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NEEDLES AND STRAW IN A HAYSTACK: POSTERIOR
CONCENTRATION FOR POSSIBLY SPARSE SEQUENCES1
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Universités Paris VI & VII and VU University

We consider full Bayesian inference in the multivariate normal mean
model in the situation that the mean vector is sparse. The prior distribution
on the vector of means is constructed hierarchically by first choosing a col-
lection of nonzero means and next a prior on the nonzero values. We consider
the posterior distribution in the frequentist set-up that the observations are
generated according to a fixed mean vector, and are interested in the posterior
distribution of the number of nonzero components and the contraction of the
posterior distribution to the true mean vector. We find various combinations
of priors on the number of nonzero coefficients and on these coefficients that
give desirable performance. We also find priors that give suboptimal conver-
gence, for instance, Gaussian priors on the nonzero coefficients. We illustrate
the results by simulations.

1. Introduction. Suppose that we observe a vector X = (X1, . . . ,Xn) in R
n

such that

Xi = θi + εi, i = 1, . . . , n,(1.1)

for independent standard normal random variables εi and an unknown vector of
means θ = (θ1, . . . , θn). We are interested in Bayesian inference on θ , in the situ-
ation that this vector is possibly sparse.

Non-Bayesian approaches to this problem have recently been considered by
many authors. Golubev [13] obtained results for model selection methods and
threshold estimators for the mean-squared risk. Birgé and Massart [4] treated the
model within their general context of model selection by penalized least squares.
Abramovich et al. [1] studied the performance of the False Discovery Rate method.
The earlier work by Donoho and Johnstone [10] can be viewed as studying the
problem within an �r context. Many authors (see, e.g., [3, 21, 22] and references
cited there) have investigated the connection to the LASSO or similar methods.

Methods with a Bayesian connection were studied by George and Foster [12],
Zhang [20], Johnstone and Silverman [16, 17], Abramovich, Grinshtein and Pen-
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sky [2] and Jiang and Zhang [15]. George and Foster [12] and Johnstone and Sil-
verman [16] considered an empirical Bayes method, consisting of modeling the
parameters θ1, . . . , θn a priori as independently drawn from a mixture of a Dirac
measure at 0 and a continuous distribution, determining an appropriate mixing
weight by the method of (restricted) marginal maximum likelihood and finally
employing the posterior median or mean. The second paper [2] motivated penal-
ties, applied in a penalized minimum contrast scheme, by prior distributions on the
parameters, and derived estimators for the number of nonzero θi and the θi , itself.
The first is a posterior mode, but the estimator for θ , called “Bayesian testima-
tion,” does not seem itself Bayesian. (In fact, the Gaussian prior for the nonzero
parameters in [2] will be seen to perform suboptimally in our fully Bayesian set-
up.) Zhang [20] and Jiang and Zhang [15] obtain sharp results on (nonparametric)
empirical Bayes estimators.

Other related papers include [5–7, 14, 15, 19].
A penalized minimum contrast estimator can often be viewed as the mode of the

posterior distribution, and it is helpful to interpret penalties accordingly. However,
the Bayesian approach yields a full posterior distribution, which is a random prob-
ability distribution on the parameter space. It has both a location and a spread, and
can be marginalized to give posterior distributions for any functions of the parame-
ter vector of interest. It is this object that we study in this paper. Such full Bayesian
inference was recently considered by Scott and Berger [18], who discussed various
aspects not covered in the present paper, but no concentration results. One example
of our results is that the beta-binomial priors in [18], combined with moderately to
heavy tailed priors on the nonzero means, yield optimal recovery.

Sparsity can be defined in various ways. Perhaps the most natural definition is
the class of nearly black vectors, defined as

�0[pn] = {
θ ∈ R

n : #(1 ≤ i ≤ n : θi �= 0) ≤ pn

}
.

Here pn is a given number, which in theoretical investigations is typically assumed
to be o(n), as n → ∞. Sparsity may also mean that many means are small, but
possibly not exactly zero. Definitions that make this precise use strong or weak
�s -balls, typically for s ∈ (0,2). These are defined as, with θ[1] ≥ θ[2] ≥ · · · ≥ θ[n]
the nonincreasing permutation of the coordinates of θ = (θ1, . . . , θn),

�s[pn] =
{
θ ∈ R

n :
1

n

n∑
i=1

|θi |s ≤
(

pn

n

)s
}
,

ms[pn] =
{
θ ∈ R

n :
1

n
max

1≤i≤n
i|θ[i]|s ≤

(
pn

n

)s}
.

Because the nonzero coefficients in �0[pn] are not quantitatively restricted, there
is no inclusion relationship between this space and the weak and strong balls, al-
though results for the latter can be obtained by projecting them into �0[pn]. On the
other hand, the inclusion �s[pn] ⊂ ms[pn] holds for any s > 0.
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The extent of the sparsity, measured by the constant pn, is assumed unknown.
Our Bayesian approach starts by putting a prior πn on this number, a given prob-
ability measure on the set {0,1,2, . . . , n}. Next we complete this to a prior on the
set of all possible sequences θ = (θ1, . . . , θn) in R

n, by given a draw p from πn,
choosing a random subset S ⊂ {1, . . . , n} of cardinality p, and choosing the corre-
sponding coordinates (θi : i ∈ S) from a density gS on R

S and setting the remaining
coordinates (θi : i ∈ Sc) equal to zero. Given this prior, Bayes’s rule yields the pos-
terior distribution of θ , as usual. We investigate the properties of this posterior
distribution, in its dependence on the priors on the dimension and on the nonzero
coefficients, in the non-Bayesian set-up where X follows (1.1) with θ equal to a
fixed, “true” parameter θ0.

If the true parameter vector θ0 belongs to �0[pn], then it is desirable that the
posterior distribution concentrates most of its mass on nearly black vectors. One
main result of the paper is that this is the case provided the prior probabilities
πn{p} decrease exponentially fast with the dimension p.

The quality of the reconstruction of the full vector θ can be measured by various
distances. A natural one is the Euclidean distance, with square

∥∥θ − θ ′∥∥2 =
n∑

i=1

(
θi − θ ′

i

)2
.

If the indices of the pn nonzero coordinates of a vector in the model �0[pn] were
known a priori, then the vector could be estimated with mean square error of the
order pn. In [11] it is shown that, as n,pn → ∞ with pn = o(n),

inf
θ̂

sup
θ∈�0[pn]

Pn,θ

∥∥θ̂ − θ
∥∥2 = 2pn log(n/pn)

(
1 + o(1)

)
.

Here the infimum is taken over all estimators θ̂ = θ̂ (X), and Pn,θ denotes tak-
ing the expectation under the assumption that X is Nn(θ, I )-distributed. In other
words, the square minimax rate over �0[pn] is pn log(n/pn), meaning that the un-
known identity of the nonzero means needs to lead only to a logarithmic loss.

The Bayesian approach is presumably adopted for the intuition provided by
prior modeling, and is not necessarily directed at attaining minimax rates. How-
ever, for theoretical investigation, it is natural to take the minimax rate as a bench-
mark, and it is of particular interest to know which priors yield a posterior distri-
bution that concentrates most of its mass on balls around θ0 of square radius of
order pn log(pn/n), or close relatives as pn(logn)r that loose (only) a logarithmic
factor. A second main result of the paper is that the minimax rate is attained for
many combinations of priors. It suffices that the priors πn decrease exponentially
with dimension, and give sufficient weight to the true level of sparsity: for some
c > 0,

πn(pn) � exp
(−cpn log(n/pn)

)
.(1.2)
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Furthermore, the priors on the nonzero coordinates should have tails that are not
lighter than Laplace, and satisfy a number of other technical properties. If inequal-
ity (1.2) fails, then the rate of contraction may be slower than minimax; we show
that it is not slower than log(1/πn(pn)). [The word “contraction” is in line with
other literature on nonparametric Bayesian procedures; with the present choice of
metrics (which grow with n) the rates actually increase to infinity.]

More generally, we consider reconstruction relative to the �q metric for
0 < q ≤ 2, defined (without qth root) by

dq

(
θ, θ ′) =

n∑
i=1

∣∣θi − θ ′
i

∣∣q .(1.3)

For q < 2 this “metric” is more sensitive to small variations in the coordinates
than the square Euclidean metric, which is d2. (For q ≤ 1 the definition gives a
true metric dq ; for 1 < q ≤ 2 it does not.) From [11] the minimax rate over �0[pn]
for dq is known to be of the order

r∗
n,q = pn logq/2(n/pn).(1.4)

We show that the posterior “contraction” rate attains this order under conditions
as in the preceding paragraph, and more generally characterize the rate in terms of
log(1/πn(pn)).

Besides nearly black vectors, we consider rates of contraction if θ0 is in a weak
�s -ball. The minimax rate over ms[pn] relative to dq is (see [10])

μ∗
n,s,q = n

(
pn

n

)s

log(q−s)/2(n/pn).(1.5)

This is shown to be also the rate of posterior contraction under slightly stronger
conditions on the priors than before: the prior on dimension must decrease slightly
faster than exponential. Under the same conditions we also show that the poste-
rior distribution has exponential concentration, and therefore contracts also in the
stronger sense of (any, Euclidean) moments.

A summary of these results is that good priors for the dimension decrease at ex-
ponential or, perhaps better, slightly faster rate, and good priors on the nonzero
means have tails that are heavier than Laplace. We also show that priors with
lighter tails, such as the Gaussian, attain significantly lower contraction rates at
true parameter vectors θ0 that are not close to the origin.

The structure of the article is as follows. In Section 2 we state the main concen-
tration results. A practical algorithm, simulations and some pictures are presented
in Section 3. Proofs are gathered at the end of the paper and in the supplementary
Appendix [9].
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1.1. Notation. We denote by a ∧ b and a ∨ b the minimum and maximum
of two real numbers a, b, and write a � b if a ≤ Cb for a universal constant C.
The notation � means “equal by definition to.” We call support of a vector θ =
(θ1, . . . , θn) ∈ R

n the set of indices of nonzero coordinates, and denote this by
Sθ = {i ∈ {1, . . . , n} : θi �= 0}. We set θS = (θi : i ∈ S), and let |S| be the cardinality
of a set S ⊂ {1, . . . , n}.

2. Main results. Throughout the paper we consider a prior �n on R
n con-

structed in three steps:

(P1) A dimension p is chosen according to a prior probability measure πn on
the set {0,1,2, . . . , n}.

(P2) Given p a subset S ⊂ {1, . . . , n} of size |S| = p is chosen uniformly at
random from the

(n
p

)
subsets of size p.

(P3) Given (p,S) a vector θS = (θi : i ∈ S) is chosen from a probability distri-
bution with Lebesgue density gS on R

p (if p ≥ 1), and this is extended to θ ∈ R
n

by setting the remaining coordinates θSc equal to 0.

For simplicity we use the same density gS for every set of a given dimension |S|,
and will denote this also by g|S|. We also assume that the prior on dimension is
positive, that is πn(p) > 0 for any integer p.

Given the prior �n, Bayes’s rule yields the posterior distribution B 
→
�n(B|X), the conditional distribution of θ given X if the conditional distribution
of X given θ is taken equal to the normal distribution Nn(θ, I ). The probability
�n(B|X) of a Borel set B ⊂ R

n under the posterior distribution can be written∑n
p=0 πn(p)/

(n
p

)∑
|S|=p

∫
(θS,0)∈B

∏
i∈S φ(Xi − θi)

∏
i /∈S φ(Xi)gS(θS) dθS∑n

p=0 πn(p)/
(n
p

)∑
|S|=p

∫ ∏
i∈S φ(Xi − θi)

∏
i /∈S φ(Xi)gS(θS) dθS

.(2.1)

Here (θS,0) is the vector in R
n formed by adding coordinates θi = 0 to θS =

(θi : i ∈ S), at the positions left open by S ⊂ {1, . . . , n} (in the correct order of
the coordinates and not at the end, as the notation suggests). This expression is
somewhat unwieldy; we consider computation in Section 3.

The posterior distribution is a random probability distribution on R
n, which

we study under the assumption that the vector X = (X1, . . . ,Xn) is distributed
according to a multivariate normal distribution with mean vector θ0 and covariance
matrix the identity. We let Pn,θ0T denote the expected value of a function T =
T (X) under this distribution.

We shall be interested in two aspects of the posterior distribution: its dimen-
sionality and its ability to recover the mean vector θ . Because the conditions are
simpler in the case that the nonzero coordinates are independent under the prior,
in the first two results we assume that the densities gS in (P3) are of product form.
Concrete examples of priors as in (P1) and (P3) that satisfy the conditions imposed
in the theorems are given in Section 2.5.
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2.1. Dimensionality. In the context of �0[pn]-classes, we say that the prior πn

on dimension has exponential decrease if, for some constants C > 0 and D < 1,

πn(p) ≤ Dπn(p − 1), p > Cpn.(2.2)

If the condition is also satisfied with C = 0, we say that the prior on dimension has
strict exponential decrease.

THEOREM 2.1 (Dimension). If πn has exponential decrease (2.2) and gS is a
product of |S| copies of a univariate density g, with mean zero and finite second
moment, then there exists M > 0 such that, as pn,n → ∞,

sup
θ0∈�0[pn]

Pn,θ0�n

(
θ : |Sθ | > Mpn|X) → 0.

For reasonable priors, we may hope that the posterior distribution spreads mass
in the pn-dimensional subspace that supports a true mean vector θ0 ∈ �0[pn]. The
theorem shows that the posterior distribution “overshoots” this space by subspaces
of dimension at most a multiple of pn. Because the overshoot can have a random
direction, this does not mean that the posterior distribution concentrates overall on
a fixed Mpn-dimensional subspace. The theorem shows that it concentrates along
Mpn-dimensional coordinate planes, but its support will be far from convex.

Obviously the posterior distribution will concentrate on low-dimensional sub-
spaces if the higher-dimensional spaces receive little mass under the prior πn. By
the theorem, exponential decrease is sufficient. The next step is to show that expo-
nential decrease is not too harsh: it is compatible with good reconstruction of the
full mean vector θ . This then, of course, requires a lower bound on the prior mass
given to the spaces of “correct” dimension; for instance, see (1.2).

2.2. Recovery. Good recovery requires also appropriate prior densities gS on
the nonzero coordinates. Because the statistical problem of recovering θ from a
Np(θ, I ) distributed observation is equivariant in θ , we may hope that the loca-
tion of the nonzero coordinates of θ0 does not play a role in its recovery rate.
The non-Bayesian procedures considered in, for instance, [13] indeed fulfill this
expectation. However, a Bayesian procedure (with proper priors) necessarily fa-
vors certain regions of the parameter space. Depending on the choice of priors gS

in (P3), this may lead to a shrinkage effect, even in the “average” recovery of the
parameter as n → ∞, yielding suboptimal behavior for true parameters θ0 that are
far from the origin. This shrinkage effect can be prevented by choosing priors gS

with sufficiently heavy tails.
Again we first consider the case of independent coordinates. In the following

theorem we assume that gS is a product of |S| densities of the form eh, for a
function h : R → R satisfying∣∣h(x) − h(y)

∣∣ � 1 + |x − y| ∀x, y ∈ R.(2.3)
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This covers all densities eh with a uniformly Lipshitz function h, such as the
Laplace and Student densities. (For the Student density the following theorem as-
sumes more than 2 degrees of freedom to ensure also finiteness of the second mo-
ment.) It also covers other smooth densities with polynomial tails, and densities of
the form cαe−|x|α for some α ∈ (0,1], which have a function h that is bounded in a
neighborhood of the origin and uniformly Lipschitz outside the neighborhood. On
the other hand the standard normal density is ruled out. In Theorem 2.8 we shall
see that this indeed causes a shrinkage effect.

Recall definition (1.3) of the (square) distance dq .

THEOREM 2.2 (Recovery). If πn has exponential decrease (2.2) and gS is a
product of |S| univariate densities of the form eh with mean zero and finite second
moment and h satisfying (2.3), then for any q ∈ (0,2], for rn satisfying

r2
n ≥ {

pn log(n/pn)
} ∨ log

1

πn(pn)
(2.4)

and sufficiently large M , as pn,n → ∞ such that pn/n → 0,

sup
θ0∈�0[pn]

Pn,θ0�n

(
θ :dq(θ, θ0) > Mrq

np1−q/2
n |X) → 0.

For q = 2 the theorem refers to the square Euclidean distance d2, and asserts that
the posterior distribution contracts at the rate r2

n , uniformly over �0[pn]. The first
inequality in (2.4) says that this rate is (of course) not faster than the minimax rate
r∗
n,2 = pn log(n/pn). The second shows that it is also limited by the amount of prior

mass πn(pn) put on the true dimension. If this satisfies (1.2), then log(1/πn(pn)) �
r∗
n,2 and the rate r2

n is equal to the minimax rate.
Condition (1.2) for every pn leaves a free margin of a log(n/pn)-term over just

exponential decrease of the prior πn. If the decrease is still faster than (1.2), then
the rate of contraction may be slower. For instance, for πn(p) � exp(−pα), for
some α > 1, the rate for the square Euclidean distance given by the theorem is not
better than pα

n , which is much bigger than r∗
n,2. In contrast, for α = 1 the theorem

gives the minimax rate.
For q ∈ (0,2) we can make similar remarks. The minimax rate r∗

n,q over �0[pn]
for dq is given in (1.4). Because(

r∗
n,2

)q/2
p1−q/2

n = r∗
n,q,

the theorem shows contraction of the posterior distribution relative to dq at the
minimax rate r∗

n,q over �0[pn] under the same conditions that it gives the minimax
rate r∗

n.2 for d2: (1.2) suffices. Furthermore, if there is less prior mass at pn, then
the rate of contraction will be slower.

In the case that 0 < q < 1 the result is surprising at first when compared to
the finding in [16] that the posterior median, or more generally so-called “strict-
thresholding rules,” attain the convergence rate r∗

n,q , but the posterior mean con-
verges at a strictly slower rate (even when θ0 = 0; see Section 10 in [16] and the
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remark below). By the preceding theorem the full posterior distribution does con-
tract at the optimal rate r∗

n,q , for any 0 < q < 2. This is true in particular for the
case of binomial priors on dimension considered in [16] with the “best possible”
(oracle) choice αn = pn/n.

The slower convergence of the posterior mean relative to the contraction of the
full posterior distribution is made possible by the fact that dq -balls have astroid-
type shapes for 0 < q < 1, and differ significantly from their convex hull if n

is large. The posterior mean, which is in the convex hull of the support of the
posterior, can therefore be significantly farther in dq -distance from θ0 than the bulk
of the distribution. By Theorem 2.1 only few coordinates outside the support of θ0
are given nonzero values by the posterior. However, the corresponding indices are
random and on average spread over {1,2, . . . , n}, which makes that the posterior
mean at a fixed coordinate is typically nonzero. Adding up all small errors in �q

typically gives a much higher total sum for q < 1 than for q ≥ 1. In contrast the
posterior median does not suffer from this averaging effect.

The posterior measure thus provides a unifying point of view on the considered
objects. In this perspective for 0 < q < 1 the posterior mean is a bad representation
of the full posterior measure.

REMARK 2.3. From the arguments exposed in [16], it is not hard to check that
the posterior mean generally fails to attain the minimax rate over �0[pn] relative to
dq for 0 < q < 1. Let us consider the case of �0[pn] classes with θ0 = 0. With the
notation of [16], the posterior mean μ̃(x,αn) with data X1 = x for the binomial
prior on dimension with parameters (n,αn) satisfies |μ̃(x,αn)| ≥ C|x|αn, by the
same reasoning as in the last display of page 1647 in [16] (the weight parameter ŵ

is fixed here and equals αn). Hence the �q -power loss
∑

i Pn,θ0 |θ0,i − μ̃(Xi, αn)|q
when θ0 = 0 is bounded from below by a constant times nα

q
n . Thus, even for the

“oracle” parameter αn = pn/n, this is much above the minimax risk for any 0 <

q < 1.

2.3. Dependent priors. The preceding theorems are also true for priors that
render the coordinates θi dependent. In the remaining theorems we assume that
the densities gS in (P3) satisfy the conditions, for every S′ ⊂ S ⊂ {1, . . . , n} and a
universal constant c1,

loggS(θ) − loggS

(
θ ′) ≤ c1|S| + 1

64

∥∥θ − θ ′∥∥2 ∀θ, θ ′ ∈ R
S,(2.5) ∣∣loggS(θ) − loggS′(πS′θ)

∣∣ ≤ c1|S| + 1
64‖πS−S′θ‖2 ∀θ ∈ R

S.(2.6)

Here πS : Rn → R
S is the projection defined by πSθ = θS = (θi : i ∈ S). (The con-

stant 64 corresponds to the constant 32 in Lemma 5.1, but has no special signifi-
cance and can be improved.)

For a partition S = S1 ∪ S2, we denote by θ = (θ1, θ2) the corresponding par-
tition of θ ∈ R

S and by gS1,S2(θ1, θ2) = gS(θ) the corresponding density. In the
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next theorem we assume that there exist C,m1 > 0 and, for any S2, probability
densities γS2 on R

S2 , such that for any θ2 ∈ R
S2 and S1 ⊂ Sc

2,

sup
θ1∈R

S1

gS1,S2(θ1, θ2)

gS1(θ1)
≤ Cm

|S1|+|S2|
1 γS2(θ2).(2.7)

This condition expresses that the “mixing between the coordinates within a given
subspace” is not too important.

Examples are given in Section 2.5.

THEOREM 2.4 (Recovery). Suppose πn has strict exponential decrease, that
is, satisfies (2.2) with C = 0 and some D > 0. The assertions of Theorems 2.1
and 2.2 are also true if the densities gS are not product densities, but general den-
sities with finite second moments that satisfy (2.5), (2.6) and (2.7) with Dm1 < 1,
and m1 the constant in (2.7).

2.4. Complexity priors. The next results are designed for application to the
particular priors πn of the form, for positive constants a, b,

πn(p) ∝ e−ap log(bn/p),(2.8)

where ∝ stands for “proportional to.” Because ep log(n/p) ≤ (n
p

) ≤ ep log(ne/p), this
prior is inversely proportional to the number of models of size p, a quantity that
could be viewed as the model complexity for a given dimension p. Thus this prior
appears particularly suited to the purpose of “downweighting the complexity.” For-
getting about the extra component gS of the prior, we can also consider it an ana-
log of the penalty “2p log(n/p)” used in model selection in this context by (e.g.)
Birgé and Massart in [4]. Every particular model with support S of size |S| = p

receives prior probability bounded below and above by expressions of the type
e−a1p log(b1n/p) from this prior.

Because the complexity prior (2.8) has exponential decrease (2.2) when b >

1 + e and satisfies (1.2), Theorems 2.1 and 2.4 (or Theorem 2.2) show that the
corresponding posterior distribution concentrates on low-dimensional spaces and
attains the minimax rate of contraction over �0[pn] relative to (any) dq if combined
with densities gS satisfying the conditions of Theorem 2.4. The following theorem
relaxes the condition on gS and gives a more precise result on the contraction of
the posterior measure.

The theorem applies more generally to priors on dimension satisfying the upper
bound, for some a, b > 0, and every p ∈ {0,1, . . . , n},

πn(p) � e−ap log(bn/p).(2.9)

THEOREM 2.5 (Recovery). If the densities gS have finite second moments,
satisfy (2.5) and (2.6) for some constant c1, and the priors πn satisfy (2.9) for
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some a ≥ 1 and b ≥ e7+2c1 , then, for rn satisfying (2.4), for any 1 ≤ pn ≤ n and
any r ≥ 1,

sup
θ0∈�0[pn]

Pn,θ0�n

(
θ :‖θ − θ0‖ > 45rn + 10r|X)

� e−r2/10.

Consistent with the preceding findings, the posterior distribution concentrates
on Euclidean balls of radius of the order rn around θ0. In addition the theorem
shows that its “tail” is sub-Gaussian, uniformly in n and uniformly over �0[pn].
As one consequence, for every l ∈ N,

Pn,θ0

∫
‖θ − θ0‖l d�n(θ |X) � rl

n.

By Jensen’s inequality, this in turn implies the following corollary.

COROLLARY 2.1 (Posterior mean). Under the conditions of Theorem 2.5,

∀l ∈ N sup
θ0∈�0[pn]

Pn,θ0

∥∥∥∥
∫

θ d�n(θ |X) − θ0

∥∥∥∥l

� rl
n.

The posterior mean
∫

θ d�n(θ |X) as a point estimator of θ0 has a risk of the
order rn, relative to every polynomial loss function. In particular, it is rate-minimax
over �0[pn] for the squared �2-risk.

The posterior coordinate-wise median considered in the simulation study below
is another interesting functional of the posterior measure. Under the conditions of
Theorem 2.5 and (2.8), the posterior coordinate-wise median is rate-minimax over
�0[pn], for any dq -distance, 0 < q ≤ 2; see [9].

The theorem, with its explicit bound, is also the basis for results on the concen-
tration of the posterior distribution when the true vector is in a weak ms[pn]-class.
Results for the posterior mean and �2-risk can be obtained as above as a conse-
quence.

THEOREM 2.6 (Recovery, weak class). If the densities gS have finite second
moments, satisfy (2.5) and (2.6) for some constant c1, and the priors πn satisfy
(2.9) for some a ≥ 1 and b ≥ e7+2c1 , then, for rn satisfying

r2
n = min

1≤p≤n

[
sn2/s

2 − s

(
1

p

)2/s−1(
pn

n

)2

∨ p log
n

p
∨ log

1

πn(p)

]

for any 1 ≤ pn ≤ n, s ∈ (0,2) and any r ≥ 1,

sup
θ0∈ms [pn]

Pn,θ0�n

(
θ :‖θ − θ0‖ > 80rn + 20r|X)

� e−r2/10.
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For the “complexity prior” πn given by (2.8) the third term log(1/πn(p)) in the
minimum defining it is smaller than a multiple of the second term, and hence can
be omitted. The minimum can then be determined by equating the first two terms,
leading to

p∗
n � n(pn/n)s/ logs/2(n/pn).(2.10)

If p∗
n � 1, then this value is eligible in the minimum, and the first and second terms

evaluated at p∗
n are of the same order, given by

r2
n � n

(
pn

n

)s

log1−s/2 n

pn

.

This in fact is the minimax rate μ∗
n,s,2 for the square Euclidean metric d2 over

the class ms[pn]; see (1.5). Thus the complexity priors combined with densities
gS satisfying (2.5) and (2.6) [in particular, product densities satisfying (2.3)] yield
contraction at the minimax rate over both the nearly black vectors �0[pn] and the
weak ms[pn] classes. For priors on dimension that are significantly smaller than
the complexity priors, the third term in the minimum must be taken into account,
and the rate of contraction is smaller than minimax.

The condition p∗
n � 1 is satisfied as soon as the sparsity coefficient pn/n is not

too small. If the signal is very sparse and has p∗
n � 1, then the minimum in the

definition of r2
n is taken at p ∼ 1, leading to a squared rate of the order logn. This

is within a constant of the rate achieved by hard thresholding in that case.
The previous result extends under slightly stronger conditions to dq -distances

with q > s. Furthermore, the following theorem shows that p∗
n is indeed an upper

bound on the dimensionality of the posterior distribution. For simplicity we only
state the result in the case of complexity priors. Recall that μ∗

n,s,q , given in (1.5),
denotes the minimax rate over the class ms[pn] relative to dq .

THEOREM 2.7 (Dimensionality, recovery, weak class). Suppose the densities
gS have finite second moments, satisfy (2.5), (2.6) and (2.7), and πn satisfies (2.8)
for sufficiently large a ≥ 1 and b > e. Then for any s ∈ (0,2), any q ∈ (s,2) and
any (pn) such that pn/n → 0 and p∗

n given by (2.10) is bounded away from 0, for
a sufficiently large constant M ,

sup
θ0∈ms [pn]

Pn,θ0�n

(
θ : |Sθ | > Mp∗

n|X
) → 0,

sup
θ0∈ms [pn]

Pn,θ0�n

(
θ :dq(θ, θ0) > Mμ∗

n,s,q |X
) → 0.

2.5. Examples. In this section we discuss examples of priors on dimension πn

and prior densities gS on the nonzero coordinates that satisfy the conditions of the
preceding theorems.
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EXAMPLE 2.1 (Independent Dirac mixtures). Consider the prior on θ =
(θ1, . . . , θn) ∈ R

n corresponding to sampling the coordinates θi independently
from a mixture (1 − α)δ0 + αg of a Dirac measure at 0 and a univariate density g,
for a given α ∈ (0,1). The coordinates of θ are then independently zero with prob-
ability 1 − α, and hence the dimension of the model is binomially distributed with
parameters n and α. Furthermore, the nonzero coordinates are distributed accord-
ing to the product of copies of g. Thus this prior fits in our set-up, with πn the
binomial(n,α)-distribution and gS a product density.

For a fixed α the coordinates θi are independent, under both the prior and the
posterior distribution. Furthermore, the posterior distribution of θi depends on Xi

only.
This prior is considered in [12] and [16], in combination with a Gaussian or

a heavy tailed density g, respectively. In the next section we show that Gaussian
priors are deficient if the nonzero coordinates of the signal are large. The authors
of [16] propose to use the coordinatewise posterior median (or another univariate
point estimator) for estimating θ , with the weight parameter α set by a thresholded
empirical Bayes method: the parameter is chosen equal to the maximum likeli-
hood estimator of α based on the marginal distribution of X in the Bayesian set-up
(i.e., with θ integrated out but with fixed α) subject to the constraint that the re-
sulting posterior median (after plugging in α̂) given an observation in the interval
[−√

2 logn,
√

2 logn] is zero. The authors show that the resulting point estima-
tor works remarkably well, in a minimax sense, for various metrics and sparsity
classes.

A natural Bayesian approach is to put a prior on α, which yields a mixture of
binomials as a prior πn on the dimension of the model. The independence of the
coordinates θi is then lost. We discuss this prior further in the following example.

EXAMPLE 2.2 (Binomial and beta-binomial priors). The binomial (n,αn) dis-
tribution as the prior πn on dimension gives an expected dimension of nαn. In the
sparse setting a small value of αn is therefore natural. If the sparsity parameter
pn were known, we could consider the choice αn = pn/n; we shall refer to the
corresponding law as oracle binomial prior.

Assume that pn → ∞ with pn/n → 0. The binomial prior has exponential de-
crease (2.2) if αn � pn/n. The oracle binomial prior αn � pn/n is at the upper end
of this range, and also satisfies (1.2), and thus yields the minimax rate of contrac-
tion. The choice αn = 1/n yields logπn(pn) of the order −pn logpn, and hence
attains the minimax rate if pn is of the order na , a < 1; for larger pn it may miss
the minimax rate by a logarithmic factor.

A natural Bayesian strategy is to view the unknown “sparsity” parameter α as a
hyperparameter and put a prior on it. The classical choice is the Beta prior, lead-
ing to the hierachical scheme α ∼ Beta(κ, λ) and p|α ∼ binomial(n,α), which
corresponds to the following prior on p:

πn(p) =
(

n

p

)
B(κ + p,λ + n − p)

B(κ,λ)
∝ 
(κ + p)
(λ + n − p)

p!(n − p)! .
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The mean dimension is nκ/(κ +λ), which suggests to choose the hyper parameters
of the Beta distribution so that κ/(κ + λ) is in the range (c/n,Cpn/n). It is easy
to verify that the prior has exponential decrease (2.2), with C = 1, if (κ − 1)/pn <

D(λ− 1)/(n−pn + 1)+D − 1. This suggests to choose small κ and large λ, thus
giving a small variance to the Beta distribution.

For κ = 1 and λ = n + 1 we obtain πn(p) ∝ (2n−p
n

)
. Then πn(p)/πn(p − 1) =

(n − p + 1)/(2n − p + 1), showing (strict) exponential decrease (2.2), with D =
1/2. By a binomial identity the norming constant is equal to

(2n+1
n

)
, so

πn(p) = (2n − p)(2n − p − 1) · · · (2n − p − n + 1)

(2n + 1)2n · · · (2n + 1 − n + 1)
≥

(
1 − p + 1

n + 2

)n

.

For pn/n → 0, this gives πn(pn) � e−pn(1+o(1)), and hence (1.2) is satisfied. More
generally, we may choose κ = 1, λ = κ1n+1, which leads to πn(p) ∝ ((κ1+1)n−p

κ1n

)
.

The priors given by πn(p) ∝ (2n−p
n

)κ1 , for some κ1 > 0 are a further alternative.

EXAMPLE 2.3 (Poisson priors and hierarchies). The Poisson(α) distribution
truncated to {0,1, . . . , n}, yields priors satisfying

πn(p) ∝ e−ααp

p! � Ce−p log(p/α)ep 1√
p

for p → ∞, by Stirling’s approximation. The mean is approximately α, suggesting
α in the range (1, cpn). As πn(p)/πn(p − 1) = α/p, the prior has exponential
decrease (2.2) for p ≥ α/D.

If we put an exponential (λ) hyperprior on α, then πn transforms into a shifted
geometric distribution (shifted −1 to have support starting at 0) with success prob-
ability λ/(1 + λ). A Gamma hyperprior yields a shifted negative binomial. For
fixed hyper–hyper parameters both are of the form e−Cp for some constant C, and
hence have exponential decrease, and satisfy (1.2).

EXAMPLE 2.4 (Complexity prior). The prior πn(p) ∝ e−ap log(bn/p) has expo-
nential decrease (2.2) for b > 1 + e and satisfies (1.2). Theorems 2.5, 2.6 and 2.7
show that this prior also gives sparsity and minimax recovery of the parameter
over weak �s-classes. Although our results do not show the opposite assertion that
mere exponential decrease is not enough for minimaxity on weak classes (while
together with (1.2) it is enough for minimaxity over �0[pn]), this might be a po-
tential advantage of complexity priors over the binomial and Poisson-based priors
discussed previously.

EXAMPLE 2.5 (Product prior). Densities gS that are products of |S| copies of
a univariate density with finite second moment of the form g = eh for h : R → R a
function that satisfies (2.3), satisfy (2.5), (2.6) and (2.7). In this sense Theorem 2.4
is a generalization of Theorem 2.2.
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To see this note that for a product density the function gS takes the form gS(θ) =
exp{∑i∈S h(θi)}. Hence if (2.3) holds with proportionality constant 1, then the left-
hand side of (2.5) is bounded in absolute value by

∑
i∈S

h(θi) − h
(
θ ′
i

) ≤ |S| + ∥∥θ − θ ′∥∥
1 ≤ |S| + √|S|∥∥θ − θ ′∥∥ ≤ 5|S| + 1

64

∥∥θ − θ ′∥∥2
.

Furthermore, the left-hand side of (2.6) is bounded by∑
i∈S−S′

∣∣h(θi)
∣∣ ≤ ∣∣S − S′∣∣∣∣h(0)

∣∣ + ∑
i∈S−S′

(
1 + |θi |) �

∣∣S − S′∣∣ + ∑
i∈S−S′

|θi |.

The L1-norm of (θi : i ∈ S −S′) can be bounded by a linear combination of |S −S′|
and the square L2-norm, as before, and hence the whole expression is bounded by
C|S| + ‖πS−S′θ‖2/64, for some constant C.

Because a product density gS is a product of the marginal densities, the validity
of condition (2.7) is clear.

EXAMPLE 2.6 (Weakly mixing priors). For h : R → R a function satisfying
(2.3) so that eh is integrable and G : [0,∞) → R a Lipschitz function that is
bounded below, consider, for θ = (θ1, . . . , θp),

gp(θ) = ape
∑p

i=1 h(θi)−G(‖θ‖),

where ap is the normalizing constant. An example is the prior, for a > 0,

gp(θ) ∝ e−‖θ‖1

1 + a2‖θ‖2 .

In the Appendix [9] it is shown that priors of this form satisfy (2.5) and (2.6).
Furthermore, it is shown that (2.7) is also satisfied, with m1 = (1 + a)/(1 − a) if
−h is the absolute value of the identity function and the Lipschitz constant a of G

is strictly smaller than 1 [i.e., |G(s) − G(t)| ≤ a|s − t | for a < 1].
Thus any prior of this form combined with any prior on dimension that de-

creases exponentially such that Dm1 = D(1 + a)/(1 − a) < 1, for D the constant
in (2.2), gives recovery at the minimax rate over �0[pn], by Theorem 2.4, and
also over �s[pn] if combined with a complexity prior on dimension satisfying the
conditions of Theorems 2.6 and 2.7. For instance, the hierarchical binomial prior
πn(p) ∝ (2n−p

n

)
in Example 2.2 has D = 1/2 and hence a < 1/3 suffices for con-

traction over �0[pn].

2.6. Lower bounds. Condition (2.3) [or (2.5) and (2.6)] on the priors gS for
the nonzero coefficients ensures that the posterior does not shrink to the center of
the prior too much. In the next theorem we investigate the necessity of conditions
of this type. The theorem shows that product priors with marginal densities pro-
portional to y 
→ e−|y|α for some α > 1 lead to a slow contraction rate for large
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true vectors θ0. We formulate this in an asymptotic setting with a sequence of true
vectors, written as θn

0 , tending to infinity. We denote by pn the number of nonzero
coordinates of θn

0 .
The theorem applies in particular to the normal distribution. For this prior a

problem (only) arises if the parameter vector θn
0 tends to infinity faster than the

optimal rate ∥∥θn
0

∥∥2 � pn log(n/pn).

The posterior then puts no mass on balls of radius a multiple of ‖θn
0 ‖ around

the true parameter. For “small” θn
0 no problem occurs, because shrinkage to the

origin is desirable in that case. However, if the true parameter satisfies ‖θn
0 ‖2 �

pn log(n/pn), then the estimator that is zero, irrespective of the observations, pos-
sesses mean square error of the order the minimax risk for the problem. Thus it
is rather poor consolation that the Bayes procedure based on Gaussian priors per-
forms well in this case, as it is no better than the “zero estimator.” Gaussian priors
really are problematic.

Product priors with marginal density proportional to y 
→ e−|y|a give behavior
as the Gaussian prior for every α ≥ 2. For α ∈ (1,2) the result is slightly more
complicated and involves the quantities

ρn
0,α =

(‖θn
0 ‖α

α

‖θn
0 ‖2

2

∧ 1
)∥∥θn

0

∥∥
αp1/2−1/α

n ,(2.11)

where ‖ · ‖α denotes the usual Lα-norm on R
n (i.e., ‖θ‖α

α = ∑
i |θi |α). The num-

bers ρn
0,α increase to infinity as θn

0 tends to infinity at a sufficiently fast rate. For

instance ρn
0,α is of the order cα−1

n p
1/2−1/α
n if α < 2 and θn

0 = cnθ̄0 for scalars cn

and fixed vectors θ̄0. The following theorem shows that if ρn
0,α increases to infinity

faster than the optimal rate (pn log(n/pn))
1/2, then the posterior does not charge

balls of radius a small multiple of ρn
0,α .

THEOREM 2.8 (Heavy tails). Assume that the densities gS are products of S

univariate densities proportional to y 
→ e−|y|α and the prior πn on dimension
satisfies (1.2) for some c > 0:

(i) If α ≥ 2 and ‖θn
0 ‖2/(pn log(n/pn)) → ∞, then for sufficiently small η > 0,

as n → ∞,

Pn,θn
0
�n

(
θ :

∥∥θ − θn
0

∥∥ ≤ η
∥∥θn

0

∥∥|Xn) → 0.

(ii) If 1 < α < 2 and (ρn
0,α)2/(pn log(n/pn)) → ∞, then for sufficiently small

η > 0, as n → ∞,

Pn,θn
0
�n

(
θ :

∥∥θ − θn
0

∥∥ ≤ ηρn
0,α|Xn) → 0.
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Theorem 2.8 shows problematic behavior of the posterior distribution for sig-
nals with large energies ‖θn

0 ‖. Instead of using fixed priors on the coordinates, we
could make them depend on the sample size, for instance, Gaussian priors with
variance vn → ∞, or uniform priors on intervals [−Kn,Kn] with Kn → ∞. Such
priors will push the “problematic boundary” toward infinity, but the same reason-
ing as for the theorem will show that shrinkage remains for (very) large θn

0 .
The above results show that gS needs to have heavy tails. Another important

condition, this time concerning the prior πn on the dimension k, concerns the
amount of mass πn(pn) at the true dimension. If this quantity is too small, then
the Bayes procedure might not be optimal.

THEOREM 2.9. Suppose also that the prior πn on dimension in (P1) is de-
creasing and that there exist integers d1,n < d2,n such that, for some C > 0 and a
sequence εn such that nε2

n → ∞,

πn(d2,n)

πn(d1,n)

(
n

d1,n

)
≤ e−Cnε2

n .

Denoting d3,n = (3d2,n − d1,n)/2, there exists θ0 in �0[d3,n] such that, for suffi-
ciently small η > 0, as n → ∞,

Pn,θn
0
�n

(
θ :

∥∥θ − θn
0

∥∥ ≤ η
√

nεn|Xn) → 0.

EXAMPLE 2.7 [Prior on dimension in exp(−k(log k)a), with a ≥ 1]. If
πn(k) = r exp(−k loga k), with r the appropriate normalizing constant, let us ap-
ply the preceding result with the choices d1,n = pn/4, d2,n = 3pn/4, for some
sequence pn → ∞. It holds

πn(3pn/4)

πn(pn/4)

(
n

pn/4

)
≤ e−(3pn/4) loga(3pn/4)+(pn/4) loga(pn/4)+(pn/4) log(ne)

≤ e−(pn/4) loga(3pn/4)−(pn/4) loga(3pn/4)21/a +(pn/4) loga(ne).

As long as we impose (3pn/4)21/a ≥ ne and log(3pn/4) ≥ 2−1/a logpn (which
holds for large enough n), the last display is at most exp(−pn

8 loga pn). Theo-
rem 2.9 implies that there is a vector θ0 in �0[pn] with

Pn,θn
0
�n

(
θ :

∥∥θ − θn
0

∥∥2 ≤ ηpn loga pn|Xn) → 0

for a small enough constant η. This implies that the corresponding estimator does
not reach the optimal rate over the class �0[pn] as soon as pn loga pn tends to
infinity faster than pn log(n/pn) [take, e.g., pn = n/ exp(

√
logn)].
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2.7. Discussion. We have identified general conditions on the prior that ensure
optimal convergence rates for estimating a sparse mean vector in Gaussian noise.
In particular, natural fully Bayes estimates (e.g., Beta-binomial prior on dimen-
sion) are shown to be adaptive with respect to the unknown smoothing parameter
pn/n.

Especially in high-dimensional contexts the full posterior measure and special
aspects of it can start to have divergent behaviors. We have seen that for nonconvex
distances the posterior mean is not a satisfactory projection. It can also happen that
the mode and the full posterior behave differently.

In some situations one might want to estimate prior hyperparameters, and in this
case, it is desirable to assess the convergence properties of the resulting plug-ins.
To our knowledge, there are only a few works in this direction; see [15, 16]. Po-
tential alternative proofs could consist in obtaining first (suitably uniform) results
for the (full) posterior measure and combine them with a statement saying that
“the plug-in estimate is not too bad.” Also, here, one could evaluate the sparsity
coefficient ηn = pn/n via the posterior number k̂n of selected models and plug
this estimate into the full posterior for the binominal prior on dimension. Since
η̂n = k̂n/n does not exceed Cpn with high probability, we have some control of
the plug-in into the full posterior. The question of then deriving results for esti-
mates of it (e.g., the mean), remains open.

3. Implementation. In this section we provide an algorithm to compute sev-
eral functionals of the posterior measure associated with the prior defined by
(P1)–(P3), including the posterior mean, marginal posterior quantiles and the pos-
terior of the number of selected models. The algorithm is exact in that it does
not rely on an approximation of the posterior distribution, but computes the exact
expressions. We illustrate the posterior quantities through simulations.

We assume that the densities gS on R
S are products of S copies of a univariate

density g. Because the prior on the number of nonzero coordinates induces depen-
dence, this generally does not entail a factorization of the posterior distribution as
a product measure. (An exception is the binomial distribution for πn.)

For all computations, we need the denominator of the posterior measure in (2.1)
(the “partition function”). For φ the standard normal density, and ψ = φ ∗ g its
convolution with the density g, this can be written

Qn :=
n∑

p=0

πn(p)(n
p

) ∑
|S|=p

∏
i∈S

ψ(Xi)
∏
i /∈S

φ(Xi).

Naive computation directly from this expression would require a number of op-
erations that grows exponentially with n. However, the sum over all models S of
size p (the inner sum in the display) is equal to the coefficient of Zp in the poly-
nomial

Z 
→
n∏

i=1

(
φ(Xi) + ψ(Xi)Z

)
.
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This polynomial can be computed by a quadratic number of operations by com-
puting the products term by term, and in n log2 n operations by a more clever al-
gorithm.

3.1. Posterior mean. The posterior mean θ̂PM = ∫
θ d�n(θ |X) is a random

vector in R
n. Letting ζ(x) = ∫

tφ(x − t)g(t) dt , we can write its first coordinate
in the form

θ̂PM
1 = 1

Qn

n∑
p=1

πn(p)(n
p

) ζ(X1)
∑

|S|=p,1∈S

∏
i∈S,i �=1

ψ(Xi)
∏
i /∈S

φ(Xi).

The inner sum (over S) is the coefficient of Zp in the polynomial Z 
→
ζ(X1)Z

∏n
i=2(φ(Xi) + ψ(Xi)Z). Hence it can be computed as before.

3.2. Coordinatewise quantiles. The distribution function of the marginal pos-
terior distribution of the first coordinate can be written, for any real u,

�
(
(−∞, u] × R

n−1|X) = (1 − qn,1)1u≥0 + qn,1
ψ(X1, u)

ψ(X1)
,

where 1 − q1,n is the posterior probability that the first coordinate is zero, and
ψ(x,u) = ∫ u

−∞ φ(x − t)g(t) dt . The former probability can be written

1 − qn,1 = Pr(θ1 = 0|X) = 1

Qn

n∑
p=0

πn(p)(n
p

) ∑
|S|=p,1/∈S

∏
i∈S

ψ(Xi)
∏
i /∈S

φ(Xi).

Hence it can be computed as before, now involving the polynomial Z 
→
ψ(X1)Z

∏n
i=2(φ(Xi) + ψ(Xi)Z).

Given the marginal posterior distribution, we can compute marginal quantiles.
For instance, the first component of the coordinatewise median θ̂med is given by,
with H−1

n,1 the inverse of Hn,1(u) = ψ(X1, u)/ψ(X1),

θ̂med
1 =

[
H−1

1,n

(
1 − 1

2q1,n

)
∨ 0

]
+

[
H−1

n,1

(
1

2qn,1

)
∧ 0

]
.

The last display should be understood with the convention H−1
n,1(u) = −∞ if u ≤ 0

and H−1
n,1(u) = ∞ if u ≥ 1.

3.3. Number of nonzero coordinates. The posterior distribution of the num-
ber |Sθ | of nonzero coordinates of θ ∈ R

n is the random distribution on the set
{0,1, . . . , n} given by

�n

(
θ : |Sθ | = p|X) = 1

Qn

πn(p)(n
p

) ∑
|S|=p

∏
i∈S

ψ(Xi)
∏
i /∈S

φ(Xi).

The same computational scheme applies. In fact the sum will already be computed
in the derivation of Qn.
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3.4. Simulations. In a small simulation study we considered the prior defined
by (P1)–(P3) with g a Laplace density x → (a/2)e−a|x|, with scale parameter
a > 0 and two priors on dimension, suggested by our theoretical results, given
by

πn(p) ∝ e−κp log(3n/p),(3.1)

πn(p) ∝
(

2n − p

n

)κ

.(3.2)

Here κ is a real parameter, which for both priors quantifies how fast they decrease
to zero with p. In the results shown we used a = 1 and κ ∈ {0.1,1}.

We simulated signals θ = (θ1, . . . , θn) of length n = 500, for various settings
of the sparsity pn = #(θi �= 0) and for signals θ with the nonzero coordinates set
equal to a fixed number A. We show the results for pn ∈ {25,50,100} and “signal
strength” A ∈ {3,4,5}.

Tables 1 and 2 report estimates of the mean square errors E‖θ̂ − θ‖2 and mean
absolute deviation errors E‖θ̂ − θ‖1 of eight estimators θ̂ . These estimates are the
average (square) error of 100 estimates θ̂1, . . . , θ̂100 computed from 100 data vec-
tors simulated independently from model (1.1). The eight estimators include the
posterior means PM1, PM2 and coordinatewise medians PMed1, PMed2 associ-
ated with the two priors πn with κ = 0.1, the empirical Bayes mean EBM and
median EBMed considered in [16] with a standard Laplace prior, and the hard-
thresholding HT and hard-thresholding-oracle HTO estimators, given by

θ̂HT
i = Xi1|Xi |>√

2 logn, θ̂HTO
i = Xi1|Xi |>√

2 logn/pn
.

TABLE 1
Average square errors of eight estimators computed on 100 data vectors X of length n = 500

simulated from model (1.1) with θ = (0,0, . . . ,0,A, . . . ,A), where pn coordinates indices are equal
to A. In every column the smallest value is printed in bold face. The estimators are: PM1, PM2:
posterior means for two priors πn in (3.1) and (3.2) and Laplace prior on nonzero coordinates;

PMed1, PMed2 coordinatewise medians for the same priors; EBM, EBMed: empirical Bayes mean
and median for Laplace prior; HT, HTO: hard-thresholding and hard-thresholding-oracle

pn 25 50 100

A 3 4 5 3 4 5 3 4 5

PM1 111 96 94 176 165 154 267 302 307
PM2 106 92 82 169 165 152 269 280 274
EBM 103 96 93 166 177 174 271 312 319
PMed1 129 83 73 205 149 130 255 279 283
PMed2 125 86 68 187 148 129 273 254 245
EBMed 110 81 72 162 148 142 255 294 300
HT 175 142 70 339 284 135 676 564 252
HTO 136 92 84 206 159 139 306 261 245
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TABLE 2
Average absolute deviation errors of eight estimators computed on 100 data vectors X of length

n = 500 simulated from model (1.1) with θ = (0,0, . . . ,0,A, . . . ,A), where pn coordinates indices
are equal to A. In every column the smallest value is printed in bold face. The priors and estimators

are as in Table 1

pn 25 50 100

A 3 4 5 3 4 5 3 4 5

PM1 80 101 110 127 145 147 240 268 270
PM2 79 85 87 135 145 144 219 232 232
EBM 95 110 117 191 200 176 260 285 281
PMed1 51 43 45 86 80 78 178 225 230
PMed2 50 40 37 86 79 76 156 162 163
EBMed 50 48 45 108 121 97 212 258 257
HT 63 44 27 122 86 53 244 173 102
HTO 53 41 40 91 79 74 157 148 144

The last estimator uses the “oracle” value of the sparsity parameter pn, whereas
the other seven estimators do not use this value.

The tables show that the mean and median of the full Bayesian posterior distri-
bution are competitive with the empirical Bayes estimates. The behavior of the full
Bayes and empirical Bayes estimates seems similar, up to a few aspects. In terms
of squared risk, empirical Bayes estimates appear to be slightly better for small pn

and small A, while the full Bayes estimates appear to be slightly better for larger
signals and larger pn. For L1-risk, the full Bayes estimates appear to outperform
the EB-estimates in most of the cases. (Additional simulation results, not shown,
suggest that the situation becomes less unfavorable for empirical Bayes as the scale
parameter a of the Laplace prior is taken smaller than 1.) In agreement with [16],
in most cases the mean estimates perform not quite as well as the median ones,
already in terms of squared-risk.

The parameter a of the Laplace prior plays the same role for the full Bayes as
for the empirical Bayes estimates. Although we do not investigate this aspect here,
it could be estimated from the data, as is proposed in the EbayesThresh package,
or be treated as a hyperparameter in a full Bayes approach. [A single scale param-
eter for high-dimensional densities gS appears to create dependence between the
coordinates that is stronger than what is allowed by our conditions (2.5) and (2.6),
and hence would need further analysis.] Similar remarks pertain to the parame-
ter κ . The choice κ = 0.1 seemed to be fairly good uniformly over all considered
simulations, also for smaller n’s.

For further illustration Figure 1 shows marginal 95% credible intervals (orange
bars) for the parameters θ1, . . . , θn, and marginal posterior medians (red dots) for
a single simulation of the data vector, with single strength A = 5, pn = 100 and
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n = 500. The observations X1, . . . ,Xn are indicated by green dots. The credible
intervals are defined as intervals between the 2.5% and 97.5% percent quantiles of
the marginal posterior distributions of the parameters. The intervals correspond-
ing to zero and nonzero coefficients θi are clearly separated, although some of the
credible intervals of nonzero θi contain the value zero. Also visible is that the pos-
terior medians and the credible intervals surrounding them are shrunk toward zero
relative to the observed value Xi , for the zero coordinates θi , which is desirable,
but also for the nonzero θ1. Figure 1 (bottom) shows that for κ = 1 the shrinkage
effects are stronger, and the credible intervals shorter.

Since our main goal here is illustration, we only implemented a simple ver-
sion of the algorithm. This computes the polynomials with direct loops and can
be improved. This implementation is limited to n of the order 500, not by com-
puting time, but by the appearance of large numbers in the polynomial coefficients
that overflow standard memory capacity (10−300,10300). Handling larger n should
certainly be possible by improved programming, for instance, by computing on a
logarithmic scale. Algorithmic complexity appears not to be a major issue.

4. Proof of Theorem 2.1. We first prove the theorem for priors on dimension
πn(p) with strict exponential decrease and densities gS that are not necessarily of
product form, but that satisfy (2.7), for Dm1 < 1, and D the constant in (2.2). Thus
the proof also covers half of Theorem 2.4. In view of Example 2.5, densities of the
product form satisfy (2.7) with m1 = 1, and hence automatically have Dm1 < 1.

Since the true parameter θ0 is assumed to have pn nonzero coordinates, it is
sufficient to prove that the intersection of the support Sθ with the complement Sc

0
of the support S0 � Sθ0 of θ0 has dimension of the order pn under the posterior
distribution. The following proposition gives an explicit bound on this dimension;
it is followed by a lemma that shows that this bound tends to zero under the con-
ditions of the theorems. The idea of the proof of the proposition is to condition on
the vector of the coordinates πS0θ of θ that belong to S0.

The unconditional density of (Sθ , θ) for θ drawn from the prior �n is given by,
with δ0 denoting a “Dirac density at 0,”

(S, θ) 
→ πn(|S|)( n
|S|

) gS(θS)δ0(θSc).

The conditional density of (Sθ ∩Sc
0, θSc

0
) given θS0 is proportional to this expression

viewed as function of (S ∩ Sc
0, θS∩Sc

0
). This shows the conditional distribution has

the same structure as the prior �n, but with sample space R
Sc

0 rather than R
n,

with the density of the nonzero coordinates of θSc
0

given by gS∩Sc
0 |S∩S0(·|θS∩S0),

proportional to gS∩Sc
0,S∩S0(·, θS∩S0), and the prior on dimension given by

πn,k(p) ∝ πn(p + k)

(n−pn

p

)
( n
p+k

) , k = |Sθ ∩ S0|.(4.1)
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FIG. 1. Marginal posterior medians (red dots) and marginal credible intervals (orange) for the
parameters θ1, . . . , θn for a single data vector X1, . . . ,Xn simulated according to the model (1.1)
with θ = (0,0, . . . ,0,5, . . . ,5), where n = 500 and the last pn = 100 coordinates are nonzero. The
data points are indicated by green dots. The prior g is the standard Laplace density, and πn is as in
(3.2) with “inverse temperature” κ1 = 0.1 (TOP graph) and κ1 = 1 (BOTTOM graph).

The extra factor (quotient) on the right arises because πn,k(p) and πn(p + k) are
the probabilities of the given dimensions, and hence the sums of the probabilities of
all subsets of that dimension. Recall also that we assume that πn(p) is positive for
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any p, which makes the maximum appearing in the following proposition always
finite.

PROPOSITION 4.1. If the densities gS satisfy (2.7), then, for any A ≥ 1,

sup
θ0∈�0[pn]

Pn,θ0�n

(
θ :

∣∣Sθ ∩ Sc
θ0

∣∣ ≥ A|X) ≤
n−pn∑
p=A

m
pn+p
1 max

0≤k≤pn

[
πn,k(p)

πn,k(0)

]
.

PROOF. For B = {θ : |Sθ ∩ Sc
0| ≥ A} and �

θS0
n (·|X) the marginal distribution

of θS0 if θ is distributed according to the posterior distribution,

�n(B|X) =
∫

�n(B|X,θS0 = θ̄1) d�
θS0
n (θ̄1|X)

≤ sup
θ̄1∈R

S0

�n(B|X,θS0 = θ̄1).

In the Bayesian setting the vectors XS0 and XSc
0

are conditionally independent
given θ with marginal conditional distributions depending on θS0 and θSc

0
only,

respectively. This implies that the distribution of θSc
0

given (X, θS0) depends on
(XSc

0
, θS0) only. The joint distribution of (XSc

0
, θSc

0
, θS0) can be generated by first

generating θS0 from its marginal distribution derived from �n, next generating θSc
0

from its conditional given θS0 derived from �n, and finally generating XSc
0

from
the Nn−pn(θSc

0
, I )-distribution. It follows that the conditional distribution of θSc

0
given (X, θS0) can also be described as the “ordinary” posterior distribution of
θc
S0

given the observation XSc
0

relative to the prior on θSc
0

given by the conditional

distribution of θSc
0

given θS0 derived from �n. If �n(·|θ̄1) denotes the prior induced

on R
Sc

0 when conditioning �n to the event that θS0 = θ̄1, and n̄2 = n − pn, then

�n(B|X,θS0 = θ̄1) =
∫
B pn̄2,θ̄2

(XSc
0
) d�n(θ̄2|θ̄1)∫

pn̄2,θ̄2
(XSc

0
) d�n(θ̄2|θ̄1)

.(4.2)

The denominator of the right-hand side can be bounded below by restricting the
integrating set to the singleton {θ̄2 = 0}, leading to∫

pn̄2,θ̄2
(XSc

0
) d�n(θ̄2|θ̄1) ≥ �n(θ̄2 = 0|θ̄1)pn̄2,0Sc

0
(XSc

0
).

Let S2 denote the indices of the nonzero coordinates of θ̄2 ∈ R
Sc

0 , θ2 the vector
of their values and n2 = |S2|, and similarly for S1, θ1. Then

�n(B|X,θS0 = θ̄1) ≤ �n(θ̄2 = 0|θ̄1)
−1

∫
B

pn̄2,θ̄2

pn̄2,0Sc
0

(XSc
0
) d�n(θ̄2|θ̄1)

≤ ∑
S2⊂Sc

0,|S2|≥A

�n(S2|θ̄1)

�n(S2 = ∅|θ̄1)

∫ pn̄2,θ̄2

pn̄2,0Sc
0

(XSc
0
) d�n(θ̄2|θ̄1, S2).
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With the notation S1, θ1, θ2 introduced above, one obtains∫ pn̄2,θ̄2

pn̄2,0Sc
0

(XSc
0
) d�n(θ̄2|θ̄1, S2) =

∫
pn2,θ2

pn2,0S2

(XS2)
gS1,S2(θ1, θ2)∫

gS1,S2(θ1, θ2) dθ2
dθ2.

On the other hand, an application of Bayes’s formula leads to

�n(S2|θ̄1)

�n(S2 = ∅|θ̄1)
= �n(S1, S2)

�n(S1, S2 = ∅)

∫
gS1,S2(θ1, θ2)

gS1(θ1)
dθ2,

and the last ratio of prior probabilities of subsets is equal to

�n(S1, S2)

�n(S1, S2 = ∅)
= πn(p + k)( n

p+k

)
(n
k

)
πn(k)

= πn,k(p)

πn,k(0)

1(n−pn

p

) .
Combining the previous identities and condition (2.7), one obtains that �n(B|X,

θS0 = θ̄1) is bounded above, uniformly in θ̄1 ↔ (S1, θ1), by

n−pn∑
p=A

∑
|S2|=p

max
0≤k≤pn

[
πn,k(p)

πn,k(0)

]
m

pn+p
1(n−pn

p

) ∫
pn2,θ2

pn2,0S2

(XS2)γS2(θ2) dθ2.

The proposition follows, since Pn,θ0pn2,θ2/pn2,0S2
(XS2) = 1. �

LEMMA 4.1. If πn satisfies (2.2) with C = 0 and a constant D such that
m1D < 1, then

∑n−pn

p=Pn
m

pn+p
1 maxk[πn,k(p)/πn,k(0)] → 0 for Pn bigger than a

sufficiently large multiple of pn and Pn → ∞.

PROOF. From the expression of πn,k in (4.1), simple algebra leads to

πn,k(p)

πn,k(0)
=

(
p + k

k

)
πn(p + k)

πn(k)

(n − pn) × · · · × (n − pn − p + 1)

(n − k) × · · · × (n − k − p + 1)
.

Using the assumed strict exponential decrease, the second ratio in the last display
is bounded above by ep logD . For any integer k between 0 and pn, the last factor
(ratio) in the last display is bounded above by 1 and

(p+k
k

)
is bounded above by(p+pn

pn

) ≤ epn log{e(p+pn)/pn}. Since log(1 + x) ≤ x/M , for M > 0 as soon as x is
larger than a sufficiently large multiple of M , the result follows. �

Combining Proposition 4.1 and Lemma 4.1 concludes the proof of the first half
of Theorem 2.4 and of Theorem 2.1 for priors on dimension with strict exponential
decrease.

For gS of the product form and πn with just exponential decrease [C > 0 in
(2.2)] such as the oracle binomial prior, we use a slight variant of the above ar-
gument. Starting from (4.2), the denominator can be bounded below with the
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help of Lemma 5.2 (below), applied with n̄2 instead of n, with θ0 = 0 and both
� = �̃ = �n(·|θ̄1). This implies that �n(B|X,θS0 = θ̄1) is bounded above by

e
σ 2

2 /2−μT
2 XSc

0

∫
B

pn̄2,θ̄2

pn̄2,0Sc
0

(XSc
0
) d�n(θ̄2|θ̄1),

where μ2 = ∫
θ̄2 d�n(θ̄2|θ̄1) and σ 2

2 = ∫ ‖θ̄2‖2 d�n(θ̄2|θ̄1). In fact μ2 = 0, by the
assumption that the common density g has zero mean. If m2 denotes the second
moment of g, we have

σ 2
2 = ∑

S2|Sc
0

�n(S2|S1)m2|S2| ≤ m2

n−pn∑
p=0

pπn,k(p) � 2νk.

This implies that �n(B|X,θS0 = θ̄1) is uniformly bounded in θ̄1 by

n−pn∑
p=A

∑
|S2|=p

max
0≤k≤pn

(
πn,k(p)eνk

) 1(n−pn

p

) ∫
pn2,θ2

pn2,0S2

(XS2)gS2(θ2) dθ2.

To conclude one takes the Pn,θ0 -expectation and uses Lemma 4.2 below.

LEMMA 4.2. If πn satisfies (2.2), then νk ≤ m2D1pn with D1 that depends
on C,D in (2.2) only. Furthermore,

∑n−pn

p=Pn
maxk(πn,k(p)eνk ) → 0 for Pn bigger

than a sufficiently large multiple of pn and Pn → ∞.

5. Proof of Theorems 2.2 and 2.4. In view of Theorem 2.1 the posterior mass
of models of dimension bigger than Apn, for a large constant A, tends to zero.
Thus it suffices to show concentration around θ0 in models with |Sθ | ≤ Apn. This
is achieved using testing arguments. Proposition 5.1 gives an explicit bound on
concentration with respect to the Euclidean metric. General dq -metrics are next
treated by interpolation of metrics.

Let � be the standard normal distribution function and �̄ = 1 − �.

LEMMA 5.1. For any α,β > 0 and any θ0, θ1 ∈ R
n there exists a test φ based

on X ∼ N(θ, I ), such that for every θ ∈ R
n with ‖θ − θ1‖ ≤ ‖θ0 − θ1‖/2 � ρ,

αPn,θ0φ + βPn,θ (1 − φ) ≤ α�̄

(
ρ

2
+ 1

ρ
log

α

β

)
+ β�

(
−ρ

2
+ 1

ρ
log

α

β

)
.

This quantity can be further bounded by 2
√

αβe−‖θ0−θ1‖2/32.

We note that the bound of Lemma 5.1, even though valid for every α,β > 0,
is of interest only if α and β are not too different: if logα/β ≤ −‖θ0 − θ1‖2/32
or logα/β ≥ ‖θ0 − θ1‖2/32, then the trivial tests φ = 1 and φ = 0 give the better
bounds α and β , respectively.
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LEMMA 5.2. For any prior probability distribution � on R
n, any positive

measure �̃ with �̃ ≤ �, and any θ0 ∈ R
m,∫

pn,θ

pn,θ0

(X)d�(θ) ≥ ‖�̃‖e−σ̃ 2/2+μ̃T (X−θ0),

where μ̃ = ∫
(θ − θ0) d�̃(θ)/‖�̃‖ and σ̃ 2 = ∫ ‖θ − θ0‖2 d�̃(θ)/‖�̃‖. Conse-

quently, for any r > 0,

Pn,θ0

(∫
pn,θ

pn,θ0

d�(θ) ≥ e−r2
�

(
θ :‖θ − θ0‖ < r

)) ≥ 1 − e−r2/8.

LEMMA 5.3. The volume vp of the p-dimensional Euclidean unit ball satis-
fies, for every p ≥ 1, setting d1 = 1/

√
π and d2 = e1/6d1,

d1(2eπ)p/2p−p/2−1/2 ≤ vp ≤ d2(2eπ)p/2p−p/2−1/2.

LEMMA 5.4. Let S ⊂ {1, . . . , n}, p = |S|, j ≥ 1 and r2
n ≥ pn ∨ logπn(pn)

−1.
Let θS,j ∈ R

n with support S and 2jrn < ‖θS,j − θ0‖ < 2(j + 1)rn. For some
universal constant c3 > 0, we have that

log
�(θ ∈ R

n :Sθ = S,‖πSθ − θS,j‖ < jrn)

e−r2
n�(θ ∈ Rn,‖θ − θ0‖ < rn)

≤ c3(p + pn) + p log j + 9(j + 1)2r2
n/64 + 7r2

n/2.

PROOF. Denoting βS,j the quantity in the logarithm in the last display,

βS,j ≤ �(S)GS(θ ∈ R
S :‖θ − πSθS,j‖ < jrn)

e−r2
n�(S0)GS0(θ ∈ RS0 :‖θ − πS0θ0‖ < rn)

≤ �(S)vS(jrn)
|S| max(gS(θ) :‖θ − πSθS,j‖ < jrn)

e−r2
n�(S0)vS0r

|S0|
n min(gS0(θ) :‖θ − πS0θ0‖ < rn)

.

Let us decompose, for any θ ′ ∈ R
S and θ ∈ R

S0 ,

gS(θ ′)
gS0(θ)

= gS(θ ′)
gS∩S0(πS∩S0θ

′)
gS∩S0(πS∩S0θ

′)
gS∩S0(πS∩S0θ)

gS∩S0(πS∩S0θ)

gS0(θ)
.

Combining this identity with (2.5) and (2.6), we obtain, with c2 = 1/64,∣∣∣∣log
gS(θ ′)
gS0(θ)

∣∣∣∣ ≤ c1|S| + c1|S ∩ S0| + c1|S0|

+ c2
∥∥πS−S0θ

′∥∥2 + c2
∥∥πS∩S0

(
θ ′ − θ

)∥∥2 + c2‖πS0−Sθ‖2.

Denoting by θ̄ , θ̄ ′ the vectors of R
n with respective supports S0, S and such that

πS0 θ̄ = θ , πSθ̄ ′ = θ ′, note that the last line of the previous display is bounded
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above by c2‖θ̄ ′ − θ̄‖2. For ‖θ ′ − πSθS,j‖ < jrn and ‖θ − πS0θ0‖ < rn, we have∥∥θ̄ ′ − θ̄
∥∥ ≤ ∥∥θ̄ ′ − θS,j

∥∥ + ‖θS,j − θ0‖ + ‖θ0 − θ̄‖ ≤ 3(j + 1)rn.

Due to Lemma 5.3, the quotient vpr
p
n /(vpnr

pn
n ) is bounded by

vpr
p/2
n

vpnr
pn
n

� (2eπ)p
(√

pn

rn

)pn
(

rn√
p

)p

.

Since r2
n ≥ pn by assumption, we have (

√
pn/rn)

pn ≤ 1, and because the function
p 
→ p log(r2

n/p) takes a maximum at p = r2
n/e, we obtain, for some universal

constants C,C′,

βS,j ≤ jpeCp+C′pn+9c2(j+1)2r2
n+(1+1/2e)r2

n�(S)/�(S0).

To conclude, one notes that �(S) ≤ 1 and that
( n
pn

) ≤ (ne/pn)
pn ≤ er2

n+pn by the

assumption on rn, so that �(S0) ≥ e−2r2
n−pn . �

PROPOSITION 5.1. If the densities gS satisfy (2.5) and (2.6) and have fi-
nite second moments, then there exist universal constants d1, d2, d3 such that for
M ≥ 10 and 1 ≤ A ≤ n/(2pn) and r2

n satisfying (2.4) and pn/n → 0, as n → +∞,

sup
θ0∈�0[pn]

Pn,θ0�n

(
θ :‖θ − θ0‖ > Mrn, |Sθ | ≤ Apn|X)

≤ e−r2
n/8 + d1

(
n

Apn

)
ed2Apn−d3(Mrn)2

.

PROOF. Let S1 be the collection of subsets S ⊂ {1,2, . . . , n} such that |S| ≤
Apn. For each such S and j = 1,2, . . . let {θS,j,i : i ∈ IS,j } be a maximal jrn-
separated set inside the set {θ ∈ R

n :Sθ = S,2jrn ≤ ‖θ − θ0‖ ≤ 2(j + 1)rn}. Be-
cause the latter set is within a ball of radius 2(j +1)rn of the projection �Sθ0 onto
the subspace of vectors with support inside S, a volume argument shows that the
cardinality of IS,j is at most 9|S|.

We can partition the set of vectors with exactly support S by assigning each such
vector to a closest point θS,j,i for some j = 1,2, . . . , and i ∈ IS,j . The resulting
partitioning sets BS,j,i will fit into balls of radius jrn. For each θS,j,i fix a test
φS,j,i as in Lemma 5.1 with α = 1 and the triple (θ0, θ1), ρ and β taken equal
to the triple (θ0, θS,j,i), jr and βS,j,i , where the last numbers will be determined
later. In view of the second assertion of Lemma 5.2 applied with r equal to rn,
there exist events An such that Pn,θ0(Ac

n) ≤ e−r2
n/8, on which∫

pn,θ

pn,θ0

d�n(θ) ≥ e−r2
n�n

(
θ :‖θ − θ0‖ < rn

)
.
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We have that

Pn,θ0�n

(
θ :‖θ − θ0‖ > 2Mrn,Sθ ∈ S1|X)

1An

≤ ∑
S∈S1

∑
j≥M

∑
i∈IS,j

Pn,θ0�n(θ ∈ BS,j,i |X)1An

≤ ∑
S∈S1

∑
j≥M

∑
i∈IS,j

(
Pn,θ0φS,j,i

+ Pn,θ0

[
(1 − φS,j,i)

∫
BS,j,i

pn,θ /pn,θ0 d�(θ)

e−r2
n�(θ :‖θ − θ0‖ < rn)

])

≤ ∑
S∈S1

∑
j≥M

∑
i∈IS,j

(
Pn,θ0φS,j,i + βS,j,i sup

θ∈BS,j,i

Pn,θ (1 − φS,j,i)
)
,

where we have denoted

βS,j,i = �(BS,j,i)

e−r2
n�(θ :‖θ − θ0‖ < rn)

.

In view of Lemma 5.1 the term within the triple sum is bounded using by
2
√

βS,j,ie
−j2r2

n/8. Since |S| = p ≤ Apn and pn/n → 0, we can take n large enough
in order to have both c3(p + pn) ≤ r2

n/10 and p log j ≤ j2r2
n/100 for any j ≥ 1.

Since M ≥ 10, we have j ≥ 10, so we also have r2
n ≤ j2r2

n/100.
Combination with Lemma 5.4 now yields the bound, for j ≥ 10,

log
√

βS,j,i ≤ 2.3j2r2
n/100 + 9(j + 1)2r2

n/128.

One easily checks that this is bounded by (1 − d2)j
2r2

n/8, for d2 = 1/9 when
j ≥ 10. Thus the probability at stake is bounded from above by

Apn∑
p=0

(
n

p

) ∑
j≥M

2Cpe−d2j
2r2

n ≤ d
Apn

1 e−d2M
2r2

n

Apn∑
p=0

(
n

p

)

for d1 large enough. By assumption Apn ≤ n/2, so each binomial term is bounded
by the last one. Using simple algebra this yields the second term in the bound of
the theorem. The first term comes from Pn,θ01Ac

n
≤ e−r2

n/8. �

In view of (2.4) we have
( n
Apn

) ≤ (ne/Apn)
Apn ≤ ed4r

2
n . Therefore, the right-

hand side of Proposition 5.1 tends to zero. Combining this with Theorem 2.1 yields
proofs of Theorems 2.2 and 2.4 for dq the square Euclidean norm d2.

The theorems for q ∈ (0,2) are a corollary of the case q = 2, by interpolation
between the distances. Due to Hölder’s inequality, for any θ, θ0 with |Sθ ∪ S0| ≤
Apn,

dq(θ, θ0) ≤ ‖θ − θ0‖q(Apn)
1−q/2.
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This implies, for any M > 0, if θ0 ∈ �0[pn],
Pn,θ0�n

(
dq(θ, θ0) > Mrq

np1−q/2
n |X)

≤ Pn,θ0�n

(
θ : |Sθ | > (A − 1)pn|X)

+ P n
θ0

�
(‖θ − θ0‖ > M1/qA1/2−1/qrn|X)

.

The first term on the right-hand side tends to zero for sufficiently large A. Next the
second tends to zero for sufficiently large M .

6. Proof of Theorem 2.6. The theorem is proved by bounding the (posterior)
risk under a vector θ0 ∈ ms[pn] by the risk under its projection into �0[p] obtained
by setting the smallest n − p coordinates of θ0 equal to zero. The value p that
minimizes the expression that defines the rate r2

n is the optimal dimension of a
projection, and the complicated expression itself is a trade-off of an approximation
error and a rate.

The comparison between θ0 and its projection θ1 is made in the following
lemma.

LEMMA 6.1. For any measurable function G and any θ0, θ1 in R
n,

Pn,θ0G ≤
√

Pn,θ1G
2e‖θ1−θ0‖2/2.

PROOF. In view of the Cauchy–Schwarz inequality,

Pn,θ0G ≤
√

Pn,θ1G
2

√√√√Pn,θ1

(
dPn,θ0

dPn,θ1

)2

.

The second integral on the right-hand side is equal to exp(‖θ0 − θ1‖2). �

Let p∗
n be an index for which the minimum that defines the rate r2

n is attained.
For given θ0 belonging to ms[pn], let θ1 denote the vector deduced from θ0 by
keeping unchanged its p∗

n largest components and putting the other ones to 0. By
definition θ1 belongs to �0[p∗

n] and

‖θ1 − θ0‖2 = ∑
i>p∗

n

|θ0,[i]|2 ≤
(

pn

n

)2 ∑
i>p∗

n

(
n

i

)2/s

(6.1)

≤
(

pn

n

)2(
s

2 − s

)
n2/s(p∗

n

)1−2/s ≤ r2
n,

where the first inequality is obtained using the definition of the ms[pn]-class, and
the second follows by comparison of the series with an integral.

Therefore, the triangle inequality implies

�n

(
θ :‖θ − θ0‖ > 80rn + 20r|X) ≤ �n

(
θ :‖θ − θ1‖ > 79rn + 20r|X)

.
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By Lemma 6.1 the expectation of the right-hand side under Pn,θ0 is bounded by
(
Pn,θ1�n

(
θ : |θ − θ1‖ > 79rn + 20r|X))1/2

e‖θ0−θ1‖2/2.

Finally apply Theorem 2.5, with r of the theorem taken equal to 3.4rn + 2r .

7. Proof of Theorems 2.8 and 2.9. The proof of Theorem 2.8 follows the
approach to get lower bound type results introduced in [8], which uses the principle
that sets with very little prior mass receive no posterior mass, see also Figure 2.

LEMMA 7.1. We have Pn,θ0�n(θ :‖θ −θ0‖ < sn|X) → 0, for any sn for which
there exist rn such that

�n(θ :‖θ − θ0‖ < sn)

�n(θ :‖θ − θ0‖ < rn)
= o

(
e−r2

n
)
.

LEMMA 7.2. There exist a constant C > 0 such that if S ⊂ {1, . . . , n} and rn
is a sequence of real numbers such that r2

n ≥ |Sθ0 |, it holds

v|S∩Sθ0 |
v|Sθ0 |

1

r
|Sθ0\S|
n

≤ eC|Sθ0 |.

PROOF OF THEOREM 2.8. We first consider the (more complicated) case that
1 < α < 2. For this range of α an application of Hölder’s inequality gives that
‖θ‖α ≤ ‖θ‖p1/α−1/2, if p is the number of nonzero coordinates of a vector θ . Let
us introduce

rn =
(‖θ0‖α

α

‖θ0‖2 ∧ 1
)‖θ0‖

8
, sn = ρn

0,α

64
= rn

8

(‖θ0‖α

‖θ0‖ p1/2−1/α
n

)
.

FIG. 2. Idea behind the proof of Theorem 2.8.
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Then rn ≤ ‖θ0‖/8 and sn ≤ rn/8. Also,

�n(θ :‖θ − θ0‖ < sn)

�n(θ :‖θ − θ0‖ < rn)

= ∑
S

�n(S)
GS(θ ∈ R

S :‖θ − πSθ0‖2 + ‖πS0\Sθ0‖2 < s2
n)

�n(θ :‖θ − θ0‖ < rn)

≤ ∑
S

�n(S)

�n(S0)

GS∩S0(θ ∈ R
S∩S0 :‖θ − πS∩S0θ0‖ ≤ sn)

GS0(θ ∈ RS0 :‖θ − πS0θ0‖ ≤ rn)
1‖πS0\Sθ0‖<sn.

Define

θB =
(

1 − rn − sn

‖θ0‖
)
πS0θ

n
0 .

Then the ball in R
S0 of radius sn around θB is contained in the ball of radius rn

around πS0θ0. It follows that the second-to-last display is bounded above by

∑
S

�n(S)

�n(S0)

s
|S∩S0|
n vS∩S0

s
pn
n vpn

supθ∈A gS∩S0(θ)

infθ∈B gS0(θ)
1‖πS0\Sθ0‖≤sn(7.1)

with A = {θ ∈ R
S∩S0 :‖θ − πS∩S0θ

n
0 ‖ < sn} and B = {θ ∈ R

S0 :‖θ − θB‖ < sn}.
We finish the proof by bounding the densities gS∩S0 and gS0 above and below on
the given sets.

If θ ∈ B , then by the triangle inequality followed by Hölder’s inequality,

‖θ‖α ≤ ‖θB‖α + ‖θ − θB‖α

≤
(

1 − rn − sn

‖θ0‖
)
‖θ0‖α + p1/α−1/2

n sn ≤
(

1 − 3rn

4‖θ0‖
)
‖θ0‖α,

because sn ≤ rn/8 and p
1/α−1/2
n sn ≤ (rn/8)‖θ0‖α/‖θ0‖. Similarly, if θ ∈ A and

‖πS0\Sθ0‖ < sn, then ‖πS0\Sθ0‖α < p
1/α−1/2
n sn and

‖θ‖α ≥ ‖θ0‖α − ‖θ0 − πS∩S0θ0‖α − ‖πS∩S0θ0 − θ‖α

≥ ‖θ0‖α − 2p1/α−1/2
n sn ≥ ‖θ0‖α

(
1 − rn

4‖θ0‖
)
.

We deduce that, for any S such that ‖πS0\Sθ0‖ ≤ sn, denoting by cα the normaliz-
ing constant of the density x → cα exp(−|x|α),

c
pn
α

c
|S∩S0|
α

supθ∈A gS∩S0(θ)

infθ∈B gS0(θ)
≤ exp

[
‖θ0‖α

α

{(
1 − 3rn

4‖θ0‖
)α

−
(

1 − rn

4‖θ0‖
)α}]

≤ exp
[
−2α(5/8)α−1rn

‖θ0‖α
α

4‖θ0‖
]

≤ exp
[−4α(5/8)α−1r2

n

]
,
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where to obtain the second last inequality we have used that for any 0 ≤ t ≤ 1/8
and α ≥ 1 it holds (1− t)α − (1−3t)α = ∫ 3

1 αt(1−ut)α−1 du ≥ 2αt(1−3/8)α−1.
Hence the expression in (7.1) is bounded above by

∑
S

�n(S)

�n(S0)
(cαsn)

|S∩S0|−pn
v|S∩S0|
vpn

e−4α(5/8)α−1r2
n

≤ e−4α(5/8)α−1r2
n

eCpn

�n(S0)

∑
S

�n(S)

≤ e−4α(5/8)α−1r2
n eCpnecpn log(n/pn)

by Lemma 7.2. The right-hand side is of smaller order than e−r2
n . An application

of Lemma 7.1 concludes the proof for the case that 1 < α < 2.
The proof in the case that α ≥ 2 follows the same lines, except that we use

the inequality ‖θ‖α ≤ ‖θ‖, for every θ ∈ R
p , without the factor p1/α−1/2 that is

necessary if α < 2. We define sn = (rn/8)‖θ0‖α/‖θ0‖. �
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