ∞

for some r > 1, then,

max
k∈K

sup
θ∈Θk

Eθ 1
T

T∑
t=1

Eθ
t−1 [L (Zt, ft (m))− L (Zt, ft (θ))] → 0.

Moreover, since L is positive, ft+1 (m) =
∑

k∈Km (k|Ft−1) ft+1 (wk), where ft+1 (wk)
is as in (10) using Ewk .

The computational overhead of the above Bayesian model averaging prediction grows
linearly in the number of models K.

The stated version of the upper bound is related to results derived in the machine
learning and information theory literature (e.g. Vovk (1998), Cesa-Bianchi and Lugosi
(2006), and Sancetta (2007), for similar results in econometrics). The above references
derive bounds for worst-case scenarios and treat individual predictions to be combined
as exogenous. The above bound also relates to some results in Yang (2004), which apply
to conditional mean prediction under the square loss.

4 Universality over Time Varying Reference Classes

In some situations we would like the Bayesian prediction to perform well when θ varies
over time. We may think of this problem as one where there are switches in regimes but
we try not to make any assumptions on the dynamics (see Hamilton (2008), for a review
of parametric regime switching models). In this case, learning by Bayes’ rule needs to
involve learning over changing parameters. We are interested in the joint distribution

PθS
1

(
Zt

1

)
=

S∏
s=1

Ts∏

t=Ts−1+1

Pθs (Zt|Ft−1) (12)

where θS
1 := (θ1, ..., θS), and 0 = T0 < T1 < ... < Ts = T are arbitrary, but fixed. For

example, the underlying process could be an inhomogeneous Markov chain.

To ease notation, define the time segments Ts := (Ts−1, Ts]∩N. For s ≤ S, we shall
denote expectation w.r.t. Pθs

1
by Eθs

1 . To be precise, the notation should make explicit
not only θs

1, but also T1, ..., TS . For simplicity the times of the parameter’s change are
omitted, as they will be clear from the context, if necessary.

The problem of universality of the predictions is formalized by the following defini-
tion:

Definition 2. Predictions based on pw are universal for
{

PθS
1

: θS
1 ∈ ΘS

}
over S ≤ T
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partitions T1, ..., TS if

1
T

sup
θS
1 ∈ΘS

EθS
1

S∑
s=1

∑

t∈Ts

Dt (Pθs‖Pw) → 0

as T →∞. (ΘS is the S Cartesian product of Θ.)

Note that in the above definition S may go to infinity with T . To allow for changing
θ when the time of change is not known a priori, we need to introduce a prior on the
probability of changes. We define a probability measure on subsets of N: for each t,
λt (r) is a probability density w.r.t. the counting measure with support in {0, 1, 2, ..., t},
so that

∑t
r=0 λt (t− r) = 1. Then, we mix past posteriors using λt (r) as mixing density:

w (dθ|Ft) =
t∑

r=0

λt (t− r)w′ (dθ|Ft−r) (13)

where
w′ (dθ|F0) = w (dθ|F0)

and

w′ (dθ|Ft) =
pθ (Zt|Ft−1)w (dθ|Ft−1)∫
Θ

pθ (Zt|Ft−1) w (dθ|Ft−1)
. (14)

This updating algorithm has been studied by Bousquet and Warmuth (2002) for count-
able Θ. The update has a clear Bayesian interpretation: with probability λt (r) the
posterior of θ at time t is equal to the posterior dw′ (θ|Fr) at time r + 1 < t. This
means that at any point in time we may expect shifts that take us back to a past
regime. Data within each regime are generated by the same θ. When r = 0 we are
taken back to the prior, which corresponds to the start of a new regime that has not
previously occurred. Hence, the main idea is to keep some positive probability on past
posteriors that contain possibly relevant information for the future. This intuition will
be formalized in the proofs.

Note that the use of a prior on the regimes further complicates any computational
issues. In fact, at each t, the computational burden scales linearly with the support of
λt (r), i.e. the cardinality of {r ∈ N : λt (r) > 0}.

We shall use DTs (Pθ‖Pθ′) := DTs−1+1,Ts (Pθ‖Pθ′) for the prequential KL divergence
over the time interval Ts. To prove universality, we need a condition slightly stronger
than Condition 1.

Condition 4. For any θs ∈ Θ, Ts, s ≤ S and δ > 0 define the following set

BTs (θs, δ) :=
{

θ′ ∈ Θ : Eθs
1DTs (Pθs‖Pθ′) ≤ δ

}

and the following unstandardized resolvability index

RTs (θs) := inf
δs>0

[δs − ln w (BTs (θs, δs))]
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Then,

lim
T→∞

sup
θS
1 ∈ΘS

S∑
s=1

RTs
(θs)

T
= 0.

For definiteness, two special cases based on Bousquet and Warmuth (2002) will be
considered. The first case makes no assumption on the type of changes, and only assumes
that there are S − 1 changes. Any change could be a new regime and past information
might be useless. For this reason, we shall just shrink the posterior towards the prior.
The second case assumes that there are S − 1 shifts in the parameter, but these shifts
are back and forth within a small number of V < S regimes (i.e. parameters). The
details will become clear in due course.

4.1 Shrinking towards the Prior

Restrict λt such that λt (t) = 1 − λt−α, λt (0) = λt−α, and λt (r) = 0 otherwise, with
α ≥ 0 and λ ∈ (0, 1). This means that (13) simplifies to

w (dθ|Ft) =
(
1− λt−α

)
w′ (dθ|Ft) + λt−αw (dθ) . (15)

Theorem 5. Using (15), for any segments T1, ..., TS,

sup
θS
1 ∈ΘS

EθS
1

S∑
s=1

∑

t∈Ts

Dt (Pθs‖Pw)

≤ sup
θS
1 ∈ΘS

S∑
s=1

inf
δs>0

[δs − ln w (BTs (θs, δs))]

+
2λ√

1− λ2

(
1 +

T 1−α − 1
1− α

)
+ S ln (1/λ) + αS ln T

so that predictions based on Pw are universal under Condition 4 if S ln T = o (T ) and
α > 0.

Remark 2. If α → 1,
(
T 1−α − 1

)
/ (1− α) → ln T ; in fact, the second term in the

bound of Theorem 5 is monotonically decreasing in α. Increasing α does however in-
crease the last term in the bound, i.e. αS ln T .

Proof. [Theorem 5] The main intuition in the proof is that we can break down the
negative log-likelihood of the Bayesian prediction into S blocks over arbitrary time
subsets, as long as we keep some positive weight on the related posterior update. Lemma
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9 in the appendix, formalizes this idea. Hence,

−
S∑

s=1

Ts∑

t=Ts−1+1

ln pw (ZTs |FTs−1) ≤ −
S∑

s=1

ln
[∫

Θ

pθ

(
ZTs

Ts−1+1|FTs−1

)
w (dθ)

]

−
S∑

s=2

ln
(
λT−α

s−1

)−
S∑

s=1

Ts∑

t=Ts−1+1

ln
(
1− λt−α

)

[by Lemma 9,
and because there is no update at t = T0]

≤ −
S∑

s=1

ln
[∫

Θ

pθ

(
ZTs

Ts−1+1|FTs−1

)
w (dθ)

]

+
2λ√

1− λ2

(
1 +

T 1−α − 1
1− α

)
+ S ln (1/λ)

+αS ln T

by (34) (with S = 1) and (35) in Lemma 12. By Condition 4, as in the proof of Theorem
1,

S∑
s=1

Eθs
1

{
ln pθs

(
ZTs

Ts−1+1|Ft−1

)
− ln

[∫

Θ

pθ

(
ZTs

Ts−1+1|FTs−1

)
w (dθ)

]}

≤
S∑

s=1

inf
δs>0

[δs − ln w (BTs (θs, δs))] .

Hence, this display and the previous one imply the result. ¥

In the bound of Theorem 5, α and λ are free parameters whose choice can be based
on prior knowledge or subjective beliefs. If S is of large order, we could minimize the
bound setting λ close to one and α close to zero. This suggests that as the number of
shifts relative to T increases, we are better off shrinking towards the prior. This idea
can be related to the debate about equally weighted model averaging when we want to
hedge against non-stationarity (e.g. see Timmermann (2006), for discussions). Clearly,
exact prior knowledge of T (in the sense of number of predictions to be made) and S
would allow us to minimize the bound w.r.t. the free parameters.

In Theorem 5,

sup
θS
1 ∈ΘS

1
T

S∑
s=1

inf
δs>0

[δs − ln w (BTs (θs, δs))] = o (1)

by Condition 4. However the above resolvability index can be quite large as the order of
magnitude of S increases. Moreover, all the shifts might not be to new regimes; hence, it
could be advantageous to use past information in the hope of reducing the resolvability
index. This issue will be addressed next.
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4.2 Improvements on the Resolvability Index: Switching within a
Small Number of Parameters

Consider now the case of a shifting parameter within a set of V fixed parameters. Hence,
even if S →∞ we may still have V = O (1) so that over the S − 1 shifts we move back
and forth within V regimes. In particular, to set up notation, there are S − 1 shifts
within

{
θ̃1, ..., θ̃V

}
⊂ Θ, V < S. Hence, for given θ̃v, there are Sv ≤ bS/V c+1 segments

of the kind [Ts−1 + 1, Ts] for which θs = θ̃v is the “true parameter”. Intuitively, past
information should be helpful, and we may improve Theorem 5 letting λt (r) > 0 for
any r ≤ t. This is the case, and to this end we state the following:

Condition 5. For any θs ∈ Θ, Ts , s ≤ S and δS
1 := (δ1, ..., δS) > 0 (understood

elementwise), define the following set

Bv

(
θ̃v, δS

1

)
:=

⋂

{s:θs=θ̃v}
BTs (θs, δs)

i.e. the smallest set BTs (θs, δs) w.r.t. s such that θs = θ̃v, where BTs (θs, δs) is as in
Condition 4. Then,

lim
T→∞

sup
θS
1 ∈ΘS

inf
δS
1 >0

{∑S
s=1 δs −

∑V
v=1 ln w

(
Bv

(
θ̃v, δS

1

))}

T
= 0.

Remark 3. Note that

ln w
(
Bv

(
θ̃v, δS

1

))
≤ min
{s:θs=θ̃v}

ln w (BTs (θs, δs))

with equality in some special important cases as in (29).

The simplest approach to let λt (r) > 0, for r ∈ [0, t], is to directly extend the density
λt (r) in the previous subsection: λt (t) = 1 − λt−α, λt (r) = λt−(1+α) when r ∈ [0, t)
and α and λ are as previously constrained. Direct calculation shows that λt (r) is a
probability density (w.r.t. the counting measure) on [0, t] ∩ N, leading to the following
posterior update:

w (dθ|Ft) =
(
1− λt−α

)
w′ (dθ|Ft) +

t∑
r=1

λt−α

t
w′ (dθ|Ft−r) . (16)

Under the above update, we can derive the following bound for S − 1 shifts within V
regimes.

Theorem 6. Using (16), for any segments T1, ..., TS, for S shifts in θs within a fixed
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but arbitrary set
{

θ̃1, ..., θ̃V

}
with V ≤ S,

sup
θS
1 ∈{θ̃1,...,θ̃V }S

EθS
1

S∑
s=1

∑

t∈Ts

Dt (Pθs
‖Pw)

≤ sup
θS
1 ∈{θ̃1,...,θ̃V }S

inf
δS
1 >0

{
S∑

s=1

δs −
V∑

v=1

ln w
(
Bv

(
θ̃v, δS

1

))}
+ error (T, S, α, λ) ,

where

error (T, S, α, λ) :=
2λ√

1− λ2S−2α

(
S−α +

T 1−α − S1−α

1− α

)
+S ln (1/λ)+(1 + α)S ln T,

so that the prediction is universal under Condition 5 if S ln T = o (T ) and α > 0.

Remark 4. Theorem 6 leads to a decrease in the resolvability index when V is fixed
and S →∞. Comparing with Theorem 5, this comes at the extra cost of an error term
S ln T , but with an improvement in

2λ√
1− λ2S−2α

(
S−α +

T 1−α − S1−α

1− α

)
. (17)

Section 6.8 provides further remarks on the improvement of the resolvability index,
in a special case. When Θ is finite, Bousquet and Warmuth (2002) provide encouraging
simulation evidence in favor of mixing past posteriors using λt (r) > 0 (r ∈ [0, t]) when
V is small and S is large. This is exactly the case when one would be expected to use α
close to zero and λ close to one (recall the discussion just after Theorem 5). According
to these remarks, the mixing update in (16) should be used with small α and large λ if
we expect S to be relatively large and V small so that the resulting loss should dominate
the one incurred using the update in (15).

We now consider a second case that further improves on the previous result. This
can be achieved by letting λt (r) put less and less mass on the remote past. To this end,
consider the following simple case: λt (t) = 1 − λt−α, λt (r) = λt−αA−1

t (1 + t− r)−2,
for 0 ≤ r < t where At =

∑t−1
r=0 (1 + t− r)−2 is a normalizing factor and α and λ are

as previously restricted. This means that we shall consider the following update:

w (dθ|Ft) =
(
1− λt−α

)
w′ (dθ|Ft) +

t∑
r=1

λt−α

At (1 + r)2
w′ (dθ|Ft−r) . (18)

Theorem 7. Using (18) instead of (16), in Theorem 6, we have

error (T, S, α, λ) : =
2λ√

1− λ2S−2α

(
S−α +

T 1−α − S1−α

1− α

)

+S ln (1/λ) + αS ln T + 2S ln
(

V (T − 1)
S − 1

)
,

so that the prediction is universal under Condition 5 if S ln T = o (T ) and α > 0.
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Remark 5. Theorem 7 shows that the extra cost S ln T in Theorem 6 can be reduced to
2S ln

(
V (T−1)

S−1

)
if we use (18) instead of (16).

A slight modification of Condition 2 can be used to deal with predictions under
general loss functions.

Corollary 2. Suppose that there is an r > 1, such that for any partition {Ts : s > 0},

sup
θS
1 ∈ΘS

sup
s≤S

sup
t∈Ts

EθS
1

[
Eθs

t−1L (Zt, ft (w))r + Ew
t−1L (Zt, ft (θs))

r
]

< ∞.

Here Ew
t−1 is understood as expectation with respect to the predictive density based on

mixtures of past posteriors, and similarly for ft (w). Then, universality as in Definition
2 implies

sup
θS
1 ∈ΘS

1
T
EθS

1

S∑
s=1

Ts∑

t=Ts−1+1

Eθs
t−1 [L (Zt, ft (w))− L (Zt, ft (θs))] → 0.

Proof. [Theorem 6 and 7] Introduce the following notation: w′t (•) := w′ (•|Ft) and
similarly for w (•|Ft), where w (•) := w0 (•) := w (•|F0); w′ (•|F0) =: w′ (•) = w (•). If
u and v are measures such that u is absolutely continuous w.r.t. v, then du/dv stands
for the Radon Nikodym derivative of u w.r.t. v.

For each s ∈ {1, ..., S}, define

ũs(v) (dθ) = ũv (dθ) :=
w (dθ)

w
(
Bv

(
θ̃v, δS

1

))I
{

θ ∈ Bv

(
θ̃v, δS

1

)}
(19)

where Bv

(
θ̃v, δS

1

)
is as in Condition 5. For any us ∈ {ũ1, ..., ũV }, adding and subtract-

ing
∫
Θ

ln pθ (Zt|Ft−1)us (dθ),

EθS
1

S∑
s=1

∑

t∈Ts

[ln pθs (Zt|Ft−1)− ln pw (Zt|Ft−1)]

= EθS
1

S∑
s=1

∑

t∈Ts

∫

Θ

ln
[
pθs (Zt|Ft−1)
pθ (Zt|Ft−1)

]
us (dθ)

+EθS
1

S∑
s=1

∑

t∈Ts

∫

Θ

ln
[

pθ (Zt|Ft−1)
pw (Zt|Ft−1)

]
us (dθ)

≤
S∑

s=1

δs + EθS
1

S∑
s=1

∑

t∈Ts

∫

Θ

ln
[

pθ (Zt|Ft−1)
pw (Zt|Ft−1)

]
us (dθ) (20)

by Definition of Bv

(
θ̃v, δS

1

)
. By (13) and (14), us is absolutely continuous w.r.t. w′t

because λt (0) > 0. Therefore, we can apply Lemma 10:
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EθS
1

S∑
s=1

∑

t∈Ts

∫

Θ

ln
(

pθ (Zt|Ft−1)∫
Θ

pθ′ (Zt|Ft−1)w (dθ′|Ft−1)

)
us (dθ)

≤
S∑

s=1

[∫

Θ

ln

(
dus

dw′Ts−1−rs

)
dus −

∫

Θ

ln
(

dus

dw′Ts

)
dus

]
(21)

−
T1−1∑
t=1

ln λt (t)−
S∑

s=2

Ts−1∑

t=Ts−1+1

ln λt (t)−
S∑

s=2

ln λTs−1 (Ts−1 − rs) .

Although the sum for s runs from 1 to S, there are only V different shifts, i.e. us ∈
{ũ1, ..., ũV }. For each s we can choose rs so that the sum in the brackets in (21)
telescopes except for the first and last term of each sequence of shifts of the same kind.
Hence, denoting by

[
Tv(s)−1 + 1, Tv(s)

]
the sth time segment such that us = ũv, and,

with abuse of notation, letting Tv be the last time θ̃v was the true parameter,

S∑
s=1

[∫

Θ

ln

(
dus

dw′Ts−1−rs

)
dus −

∫

Θ

ln
(

dus

dw′Ts

)
dus

]

=
V∑

v=1

S(v)∑
s=1

[∫

Θ

ln

(
dũv

dw′Tv(s)−1−rv(s)

)
dũv −

∫

Θ

ln

(
dũv

dw′Tv(s)

)
dũv

]
(22)

≤
V∑

v=1

[∫

Θ

ln
(

dũv

dw′0

)
dũv −

∫

Θ

ln
(

dũv

dw′Tv

)
dũv

]

[setting rv(s+1) = Tv(s+1)−1 − Tv(s) and rv(1) = Tv(1)−1

so the the sum telescopes]

≤
V∑

v=1

∫

Θ

ln
(

dũv

dw′0

)
dũv

[because the second integral in the brackets is positive]

= −
V∑

v=1

ln w
(
Bv

(
θ̃v, δS

1

))

substituting (19) and evaluating the integral. Once we insert (22) in (21), to prove the
theorems, it is sufficient to bound

−
T1−1∑
t=1

ln λt (t)−
S∑

s=2

Ts−1∑

t=Ts−1+1

ln λt (t)−
S∑

s=2

ln λTs−1 (Ts−1 − rs) (23)

with the constraints used above, i.e. rv(s+1) = Tv(s+1)−1 − Tv(s) and rv(1) = Tv(1)−1.
These quantities are bounded by Lemma 11 in the appendix, by elementary inequalities
and some algebra. Once again, the trick is to make sure that we assign positive weight
to the information contained in each posterior. ¥
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Mutatis mutandis, Theorem 5, 6 and 7 are related to Lemma 6 and Corollary 8 and
9 in Bousquet and Warmuth (2002) and improve on the bounds given by these authors
using slightly different functions to mix posteriors. Bousquet and Warmuth (2002)
were the first to propose predictions by mixing past posteriors (see also Herbster and
Warmuth (1998), for related results). They are essentially concerned with the forecast
combination problem, called prediction with experts’ advice in the machine learning
literature. The main difference lies in the fact that they restrict attention to Θ being
finite.

5 Bounds when the True Model is not in the Reference
Class

The previous results considered the case where expectation is taken with respect to one
element within a class of models, e.g. {Pθ : θ ∈ Θ}. This implies that we face only
estimation error. However, when expectation is taken with respect to a probability
P /∈ {Pθ : θ ∈ Θ}, we will also incur an approximation error, hence universality might
not be achieved. The approximation error can be characterized in terms of the relative
entropy. With no loss of generality, assume that P is absolutely continuous w.r.t. the
sigma finite measure µ and we denote its density by p, so that

Dt (P‖Pθ) = Et−1 ln
p (Zt|Ft−1)
pθ (Zt|Ft−1)

where Et−1 is expectation w.r.t. P (•|Ft−1). Note that this does not imply that P is
absolutely continuous w.r.t. Pθ, however, if this is not the case, their relative entropy is
infinite. Use E for (unconditional) expectation w.r.t. P . We shall review the previous
results in the light of estimation error.

Condition 6. Define
ft (P ) := arg inf

f∈F
Et−1L (Zt, f) .

Then,

sup
t>0

E
[
Et−1L (Zt, ft (w))r + Ew

t−1L (Zt, ft (P ))r]
< ∞

for some r > 1.

Then, we have an extra error term due to the approximation error.

Theorem 8.

EDt (P‖Pθ) ≤ infθ∈Θ infδ {ED1,T (P‖Pθ) + δ − ln w (BT (θ, δ))}
T

,
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and, under Condition 6,

E
1
T

T∑
t=1

Et−1 [L (Zt, ft (w))− L (Zt, ft (P ))]

= o

([
infθ∈Θ infδ {ED1,T (P‖Pθ) + δ − ln w (BT (θ, δ))}

T

](r−1)/2r
)

.

Remark 6. By the following inequality

inf
θ∈Θ

inf
δ
{ED1,T (P‖Pθ) + δ − ln w (BT (θ, δ))}

≤ inf
θ∈Θ

ED1,T (P‖Pθ) + sup
θ∈Θ

inf
δ
{δ − ln w (BT (θ, δ))}

we deduce that if Condition 1 holds, the Bayesian prediction might not be universal, but
will lead to the smallest possible information loss, i.e. infθ∈Θ ED1,T (P‖Pθ) /T .

Proof. [Theorem 8] The proof follows along the same lines as the proof of Theorem
3 with Pθ replaced by P . After having used Pinsker’s inequality to bound the total
variation between P and Pw it is enough to note that

ED1,T (P‖Pw) = ED1,T (P‖Pθ) + E
T∑

t=1

Et−1 ln
pθ (Zt|Ft−1)
pw (Zt|Ft−1)

= ED1,T (P‖Pθ) + E
[
ln pθ

(
ZT

1

)− pw

(
ZT

1

)]

≤ ED1,T (P‖Pθ) + δ − ln w (BT (θ)) (24)

by (2). The final details are left to the reader. ¥

6 Discussion

6.1 Implications of Universality

Definition 1 has practical implications in a variety of contexts. For any arbitrary but
fixed prior w on Θ and any measure Q on ZT , the mutual information between w and
Q is defined by

I (w, Q) :=
∫

Θ

EθD1,T (Pθ‖Q)w (dθ)

(Shannon (1948)). By the properties of the KL divergence, the mutual information is
minimized w.r.t. Q by Pw, i.e.

I (w, Pw) ≤ I (w,Q)

for any Q (Aitchison (1975)). Hence, the minimizer of the mutual information is the
Bayes risk (e.g. Clarke and Barron (1994), Haussler and Opper (1997), p. 2455).
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Universality of Bayesian prediction implies that the Bayes’ risk divided by T converges
to zero.

The Bayes’ risk can be given a game theoretic interpretation. Suppose that the
environment samples a θ ∈ Θ according to the prior w and then observations ZT

1 are
drawn according to Pθ. The forecaster only knows {Pθ′ : θ′ ∈ Θ} and that the prior is
w. Then, a predictive distribution Q needs to be chosen such that the average loss,
I (w, Q), is minimized.

Using universality, we can go a step further and consider the following adversarial
game: Nature chooses θ ∈ Θ such that EθD1,T (Pθ‖Q) is maximized. The goal of the
forecaster is to choose a predictive distribution Q such that supθ∈Θ EθD1,T (Pθ‖Q) is
minimized. The solution to this problem is the Bayesian predictive distribution Pw

(Haussler (1997), Theorem 1). Hence, Pw solves the following minimax problem:

inf
Q

sup
θ∈Θ

EθD1,T (Pθ‖Q)

where the inf is taken over all joint distributions Q on ZT . Given that D1,T (Pθ‖Pw) ≥ 0,
universality implies L1 (Pθ) convergence of the prequential KL distance, which in turn
implies its convergence in Pθ-probability for any θ ∈ Θ.

6.2 Averaging Estimators as Solutions to Bayes Risk

The Bayesian predictive density can be directly derived as a solution to the Bayes
risk for the relative entropy. Divergence functions other than the relative entropy (e.g.
Hellinger, Chi-square, etc.) give different forms of averaging estimator where the weight
on the likelihood is either inflated (e.g. Chi-square divergence) or deflated (Hellinger
divergence). With different aims in mind, Corcuera and Giummol (1999), Zellner (2002),
and Clarke and Yuan (2010) explicitly look at these modified Bayesian estimators. In
general, the modified predictive density takes the form

pw

(
zT
1 ; η

)
=

(∫
Θ

[
pθ

(
zT
1

)]η
w (dθ)

)κ

CT
, (25)

CT :=
∫

ZT

(∫

Θ

[
pθ

(
zT
1

)]η
w (dθ)

)κ

µ
(
dzT

1

)
,

where η, κ > 0 and CT is just a constant of integration. The case η = 1/κ = 1/2 is the
solution to the Hellinger divergence, while η = 2, κ = 1 is the solution to the Chi-square
divergence. It can be shown that (25) is asymptotically optimal for the KL divergence
when ηκ = 1 and κ ≥ 1. The crucial step is to show that (6) holds. To see this, take logs
of (25) and write

[
pθ

(
zT
1

)]η = exp
{
η ln pθ

(
zT
1

)}
so that, using the same arguments as
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in (6),

Eθ ln pw

(
ZT

1 ; η
)

= κEθ ln
∫

Θ

exp
{
η ln pθ′

(
ZT

1

)}
w (dθ′)− ln CT

≥ κηEθ ln pθ

(
ZT

1

)− δ + ln w (BT (θ, κηδ))
[because κη = 1 and assuming CT ≤ 1, for the moment]

= Eθ ln pθ

(
ZT

1

)− δ + ln w (BT (θ, δ)) .

Note that, for κ ≥ 1, by Jensen’s inequality,

CT ≤
∫

ZT

∫

Θ

[
pθ

(
zT
1

)]ηκ
w (dθ)µ

(
dzT

1

)

= 1

when ηκ = 1. Hence, the solution to other divergence functions (e.g. Hellinger) can be
asymptotically optimal for the KL divergence. The other way around does not appear
to be true.

It is interesting to note that when η → ∞, the posterior puts all its weight at one
point, i.e. the maximum likelihood estimator. Hence, the Laplace approximation to
the predictive density is simply obtained by replacing the usual Bayesian posterior with
the inflated with η → ∞, i.e. all weight is given to the evidence provided by the data
relative to the prior (see Zellner (2002), for more on this interpretation). There are some
relations between the above discussion and the concept of learning rate and realizable
prediction usually employed in the machine learning literature. The interested reader
it referred to Haussler et al. (1998), and Vovk (1998) (see also Cesa-Bianchi and Lugosi
(2006)).

6.3 Relation to Worst-Case Bounds

The results presented here are also related to competitive online statistics (Vovk (2001)),
which in the machine learning literature are usually referred to as predictions with expert
advice. There, the focus is on worst-case bounds for

D
(obs)
1,T (Pθ‖Pθ′) :=

T∑
t=1

[ln (pθ (Zt|Ft−1))− ln (pθ′ (Zt|Ft−1))] (26)

for any data sequence Z1, ..., ZT and T > 0, which we call the observed joint relative
entropy. In particular, it is assumed that nature outputs Z1, ..., ZT in an adversarial
game where the statistician is required to issue a prediction pw (•|Ft−1) before nature
outputs Zt. It can be shown that (26) is bounded by infδ>0

{
δ − ln w

(
B

(obs)
T (θ, δ)

)}

where
B

(obs)
T (θ, δ) :=

{
θ′ ∈ Θ : D

(obs)
1,T (Pθ‖Pθ′) ≤ δ

}
(27)

(using the arguments in the proof of Lemma 2 and Theorem 1). In the simplest case of
prediction with expert advice, Θ is finite, the prior is uniform over Θ, and the upper
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bound for (26) over all bounded data sequences simplifies to ln K, where K is the
cardinality of Θ (see Theorem 4 for an application; there the finite set is denoted by K
rather than Θ). It is thus obvious that we can turn many of the results in this paper
into worst-case results by simply changing the definition of information neighbour in
(2) into that in (27). Note that (27) is a random ball (unless we take the sup over all
data sequences). Nevertheless, in some cases, we can control its size ex ante, though
asymptotically.

Example 2. Suppose that, for t > 0, Zt is conditionally distributed as Gaussian with
mean θZt−1 and variance one. From (26), by simple algebra, deduce that

B
(obs)
T (θ, δ) =

{
θ′ ∈ Θ :

T∑
t=1

Zt−1 (θ − θ′)
[
Zt − (θ′ + θ)

2
Zt−1

]
≤ δ

}
,

where Z0 is fixed (recall that F0 is trivial). Given, Z0, ..., ZT−1 we can solve for the set
of θ′ satisfying the inequality in B

(obs)
T (θ, δ). Moreover, by the law of large numbers, for

|θ| < 1,

1
T

(
1− Eθ

) T∑
t=1

Zt−1 (θ − θ′)
[
Zt − (θ′ + θ)

2
Zt−1

]
→ 0

almost surely (e.g. Brockwell and Davis (1991)). Hence, the information neighbourhood
(2) still provides some useful information even in the worst-case scenario. Clearly, we
are assuming that nature follows a “well behaved stochastic process” to output Zt.

For Example 2, a worst-case bound gives an error equal to infinity (see Theorem 1
in Vovk (2001)). It seems that this problem can only be overcome by giving up worst-
case bounds. Then, it is possible to derive bounds for the conditional mean loss (Vovk
(2001), footnote 5, p.34) or the mean loss as shown in Theorem 3.

This can be achieved by replacing the information neighbourhood (2) with a pre-
quential neighbourhood

B
(preq)
T (θ, δ) := {θ′ ∈ Θ : D1,T (Pθ‖Pθ′) ≤ δ}

which is the information neighbourhood based on the prequential KL divergence. As
remarked by Dawid (1998) the optimality property related to this criterion is prequen-
tial efficiency. Prequential efficiency requires almost sure convergence of the prequen-
tial KL divergence divided by T , while universality (as discussed here) only requires
L1 convergence of the T standardized prequential KL divergence. Hence, the quan-
tities D

(obs)
1,T (Pθ‖Pθ′) D1,T (Pθ‖Pθ′) and EθD1,T (Pθ‖Pθ′) require, respectively, control

over the sets B
(obs)
T (θ, δ), B

(preq)
T (θ, δ) and BT (θ, δ), where BT (θ, δ) ⊆ B

(preq)
T (θ, δ) ⊆

B
(obs)
T (θ, δ), almost surely. The smaller the set, the smaller the error in the bound.
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6.4 Finite Sample Limitations of Bayesian Predictions Over Compet-
ing Approaches

This paper shows that Bayesian predictions possess some desirable properties in terms
of universality. Other desirable properties like Prequential Efficiency are discussed by
Dawid (e.g. Dawid (1984), Dawid (1992)) in the case of predictions based on a mixture
of distributions. However, in finite samples, there are examples of procedures that
are superior. Shtarkov (1987) provides details of a density prediction that is optimal
in finite samples (i.e. achieves the minimax regret). Cesa-Bianchi and Lugosi (2001)
provide theoretical evidence that mixture algorithms like Bayesian predictions are not
the best possible in finite samples. Clarke (2003), Wong and Clarke (2004) and Clarke
and Clarke (2009) provide finite sample empirical evidence in favour of methods that
combine both model-based and empirical approaches, especially when the target model
is not in the reference class. In general, outside the realm of prediction with loss
based on KL divergence, the results in this paper might be optimal only asymptotically
(e.g. Clarke (2007)). Hence, the theoretical soundness of arguments based on Bayesian
predictions may come at the cost of finite sample loss.

6.5 Prediction over Multiple Steps Ahead

One of the many issues not discussed includes the multiple steps ahead prediction prob-
lem, where we want to use Zt

1 to make (distributional) predictions about Zt+h, for fixed
h > 1. Unfortunately, it seems that the relative entropy is too strong to derive bounds
in this case, while results can be easily derived using the total variation distance (see
Hutter (2005), sect. 3.7.1, for illustrations when Z is countable). To the author’s knowl-
edge this is an open problem. Nevertheless, bounds under the relative entropy for the
distributional prediction of Zt+h

t given Zt−1
1 can be derived directly from the results

given in this paper. Just note that, in this case, the relative entropy is given by

Eθ
t−1 ln

pθ

(
Zt+h

t |Ft−1

)

pw

(
Zt+h

t |Ft−1

) = Eθ
t−1 ln

pθ

(
Zt+h

1

)

pw

(
Zt+h

1

) − Eθ
t−1 ln

[
pθ

(
Zt−1

1

)

pw

(
Zt−1

1

)
]
{t > 1} (28)

using (1) and similar steps as in the proof of Theorem 1. Hence, summing over t and
taking full expectation, the sum telescopes apart from initial h negative terms which
can be disregarded in the upper bound plus the last h + 1 terms which are kept:

Eθ
T∑

t=1

Eθ
t−1 ln

pθ

(
Zt+h

t |Ft−1

)

pw

(
Zt+h

t |Ft−1

) ≤
T+h∑

t=T

EθEθ
t−1 ln

pθ (Zt
1)

pw (Zt
1)

≤ (h + 1)Eθ ln
pθ

(
ZT+h

1

)

pw

(
ZT+h

1

)

[the joint KL divergence is increasing in T ]
= (h + 1) D1,T+h (Pθ‖Pw) .

The above display shows that the bounds grow linearly in h. In order to derive an h
steps ahead prediction we could start from the joint conditional distribution of Zt+h

t and
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integrate out Zt+h−1
t . Unfortunately, in doing so, (28) is not valid anymore. Moreover,

the above approach does not allow us to work directly with the h steps ahead predictive
distribution and requires specifying the joint distribution of a segment given the past,
which is potentially a more difficult task. More research effort is required in this direction
using possibly different convergence requirements.

6.6 Remarks on Condition 1

The verification of Condition 1 requires smoothness of the joint relative entropy. For
simplicity suppose Θ ⊂ R (the discussion easily extends to more general metric spaces,
not just Euclidean spaces). Smoothness can be formalized in terms of a Holder’s conti-
nuity condition: for any t ∈ N

Eθ [ln pθ′ (Zt|Ft−1)− ln pθ (Zt|Ft−1)] ≤ b |θ′ − θ|a (29)

for some a, b > 0 . In this case, set δ = Tb |θ′ − θ|a and

BT (θ, δ) =

{
θ′ ∈ Θ : |θ′ − θ| ≤

(
δ

Tb

)1/a
}

.

Assuming for simplicity the Lebesgue measure as prior and Θ having unit Lebesgue
measure, w (BT (θ, δ)) = [δ/ (Tb)]1/a, then,

RT (θ) = inf
δ>0

{
δ − 1

a
ln

(
δ

Tb

)}

which is minimized by δ = a−1 so that the resolvability index is equal to

RT (θ)
T

=
1 + ln (abT )

aT

and the joint relative entropy divided by T converges to zero at the rate ln T/T for any
Holder’s continuous class of expected conditional log-likelihoods. In order of magnitude,
this recovers the result of Clarke and Barron (1994). Using additional smoothness
conditions, these authors derive more detailed results that are then linked to Jeffreys
prior.

Note that in (29) we may have b ³ t (l.h.s. and r.h.s. are of the same order) (as
for Example 2 when θ = 1). However, the resolvability index will only be affected by
a multiplicative constant. To put (29) into perspective, note that the differentiability
of the expected conditional log-likelihood per observation is stronger than (29). The
following is a prototypical example where standard maximum likelihood methods are
known to fail for some parameter values.

Example 3. Suppose (Zt)t∈N is a sequence of iid random variables with double expo-
nential density pθ (z) = 2−1 exp {− |z − θ|}. Then, (29) holds with a = 1, while pθ is
not differentiable at θ = 0. In a frequentist context, the Hellinger differentiability is
often used to overcome this problem (e.g. Pollard (2003), ch 4).
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6.7 Remarks on Condition 2

Condition 2 might be hard to verify except for some special cases (e.g. when L is
the square loss and pθ is Gaussian). Simplicity can be gained by restricting the set F
over which to carry out minimization. Choose F to contain all the functions such that
|f | ≤ g where g is some measurable function such that supθ∈Θ Eθg < ∞. In this case,
restrictions on the loss function may lead to feasible computations.

Example 4. Suppose pθ (Zt|Ft−1) = pθ (Zt|Zt−1) is a Markov transition density. Re-
strict F to contain only functions f such that |f (z)| ≤ g (z) = 1 + b |z|a for some
a, b > 0. Suppose that the loss function can be bounded as follows L (z, f) ≤ |z| + |f |,
e.g. absolute loss. Then, to check Condition 2 note that

EθL (Zt, ft (w))r + EθEw
t−1L (Zt, ft (θ))r . Eθ

(
Eθ

t−1 + Ew
t−1

) |Zt|r + Eθ |Zt−1|ar

and the right hand bound might be easier to deal with (. is ≤ up to a multiplicative
finite absolute constant).

6.8 Improvement on the Resolvability Index of Theorem 7 over The-
orem 5

Consider the Holder’s continuity condition in (29) and the same prior as given in its
discussion. For simplicity, suppose that all the time segments Ts have the same length
T/S ∈ N. Then we shall choose

BTs (θs, δ) =

{
θ′ ∈ Θ : |θ′ − θ| ≤

(
Sδ

Tb

)1/a
}

implying, in Theorem 5,

S∑
s=1

inf
δs>0

{δs − ln w (BTs (θs, δs))} = S inf
δ>0

{
δ − 1

a
ln

(
Sδ

Tb

)}

=
S

a

(
1 + ln

Tab

S

)

substituting the minimizer δ = a−1. Clearly, if S is of large order this quantity will be
large. On the other hand, in Theorem 7 we would have

inf
δS
1 >0

{
S∑

s=1

δs −
V∑

v=1

ln w
(
Bv

(
θ̃v, δS

1

))}
= inf

δ>0

{
Sδ − V

1
a

ln
(

Sδ

Tb

)}

=
V

a

{
1 + ln

abT

V

}

substituting the minimizer δ = V/ (aS). Unlike the former, this latter bound does not
depend on the number of shifts S.
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6.9 Further Remarks

This paper provides a comprehensive set of results for universal prediction using Bayes’
rule. The conditions used restrict Θ only implicitly. For Condition 1 to hold, Θ cannot
be completely arbitrary, but the restrictions on Θ are quite mild.

The relative improvement on the resolvability index when we mix past posteriors
(and not just the prior, i.e. (15)) might be offset by an extra term that enters the error
bound. This extra term depends on the mixing update. For the updates considered,
it is possible to show superiority in finite samples only in some special cases by fine
tuning α and λ. Given that the improvement on the resolvability index is independent
of the mixing scheme (as long as λt (r) > 0 for r ∈ [0, t]) one could try to study and
compare different updates. For example, (18) already improved upon (16). Perhaps
more definite claims could be made if a different method of proof were used.

Some theoretical issues not discussed here deserve attention. In particular the prob-
lem of model complexity should be mentioned. An implicit measure of model complexity
is given by Condition 1 and related conditions. There are links between the Bayesian
information criterion and other measures of complexity like Rissanen’s minimum de-
scription length principle (e.g. Rissanen (1986), Barron et al. (1998)). The relation
between complexity (in a computable sense) and prior distribution has also been dis-
cussed in the artificial intelligence literature (see Hutter (2005), for details). Tight
estimates of model complexity are the key for tight and explicit rates of convergence of
Bayesian predictions.

Appendix 1: Technical Lemmata

Proof. [Lemma 2] Information denseness implies − ln w (BT (θ, δT T )) < ∞ for any
δT > 0. Hence δT − T−1 ln w (BT (θ, δT T )) can be made arbitrarily small by choosing
δT → 0 at a suitable rate as T → ∞. This implies RT (θ) /T → 0. To show the last
implication, define

pw,AT

(
zT
1

)
:=

∫

AT (θ)

pθ′
(
zT
1

) w (dθ′)
w (AT (θ))

for AT (θ) := AT (θ, δT T ) such that

EθD1,T (Pθ‖Pw,AT
) ≤ δT T (30)

which is (7). Setting BT (θ) := BT (θ, δT T ),

EθD1,T (Pθ‖Pw,BT
) ≤

∫

BT (θ)

Eθ ln

(
pθ

(
ZT

1

)

pθ′
(
ZT

1

)
)

w (dθ′)
w (BT (θ))

[by Jensen’s inequality]

≤ sup
θ′∈BT (θ)

Eθ ln

(
pθ

(
ZT

1

)

pθ′
(
ZT

1

)
)

≤ δT T
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by definition of BT (θ). The above inequality together with (30) imply that BT (θ, δT T ) ⊆
AT (θ, δT T ). ¥

Lemma 9. For any t ∈ N, suppose

w (dθ|Ft) = (1− λt)w′ (dθ|Ft) + λtw (dθ) (31)

where λt ∈ (0, 1) and w′ (dθ|Ft) is as in (14). Then,

−
Ts∑

t=Ts−1+1

ln pw (Zt|Ft−1) ≤ − ln
∫

Θ

pθ

(
ZTs

Ts−1+1|FTs−1

)
w (dθ)

− ln λTs−1 −
Ts∑

t=Ts−1+1

ln (1− λt) .

Proof. [Lemma 9] By (31)

pw (ZTs |FTs−1) =
∫

Θ

pθ (ZTs |FTs−1) [(1− λTs−1) w′ (dθ|FTs−1) + λTs−1w (dθ)]

≥ (1− λTs−1)
∫

Θ

pθ (ZTs |FTs−1)w′ (dθ|FTs−1)

[by positivity of each term in the brackets]

= (1− λTs−1)
∫

Θ

pθ (ZTs |FTs−1) pθ (ZTs−1|FTs−2) w (dθ|FTs−2)
pw (ZTs−1|FTs−2)

[by (14)]

≥ λTs−1

Ts∏

t=Ts−1+1

(1− λt)
∫

Θ

pθ

(
ZTs

Ts−1+1|FTs−1

)
w (dθ)

∏Ts−1
t=Ts−1+1 pw (Zt|Ft−1)

iterating and lower bounding w′
(
dθ|FTs−1

)
with λTs−1w (dθ). Taking − ln on both sides,

− ln pw (ZTs |FTs−1) ≤ − ln
∫

Θ

pθ

(
ZTs

Ts−1+1|FTs−1

)
w (dθ) +

Ts−1∑

t=Ts−1+1

ln pw (Zt|Ft−1)

− ln λTs−1 −
Ts∑

t=Ts−1+1

ln (1− λt) ,

and rearranging gives the result. ¥

Lemma 10. For s = 1, ..., S, suppose us is a measure on Θ, absolutely continuous w.r.t.
w (•|Ft−1), t ∈ Ts. Use the notation defined at the beginning of the proof of Theorem 6
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and 7. Then, for r ≥ 0, and s > 1,
∑

t∈Ts

∫

Θ

ln
(

pθ (Zt|Ft−1)∫
Θ

pθ′ (Zt|Ft−1) w (dθ′|Ft−1)

)
us (dθ)

≤
∫

Θ

ln

(
dus

dw′Ts−1−r

)
dus −

∫

Θ

ln
(

dus

dw′Ts

)
dus

−
Ts−1∑

t=Ts−1+1

ln λt (t)− ln λTs−1 (Ts−1 − r) .

and for s = 1, with w′0 = w0,

T1∑
t=1

∫

Θ

ln
(

pθ (Zt|Ft−1)∫
Θ

pθ′ (Zt|Ft−1) dw (θ′|Ft−1)

)
u1 (dθ)

≤
∫

Θ

ln
(

du1 (θ)
dw′0

)
du1 −

∫

Θ

ln
(

du1

dw′T1

)
du1

−
T1−1∑
t=1

ln λt (t) .

Proof. [Lemma 10] By (14) and the Radon Nikodym Theorem,

It (s) :=
∫

Θ

ln
(

pθ (Zt|Ft−1)∫
Θ

pθ′ (Zt|Ft−1) dw (θ′|Ft−1)

)
us (dθ)

=
∫

Θ

ln
(

dw′t
dwt−1

)
dus (32)

≤
∫

Θ

ln
(

dw′t
λt−1 (t− 1− r) dw′t−1−r

)
us (dθ)

by (13) noting that all the terms in the summation in (13) are positive. Writing
ln λt−1−r (t− 1− r) outside and summing over t, with r = 0 when Ts−1 + 1 < t ≤ Ts

and leaving r arbitrary but fixed when t = Ts−1 + 1 and s > 1,

∑

t∈Ts

It (s) ≤
∫

Θ

ln

(
dw′Ts

dw′Ts−1−r

)
dus −

Ts∑

t=Ts−1+2

ln λt−1 (t− 1)− ln λTs−1 (Ts−1 − r)

=
∫

Θ

ln

(
dus

dw′Ts−1−r

)
dus −

∫

Θ

ln
(

dus

dw′Ts

)
dus

−
Ts∑

t=Ts−1+2

ln λt−1 (t− 1)− ln λTs−1 (Ts−1 − r) .

We still need to deal with the case t = 1. Since w0 = w′0, we can directly substitute in
(32) without incurring the extra error − ln λ0 (0) at the first trial (a fortiori, r = 0). By
a change of variable in the sums, the result follows. ¥
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Lemma 11. For Theorem 6, (21) is bounded above by

2λ√
1− λ2S−2α

(
S−α +

T 1−α − S1−α

1− α

)
+ (S − 1) ln (1/λ) + (1 + α) (S − 1) ln T

and for Theorem 7 by

2λ√
1− λ2S−2α

(
S−α +

T 1−α − S1−α

1− α

)
+ 2 (S − 1) ln

(
V (T − 1)

S − 1

)
.

Proof. For both Theorems, using the fact that λt (t) > 0,

−
T1−1∑
t=1

ln λt (t)−
S∑

s=2

Ts−1∑

t=Ts−1+1

ln λt (t) ≤
T∑

t=S

ln λt (t)

[because − ln λt (t) is increasing in t]

≤ 2λ√
1− λ2S−2α

(
S−α +

T 1−α − S1−α

1− α

)

using Lemma 12 (note that ln λt (t) = 1−λt−α). The last term
∑S

s=2 ln λTs−1 (Ts−1 − rs),
in (21), is bounded differently for Theorem 6 and 7. For Theorem 6, (35) in Lemma 12
gives the first stated bound. For Theorem 7, note that

−
S∑

s=2

ln λTs−1 (Ts−1 − rs)

=
S∑

s=2

ln (1/λ) + α

S∑
s=2

ln Ts−1 +
S∑

s=2

ln ATs−1 + 2
S∑

s=2

ln (1 + rs)

≤ (S − 1) ln (1/λ) + α (S − 1) ln T + 2
S∑

s=2

ln (1 + rs) ,

by (35) and (36) in Lemma 12. We shall bound the last term under the constraints used
in Theorem 7, i.e. rv(s+1) = Tv(s+1)−1 − Tv(s) and rv(1) = Tv(1)−1 used in (22). To this
end,

2
S∑

s=2

ln (1 + rs) ≤ 2 (S − 1) ln

(
1 +

1
S − 1

S∑
s=2

rs

)

[ by concavity and Jensen’s inequality]

= 2 (S − 1) ln


1 +

1
S − 1

V∑
v=1

S(v)∑
s=1

rv(s)


 (33)
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by the same arguments and notation in (22). Under the constraints in rv(s),

S(v)∑
s=1

rv(s) = Tv(1)−1 +
S(v)∑
s=2

(
Tv(s)−1 − Tv(s−1)

)

= Tv(S(v))−1 +
S(v)∑
s=1

(
Tv(s)−1 − Tv(s)

)

≤ (T − 1)− S (v)

where we have bounded Tv(S(v))−1 ≤ (T − 1) and
(
Tv(s)−1 − Tv(s)

) ≤ −1 because each
segment

[
Tv(s)−1, Tv(s)

]
must have a length of at least one. Summing over v and sub-

stituting in (33), we have the following bound for (33),

2 (S − 1) ln

(
1 +

V∑
v=1

(T − 1)− S (v)
S − 1

)

≤ 2 (S − 1) ln
(

V (T − 1)
S − 1

)

because
∑V

v=1 S (v) / (S − 1) > 1. ¥

Lemma 12. Using the notation of Theorem 5, for α ≥ 0 and λ ∈ (0, 1),

T∑

t=S

ln
(
1− λt−α

)
<

2λ√
1− λ2S−2α

(
S−α +

T 1−α − S1−α

1− α

)
(34)

−
S∑

s=2

ln
(
λT−α

s−1

) ≤ (S − 1) ln (1/λ) + α (S − 1) ln T (35)

S∑
s=2

ln ATs−1 ≤ 0. (36)

Proof. [Lemma 12] For x ∈ [0, 1], Taylor expansion of ln (1− λx) around x = 0 shows
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that

− ln (1− λx) =
∞∑

i=1

(λx)i
/i

≤
√√√√

∞∑

i=1

(λx)2i
∞∑

i=1

i−2

=

√
(λx)2

1− (λx)2
π2

6

<
2λx√

1− (λx)2
. (37)

Hence,

−
T∑

t=S

ln
(
1− λt−α

)
<

2λ√
1− λ2S−2α

T∑

t=S

t−α

[by (37)]

=
2λ√

1− λ2S−2α

(
S−α +

T∑

t=S+1

t−α

)

≤ 2λ√
1− λ2S−2α

(
S−α +

∫ T

S

t−αdt

)

=
2λ√

1− λ2S−2α

(
S−α +

T 1−α − S1−α

1− α

)

by a simple integral bound for the sum, showing (34). The second inequality trivially
follows noting that T > TS−1. To show (36), note that

t−1∑
r=0

(1 + t− r)−2 =
t+1∑
r=2

r−2

≤
∫ t+1

1

r−2dr

= 1− (t + 1)−1
,

using the integral bound for the sum of a decreasing function. Hence,

S∑
s=2

ln ATs−1 =
S∑

s=2

ln




Ts−1−1∑
r=0

(1 + Ts−1 − r)−2




≤
S∑

s=2

ln
(
1− (Ts−1 + 1)−1

)

≤ 0,
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because the argument of ln is less than one. ¥
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