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EDGE UNIVERSALITY OF CORRELATION MATRICES

BY NATESH S. PILLAI1 AND JUN YIN2

Harvard University and University of Wisconsin–Madison

Let X̃M×N be a rectangular data matrix with independent real-valued
entries [x̃ij ] satisfying Ex̃ij = 0 and Ex̃2

ij = 1
M

, N,M → ∞. These entries
have a subexponential decay at the tails. We will be working in the regime
N/M = dN , limN→∞ dN �= 0,1,∞. In this paper we prove the edge univer-
sality of correlation matrices X†X, where the rectangular matrix X (called
the standardized matrix) is obtained by normalizing each column of the data
matrix X̃ by its Euclidean norm. Our main result states that asymptotically
the k-point (k ≥ 1) correlation functions of the extreme eigenvalues (at both
edges of the spectrum) of the correlation matrix X†X converge to those of the
Gaussian correlation matrix, that is, Tracy–Widom law, and, thus, in particu-
lar, the largest and the smallest eigenvalues of X†X after appropriate center-
ing and rescaling converge to the Tracy–Widom distribution. The asymptotic
distribution of extreme eigenvalues of the Gaussian correlation matrix has
been worked out only recently. As a corollary of the main result in this paper,
we also obtain that the extreme eigenvalues of Gaussian correlation matrices
are asymptotically distributed according to the Tracy–Widom law. The proof
is based on the comparison of Green functions, but the key obstacle to be sur-
mounted is the strong dependence of the entries of the correlation matrix. We
achieve this via a novel argument which involves comparing the moments of
product of the entries of the standardized data matrix to those of the raw data
matrix. Our proof strategy may be extended for proving the edge universal-
ity of other random matrix ensembles with dependent entries and hence is of
independent interest.

1. Introduction. The aim of this paper is to prove the edge universality of
correlation matrices. The data matrix X̃ = (x̃ij ) is an M ×N matrix with indepen-
dent centered real-valued entries. The entries in each column j all are assumed to
be identically distributed:

x̃ij = M−1/2qij , Eqij = 0, Eq2
ij = σ 2

j , 1 ≤ i ≤ M.(1.1)

Furthermore, the entries qij have a subexponential decay, that is, there exists a
constant ϑ > 0 such that for u > 1,

P
(|qij | > uσj

) ≤ ϑ−1 exp
(−uϑ )

.(1.2)
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We will be working the regime

d = dN = N/M, lim
N→∞d �= 0,1,∞.(1.3)

Thus, without loss of generality, henceforth we will assume that for some small
constant θ , for all N ∈ N,

θ < dN < θ−1 and θ < |dN − 1|.
Notice that all our constants may depend on θ and ϑ , but we will subsume this
dependence in the notation.

For a Euclidean vector a ∈ R
M , define the �2 norm

‖a‖2 :=
(

M∑
i=1

a2
i

)1/2

.

The matrix X̃†X̃ is the usual covariance matrix. The j th column of X̃ is denoted
by x̃j . Define the matrix M × N matrix X = (xij )

xij := x̃ij /‖̃xj‖2.(1.4)

The (N × N) matrix X†X is called the correlation matrix.3 Using the identity
Ex2

ij = 1
M

E
∑

i x
2
ij , we have

Ex2
ij = M−1.

Since we are mainly interested in correlation matrices, without loss of generality,
henceforth we will assume that

σ 2
j = 1, 1 ≤ j ≤ N.

Covariance matrices are ubiquitous in modern multivariate statistics where the ad-
vance of technology has led to a profusion of high-dimensional data sets. See [17–
19, 24] and the references therein for motivation and applications in a wide variety
of fields. Correlation matrices are sometimes preferred in certain statistical appli-
cations. For instance, the classic exploratory method Principal Component Analy-
sis (PCA) is not invariant to change of scale in the matrix entries. Therefore, it is
often recommended first to standardize the matrix entries and then perform PCA
on the resulting correlation matrix [17].

Recent progress in random matrix theory has led to a wealth of techniques for
proving universality of various matrix ensembles (see [3–13, 16, 20, 21, 26, 27]
and the references therein). Here the word universality refers to the phenomenon
that the asymptotic distributions of various functionals of covariance/correlation
matrices (such as eigenvalues, eigenvector, etc.) are identical to those Gaussian

3Some authors prefer to call this the standardized covariance matrix, but we chose this terminology
from the statistical literature [17].
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covariance/correlation matrices. Thus, harnessing these methods to obtain univer-
sality results in statistical problems is an important step, since these results let us
calculate the exact asymptotic distributions of various test statistics without hav-
ing restrictive distributional assumptions of the matrix entries. For instance, an
important consequence of universality is that in some cases one can perform vari-
ous hypothesis tests under the assumption that the matrix entries are not normally
distributed but use the same test statistic as in the Gaussian case.

In this context, in a recent paper [24] we studied the asymptotic distribution
of the eigenvalues of the covariance matrix X̃†X̃ under the assumptions of (1.1)
and (1.2). In [24], we proved that the Stieltjes transform of the empirical eigenvalue
distribution of the sample covariance matrix is given by the Marcenko–Pastur law
[22] uniformly up to the edges of the spectrum with an error of order (Nη)−1,
where η is the imaginary part of the spectral parameter in the Stieltjes transform.
From this strong local Marcenko–Pastur law, we derived the following results:
(1) rigidity of eigenvalues (2) delocalization of eigenvectors (3) universality of
eigenvalues in the bulk and (4) universality of eigenvalues at the edges. Further-
more, in our proof of edge universality of eigenvalues for covariance matrices (see
Theorem 7.5 of [24]), we gave a sufficient criterion for checking whether two ma-
trices of form Q†Q (Q is a data matrix) have the same asymptotic eigenvalue dis-
tribution at the edge (see Section 3 for details). Here Q†Q could be quite general,
including covariance and correlation matrices.

Verifying the above criteria for correlation matrices is much more complicated,
owing to the fact that even if it has the same form X†X as above, the matrix en-
tries of X are not independent. Fortunately in [24], as a byproduct, we also proved
the strong Marcenko–Pastur law, the rigidity of eigenvalues and delocalization of
eigenvectors of correlation matrices (see Lemma 2.3 in Section 2 below or Theo-
rem 1.5 of [24]). In this paper, we complete the research program initiated in [24]
by proving the edge universality of correlation matrices. There are not many pa-
pers which study the asymptotics of the correlation matrices as compared to the
relatively large literature on covariance matrices. The asymptotic distribution of
the largest (appropriately rescaled) eigenvalue of the Gaussian correlation matrix
was only very recently established by [1]. As will be explained below, we also
obtain this result as a special case of our main result and, more importantly, we do
not need this result in our proof (see Remark 1.3). The almost sure convergence
of the largest and smallest eigenvalues of the correlation matrix was established
in [15]. The very recent paper [1], relying on our results in [24], shows that the
asymptotic distribution of the largest or smallest eigenvalue of the correlation ma-
trix is given by the Tracy–Widom law, under the assumption that the data matrix X

satisfies (1.1) and its entries have symmetric distributions. In particular, the authors
in [1] use the above mentioned sufficiency criteria for edge universality developed
in [24]. Furthermore, the assumption that the matrix entries are symmetric is very
restrictive and not natural in statistical applications. In this paper we will build on
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our previous work [24] and prove edge universality of correlation matrices just un-
der the assumptions (1.1) and (1.2). Furthermore, we believe that all of our main
results should hold if one replaces the subexponential tail decay of the matrix en-
tries by a uniform bound on the pth moment (p > 4) of the matrix entries (e.g.,
p = 13 will suffice), as proved in [3] for Wigner matrices.

The central ideas in this paper are based on the general machinery for proving
universality established in a series of recent papers [3–13, 20, 21], where the au-
thors Yau, Erdős et al. study the distribution of eigenvalues and eigenvectors by
studying the Green’s functions (resolvent) of the random matrices.

The proof of this paper is based on the comparison of Green’s functions first
initiated in [12], but, as mentioned earlier, the key obstacle to be surmounted is
the strong dependence of the entries of the correlation matrix. We achieve this
via a novel argument which involves comparing the moments of the product of
the entries of the standardized data matrix to those of the raw data matrix (see
Section 3 for a summary of the key ideas). Our proof strategy may be extended for
proving the edge universality of other random matrix ensembles with dependent
entries and hence is of independent interest. Furthermore, it will be interesting to
see if bulk universality of correlation matrices can be established using the methods
developed in this paper.

Let us state the main result now. We denote λi , 1 ≤ i ≤ N , as the eigenvalues of
X†X and λα = 0 for min{N,M} + 1 ≤ α ≤ max{N,M}. We order them as

λ1 ≥ λ2 ≥ · · · ≥ λmax{M,N} ≥ 0.

Analogously, let λ̃α denote the eigenvalues values of the matrix X̃†X̃.
The following is the main result of this paper. It shows that the largest and

smallest k eigenvalues of the correlation matrix, after appropriate centering and
rescaling, converge in distribution to those of the corresponding covariance matrix.

THEOREM 1.1 (Edge universality). Let X and X̃, respectively, denote the cor-
relation and covariance matrix as defined in (1.1)–(1.4). For any fixed k ∈ N, there
exists ε > 0 and δ > 0 such that for any {s1, s2, . . . , sk} ∈ R (which may depend
on N ), there exists N0 ∈ N independent of s1, s2, . . . , sk such that for all N ≥ N0,
we have

P
(
N2/3(̃λ1 − λ+) ≤ s1 − N−ε, . . . ,N2/3(̃λk − λ+) ≤ sk − N−ε) − N−δ

≤ P
(
N2/3(λ1 − λ+) ≤ s1, . . . ,N

2/3(λk − λ+) ≤ sk
)

(1.5)
≤ P

(
N2/3(̃λ1 − λ+) ≤ s1 + N−ε, . . . ,N2/3(̃λk − λ+) ≤ sk + N−ε)

+ N−δ.

An analogous result holds for the k smallest eigenvalues.
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In [14, 23] and [25], Peche, Soshnikov and Sodin proved that for some covari-
ance matrices (including the Wishart matrix), the largest and smallest k eigenval-
ues after appropriate centering and rescaling converge in distribution to the Tracy–
Widom law4 whose density is a smooth function. Combining with our recent result
on the universality of covariance matrices in [24], we have the following immedi-
ate corollary for Theorem 1.1:

COROLLARY 1.2. Let X denote the correlation matrix as defined in (1.1)–
(1.4). For any fixed k > 0, we have(

Mλ1 − (
√

N + √
M)2

(
√

N + √
M)(1/

√
N + 1/

√
M)1/3

, . . . ,

Mλk − (
√

N + √
M)2

(
√

N + √
M)(1/

√
N + 1/

√
M)1/3

)
−→ TW1,

where TW1 denotes the Tracy–Widom distribution. An analogous statement holds
for the k-smallest (nontrivial) eigenvalues.

REMARK 1.3. Thus, as a special case, we also obtain the TW law for the
Gaussian correlation matrices.

Although the current paper builds on our recent work [24], it is mostly self-
contained and for the reader’s convenience, we will recall all of the needed re-
sults from [24]. The rest of the paper is organized as follows. In Section 2, af-
ter establishing some notation, we give the key results establishing the strong
Marcenko–Pastur law and rigidity of eigenvalues for correlation matrices, as ob-
tained from [24]. In Section 3 we give a brief proof sketch illustrating the key
ideas. In Section 4 we give the proof of the main results and in Section 5 we prove
some technical lemmas which constitute the key ingredients in the proof of the
main result. For the rest of the paper the letter C will denote a generic constant
whose value might change from one line to the next, but will be independent of
everything else. The notation Oε(N

a) will be used to denote O(Na+Cε).

2. Preliminaries. We will adopt the notation used in this paper from [24].
Define the Green function of X†X by

Gij (z) =
(

1

X†X − z

)
ij

, z = E + iη, E ∈ R, η > 0.(2.1)

4Here we use the term Tracy–Widom law as in [25].
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The Stieltjes transform of the empirical eigenvalue distribution of X†X is given by

m(z) := 1

N

∑
j

Gjj (z) = 1

N
Tr

1

X†X − z
.(2.2)

Recall that d = N/M from (1.3) and define

λ± := (
1 ± √

d
)2

.(2.3)

The Marcenko–Pastur (henceforth abbreviated by MP) law is given by

�W(x) = 1

2πd

√
[(λ+ − x)(x − λ−)]+

x2 .(2.4)

We define mW(z), z ∈ C, as the Stieltjes transform of �W , that is,

mW(z) =
∫

R

�W(x)

(x − z)
dx.(2.5)

The function mW depends on d and has the closed form solution

mW(z) = 1 − d − z + i
√

(z − λ−)(λ+ − z)

2dz
,(2.6)

where √ denotes the square root on a complex plane whose branch cut is the
negative real line. We also define the classical location of the eigenvalues with ρW

as follows: ∫ λ+

γj

�W (x) dx =
∫ +∞
γj

�W (x) dx = j/N.(2.7)

Define the parameter

ϕ := (logN)log logN.(2.8)

DEFINITION 2.1 (High probability events). Let ζ > 0. We say that an event
� holds with ζ -high probability if there exists a constant C > 0 such that

P
(
�c) ≤ NC exp

(−ϕζ )
(2.9)

for large enough N .

Let us first give the following large deviation lemma for independent random
variables (see [12], Appendix B for a proof).

LEMMA 2.2 (Large deviation lemma). Suppose, for 1 ≤ i ≤ M , ai are inde-
pendent, mean 0 complex variables, with E|ai |2 = σ 2 and have a subexponential
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decay as in (1.2). Then there exists a constant ρ ≡ ρ(ϑ) > 1 such that, for any
ζ > 0 and for any Ai ∈ C and Bij ∈ C, the bounds

M∑
i=1

aiAi ≤ (logM)ρζ σ‖A‖,(2.10)

∣∣∣∣∣
M∑
i=1

āiBiiai −
M∑
i=1

σ 2Bii

∣∣∣∣∣ ≤ (logM)ρζ σ 2

(
M∑
i=1

|Bii |2
)1/2

,(2.11)

∣∣∣∣∑
i �=j

āiBij aj

∣∣∣∣ ≤ (logM)ρζ σ 2
(∑

i �=j

|Bij |2
)1/2

(2.12)

hold with ζ -high probability.

It can be easily seen that for any fixed j ≤ N , the random variables defined by
ai = xij ,1 ≤ i ≤ M , satisfy the large deviation bounds (2.10), (2.11) and (2.12),
for any Ai ∈ C and Bij ∈ C and ζ > 0.

Thus, the main result of [24] (see Theorem 1.5 of [24]) is applicable for the
correlation matrix X, yielding the following strong local MP law and rigidity of
eigenvalues:

LEMMA 2.3 (Strong local Marcenko–Pastur law and rigidity of the eigenvalues
of the correlation matrix). Let X = [xij ] be the correlation matrix given by (1.4).
Then for any ζ > 0 there exists a constant Cζ such that the following events hold
with ζ -high probability.

(i) The Stieltjes transform of the empirical eigenvalue distribution of X†X

satisfies ⋂
z∈mS(Cζ )

{∣∣m(z) − mW(z)
∣∣ ≤ ϕCζ

1

Nη

}
,(2.13)

where mS(Cζ ) defined as the set

mS(Cζ ) := {
z ∈ C : 1d>1(λ−/5) ≤ E ≤ 5λ+, ϕCζ N−1 ≤ η ≤ 10(1 + d)

}
.

(ii) The individual matrix elements of the Green function satisfy

⋂
z∈mS(Cζ )

{∣∣Gij (z) − mW(z)δij

∣∣ ≤ ϕCζ

(√
�mW(z)

Nη
+ 1

Nη

)}
.(2.14)

(iii) The smallest nonzero and largest eigenvalues of X†X satisfy

λ− − N−2/3ϕCζ ≤ min
j≤min{M,N}λj ≤ max

j
λj ≤ λ+ + N−2/3ϕCζ .(2.15)
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(iv) Rigidity of the eigenvalues: recall γj in (2.7). For any 1 ≤ j ≤ min{M,N},
let j̃ = min{min{N,M} + 1 − j, j}. Then

|λj − γj | ≤ ϕCζ N−2/3j̃−1/3.(2.16)

We conclude this section with the following theorem quoted from [24] (see The-
orem 1.7 in [24]) on edge universality of covariance matrices, which is also needed
for our proof of the edge universality of the correlation matrix. Define two indepen-
dent matrices X̃v = [x̃v

ij ], X̃w = [x̃w
ij ] with the entries x̃v

ij , x̃
w
ij satisfying (1.1) and

(1.2) and the entries x̃v
ij , x̃

w
ij are mutually independent. Henceforth, we will write

E
v,P

v (Ew,P
w) to indicate that the expectation and probability are computed for

the ensemble X̃v, (X̃w).

THEOREM 2.4 (Universality of extreme eigenvalues of covariance matrices).
There exists ε > 0 and δ > 0 such that for any s ∈ R (which may depend on N )
there exists N0 ∈ N independent of s such that for all N ≥ N0, we have

P
v(

N2/3(̃
λv

1 − λ+
) ≤ s − N−ε) − N−δ

≤ P
w(

N2/3(̃
λw

1 − λ+
) ≤ s

)
(2.17)

≤ P
v(

N2/3(̃
λv

1 − λ+
) ≤ s + N−ε) + N−δ.

An analogous result holds for the smallest eigenvalues λ̃v
min{M,N} and λ̃w

min{M,N}.

As remarked in [24], Theorem 2.4 can be extended to finite correlation functions
of extreme eigenvalues as follows:

P
v(

N2/3(̃
λv

1 − λ+
) ≤ s1 − N−ε, . . . ,N2/3(̃

λv
k − λ+

) ≤ sk − N−ε) − N−δ

≤ P
w(

N2/3(̃
λw

1 − λ+
) ≤ s1, . . . ,N

2/3(̃
λw

k − λ+
) ≤ sk

)
(2.18)

≤ P
v(

N2/3(̃
λv

1 − λ+
) ≤ s1 + N−ε, . . . ,N2/3(̃

λv
k − λ+

) ≤ sk + N−ε)
+ N−δ

for all k fixed and sufficiently large N . We remark that edge universality is usually
formulated in terms of joint distributions of edge eigenvalues as in (2.18) with fixed
parameters s1, s2, . . . etc. However, we note that Theorem 2.4 holds uniformly in
these parameters, and thus they may depend on N .

3. Key ideas and proof sketch. Our basic strategy is the so-called “Green
function comparison” method initiated in a recent series of papers including
[11–13] for proving universality for (generalized) Wigner matrices. The Green
function comparison method has subsequently been applied to proving the spec-
tral universality of adjacency matrices of random graphs [3, 4], the universality of
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eigenvectors of Wigner matrices [20], as well as the the spectrum of additive finite-
rank deformations of Wigner matrices and the isotropic local semicircle law [21].

In this paper, we will show that (2.17) and (2.18) still hold with X̃v and X̃w

replaced by the correlation matrix X and the corresponding covariance matrix X̃,
that is, Theorem 1.1. To show this result, we introduce a sufficient criteria for
(2.17) and (2.18) derived in [24] (see Theorem 7.5 of [24]).

Consider two matrix ensembles Xv,Xw (could be covariance, correlation or
more general matrix5) and let their respective Green functions and empirical Stielt-
jes transforms [see (2.1) and (2.2)] be denoted by Gv,Gw and mv,mw. To prove
that the asymptotic distribution of the extreme eigenvalues of the matrix ensem-
bles Xv,Xw are identical in the sense of (2.17) and (2.18), it suffices to show the
following [24]:

(i) The matrices Xv,Xw satisfy the strong Marcenko–Pastur law and the rigid-
ity of eigenvalues as given in Lemma 2.3.

(ii) The difference of the expectation of smooth functionals of the correspond-
ing Green functions (Gv,Gw and mv,mw) evaluated at the spectral edge must van-
ish asymptotically. More precisely, as pointed out in [24], it suffices to establish
Theorems 3.1 and 3.2 below for the matrices Xv,Xw.

THEOREM 3.1 (Green function comparison theorem on the edge). Let
F : R → R be a function whose derivatives satisfy

max
x

∣∣F (α)(x)
∣∣(|x| + 1

)−C1 ≤ C1, α = 1,2,3,4,(3.1)

for some constant C1 > 0. Then there exist ε0 > 0,N0 ∈ N and δ > 0 depending
only on C1 such that for any ε < ε0, N ≥ N0 and real numbers E, E1 and E2
satisfying

|E − λ+| ≤ N−2/3+ε, |E1 − λ+| ≤ N−2/3+ε, |E2 − λ+| ≤ N−2/3+ε

and η0 = N−2/3−ε , we have∣∣EvF
(
Nη0�mv(z)

) − E
wF

(
Nη0�mw(z)

)∣∣ ≤ CN−δ+Cε, z = E + iη0,(3.2)

and ∣∣∣∣EvF

(
N

∫ E2

E1

dy �mv(y + iη0)

)
− E

wF

(
N

∫ E2

E1

dy �mw(y + iη0)

)∣∣∣∣
(3.3)

≤ CN−δ+Cε

for some constant C.

5Notice that throughout the paper we use X for the correlation matrix and X̃ for the covariance
matrix. This is the only instance we denote a generic matrix by X for compactness of notation.
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THEOREM 3.2. Fix any k ∈ N+ and let F : Rk → R be a smooth, bounded
function with bounded derivatives. Then there exist ε0 > 0,N0 ∈ N and δ > 0 such
that for any ε < ε0, N ≥ N0 and sequence of real numbers Ek < · · · < E1 < E0
with |Ej − λ+| ≤ N−2/3+ε , j = 0,1, . . . , k and η0 = N−2/3−ε , we have∣∣∣∣EvF

(
N

∫ E0

E1

dy �mv(y + iη0), . . . ,N

∫ E0

Ek

dy �mv(y + iη0)

)

− E
wF

(
mv → mw)∣∣∣∣(3.4)

≤ N−δ,

where the second term in the left-hand side above is obtained by changing the ar-
guments of F in the first term from mv to mw and keeping all the other parameters
fixed.

REMARK 3.3. Theorems 3.1 and 3.2 yield the edge universality of the k-point
correlation functions at the edge for k = 1 and k ≥ 1, respectively.

Thus, to complete the proof of Theorem 1.1, by the Green function comparison
method it suffices to show (i) and (ii) above for

Xv = X, Xw = X̃,

where X†X denotes the correlation matrix and X̃†X̃ is the corresponding covari-
ance matrix. Here condition (i) is guaranteed by Theorem 2.3.

Verifying condition (ii) entails the heart of this paper. In previous works men-
tioned earlier, the authors use a Lindeberg replacement strategy, as in [2, 27]. These
proofs proceed via showing that the distribution of some smooth functional of the
Green function (e.g., Gii , m and 〈x1,Gx1〉) of the two matrix ensembles is identi-
cal asymptotically provided that the first two (in some cases up to four) moments
of all matrix elements of these two ensembles are identical. For instance, if one
needs to show the edge universality of two covariance matrices X̃v and X̃w, the
basic strategy is to express

EF
(
G̃v) − EF

(
G̃w) =

MN∑
γ=1

EF(G̃γ ) − EF(G̃γ−1),(3.5)

where F is a smooth function and G̃γ denotes the Green function of the ensemble
X̃γ (with X̃0 = X̃v) which is obtained from X̃γ−1 by replacing the distribution of
the ij th entry of X̃γ−1[ij ] with X̃w[ij ] [here γ = i + (j − 1)M] so that X̃MN =
X̃w. The next step is to obtain an estimate

EF(G̃γ ) − EF(G̃γ−1) = o
(
N−2)

(3.6)



EDGE UNIVERSALITY OF CORRELATION MATRICES 1747

for each of the N2 terms in the sum (3.5). Usually (3.6) is obtained by resolvent
expansions, perturbation theory and the fact that X̃γ and X̃γ−1 differ by a single
entry and the first few moments of these two distributions are the same.

But clearly the above method does not work in our case, since the entries within
the same column are not independent and, therefore, one cannot replace the dis-
tribution of a single entry of a column without changing the distribution of all
the other M − 1 entries. To circumvent this, in [24] a new telescoping argument
consisting of O(N) ensembles was used for the comparison of Green functions.
The idea is that instead of replacing entries one at a time, one can replace the en-
tries of the data matrix column by column and thus require only O(N) ensembles.
This argument from [24] is adapted here along with new insights for dealing with
nonindependence of the entries and is outlined below.

Now we set Xv = X,Xw = X̃. For 1 ≤ γ ≤ N , let Xγ denote the random matrix
whose j th column is the same as that of Xv if j > γ and that of Xw otherwise.
In particular, we can choose X0 = Xv = X and XN = Xw = X̃, where X is cor-
relation matrix and X̃ the corresponding covariance matrix of X. As before, we
define

mγ (z) = 1

N
TrGγ (z), Gγ (z) = (

X†
γ Xγ − z

)−1
,

so that we have telescoping sum

E
wF

(
Nη0�mw(z)

) − E
vF

(
Nη0�mv(z)

)
(3.7)

=
N∑

γ=1

EF
(
Nη0�mγ (z)

) − EF
(
Nη0�mγ−1(z)

)
.

Clearly, (3.2) will follow from (3.7) and the following estimate:∣∣EF
(
Nη0�mγ (z)

) − EF
(
Nη0�mγ−1(z)

)∣∣ ≤ Oε

(
N−1−δ)(3.8)

for some δ > 0. Our strategy to obtain (3.8) is the following. First notice that

EF
(
Nη0�mγ (z)

) − EF
(
Nη0�mγ−1(z)

)
= EF

(
η0�TrGγ (z)

) − EF
(
η0�TrGγ−1(z)

)
.

Let X(γ ) be the M × (N − 1) matrix obtained by removing the γ th column of Xγ ,
which has the same distribution of the M × (N − 1) matrix obtained by removing
the γ th column of Xγ−1. Define

G(γ ) = ((
X(γ ))†(

X(γ )) − z
)−1

, μ = η0�TrG(γ ) − �η0

z
.(3.9)

In Lemma 4.1 we will establish (3.8) by showing that(
EF(η0�TrGγ ) − EF(μ)

) − (
EF(η0�TrGγ−1) − EF(μ)

)
(3.10)

= Oε

(
N−7/6)

.
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Once (3.8) is verified, the main result follows by virtue of Theorems 3.1 and 3.2
as mentioned in the beginning of this section. Notice that since the columns of the
data matrix Xv, Xw are assumed to be independent, μ is independent of the γ th
column of Xv, Xw or, equivalently, the γ th column of Xγ , Xγ−1.

Thus, it boils down to establishing (3.10) in the case X0 = Xv = X and XN =
Xw = X̃. Our proof relies on the key observation that even if the entries of the
γ th column vector xγ are not independent, the difference between the moments
of the entries of the standardized vector xγ and its unnormalized counterpart x̃γ

is at least an order of magnitude smaller than those of x̃γ . For instance, since
xiγ = O(N−1/2) for 1 ≤ i ≤ M , for two independent ensembles of covariance
matrices X̃v and X̃w satisfying (1.1) and (1.2), we have the bound

E
(̃
xv
iγ

)3 − E
(̃
xw
iγ

)3 = O
(
N−3/2)

.(3.11)

On the other hand, if x̃γ is the unnormalized counterpart of xγ , as shown in Lem-
ma 5.5,

E(̃xiγ )3 − E(xiγ )3 = O
(
N−5/2)

.(3.12)

The above observation combined with a resolvent expansion—detailed in Lemmas
4.3, 5.4 and 5.5—gives (3.10).

4. Proof of the main result. In this section we will prove (3.10) in the case
X0 = Xv = X and XN = Xw = X̃. As discussed above, it implies (3.2) in Theo-
rem 3.1. Similarly, one can prove (3.3) and (3.4) in Theorems 3.1 and 3.2, which
complete the proof of Theorem 1.1, the main result of this paper.

It is easy to see that (3.10) is a direct consequence of the following lemma.

LEMMA 4.1. Let X be a M × N random matrix whose columns satisfy the
large deviation bounds (2.10), (2.11) and (2.12), for any Ai ∈ C and Bij ∈ C and
for any ζ > 0. The columns of X are assumed to be mutually independent. Fur-
thermore, assume that the first column is given by

Xi1 = x̃i1

‖̃x1‖2
, 1 ≤ i ≤ M,(4.1)

where x̃i1 are i.i.d. random variables with mean zero and variance M−1 and have
an exponentially decay in the tails as given by (1.2).

Let X̃ be the random matrix whose entries have the same distribution as X

except for the first column, and the first column of X̃ is given by

X̃i1 = x̃i1,

where x̃i1 are as in (4.1). The columns of X̃ are also assumed to be mutually
independent. Let m,m̃ denote the empirical Stieltjes transforms of X†X, X̃†X̃.
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Then for any function F satisfying (3.1), there exists δ > 0, ε0 > 0 depending
only on C1 such that for any ε < ε0 and for any real number E satisfying

|E − λ+| ≤ N−2/3+ε, η0 = N−2/3−ε,(4.2)

we have ∣∣EF
(
Nη0�m(z)

) − EF
(
Nη0�m̃(z)

)∣∣ ≤ Oε

(
N−1−δ), z = E + iη0.(4.3)

Note: In this lemma X and X̃ are neither pure correlation nor pure covariance
matrices, but their respective first columns are distributed according to the stan-
dardized data matrix and raw data matrix.

REMARK 4.2. Under condition (4.2) (see [24]), we have the bound

C−1 ≤ ∣∣mW(z)
∣∣ ≤ C, �mW(z) = Oε

(
N−1/3)

, z = E + iη0.(4.4)

First we collect some properties on submatrices of a generic M × N matrix Q

which can be proved using standard results from linear algebra. Let Q(1) be the
M × (N − 1) matrix obtained by removing the first column of Q. Define

G
(1)
Q = ((

Q(1))†(
Q(1)) − z

)−1
, G(1)

Q = ((
Q(1))(Q(1))† − z

)−1
.(4.5)

Then by definition, G
(1)
Q is a (N − 1) × (N − 1) matrix, G(1)

Q is a M × M matrix
and we have the identity

TrG(1)
Q (z) − Tr G(1)

Q (z) = M − N + 1

z
.(4.6)

Using the Cauchy interlacing theorem (see Equation (8.5) of [10]), it can be shown
that

TrG(1)
Q (z) − TrGQ(z) = O

(
η−1)

, η = �z.(4.7)

PROOF OF LEMMA 4.1. First we note that from Theorem 1.5 of [24], the
conclusions of Theorem 2.3 hold for both X and X̃.

Let X(1) be the M × (N −1) matrix obtained by removing the first column of X.
Define

G(1) = ((
X(1))†(

X(1)) − z
)−1

, G(1) = ((
X(1))(X(1))† − z

)−1(4.8)

and as in (3.9) set

μ = η0�TrG(1) − �η0

z
.(4.9)

We will first verify that

EF(η0�TrG) − EF(μ)

= EF (1)(μ)(�y1 + �y2 + �y3) + EF (2)(μ)
(1

2(�y1)
2 + �y1�y2

)
(4.10)

+ EF (3)(μ)
(1

6(�y1)
3) + Oε

(
N−4/3)

,



1750 N. S. PILLAI AND J. YIN

where F (s) denotes the sth derivative of F and yk’s are defined as

yk := η0zmW(−B)k−1(
x1,

(
G(1))2x1

)
,(4.11)

where x1 denotes the first column of X. Define the quantity

B := −zmW

[(
x1, G(1)(z)x1

) −
( −1

zmW(z)
− 1

)]
.(4.12)

First, recall the following identity (see (6.23) of [24]):

TrG − TrG(1) + z−1 = (
G11 + z−1) + (x1,X

(1)G(1)G(1)X(1)†x1)

−z − z(x1, G(1)(z)x1)
(4.13)

= zG11
(
x1,

(
G(1))2

(z)x1
)
.

Furthermore, as proved in Lemma 2.5 of [24],

G11(z) = 1

−z − z(x1, G(1)(z)x1)
that is

(4.14) (
x1, G(1)(z)x1

) = −1

zG11(z)
− 1.

From (4.12) and (4.14) we obtain that

B = −zmW

[( −1

zG11(z)
− 1

)
−

( −1

zmW(z)
− 1

)]
= mW − G11

G11
.

Fix ζ > 0. From (2.14), Remark 4.2 and the bound |G11| ≤ |mW |+O(1), it follows
that for z = E + iη0,

|B| = |mW − G11|
|G11| ≤ Oε

(
N−1/3) � 1(4.15)

with ζ -high probability (see Definition 2.1). Therefore, with ζ -high probability,
we have the identity

G11 = mW

B + 1
= mW

∑
k≥0

(−B)k.(4.16)

Define y to be the l.h.s. of (4.13) multiplied by η0, that is,

y = η0
(
TrG − TrG(1) + z−1)

,

so that using (4.13) and (4.16), we obtain

y = η0zG11
(
x1,

(
G(1))2x

) =
∞∑

k=1

yk.
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Since x1 satisfies (2.10), (2.11) and (2.12), and G(1) is independent of x1, using
Lemma 2.2, we infer that for some Cζ > 0

∣∣(x1,
(

G(1))2x1
)∣∣ ≤ 1

M
Tr

(
G(1))2 + ϕCζ

M

√
Tr

∣∣G(1)
∣∣4(4.17)

with ζ -high probability. Using its definition, we bound Tr(G(1))2 as∣∣Tr
(

G(1))2∣∣ ≤ Tr
∣∣G(1)

∣∣2 = �Tr G(1)

η0
(4.18)

= Oε

(
N4/3) + �TrG

η0
= Oε

(
N4/3)

,

where for the last two inequalities we have used (4.6), (4.7), (2.13) and (4.4).
Similarly, we bound the last term of (4.17) with

Tr
∣∣G(1)

∣∣4 ≤ η−2
0 Tr

∣∣G(1)
∣∣2 ≤ Oε

(
N8/3)

(4.19)

and obtain that ∣∣(x1,
(

G(1))2x1
)∣∣ ≤ Oε

(
N1/3)

.

Equation (4.15) and the fact |z| + |mW(z)| = O(1) yields that

|yk| ≤ Oε

(
N−k/3)

and |y| ≤ Oε

(
N−1/3)

(4.20)

holds with ζ -high probability. Consequently, using (3.1) and (4.13), we see that
the expansion

F(η0�TrG) − F(μ) =
3∑

k=1

1

k!F
(k)(Nη0�m̃(1)(z)

)
(�y)k + Oε

(
N−4/3)

(4.21)

holds with ζ -high probability. From the bounds on yk’s obtained above, equation
(4.10) follows.

Now we estimate G̃, which is defined as

G̃ = (
X̃†X̃ − z

)−1
.

Let X̃(1) be the M × (N − 1) matrix obtained by removing the first column of X̃

and x̃1 denote its first column. Proceeding as in the previous calculations,

EF(η0�Tr G̃) − EF(μ)

= EF (1)(μ)(�ỹ1 + �ỹ2 + �ỹ3) + EF (2)(μ)
(1

2(�ỹ1)
2 + �ỹ1�ỹ2

)
(4.22)

+ EF (3)(μ)
(1

6(�ỹ1)
3) + Oε

(
N−4/3)

,

where

ỹk = η0zmW(−B̃)k−1(̃
x1,

(
G(1))2x̃1

)
,

B̃ = −zmW

[(̃
x1, G(1)(z)̃x1

) −
( −1

zmW(z)
− 1

)]
.
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Notice that μ appears in (4.22) because the entries of X̃(1) and X(1) are assumed
to be identically distributed.

Define the matrices

Y = (
G(1))2

, Z = G(1).(4.23)

The symmetric matrices Y and Z are independent of x1 and x̃1. Clearly, YZ = ZY .
Therefore, using the fact that z, mW ∼ 1, we can write

yk = η0
∑

0≤n<k

Ck,n(x1, Yx1)(x1,Zx1)
n,

where Ck,n = O(1). Let Y = (x1, Yx1) and Z = (x1,Zx1). Then (4.10) can be
written as

EF(η0�TrG) − EF(μ)

= EF (1)(μ)�
(
η0

∑
0≤n<k≤3

Ck,nY Z n

)

+ EF (2)(μ)η2
0

(
1

2

(�(C1,0Y)
)2 + �(C1,0Y)�(C2,0Y)(4.24)

+ �(C1,0Y)�(C2,1Y Z)

)
+ EF (3)(μ)η3

0

(
1

6

(�(C1,0Y)
)3

)
+ Oε

(
N−4/3)

.

Define Ỹ = (̃x1, Y x̃1) and Z̃ = (̃x1,Zx̃1). Using (4.22) and proceeding similarly
as before, we obtain that (4.24) also holds for the case when G, Y and Z are
replaced with G̃, Ỹ and Z̃ , respectively. The following is the key technical lemma
of this paper whose proof is deferred to the next section.

LEMMA 4.3. Let f : R → R be a function satisfying

max
x

∣∣f (x)
∣∣(|x| + 1

)−C ≤ C(4.25)

for some constant C. Let A be of the form

ηa
0

a∏
i=1

(x, Yix)

b∏
j=1

(x,Zj x),(4.26)

where Yi = Y or Y ∗ and Zj = Z or Z∗ with Y,Z as defined in (4.23) and a, b are
integers with 1 ≤ a ≤ 3,1 ≤ a+b ≤ 3. Then, under the assumptions of Lemma 4.1,
we have ∣∣E(

f (μ)A
) − E

(
f (μ)Ã

)∣∣ ≤ Oε

(
N−7/6)

,(4.27)

where Ã is obtained by replacing x with x̃ in (4.26).
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Taking the difference of (4.24) and the equation obtained by replacing (4.24)
with G̃, Ỹ and Z̃ , we deduce that the difference

EF(η0�TrG) − EF(η0�Tr G̃)

can be approximated by the sum of O(1) number of terms of the form E(f (μ)A)−
E(f (μ)Ã), where A is as in (4.26) and f is equal to F (1), F (2) and F (3). There-
fore, by applying Lemma 4.3, we conclude that Lemma 4.1 holds with any δ < 1/6
and the proof is finished. �

Finally, we are ready to give the proof of the main result of this paper:

PROOF OF THEOREM 1.1. By the Green function comparison theorem dis-
cussed in Section 3, it only remains to prove that Theorems 3.1 and 3.2 hold for
the case

Xv = X, Xw = X̃.

For simplicity, we will only prove (3.2) of Theorem 3.1; the rest can be proved
using almost identical arguments.

For 1 ≤ γ ≤ N , let Xγ denote the random matrix whose j th column is the
same as that of Xv if j ≥ γ and that of Xw otherwise; in particular, X0 = Xv and
XN = Xw. As before, we define

mγ (z) = 1

N
TrGγ (z), Gγ (z) = (

X†
γ Xγ − z

)−1
.

We have the telescoping sum,

E
wF

(
Nη0�mw(z)

) − E
vF

(
Nη0�mv(z)

)
(4.28)

=
N∑

γ=1

EF
(
Nη0�mγ (z)

) − EF
(
Nη0�mγ−1(z)

)
.

Applying Lemma 4.1 on Xγ and Xγ−1 gives the estimate∣∣EF
(
Nη0�mγ (z)

) − EF
(
Nη0�mγ−1(z)

)∣∣ ≤ Oε

(
N−1−δ)(4.29)

for some δ > 0. Now (3.2) follows from (4.28) and (4.29) and the proof is finished.
�

5. Moment computations. In this section we prove Lemma 4.3. For nota-
tional convenience, let us denote x = x1, x̃ = x̃1. We will also write

x(k) = xk1, x̃(k) = x̃k1, 1 ≤ k ≤ M.

Recall μ from (4.9). For the rest of this section, a, b will denote two integers with

1 ≤ a ≤ 3, 1 ≤ a + b ≤ 3.

Before stating the key results of this section, let us first give some definitions.
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DEFINITION 5.1 [I(A,k)]. For any partition A of the set {1,2, . . . ,2a + 2b},
and a vector k = {k1, k2, . . . , k2a+2b}, ki ∈ {1,2, . . . ,M}, define the binary func-
tion I(A,k) as follows. The function I(A,k) is equal to 1 if (1) for any i, j in the
same block of A we have ki = kj , (2) if i, j are in different blocks of A, we have
ki �= kj ; otherwise I(A,k) = 0.

EXAMPLE 5.2. If

A = {{1}, {2,4}, {3,5,6}}(5.1)

and a + b = 3, then

I(A,k) = 1(k2 = k4)1(k3 = k5 = k6)1(k1 �= k2)1(k2 �= k3)1(k1 �= k3).

DEFINITION 5.3 [N (A,1), N (A,2) and I(A,3)]. Given a partition A of the
set {1,2, . . . ,2a + 2b}, let N (A,1) be the number of the blocks in A that contain
only one element of the set {1,2, . . . ,2a + 2b}. Let N (A,2) be the number of the
blocks in A of the form {k2i−1, k2i} with i > a. Note that N (A,2) depends on a

and b in addition to A. Let I(A,3) be equal to one if and only if a + b = 3 and A is
composed of 2 blocks with three elements in each block.

The proof of Lemma 4.3 relies on Lemmas 5.4 and 5.5 stated below and proved
at the end of this section.

LEMMA 5.4. Recall the matrices Y,Z from (4.23). Then for any ε > 0 the
following estimate

M∑
k1,k2,...,k2a+2b=1

I(A,k)ηa
0(Yk1k2 · · ·Yk2a−1k2a

)(Zk2a+1k2a+2 · · ·Zk2a+2b−1k2a+2b
)

= Oε

((
N2/3)a+b(

N1/2)N (A,1)+I(A,3)
(
N1/3)N (A,2))

holds with ζ -high probability for any fixed ζ > 0. The result also holds if any of
the Y,Z are replaced by their complex conjugates Y ∗,Z∗, respectively.

LEMMA 5.5. Let ỹi be i.i.d. random variables such that

Eỹi = 0, E(ỹi)
2 = M−1, 1 ≤ i ≤ M,

and have a subexponential decay as in (1.2). Let A be a partition of the set
{1,2, . . . ,2a + 2b} and let

yi := ỹi

(
∑

j ỹ2
j )1/2

.
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Then for any vector k = (k1, k2, . . . , k2a+2b) and for any ε > 0, we have

E

(
I(A,k)

2a+2b∏
i=1

yki

)
− E

(
I(A,k)

2a+2b∏
i=1

ỹki

)
(5.2)

= Oε

(
N−(a+b)−max{N (A,1),1}).

With the above two lemmas in hand, we are now ready to give the proof of
Lemma 4.3.

PROOF OF LEMMA 4.3. We will only prove the case when

Yi = Y, Zi = Z(5.3)

for all i and, thus,

A = ηa
0(x, Yx)a(x,Zx)b.

The other cases can be proved similarly. First, let us write (4.26) as

ηa
0(x, Yx)a(x,Zx)b

= ∑
A

M∑
k1,k2,...,k2a+2b=1

ηa
0 I(A,k)

2a+2b∏
i=1

x(ki)(Yk1k2 · · ·Yk2a−1k2a
)

× (Zk2a+1k2a+2 · · ·Zk2a+2b−1k2a+2b
),

where the summation index A ranges over all the partitions of the set {1,2, . . . ,

2a + 2b}. Taking expectations, and using the fact that x is independent of Y , Z

and μ, leads to

Ef (μ)A = ∑
A

M∑
k1,k2,...,k2a+2b=1

E

(
ηa

0 I(A,k)

×
2a+2b∏
i=1

x(ki)(Yk1k2 · · ·Yk2a−1k2a
)

× (Zk2a+1k2a+2 · · ·Zk2a+2b−1k2a+2b
)

)
(5.4)

= ∑
A

(
EI(A,k)

2a+2b∏
i=1

x(ki)

)

×
(

Ef (μ)

M∑
k1,k2,...,k2a+2b=1

I(A,k)ηa
0(Yk1k2 · · ·Yk2a−1k2a

)

× (Zk2a+1k2a+2 · · ·Zk2a+2b−1k2a+2b
)

)
,
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where the last inequality follows from the fact that (EI(A,k)
∏2a+2b

i=1 x(ki)) is
independent of Y,Z. Combining (5.4), Lemmas 5.4 and 5.5, we deduce that∣∣E(

f (μ)A
) − E

(
f (μ)Ã

)∣∣
≤ ∑

A

Oε

((
N−1/3)a+b(

N1/2)N (A,1)+I(A,3)
(
N−1)max{N (A,1),1}(

N1/3)N (A,2))(5.5)

≤ ∑
A

Oε

((
N−a/3)(

N1/2)N (A,1)+I(A,3)
(
N−1)max{N (A,1),1}(

N1/3)N (A,2)−b)
.

Now we claim that the terms in the r.h.s. of (5.5) are bounded by Oε(N
−7/6). In-

deed, note that N (A,1) > 0 implies I(A,3) = 0. Therefore, the worse case scenario
is the case in which

a = 1, b = N (A,2) and N (A,1) = 1,

since by definition we have N (A,2) ≤ b. But it is easy to see the above scenario
cannot occur, since if the first two conditions hold, then it follows that N (A,1) = 0
or 2. Thus, we have finished the proof of Lemma 4.3. �

PROOF OF LEMMA 5.4. Note that all of the bounds in this lemma hold with
ζ -high probability, not in expectation. For simplicity, we will subsume this in the
notation.

First let us prove a slightly different result. Define the binary function Ĩ(A,k)

[similar to I(A,k)] as follows. Ĩ(A,k) is equal to 1 in the following scenarios:
(1) for any i, j in the same block of A we have ki = kj , (2) if i, j are in different
blocks of A, we have ki �= kj except that if one of the indices i, j is in the block of
A which contains exactly two elements, then ki is allowed to be equal to kj . In all
other instances Ĩ(A,k) = 0. For instance, in the previous example (5.1), we have

Ĩ(A,k) = 1(k2 = k4)1(k3 = k5 = k6)1(k1 �= k3).

We first claim that
M∑

k1,k2,...,k2a+2b=1

Ĩ(A,k)ηa
0(Yk1k2 · · ·Yk2a−1k2a

)(Zk2a+1k2a+2 · · ·Zk2a+2b−1k2a+2b
)

(5.6)
= Oε

((
N2/3)a+b(

N1/2)N (A,1)+I(A,3)
(
N1/3)N (A,2))

.

Let us first prove (5.6) when I(A,3) = 0. Define the functions

g1(m) := Tr
∣∣Zm

∣∣, g2(m) :=
√(

Tr|Z|2m
)
, 1 ≤ m ≤ 2a + b.

We will show that the

l.h.s. of (5.6) ≤ Oε

(
ηa

0
(
N1/2)N (A,1)

∏
i

gαi
(mi)

)
,(5.7)

where αi ∈ {1,2} and mi ≤ 2a + b.
To this end, we will use the following 2–1–3 rule:



EDGE UNIVERSALITY OF CORRELATION MATRICES 1757

• 2: If the index i appears in a block of A which contains exactly two elements,
first sum up over the index ki . Then estimate the remaining terms with absolute
sum. For example, let A = {{1}, {2,3}, {4}}. Recall that Y = Z2,∣∣∣∣ ∑

k1,k2,k3

Ĩ(A,k)Yk1k2Zk2k4

∣∣∣∣ =
∣∣∣∣∑
k �=l

(YZ)kl

∣∣∣∣ ≤ ∑
kl

∣∣(YZ)kl

∣∣ = ∑
kl

∣∣(Z3)
kl

∣∣.
• 1: Next do the summation over the index ki if i appears in the block of A which

contains only one element as follows:∑
l

∣∣(Zm)
kl

∣∣ ≤ CN1/2
√(|Z|2m

)
kk,

∑
kl

∣∣(Zm)
kl

∣∣ ≤ CN

√
Tr|Z|2m.

In the above inequalities, we have used the Cauchy–Schwarz and the fact that
Z is a symmetric matrix. Note that each summation of the above kind brings an
extra N1/2 factor.

• 3: Finally, sum up over the other indices. After the first two steps, (5.6) will be
reduced to the product of following terms:(

N1/2)N (A,1)
,

∣∣TrZr
∣∣, √

Tr|Z|2r , r ≤ 2a + b,

and terms of the form∑
k

m∏
i=1

∣∣(Zmi
)
kk

∣∣ n∏
j=1

√(|Z|2nj
)
kk, 2 ≤ m + n.(5.8)

If m+n = 2, then using the Cauchy–Schwarz inequality, (5.8) can be estimated
as

m∏
i=1

n∏
j=1

∑
k

∣∣(Zmi
)
kk

∣∣√(|Z|2nj
)
kk ≤

m∏
i=1

n∏
j=1

√
Tr|Z|2mi

√
Tr|Z|2nj .(5.9)

For m + n > 2, we bound m + n − 2 of them [|(Zmi )kk| or
√

(|Z|2nj )kk] by the
maximum as follows:∣∣(Zmi

)
kk

∣∣ ≤ max
k

∣∣(Zmi
)
kk

∣∣ ≤
√

Tr|Z|2mi ,√(|Z|2nj
)
kk ≤ max

k

√(|Z|2nj
)
kk ≤

√
Tr|Z|2nj ,

to reduce to the case of m + n = 2 and use the bound (5.9).

Let us give an example in the case a = 1, b = 2 and A = {{1}, {2,3}, {4,5,6}}.
Then the term (5.6) in this case reduces to∑

k1k2k4

η0Yk1k2Zk2k4Zk4k4 ≤ ∑
k1k4

η0
∣∣(Z3)

k1k4

∣∣|Zk4k4 |,
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where the above inequality is obtained by applying rule 2. Next, applying rule 1
yields

≤ ∑
k4

η0N
1/2

√(|Z|6)
k4k4

|Zk4k4 |

and, finally, applying rule 3 leads to the bound

≤ ∑
k4

η0N
1/2

√
Tr|Z|6

√
Tr|Z|2.

Using this 2–1–3 rule described above, we obtain (5.7). By the definition of the
2–1–3 rule, it is easy to see that ∑

i

mi = 2a + b.(5.10)

Recall η0 = N−2/3−ε . Using (4.18) and (4.19), we deduce that if αimi �= 1, then

gαi
(mi) ≤ Oε

(
N2mi/3)

.

For αimi = 1, using (4.6), (4.7), (2.13) and mW = O(1), we see that g1(1) =
Oε(N). Thus,

gαi
(mi) ≤ Oε

(
N2mi/3)(

N1/3)1(αimi=1)
.(5.11)

Combining equations (5.7)–(5.11), we have the

l.h.s. of equation (5.6)
(5.12)

= Oε

(
N1/2)N (A,1)

N2a/3+2b/3(
N1/3)#{i : aimi=1}

.

Now notice that by the definition, the term g1(1) in (5.7) can only be created during
the first step of the 2–1–3 rule, that is, the 2 rule, and, therefore, we deduce that

N (A,2) = #{i :αimi = 1},
which completes the proof of the claim made in (5.6) for the case I(A,3) = 0.

Now consider the case I(A,3) = 1. Using the fact that Y,Z are symmetric matri-
ces and the relation Y = Z2, we deduce that the term∑

Ĩ(A,k)(Yk1k2 · · ·Yk2a−1k2a
)(Zk2a+1k2a+2 · · ·Zk2a+2b−1k2a+2b

)

reduces to one of the following situations:∑
k1,k2,...,k2a+2b

Ĩ(A,k)(Yk1k2 · · ·Yk2a−1k2a
)(Zk2a+1k2a+2 · · ·Zk2a+2b−1k2a+2b

)

(5.13)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

M∑
k1,k2=1

Z
m1
k1k1

Z
m2
k1k2

Z
m3
k2k2

,

M∑
k1,k2=1

Z
m1
k1k2

Z
m2
k1k2

Z
m3
k1k2

,
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for mi ∈ {1,2}, i ∈ {1,2,3}. We bound the first scenario above as∣∣∣∣∑
k1k2

(
Zm1

)
k1k1

(
Zm2

)
k1k2

(
Zm3

)
k2k2

∣∣∣∣
≤ ∑

k1k2

∣∣(Zm1
)
k1k1

(
Zm2

)
k1k2

∣∣ max
k

∣∣(Zm3
)
kk

∣∣(5.14)

≤ ∑
k1k2

∣∣(Zm1
)
k1k1

(
Zm2

)
k1k2

∣∣√Tr|Z|2m3 .

Using rule 1 and rule 3 above yields∑
k1k2

∣∣(Zm1
)
k1k1

(
Zm2

)
k1k2

∣∣ ≤ CN1/2
√

Tr|Z|2m1

√
Tr|Z|2m2

and, thus,

η0
a

M∑
k1,k2=1

∣∣Zm1
k1k1

Z
m2
k1k2

Z
m3
k2k2

∣∣ ≤ Cη0
aN

1/2
√

Tr|Z|2m1

√
Tr|Z|2m2

√
Tr|Z|2m3

= Oε

(
N−2a/3+1/2)

Oε

(
N2/3(m1+m2+m3)

)
= Oε

(
N2/3(a+b)+1/2)

,

where in the last inequality we have used the fact that
∑

i mi = 2a + b. For the
second case in (5.13), first we note

max
kl

∣∣(Zm)
kl

∣∣ ≤
√

Tr|Z|2m.

Now using the Cauchy–Schwarz inequality,∑
k1,k2

∣∣(Zm1
)
k1k2

(
Zm2

)
k1k2

(
Zm3

)
k1k2

∣∣ ≤
√

Tr|Z|2m1

√
Tr|Z|2m2

√
Tr|Z|2m3

and, thus,

η0
a

M∑
k1,k2=1

∣∣Zm1
k1k2

Z
m2
k1k2

Z
m3
k1k2

∣∣ ≤ Cη0
a

√
Tr|Z|2m1

√
Tr|Z|2m2

√
Tr|Z|2m3

= Oε

(
N−2a/3)

Oε

(
N2/3(m1+m2+m3)

)
= Oε

(
N2/3(a+b)).

Summarizing the above computations, and noticing that N (A,1) = N (A,2) =
0 when I(A,3) = 1, we obtain the bound

ηa
0 Ĩ(A,k)

∣∣(Yk1k2 · · ·Yk2a−1k2a
)(Zk2a+1k2a+2 · · ·Zk2a+2b−1k2a+2b

)
∣∣

= Oε

(
N2/3(a+b)+1/2)

= Oε

((
N2/3)a+b(

N1/2)I(A,3)
)
,
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proving the claim (5.6) when I(A,3) = 1.
Now we return to prove Lemma 5.4. One can see that for any partition A of

the set {1,2, . . . ,2a + 2b} and a vector k, the function I(A,k) can be written as
linear combinations of the functions Ĩ(Ai,k) for some partitions Ai’s of the set
{1,2, . . . ,2a + 2b} such that

N (Ai,1) ≤ N (A,1), N (Ai,2) ≤ N (A,2), IAi,3 = I(A,3).

For instance, for A given in (5.1),

Ĩ(A,k) = 1(k2 = k4)1(k3 = k5 = k6)1(k1 �= k3),

we have the identity

I(A,k) = Ĩ(A,k) − Ĩ(A1,k) − Ĩ(A2,k),

where A1 = {{1}, {2,3,4,5,6}} and A2 = {{1,2,4}, {3,5,6}}. Now the lemma fol-
lows from (5.6) and the proof is finished. �

PROOF OF LEMMA 5.5. For any k1, k2, . . . , km ∈ {1,2, . . . ,M} and m ∈ N,
by definition we have

EI(A,k)

m∏
i=1

yki
= EI(A,k)

∏m
i=1 ỹki

(
∑

j ỹ2
j )m/2

(5.15)

= EI(A,k)

m∏
i=1

ỹki

[
1 −

M∑
j=1

(
1

M
− ỹ2

j

)]−m/2

.

Using large deviation bounds, it is easy to see that for any ε > 0

M∑
j=1

(
1

M
− ỹ2

j

)
= Oε

(
N−1/2)

.(5.16)

Therefore, by the Taylor expansion,

EI(A,k)

2a+2b∏
i=1

yki
− EI(A,k)

2a+2b∏
i=1

ỹki

(5.17)

=
∞∑

n=1

CnE

[
I(A,k)

(2a+2b∏
i=1

ỹki

)(
M∑

r1,r2,...,rn=1

n∏
j=1

(
1

M
− ỹ2

rj

))]
,

where Cn = Ca,b,n is a combinatorial factor. Using (5.16), the r.h.s. of equation
(5.17) may be expressed as

=
n0∑

n=1

CnE

[
I(A,k)

(2a+2b∏
i=1

ỹki

)(
M∑

r1,r2,...,rn=1

n∏
j=1

(
1

M
− ỹ2

rj

))]
(5.18)

+ Oε

((
N−1/2)2a+2b+n0

)
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for some fixed n0 ∈ N (say, n0 = 20).
Since n0, a, b = O(1), the combinatorial factors do not increase with N , that is,

Cn = O(1), and, thus, we can bound

E

[
I(A,k)

(2a+2b∏
i=1

ỹki

)(
n∏

j=1

(
1

M
− ỹ2

rj

))]
(5.19)

as follows. Notice that the number of distinct indices ki in (5.19) is equal to the
number of blocks in the partition A. Thus, for a given set of values for the indices
r1, r2, . . . , rn, the term (5.19) is nonzero only if at least N (A,1) of the indices rj
belong to the set {k1, k2, . . . , k2a+2b}. The above observation also implies that for
(5.19) to be nonzero we must have

n ≥ N (A,1).(5.20)

Furthermore, the indices rj which do not belong to the set {k1, k2, . . . , k2a+2b}
must appear more than once since E(1/M − y2

rj
) = 0. This crucial observation

implies that, if the term (5.19) is nonzero and

N (A,1) = 0 then n ≥ 2.(5.21)

Therefore, the number of nonzero terms in the sum

M∑
r1,r2,...,rn=1

E

[
I(A,k)

(2a+2b∏
i=1

ỹki

)(
n∏

j=1

(
1

M
− ỹ2

rj

))]
(5.22)

is O((N1/2)n−N (A,1)), and each of these terms are of the size Oε(N
−(a+b)−n),

yielding

M∑
r1,r2,...,rn=1

E

[
I(A,k)

(2a+2b∏
i=1

ỹki

)(
n∏

j=1

(
1

M
− ỹ2

rj

))]
(5.23)

≤ Oε

(
N−(a+b)−n/2−N (A,1)/2)

.

Combining (5.23) with (5.20) and the observation made in (5.21), we obtain that

M∑
r1,r2,...,rn=1

E

[
I(A,k)

(2a+2b∏
i=1

ỹki

)(
n∏

j=1

(
1

M
− ỹ2

rj

))]
(5.24)

≤ Oε

(
N−(a+b)−max{N (A,1),1}),

obtaining (5.2), and the proof is finished. �
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