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GENERAL THEORY FOR INTERACTIONS IN SUFFICIENT CAUSE
MODELS WITH DICHOTOMOUS EXPOSURES
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Harvard University and University of Washington

The sufficient-component cause framework assumes the existence of sets
of sufficient causes that bring about an event. For a binary outcome and an
arbitrary number of binary causes any set of potential outcomes can be repli-
cated by positing a set of sufficient causes; typically this representation is not
unique. A sufficient cause interaction is said to be present if within all rep-
resentations there exists a sufficient cause in which two or more particular
causes are all present. A singular interaction is said to be present if for some
subset of individuals there is a unique minimal sufficient cause. Empirical
and counterfactual conditions are given for sufficient cause interactions and
singular interactions between an arbitrary number of causes. Conditions are
given for cases in which none, some or all of a given set of causes affect the
outcome monotonically. The relations between these results, interactions in
linear statistical models and Pearl’s probability of causation are discussed.

1. Introduction. Rothman’s sufficient-component cause model [25] postu-
lates a set of different causal mechanisms, each sufficient to bring about the out-
come under consideration. Rothman refers to these hypothesized causal mecha-
nisms as “sufficient causes,” conceiving of them as minimal sets of actions, events
or states of nature which together initiate a process resulting in the outcome.

Thus each sufficient cause is hypothesized to consist of a set of “component
causes.” Whenever all components of a particular sufficient cause are present, the
outcome occurs; within every sufficient cause, each component would be neces-
sary for that sufficient cause to lead to the outcome. Models of this kind have a
long history: a simple version is considered by Cayley [4]; it also corresponds to
the INUS model introduced by Mackie [14] in the philosophical literature; see
also [3] for an early application. Much recent work has sought to relate the model
to other causal modeling frameworks [9, 11, 35, 37, 39].

In traditional sufficient-component cause [SCC] models, the outcome and all the
component causes are events, or equivalently, binary random variables. An SCC
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model with k component causes implies a set of 2k potential outcomes. Conversely,
in Section 2 we show that for any given list of potential outcomes there is at least
one SCC model which represents this set. However, in general there may be many
such SCC models.

One question concerns whether, given a set of potential outcomes implied by
some (unknown) SCC model, one may infer that two component causes are present
within some sufficient cause in the unknown SCC model. In general, it is possi-
ble that two SCC models both imply the same set of potential outcomes, yet al-
though A and B occur together in some sufficient component cause in the first
model, A and B are not present together in any sufficient component cause in
the second. In [39] two sufficient component causes are said to form a “sufficient
cause interaction” (or to be “irreducible”) if they are both present within at least
one sufficient cause in every SCC model for a given set of potential outcomes. Of
course, in general, the distribution of potential outcomes for a given population
is also unknown, though it is constrained (marginally) by the observed data from
a randomized experiment. In [39] empirical conditions are given which are suffi-
cient to ensure that for any set of potential outcomes compatible with experimental
data, all compatible SCC models will contain a sufficient cause involving A and B .
These results were an improvement upon earlier empirical tests for the existence
of a two-way interaction in an SCC model [26], which required the assumption
of monotonicity; see also [1, 12, 13, 17, 38]. The new results are able to establish
the existence of an interaction in situations where monotonicity does not hold. In
this paper we develop empirical conditions that are sufficient for the existence of a
sufficient cause containing a given subset of an arbitrary number of variables, both
with and without monotonicity assumptions.

As illustrative motivation for the theoretical development, we will consider data
presented in a study by [31], summarized in Table 1, from a case-control study of
bladder cancer examining possible three-way interaction between smoking (1 =
present), and genetic variants on NAT2 (0 = R, 1 = S genotype) and NAT1 (1 for
the *10 allele) for Caucasian individuals. We return to this example at the end
of this paper to examine the evidence for a sufficient cause containing all three:
smoking, the S genotype on NAT2 and the *10 allele on NAT1.

The remainder of this paper is organized as follows: Section 2 presents
the sufficient-component cause framework as formalized by VanderWeele and
Robins [39]. Section 3 describes general n-way irreducible interactions (aka “suf-
ficient cause interactions”) and characterizes these in terms of potential outcomes.
Section 4 derives empirical conditions for the existence of irreducible interactions
both with and without monotonicity assumptions. Section 5 describes “singular”
interactions which arise in genetic contexts, provides a characterization, derives
empirical conditions that are sufficient for their existence and relates this notion to
Pearl’s probability of causation. Section 6 discusses the relation between singular
and sufficient cause interactions and linear statistical models. Section 7 provides
some comments regarding stronger interpretations of sufficient cause models, and
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TABLE 1
Case-control data from a study of bladder cancer [31]

Cases Controls
Smoking NAT2 NAT1*10 (n = 215) (n = 191) Odds ratio (95% CI)

0 0 0 6 13 1
0 0 1 8 16 1.1 (0.3, 3.9)
0 1 0 16 31 1.1 (0.4, 3.5)
0 1 1 6 10 1.3 (0.3, 5.3)
1 0 0 42 32 2.8 (1.1, 8.3)
1 0 1 41 26 3.4 (1.2, 10.1)
1 1 0 61 51 2.6 (0.9, 7.3)
1 1 1 35 12 6.3 (2.0, 20.3)

returns to the data presented in Table 1. Finally Section 8 offers some possible
extensions to the present work.

2. Notation and basic concepts. We will use the following notation: An event
is a binary random variable taking values in {0,1}. We use uppercase roman to in-
dicate events (X), boldface to indicate sets of events (C), and lowercase to indicate
specific values both for single random variables (X = x), and, with slight abuse
of notation, for sets {C = c} ≡ {∀i, (C)i = (c)i} and {a ≤ b} ≡ {∀i, (a)i ≤ (b)i};
1 and 0 are vectors of 1’s and 0’s; the cardinality of a set is denoted |C|. We use
fraktur (B) to denote collections of sets of events.

The complement of some event X is denoted by X ≡ 1 − X. A literal event
associated with X, is either X or X. For a given set of events C, L(C) is the
associated set of literal events

L(C) ≡ C ∪ {X|X ∈ C}.
For a literal L ∈ L(C), and an assignment c to C, (L)c denotes the value assigned
to L by c. The conjunction of a set of literal events B = {F1, . . . ,Fm} ⊆ L(C) is
defined as ∧

(B) ≡
m∏

i=1

Fi = min{F1, . . . ,Fm};

note that
∧

(B) = 1 if and only if for all i, Fi = 1. We also define B1 ∧ B2 ≡∧{B1,B2}. We will use I(A) to denote the indicator function for event A. There is
a simple correspondence between conjunctions of literals and indicator functions:
let B = {X1, . . . ,Xs} and C = {Y1, . . . , Yt }, then∧({X1, . . . ,Xs, Y 1, . . . , Y t }) = 1 ⇔ I

({B = 1,C = 0}) = 1.(2.1)

Similarly, the set of literals corresponding to an assignment c to C is defined

B[c] ≡ {
L|L ∈ L(C), (L)c = 1

}
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so that
∧

(B[c]) = I(C = c); note that |B[c]| = |C|. The disjunction of a set of binary
random variables is defined as∨({Z1, . . . ,Zp}) ≡ max{Z1, . . . ,Zp};
note that

∨
({Z1, . . . ,Zp}) = 1 if and only if for some j , Zj = 1. Similarly we let

B1 ∨ B2 ≡ ∨{B1,B2}. Given a collection of sets of literals B = {C1, . . . ,Cq}, we
define ∨∧

(B) ≡ ∨
i

(∧
(Ci )

)
.

We use Ṗ(L(C)) to denote the set of subsets of L(C) that do not contain both X

and X for any X ∈ C; more formally,

Ṗ
(
L(C)

) ≡ {
B|B ⊂ L(C) for all X ∈ C, {X,X} � B

}
.

Note that if B ∈ Ṗ(L(C)), and |B| = |C|, so that for all C ∈ C, exactly one of C or
C is in B, then an assignment of values b to B induces a unique assignment c to C
and vice versa.

2.1. Potential outcomes models. Consider a potential outcome model [27, 28,
30] with s binary factors, X1, . . . ,Xs , which represent hypothetical interventions
or causes, and let D denote some binary outcome of interest. We use � to denote
the sample space of individuals in the population and use ω for a particular sam-
ple point. Let Dx1,...,xs (ω) denote the counterfactual value of D for individual ω

if the cause Xj were set to the value xj for j = 1, . . . , s. The potential outcomes
framework we employ makes two assumptions: first, that for a given individual
these counterfactual variables are deterministic; second, in asserting that the coun-
terfactual Dx1,...,xs (ω) is well defined, it is implicitly assumed that the value that D

would take on for individual ω is determined solely by the values that X1, . . . ,Xs

are assigned for this individual, and not the assignments made to these variables for
other individuals ω′. This latter assumption is often called “no interference” [7],
or the stable unit treatment value assumption (SUTVA) [29]. An example of a sit-
uation where this assumption might fail is a vaccine trial where there is “herd”
immunity.

We will use Dx1,...,xs (ω), DX1=x1,...,Xs=xs (ω), Dc and DC=c(ω), with C =
{X1, . . . ,Xs} interchangeably. In this setting there will be 2s potential outcomes
for each individual ω in the population, one potential outcome for each possible
value of (X1, . . . ,Xs); we use D(C;ω) to denote the set of all such potential out-
comes for an individual, and D(C;�) for the population. Note that if G = g(C)

is some deterministic function of C, then GC=c(ω) = g(c), and hence is constant;
thus our usage is consistent with the definition of (L)c in the previous section.

The actual observed value of D for individual ω will be denoted by D(ω) and
similarly the actual value of X1, . . . ,Xs by X1(ω), . . . ,Xs(ω). Actual and coun-
terfactual outcomes are linked by the consistency axiom which requires that

DX1=X1(ω),...,Xs=Xs(ω)(ω) = D(ω),(2.2)
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TABLE 2
All potential outcomes and actual outcomes for three binary causes, X1, X2 and X3, in

a population with two individuals

Individual D000 D001 D010 D011 D100 D101 D110 D111 (X1,X2,X3) D

1 0 1 1 0 0 1 1 0 (1,0,1) 1
2 0 1 1 0 0 1 1 1 (0,0,0) 0

that is, that the value of D which would have been observed if X1, . . . ,Xs had been
set to the values they actually took is equal to the value of D which was in fact
observed [22]. It follows from this axiom that DX1(ω),...,Xs(ω)(ω) = D is observed,
but it is the only potential outcome for individual ω that is observed.

EXAMPLE 1. Consider a binary outcome D with three binary causes of in-
terest, X1, X2 and X3. Suppose that the population consists of two individuals.
The potential outcomes (left-hand side) and actual outcomes (right-hand side) are
shown in Table 2.

We use the notation A ⊥⊥ B|C to indicate that A is independent of B , condi-
tional on C in the population distribution.

2.2. Definitions for sufficient cause models. The following definitions gener-
alize those in [39] to sub-populations, ∅ �= �∗ ⊆ �:

DEFINITION 2.1 (Sufficient cause). A subset B of the putative (binary) causes
L(C) for D forms a sufficient cause for D (relative to C) in sub-population �∗
if for all c ∈ {0,1}|C| such that (

∧
(B))c = 1, Dc(ω) = 1 for all ω ∈ �∗ ⊆ �. [We

require that there exists a c∗ such that (
∧

(B))c∗ = 1.]

Observe that if B is a sufficient cause for D, then any intervention setting the
variables C to c with (

∧
(B))c = 1 will ensure that Dc(ω) = 1 for all ω ∈ �∗.

We restrict the definition to nonempty sets �∗, to preclude every set B being a
sufficient cause in an empty sub-population. Likewise we require that there exists
some c∗ such that (

∧
(B))c∗ = 1 in order to avoid logically inconsistent conjunc-

tions, for example, X1 ∧ X1, being classified (vacuously) as a sufficient cause. As
a direct consequence, for any binary random variable X, at most one of X and X

appear in any sufficient cause B.

PROPOSITION 2.2. In �∗ if B is a sufficient cause for D relative to C, then B
is sufficient for D in any set C∗ with B ⊆ C∗ ⊆ C.

B may be sufficient for D relative to C in �∗, but not relative to C′ ⊃ C.
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PROPOSITION 2.3. If B is a sufficient cause for D relative to C in �∗, then B
is sufficient for D relative to C in any subset ∅ �= �∗∗ ⊆ �∗.

B may be sufficient for D relative to C in �∗, but not in �′ ⊃ �∗.

DEFINITION 2.4 (Minimal sufficient cause). A set B ⊂ L(C) forms a mini-
mal sufficient cause for D (relative to C) in sub-population �∗ if B constitutes a
sufficient cause for D in �∗, but no proper subset B∗ ⊂ B also forms a sufficient
cause for D in �∗.

Note that (in some �∗) B may be a minimal sufficient cause for D relative to C,
but not relative to C∗ ⊂ C, so the analog of Proposition 2.2 does not hold. For indi-
vidual 2 in Table 2 {X1,X3} is a minimal sufficient cause relative to {X1,X2,X3}.
However, if we suppose that for ω = 2, X2 is not caused by X1 and X3, so for
all x1, x3, X2X1=x1,X3=x3(ω = 2) = X2(ω = 2), then {X1,X3} is not a minimal
sufficient cause relative to {X1,X3}.

DX1=0,X3=1(ω = 2) = DX1=0,X2=0,X3=1(ω = 2) = 1,

DX1=1,X3=1(ω = 2) = DX1=1,X2=0,X3=1(ω = 2) = 1

[since X2(ω = 2) = 0]; hence X3 is a sufficient cause of D relative to {X1,X3};
hence {X1,X3} is not minimal relative to {X1,X3} for ω = 2.

Similarly, if B is a minimal sufficient cause for D relative to C in �∗, it does not
follow that B is a minimal sufficient cause for D relative to C in subsets �∗∗ ⊆ �∗,
so the analog to Proposition 2.3 does not hold. In particular, it may be the case that
for all ω ∈ �∗, B is not a minimal sufficient cause for D in {ω}.

In the language of digital circuit theory [15], sufficient causes are termed “im-
plicants,” and minimal sufficient causes are “prime implicants.”

DEFINITION 2.5 (Determinative set of sufficient causes). A set of sufficient
causes for D, B = {B1, . . . ,Bn} ⊆ Ṗ(L(C)), is said to be determinative for D

(relative to C) in sub-population �∗ if for all ω ∈ �∗ and for all c, Dc(ω) = 1 if
and only if (

∨∧
(B))c = 1.

We will refer to a determinative set of sufficient causes for D as a sufficient
cause model. Observe that in any sub-population �∗ for which there exists a de-
terminative set of sufficient causes, the vectors of potential outcomes for D are
identical, so D(C,ω) = D(C,ω′) for all ω,ω′ ∈ �∗.

DEFINITION 2.6 (Nonredundant set of sufficient causes). A determinative set
of sufficient causes B, for D, is said to be nonredundant (in �∗, relative to C) if
there is no proper subset B∗ ⊂ B that is also determinative for D.



2134 T. J. VANDERWEELE AND T. S. RICHARDSON

Note that sufficient causes are conjunctions, while sets of sufficient causes form
disjunctions of conjunctions; minimality refers to the components in a particular
conjunction, that each component is required for the conjunction to be sufficient
for D; nonredundancy implies that each conjunction is required for the disjunction
of the set of conjunctions to be determinative. If for some set of sufficient causes
B ⊆ Ṗ(L(C)), for all X ∈ C, and all B ∈ B, either X ∈ B or X ∈ B, then B is a
nonredundant set of sufficient causes.

EXAMPLE 1 (Revisited). The set B1 = {{X1,X2}, {X2,X3}, {X2,X3}} forms
a determinative set of sufficient causes for the individual ω = 2, since

Dc(ω = 2) = (
(X1 ∧ X2) ∨ (X2 ∧ X3) ∨ (X2 ∧ X3)

)
c(2.3)

as does B2 = {{X1,X3}, {X2,X3}, {X2,X3}}:
Dc(ω = 2) = (

(X1 ∧ X3) ∨ (X2 ∧ X3) ∨ (X2 ∧ X3)
)
c.(2.4)

As this example shows, determinative sets of sufficient causes are not, in gen-
eral, unique.

2.3. Sufficient cause representations for a population. As noted, if B is a suf-
ficient cause for D in �∗, then all the units in �∗ will have D = 1 for any assign-
ment c to C, such that (

∧
(B))c = 1. In most realistic settings it is unlikely that

any set B will be sufficient to ensure D = 1 in an entire population. Consequently,
different sets of sufficient causes will be required within different sub-populations.
A sufficient cause representation is a set of sub-populations, each with its own
determinative sufficient cause representation.

DEFINITION 2.7. A sufficient cause representation (A,B) for D(C;�) is an
ordered set A = 〈A1, . . . ,Ap〉 of binary random variables, with (Ai)c = Ai for
all i, c, and a set B = 〈B1, . . . ,Bp〉, with Bi ∈ Ṗ(L(C)), such that for all ω, c,
Dc(ω) = 1 ⇔ for some j,Aj (ω) = 1 and (

∧
(Bj ))c = 1.

Note that the binary random variables Ai and the sets Bi are naturally paired
via the orderings of A and B; we will refer to a pair (Ai,Bi) as occurring in the
representation. The requirement that (Ai)c = Ai for all i, c implies that A ∩ C =
∅, and further that the Ai are unaffected by interventions on the Xi ; this is in
keeping with the interpretation of the Ai as defining pre-existing sub-populations
with particular sets of potential outcomes for D.

PROPOSITION 2.8. If (A,B) is a sufficient cause representation for D(C;�),
then Bi is a sufficient cause of D in the sub-population in which Ai(ω) = 1.
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PROPOSITION 2.9. If (A,B) is a sufficient cause representation for D(C;�),
then for all A∗ ⊆ A, if

∅ �= �A∗
A\A∗ ≡ {

ω| for all Ai ∈ A,Ai(ω) = 1 iff Ai ∈ A∗}
,

then

BA∗ ≡ {
Bi |Bi ∈ B;Ai ∈ A∗}

forms a determinative set of sufficient causes (relative to C) for �A∗
A\A∗ .

Note that �A∗
A\A∗ consists of the sub-population in which Ai(ω) = 1 for all Ai ∈

A∗ and Aj(ω) = 0 for all Aj ∈ A \ A∗.

PROOF. Suppose for some ω ∈ �A∗
A\A∗ , Bj ∈ BA∗

, and c we have (
∧

(Bj ))c =
1. Since ω ∈ �A∗

A\A∗ , Aj(ω) = 1. It then follows from the definition of a sufficient
cause representation that Dc(ω) = 1. Conversely, suppose Dc(ω) = 1. As (A,B)

is a sufficient cause representation, for some j , Aj(ω) = 1 and (
∧

(Bj ))c = 1.
Since, by hypothesis, ω ∈ �A∗

A\A∗ , it follows that Aj ∈ A∗, hence Bj ∈ BA∗
. �

THEOREM 2.10. For any D(C;�), there exists a sufficient cause representa-
tion (A,B).

PROOF. Let p = 2|C|, and define B ≡ {B|B ⊆ Ṗ(L(C)), |B| = |C|} ≡ 〈B1,

. . . ,Bp〉, ordered arbitrarily. Further define Ai(ω) ≡ DBi=1(ω). Given an arbitrary
c, for some j , B[c] = Bj , by construction of B. We then have

Dc(ω) = 1 ⇔ DBj=1(ω) = 1 ⇔ Aj(ω) = 1 and
(∧

(Bj )
)

c
= 1

as required. The last step follows since by definition B[c] = 1 if and only if C = c.
�

[39] prove this for the case of |C| = 2; see also [9] and [35] for discussion of
the case |C| = 1.

EXAMPLE 1 (Revisited). The construction given in the proof of Theorem 2.10
would yield the following sets of sufficient causes to represent D(C;�) shown in
Table 2:

B = 〈B1, . . . ,B8〉
= 〈{X1,X2,X3}, {X1,X2,X3}, {X1,X2,X3}, {X1,X2,X3},(2.5)

{X1,X2,X3}, {X1,X2,X3}, {X1,X2,X3}, {X1,X2,X3}〉
with A1 = I

({ω = 2}),A4 = A5 = A8 = 0,A2 = A3 = A6 = A7 = 1.
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3. Irreducible conjunctions. We saw in Example 1 above with ω = 2 that
an individual’s potential outcomes may be such that there are two determinative
sets of common causes B and B′ and {X1,X2} is in B, but not in B′. However,
certain conjunctions are such that in every representation either the conjunction is
present or it is contained in some larger conjunction; such conjunctions are said to
be “irreducible.”

DEFINITION 3.1. B ∈ Ṗ(L(C)) is said to be irreducible for D(C,�) if in
every representation (A,B) for D(C,�), there exists Bi ∈ B, with B ⊆ Bi .

[39] also refer to irreducibility of B for D(C,�) as a “sufficient cause interac-
tion” between the components of B. (Note, however, that if B is irreducible, this
does not, in general, imply that B is either a minimal sufficient cause, or even a
sufficient cause, only that there is a sufficient cause that contains B.) It can be
shown (via Theorem 3.2 below) that {X2,X3} and {X2,X3} are irreducible for
D(C;�) in Table 2. In Section 7 we provide an interpretation of irreducibility in
terms of the existence of a mechanism involving the variables in B. Using C1 ∪̇C2
to indicate the disjoint union of C1 and C2, we now characterize irreducibility:

THEOREM 3.2. Let C = C1 ∪̇C2, B ∈ Ṗ(L(C1)), |B| = |C1|. Then B is irre-
ducible for D(C,�) if and only if there exists ω∗ ∈ � and values c∗

2 for C2 such
that: (i) DB=1,C2=c∗

2
(ω∗) = 1; (ii) for all L ∈ B, DB\{L}=1,L=0,C2=c∗

2
(ω∗) = 0.

Thus B is irreducible if and only if there exists an individual in � who would
have response D = 1 if every literal in B is set to 1, but D = 0 whenever one literal
is set to 0 and the rest to 1 (in some context C2 = c∗

2). Note that conditions (i)
and (ii) are equivalent to

DB=1,C2=c∗
2

(
ω∗) − ∑

L∈B

DB\{L}=1,L=0,C2=c∗
2

(
ω∗)

> 0.(3.1)

PROOF. (⇒) We adapt the proof of Theorem 2.10 to show that if for all ω ∈ �

and assignments c∗
2 to C2, at least one of (i) or (ii) does not hold, then there exists

a representation (A,B) for D(C,�) such that for all Bi ∈ B, B � Bi . Define

B† ≡ 〈
B†

i

〉 ≡ {
B∗|B∗ ∈ Ṗ

(
L(C)

)
, |B∗| = |C|,B � B∗}

,

B‡ ≡ 〈
B‡

i

〉 ≡ {
B∗|B∗ ∈ Ṗ

(
L(C)

)
, |B∗| = |C| − 1,B \ B∗ = {L},L ∈ B

}
,

under arbitrary orderings. Thus B† is the set of subsets of exactly |C| literals that
do not include B as a subset, while B‡ contains those subsets of size |C| − 1 that
contain all but one literals in B.

For B†
i ∈ B† define the corresponding A

†
i (ω) ≡ DB†

i =1(ω);
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For B‡
i ∈ B‡ define A

‡
i (ω) ≡ DB‡

i =1,Li=0(ω)DB‡
i =1,Li=1(ω), where {Li} ≡

B \ B‡
i .

The representation is given by (A,B) ≡ (A† ∪A‡,B† ∪B‡), where A† ≡ 〈A†
i 〉,

A‡ ≡ 〈A‡
i 〉. To see this, first note that if for some ω and c, there is a pair (Aj ,Bj )

in (A,B) such that Aj(ω) = 1 and (
∧

(Bj ))c = 1. Then by construction of A† and
A‡ it follows that Dc(ω) = 1. For the converse, suppose that for some c and ω,
Dc(ω) = 1. There are two cases to consider:

(
∧

(B))c = 0. In this case B � B[c], so for some j , B†
j = B[c], hence A

†
j (ω) ≡

DB†
j=1(ω) = Dc(ω) = 1, as required.

(
∧

(B))c = 1. Let c be partitioned as (c1, c2). Since (i) holds with c∗
2 = c2,

(ii) does not. Thus for some L ∈ B, DB\{L}=1,L=0,C2=c2(ω) = 1. By construc-
tion of B‡, for some j , B‡

j = B[c] \ {L}, so (
∧

(B‡
j ))c = 1. Since 1 = Dc(ω) =

DB\{L}=1,L=1,C2=c2(ω), we have A
‡
j (ω) = 1, as required.

(⇐) Suppose for a contradiction, that for some ω∗ and c∗
2, (i) and (ii) hold,

but B is not irreducible. Then there exists a representation (A,B) such that for
all Bi ∈ B, B � Bi . By (i), DB=1,c∗

2
(ω∗) = 1. Thus for some pair (Aj ,Bj ),

Aj(ω
∗) = 1 and Bj ⊆ B ∪ B[c∗

2]. Since B � Bj there exists some L ∈ B \
Bj , but then since Aj(ω

∗) = 1 and (
∧

(Bj ))B\{L}=1,L=0,C2=c∗
2

= 1, we have
DB\{L}=1,L=0,C2=c∗

2
(ω∗) = 1, which is a contradiction. �

COROLLARY 3.3. If B is irreducible for D(C,�), then for any �∗ ⊃ �, B is
irreducible for D(C,�∗).

PROOF. By Theorem 3.2, since if � satisfies (i) and (ii), then so does �∗. �

3.1. B irreducible for D(C,�) with |B| = |C|. In the special case where
|B| = |C|, the concepts of minimal sufficient cause for some ω∗ and irreducibility
coincide.

PROPOSITION 3.4. If B ∈ Ṗ(L(C)) and |B| = |C|, then B is a minimal suf-
ficient cause for some ω∗ ∈ � relative to C if and only if B is irreducible for
D(C,�).

PROOF. If |B| = |C|, then condition (i) in Theorem 3.2 (taking C2 = ∅) holds
if and only if B is a sufficient cause for D for ω∗, and similarly condition (ii) holds
if and only if B is a minimal sufficient cause for D (for ω∗). �

Thus we have the following:
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COROLLARY 3.5. If B ∈ Ṗ(L(C)), |B| = |C| and B is a minimal sufficient
cause for D for some ω∗ ∈ �, then B ∈ B for every representation (A,B) for
D(C,�).

PROOF. Immediate from Proposition 3.4. �

3.2. B irreducible for D(C,�) with |B| < |C|. When |B| < |C|, the con-
ditions for irreducibility and for being a minimal sufficient cause are logically
distinct. Condition (i) in Theorem 3.2 requires DB=1,C2=c∗

2
(ω∗) = 1 for one

assignment c∗
2 (and some ω∗), while if B is a sufficient cause (for ω∗), then this

condition is required to hold for all assignments c∗
2; in contrast condition (ii) in

Theorem 3.2 requires that there exists a single c∗
2 (and some ω∗) such that for all

L ∈ B, DB\{L}=1,L=0,C2=c∗
2
(ω∗) = 0, while for B to be a minimal sufficient cause

for ω∗ merely requires that for all L ∈ B, there exists an assignment cL
2 such that

DB\{L}=1,L=0,C2=cL
2
(ω∗) = 0.

EXAMPLE 1 (Revisited). Let C = {X1,X2,X3}, � = {2}. Relative to C,
{X1,X2} is a minimal sufficient cause for ω = 2 since D111(2) = D110(2) = 1,
and D011(2) = D100(2) = 0. However {X1,X2} is not irreducible for D(C,�) be-
cause we have D101(2) = D010(2) = 1, hence condition (ii) in Theorem 3.2 is not
satisfied for either X3 = 0, or X3 = 1. Conversely {X1} is irreducible for � = {2}
since D111(2) = 1, while D011(2) = 0, but {X1} is not a sufficient cause because
D100(2) = 0.

Though irreducibility of B for D(C,�) neither implies, nor is implied by B be-
ing a minimal sufficient cause for some ω ∈ �, it does imply that every sufficient
cause representation for D(C,�) contains at least one conjunction Bj of which B
is a (possibly proper) subset. However, prima facie this still leaves open the pos-
sibility that, for example, every representation either includes B ∪ {L} or B ∪ {L},
for some L, but no representation includes both. However, this cannot occur:

COROLLARY 3.6. Let C = C1 ∪̇C2, B ∈ Ṗ(L(C1)), if B is irreducible for
D(C,�) then there exists a set B∗ ∈ Ṗ(L(C)), with |B∗| = |C| such that in every
representation (A,B) for D(C,�) there exists Bj ∈ B, with B ⊆ Bj ⊆ B∗.

Thus irreducibility of B further implies that there is a set B∗ of size |C| such
that in every representation there is at least one conjunct containing B that is itself
contained in B∗. However, it should be noted that, in general, there may be more
than one conjunct Bj with B ⊆ Bj ⊆ B∗.

PROOF. Immediate from Theorem 3.2, taking B∗ = B ∪ B[c∗
2]. �
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Finally, we note that a conjunction that is both irreducible and a minimal suf-
ficient cause corresponds to an “essential prime implicant” in digital circuit the-
ory [15]. The Quine–McCluskey algorithm [16, 20, 21] finds the set of essential
prime implicants for a given Boolean function, which here corresponds to the po-
tential outcomes D(C,ω) for an individual.

3.3. Enlarging the set of potential causes. As noted in Section 2.2 a set B
may be a minimal sufficient cause for C but not a superset C′. Irreducibility is also
not preserved without further conditions. To state these conditions that preserve
irreducibility we require the following:

DEFINITION 3.7. X′ is said to be not causally influenced by a set C if for all
ω ∈ �, the potential outcomes X′

C=c(ω) are constant as c varies.

We will also assume that if every X′ ∈ C′ is not causally influenced by C, then
the following relativized consistency axiom holds:

DC=c,C′=C′(ω)(ω) = DC=c(ω),(3.2)

that is, that if variables in C′ are not causally influenced by the variables in C,
then the counterfactual value of D intervening to set C to c is the same as the
counterfactual value of D intervening to set C to c and the variables in C′ to the
values they actually took on.

We now have the following corollary to Theorem 3.2:

COROLLARY 3.8. Let C = C1 ∪̇C2, B ∈ Ṗ(L(C1)), |B| = |C1|. If B is irre-
ducible for D(C,�), C′ ∩ C = ∅ and for all X′ ∈ C′, X′ is not causally influenced
by C, then B is irreducible for D(C ∪ C′,�).

PROOF. By Theorem 3.2 there exists ω∗ ∈ � and an assignment c∗
2 to C2

such that (i) and (ii) hold. Let c′ = C′(ω∗). Since variables in C′ are not causally
influenced by C, for all assignments b,

DB=b,C2=c∗
2,C′=c′

(
ω∗) = DB=b,C2=c∗

2,C′=C′(ω∗)
(
ω∗) = DB=b,C2=c∗

2

(
ω∗);

the second equality here follows from (3.2). It follows that ω∗ and (c∗
2, c′) obey (i)

and (ii) in Theorem 3.2 with respect to C ∪ C′. �

The assumption that every variable in C′ is not causally influenced by C, is
required because otherwise we may have C′(ω∗) �= (C′)B=b∗(ω∗) for some as-
signment b∗ to B. For example, let C = {X1,X2,X3}, and suppose that

DX1=x1,X2=x2,X3=x3(ω) = x3,

(X3)X1=x1,X2=x2(ω) = x1 ∧ x2
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for all ω ∈ �. In this case {X1,X2} is irreducible for D({X1,X2},�), but not for
D({X1,X2,X3},�). We saw earlier that if B is a minimal sufficient cause for C,
then this does not imply that B is a minimal sufficient cause with respect to subsets
of C. Here we see that if B is irreducible with respect for D(C,�), then this does
not imply irreducibility for supersets C∗ ⊃ C, unless every variable in C∗ \ C is
not causally influenced by a variable in C.

4. Tests for irreducibility. In this section we derive empirical conditions
which imply that a given conjunction B is irreducible for D(C,�). Our first ap-
proach is via condition (3.1).

4.1. Adjusting for measured confounders. To detect that (3.1) holds requires
us to identify the mean of potential outcomes in certain subpopulations. This is
only possible if we have no unmeasured confounders [22, 24]:

DEFINITION 4.1. A set of covariates W suffices to adjust for confounding of
(the effect of) C on D if

DC=c ⊥⊥ C|W = w(4.1)

for all c, w.

PROPOSITION 4.2. If a set W suffices to adjust for confounding of C on D

and P(C = c,W = w) > 0, then

E[DC=c|W = w] = E[D|C = c,W = w].
The proof of this is standard and hence omitted.
Note that if W is sufficient to adjust for confounding of C on D, then W is also

sufficient to adjust for confounding of B on D, where B ∈ Ṗ(L(C)), |B| = |C|.
4.2. Tests for irreducibility without monotonicity.

THEOREM 4.3. Let C = C1 ∪̇C2, B ∈ Ṗ(L(C1)), |B| = |C1|. If W is sufficient
to adjust for confounding of C on D, and for some c2, w,

0 < E[D|B = 1,C2 = c2,W = w],
(4.2)

− ∑
L∈B

E
[
D|B \ {L} = 1,L = 0,C2 = c2,W = w

]
,

then B is irreducible for D(C,�).

PROOF. We prove the contrapositive. Suppose that B is not irreducible for
D(C,�). Then by Theorem 3.2, for all ω ∈ �, and all c2,

DB=1,C2=c2(ω) − ∑
L∈B

DB\{L}=1,L=0,C2=c2(ω) ≤ 0.
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Hence for any w,

E

[
DB=1,C2=c2 − ∑

L∈B

DB\{L}=1,L=0,C2=c2

∣∣∣W = w
]

≤ 0.

Applying Proposition 4.2 to each term implies the negation of (4.2). �

The condition provided in Theorem 4.3 can be empirically tested with t-test
type statistics if W consists of a small number of categorical or binary vari-
ables or using regression or inverse probability of treatment weighting methods
[23, 41–43], otherwise.

It follows from Corollary 3.8 that condition (4.2) further establishes that B is
irreducible for D(C ∪ C′,�) so long as every variable in C′ is not causally influ-
enced by variables in C.

It may be shown that condition (4.2) is the sole restriction on the law of
(D,C,W) implied by the negation of irreducibility.

4.3. Graphs. In the next section we develop more powerful tests under mono-
tonicity assumptions. However, to state these conditions we first introduce some
concepts from graph theory:

DEFINITION 4.4. A graph G defined on a set B is a collection of pairs of
elements in B, G ≡ {E|E = {B1,B2} ⊆ B,B1 �= B2}.

This is the usual definition of a graph, except that the vertex set here is a set of
literals. We will refer to sets in G as edges, which we will represent pictorially as
B1 B2.

DEFINITION 4.5. Two elements L,L∗ ∈ B are said to be connected in G if
there exists a sequence L = L1, . . . ,Lp = L∗ of distinct elements in B such that
{Li,Li+1} ∈ G for i = 1, . . . , p − 1.

The sequence of edges joining L and L∗ is said to form a path in G.

DEFINITION 4.6. A graph G on B is said to form a tree if |G| = |B| − 1, and
any pair of distinct elements in B are connected in G.

In a tree there is a unique path between any two elements.

PROPOSITION 4.7. Let T be a tree on B. For each element R ∈ B there is a
natural bijection

φT
R : B \ {R} ↔ T

given by φT
R(L) = E = {L′,L} where E ∈ T is the last edge on a path from R to L.
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It is not hard to show that for a graph G, if the bijections described in Proposi-
tion 4.7 exist, then G is a tree.

THEOREM 4.8 (Cayley [5]). On a set B there are |B||B|−2 different trees.

4.4. Monotonicity. Sometimes it may be known that a certain cause has an
effect on an outcome that is either always positive or always negative.

DEFINITION 4.9. Bi has a positive monotonic effect on D relative to a set B
(with Bi ∈ B) in a population � if for all ω ∈ � and all values b−i for the variables
in B \ {Bi}, DB\{Bi}=b−i ,Bi=1(ω) ≥ DB\{Bi}=b−i ,Bi=0(ω).

Similarly we say that L has a negative monotonic effect relative to B ∪ {L} if
L has a positive monotonic effect relative to B ∪ {L}. Note that the case in which
DB\{Bi}=b−i ,Bi=1(ω) = DB\{Bi}=b−i ,Bi=0(ω) for all ω, and hence Bi has no effect
on D relative to B, is included as a degenerate case.

The definition of a positive monotonic effect requires that an intervention does
not decrease D for every individual, not simply on average, regardless of the other
interventions taken. This is thus a strong assumption; see [40] for further discus-
sion.

Monotonic Boolean functions have been studied in other contexts:

PROPOSITION 4.10. If for all Ci ∈ C, Ci has a (positive or negative) mono-
tonic effect on D relative to C, and k = |C|, then the number of distinct sets of po-
tential outcomes in D(C,�) is given by the kth Dedekind number (Dedekind [8],
Wiedemann [44]).

4.5. Tests for irreducibility with monotonicity. Knowledge of the monotonic-
ity of certain potential causes allows for the construction of more powerful statis-
tical tests for irreducibility than those given by Theorem 4.3.

THEOREM 4.11. Let C = C1 ∪̇C2, B = (B+ ∪̇B′) ∈ Ṗ(L(C1)), |B| = |C1|
and suppose that every L ∈ B+ has a positive monotonic effect on D relative to C.
If for some tree T on B+, ω∗ ∈ � and some c2, we have

0 < DB=1,C2=c2

(
ω∗)

,
(4.3)

− ∑
L∈B

DB\{L}=1,L=0,C2=c2

(
ω∗) + ∑

E∈T

DB\E=1,E=0,C2=c2

(
ω∗)

,

then B is irreducible for D(C,�).

If we know that X has a negative monotonic effect on D, then we may use this
theorem to construct more powerful tests of the irreducibility of sets containing X
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with respect to D(C,�). Under the assumption that every L ∈ C has a monotonic
effect on D, we have shown via direct calculation using cddlib [10] that for
|C| ≤ 4, the conditions in (4.3) are the sole restrictions on the law of (D,C,W)

implied by the negation of irreducibility. We conjecture that this holds in general.

PROOF. By Theorem 3.2 it is sufficient to prove that under the monotonicity
assumption on B+, (4.3) implies (3.1). Suppose that (3.1) does not hold, so that for
all values c2, and all ω∗ ∈ �,

DB=1,C2=c2

(
ω∗) − ∑

L∈B

DB\{L}=1,L=0,C2=c2

(
ω∗) ≤ 0.

Then for each ω∗ ∈ �, there exists R ∈ B+ such that

DB=1,C2=c2

(
ω∗) − ∑

L∈B′∪{R}
DB\{L}=1,L=0,C2=c2

(
ω∗) ≤ 0.

For a given tree T, the remaining terms on the right-hand side of (4.3) are

− ∑
L∈B+\{R}

DB\{L}=1,L=0,C2=c2

(
ω∗) + ∑

E∈T

DB\E=1,E=0,C2=c2

(
ω∗)

= ∑
L∈B+\{R}

(
DB\φT

R (L)=1,φT
R (L)=0,C2=c2

(
ω∗) − DB\{L}=1,L=0,C2=c2

(
ω∗))

,

by Proposition 4.7. Finally since φT
R(L) = {L,L′} ⊆ B+, L′ has a positive mono-

tonic effect on D relative to C, thus no term in the sum is positive. Consequently
for all ω∗ ∈ �, (4.3) does not hold for any tree T. �

EXAMPLE 2. In the case B = {X1,X2} = B+ = C, there is only one tree on
B+, consisting of a single edge X1 X2. Thus if X1 and X2 have a positive
monotonic effect on D (relative to C) then Theorem 4.11 implies that if the fol-
lowing inequality holds for some ω ∈ �,

D11(ω) − (
D10(ω) + D01(ω)

) + D00(ω) > 0,

then {X1,X2} is irreducible for D(C,�).

EXAMPLE 3. If B = {X1,X2,X3} = B+ = C, then there are three trees on
B+; see Figure 1. These correspond to the following conditions:

(a) D111(ω) − (
D110(ω) + D101(ω) + D011(ω)

) + (
D010(ω) + D001(ω)

)
> 0,

(b) D111(ω) − (
D110(ω) + D101(ω) + D011(ω)

) + (
D100(ω) + D001(ω)

)
> 0,

(c) D111(ω) − (
D110(ω) + D101(ω) + D011(ω)

) + (
D100(ω) + D010(ω)

)
> 0.

Thus B is irreducible for D(C,�) if at least one holds for some ω ∈ �.
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FIG. 1. The three trees on {X1,X2,X3}.

COROLLARY 4.12. Let C = C1 ∪̇C2, B = (B+ ∪̇B′) ∈ Ṗ(L(C1)), |B| = |C1|.
Suppose that every L ∈ B+ has a positive monotonic effect on D relative to C, and
W is sufficient to adjust for confounding of C on D. If for some tree T on B+, and
some c2, w we have

0 < E[D|B = 1,C2 = c2,W = w]
− ∑

L∈B

E
[
D|B \ {L} = 1,L = 0,C2 = c2,W = w

]
(4.4)

+ ∑
E∈T

E[D|B \ E = 1,E = 0,C2 = c2,W = w],

then B is irreducible for D(C,�).

PROOF. Directly analogous to the proof of Theorem 4.3. �

The special case of the previous Corollary where |B+| = |C| = 2, and W = ∅,
appears in Rothman and Greenland [26]; see also Koopman [13]. Theorem 4.8
implies that if every literal in B has a positive monotonic effect on D, then we
will have |B||B|−2 conditions to test, each of which is sufficient to establish the
irreducibility of B for D(C,�). As before, the conditions (4.4) may be tested via
t-test type statistics or using various statistical models.

As with the results in Section 4.2, we may apply Corollary 3.8 to establish that B
is irreducible for D(C ∪ C′,�) if every variable in C′ is not causally influenced by
variables in C.

4.6. Tests for a minimal sufficient cause under monotonicity. As noted in Sec-
tion 3.1 if |B| = |C|, then irreducible conjunctions are also minimal sufficient
causes. Thus in this special case, the tests of irreducibility given in Theorem 4.3
and Corollary 4.12 also establish that B is a minimal sufficient cause relative to C.
When |B| < |C| these tests do not in general establish this. However, under positive
monotonicity assumptions on C2, such tests may be obtained by taking c2 = 0:

PROPOSITION 4.13. Let C = C1 ∪̇C2, B ∈ Ṗ(L(C1)), |B| = |C1|. Sup-
pose every L ∈ C2 has a positive monotonic effect on D relative to C. If (i)
DB=1,C2=0(ω

∗) = 1 and (ii) for all L ∈ B, DB\{L}=1,L=0,C2=0(ω
∗) = 0, then B

is a minimal sufficient cause for D relative to C for ω∗.
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PROOF. For any c2, DB=1,C2=c2(ω
∗) ≥ DB=1,C2=0(ω

∗) = 1 by the mono-
tonicity assumption. Hence B is a sufficient cause for D relative to C for ω∗.
Minimality follows directly from condition (ii). �

We have the following corollaries which provide conditions under which B is a
minimal sufficient cause for D relative to C for some ω ∈ �, in addition to being
irreducible for D(C,�):

COROLLARY 4.14. Let C = C1 ∪̇C2, B ∈ Ṗ(L(C1)), |B| = |C1|. Suppose ev-
ery L ∈ C2 has a positive monotonic effect on D relative to C, and W is sufficient
to adjust for confounding of C on D. If (4.2) holds with c2 = 0 for some w, then B
is a minimal sufficient cause of D relative to C for some ω ∈ �.

PROOF. The proof follows immediately from Proposition 4.13 and Theo-
rem 4.3. �

COROLLARY 4.15. Let C = C1 ∪̇C2, B = (B+ ∪̇B′) ∈ Ṗ(L(C1)), |B| = |C1|.
Suppose that every L ∈ B+ ∪C2 has a positive monotonic effect on D relative to C,
and W is sufficient to adjust for confounding of C on D. If (4.4) holds with c2 = 0
for some w and some tree T on B+, then B is a minimal sufficient cause of D

relative to C for some ω ∈ �.

PROOF. The proof follows immediately from Proposition 4.13 and Corol-
lary 4.12. �

5. Singular interactions. In the genetics literature, in the context of two bi-
nary genetic factors, X1 and X2, “compositional” epistasis [2, 6, 19] is said to
be present if for some ω∗, D11(ω

∗) = 1 but D10(ω
∗) = D01(ω

∗) = D00(ω
∗) = 0;

in this case the effect of one genetic factor is effectively masked when the other
genetic factor is absent. If {X1,X2} is a minimal sufficient cause of D rela-
tive to {X1,X2} for ω∗ then although this implies D11(ω

∗) = 1 and D10(ω
∗) =

D01(ω
∗) = 0, it does not imply D00(ω

∗) = 0. This motivates the following:

DEFINITION 5.1. A minimal sufficient cause B for D relative to C for ω∗
is said to be singular if there is no B′ ∈ Ṗ(L(C)), B′ �= B, forming a minimal
sufficient cause for D relative to C for ω∗. B is singular for D(C,�) if B is
singular relative to C for some ω∗ ∈ �.

If B is singular for D(C,�), then we will also refer to a singular interaction be-
tween the components of B. We now characterize singularity in terms of potential
outcomes:
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THEOREM 5.2. Let C = C1 ∪ C2, B ∈ Ṗ(L(C1)), |B| = |C1|. Then B is sin-
gular for D(C,�) if and only if there exists ω∗ ∈ � such that

for all values c∗
2,b : DB=b,C2=c∗

2

(
ω∗) = 1 ⇐⇒ b = 1.(5.1)

Note that (5.1) is equivalent to

DC=c
(
ω∗) =

(∧
(B)

)
c

for all c.(5.2)

Thus if B is singular for D(C,�), then there is some individual ω∗ whose potential
outcomes are given by the single conjunction B.

PROOF. By definition, B is a sufficient cause for D for ω∗ if and only if (b =
1 ⇒ DB=b,C2=c∗

2
(ω∗) = 1). Thus it is sufficient to show that, assuming B is a

minimal sufficient cause for D for ω∗, there are no other minimal sufficient causes
of D for ω∗ if and only if (DB=b,C2=c∗

2
(ω∗) = 1 ⇒ b = 1).

Suppose B is the only minimal sufficient cause for D for ω∗, but that for some
b∗ �= 1, DB=b∗,C2=c∗

2
(ω∗) = 1. Let B† ≡ B[B=b∗,C2=c∗

2]. B† forms a sufficient cause

for D for ω∗, and B � B†. Hence there is some B′ ⊆ B† that is a minimal sufficient
cause for D for ω∗, and B �= B†, a contradiction.

Conversely suppose (DB=b,C2=c∗
2
(ω∗) = 1 ⇒ b = 1) but there exists another

minimal sufficient cause B′ for D for ω∗, and B �= B†. Since B′ is minimal, B � B′.
Thus there exists a c̃ such that (B)c̃ �= 1, but (B′)c̃ = 1 and hence DC=c̃(ω

∗) = 1, a
contradiction. �

COROLLARY 5.3. For D(C,�), if B is singular then B is irreducible.

PROOF. The proof follows immediately from (5.1) and the definition of irre-
ducibility. �

Theorem 5.4 relates singular interactions to properties of the set of sufficient
cause representations for D(C,�).

THEOREM 5.4. Let B ∈ Ṗ(L(C)). B is singular for D(C,�) if and only if
there exists ω∗ ∈ � such that in every representation (A,B) for D(C,�), (i) for
all B∗ ∈ Ṗ(L(C)), with |B∗| = |C| and B ⊆ B∗ there exists Bi ∈ B with Bi ⊆ B∗
and Ai(ω

∗) = 1; (ii) for all Bi ∈ B such that B � Bi , Ai(ω
∗) = 0.

PROOF. Let C = C1 ∪̇C2, where B ∈ Ṗ(L(C1)), and |B| = |C1|.
(⇒) Suppose B is singular for D(C,�), so that some ω∗ ∈ � satisfies (5.2).

Then for any representation (A,B) for D(C,�) and any B∗ such that |B∗| =
|C| and B ⊆ B∗, we can select values c∗

2 so that B∗ = B[B=1,C2=c∗
2]. Since

DB=1,C2=c∗
2
(ω∗) = 1 there exists Ai ∈ A, Bi ∈ B with Ai(ω

∗) = 1 and
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(
∧

(Bi ))B=1,C2=c∗
2

= 1. Thus Bi ⊆ B∗, so (i) holds. For all Bi ∈ B such that

B � Bi , we can choose B̃ ∈ Ṗ(L(C1)), |B̃| = |C1| with B̃ �= B and values c̃2 so

that Bi ⊆ B[B̃=1,C2=c̃2]. Since DB̃=1,C2=c̃2
(ω∗) = 0 we have Ai(ω

∗) = 0 since
(
∧

(Bi ))B̃=1,C2=c̃2
= 1, so (ii) holds as required.

(⇐) Suppose there exists ω∗ ∈ � such that every representation (A,B) sat-
isfies (i) and (ii). We will show that (5.1) holds. For any values c∗

2 let B∗ ≡
B[B=1,C2=c∗

2], so |B∗| = |C| and B ⊆ B∗. Thus by (i) there exists Bi ∈ B with
Bi ⊆ B∗ and Ai(ω

∗) = 1. Hence DB=1,C2=c∗
2
(ω∗) = 1 since Ai(ω

∗) = 1 and

(
∧

(Bi ))B=1,C2=c∗
2
= 1. Conversely for any b′ �= 1, let B′ ≡ B[B=b′], so |B′| = |C1|

with B′ �= B. Thus for all Bi ∈ B such that (
∧

(Bi ))B′=1,C2=c∗
2
= 1, B � Bi and

thus by (ii) Ai(ω
∗) = 0. Hence DB′=1,C2=c∗

2
(ω∗) = 0. �

We now consider results relevant for testing for singular interactions with or
without monotonicity assumptions.

THEOREM 5.5. Let B = B+ ∪̇B′ ∈ Ṗ(L(C)), |B| = |C| and suppose that ev-
ery L ∈ B+ has a positive monotonic effect on D relative to C. If for some tree T

on B+ and some ω∗ ∈ �, we have

DB=1
(
ω∗) − ∑

L∈B+
DB\{L}=1,L=0

(
ω∗)

(5.3)
− ∑

B̃ : ∅ �=B̃⊆B′
DB\B̃=1,B̃=0

(
ω∗) + ∑

E∈T

DB\E=1,E=0
(
ω∗)

> 0,

then B is singular for D(C,�).

PROOF. By Theorem 5.4, B is singular for D(C,�) if and only if

for some ω∗ ∈ �, DB=1
(
ω∗) − ∑

B̃⊆B

DB\B̃=1,B̃=0
(
ω∗)

> 0.(5.4)

Suppose for a contradiction that (5.4) does not hold but (5.3) holds for some ω∗ ∈
�. Since B+ has a positive monotonic effect on D relative to C, if B̃ ⊆ B is such
that B̃ ∩ B+ �= ∅, then DB\B̃=1,B̃=0(ω

∗) = 1 implies DB\{L}=1,L=0(ω
∗) = 1 for

some L ∈ B̃. Hence for all ω ∈ �,

DB=1(ω) − ∑
L∈B

DB\{L}=1,L=0(ω) − ∑
B̃⊆B′,|B̃|≥2

DB\B̃=1,B̃=0(ω) ≤ 0.(5.5)

By applying the same argument to the first two terms on the left-hand side of (5.5)
as was applied in the proof of Theorem 4.11, we have that (5.3) does not hold for
all ω ∈ �, which is a contradiction. �

The following corollary to Theorem 5.5 generalizes the discussion in [32, 33]
to an arbitrary number of dichotomous factors:
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COROLLARY 5.6. Let B = B+ ∪̇B′ ∈ Ṗ(L(C)), |B| = |C|. Suppose that every
L ∈ B+ has a positive monotonic effect on D relative to B, and W is sufficient to
adjust for confounding of C on D. If for some tree T on B+, and some w, we have

0 < E[D|B = 1,W = w] − ∑
L∈B+

E
[
D|B \ {L} = 1,L = 0,W = w

]

− ∑
B̃ : ∅ �=B̃⊆B′

E[D|B \ B̃ = 1, B̃ = 0,W = w](5.6)

+ ∑
E∈T

E[D|B \ E = 1,E = 0,W = w],

then B is singular for D(C,�).

PROOF. By applying Proposition 4.2 to each term in (5.3), the proof is com-
plete. �

Condition (5.6) leads directly to a statistical test of compositional epistasis. This
is notable since some claims in the genetics literature appear to suggest that such
tests did not exist [6].

As stated in the next corollary, from Theorem 5.5, if all or all but one of the
elements of B have positive monotonic effects on D, then singularity and irre-
ducibility coincide:

COROLLARY 5.7. Suppose |B| = |C| and that for all or all but one of Bi ∈
B, Bi has a positive monotonic effect on D relative to B, then B is singular for
D(C,�) if and only if B is irreducible for D(C,�).

An important consequence of this corollary is that when there is at most one
variable that does not have a positive monotonic effect, condition (4.4) establishes
that B is singular in addition to being irreducible for D(C,�).

PROOF. Let B′ denote the one or zero elements of B that do not have a mono-
tonic effect on D relative to C. If B is irreducible for D(C,�), then by the argu-
ment in the proof of Theorem 4.11,

DB=1
(
ω∗) − ∑

L∈B

DB\{L}=1,L=0
(
ω∗) + ∑

E∈T

DB\E=1,E=0
(
ω∗)

> 0.

Since the third term on the left-hand side of (5.3) vanishes when |B′| ≤ 1, it follows
that B is singular for D(C,�). The converse is given in Corollary 5.3. �

COROLLARY 5.8. Suppose |B| = |C| and that for all or all but one of Bi ∈
B ∪̇C′, Bi has a positive monotonic effect on D relative to B ∪ C′, for all X′ ∈ C′,
X′ is not causally influenced by C and B is singular for D(C,�), then B is singular
for D(C ∪ C′,�).
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PROOF. By Corollary 5.7, B is irreducible relative to D(C,�). Hence by
Corollary 3.8 B is irreducible relative to D(C ∪ C′,�). The conclusion then fol-
lows from a further application of Corollary 5.7. �

5.1. Relation to Pearl’s probability of causation. Pearl [18], Chapter 9, de-
fined the probability of necessity and sufficiency (PNS) of cause X for outcome D

to be P(DX=1(ω) = 1,DX=0(ω) = 0). In other words PNS(D,X) is the proba-
bility that D would occur if X occurred and would not have done so had X not
occurred. We generalize this to the setting in which there are multiple causes B:

DEFINITION 5.9. For B ⊆ Ṗ(L(C)), the probability of necessity and suffi-
ciency of B causing D is

PNS(D,B) ≡ P(DB=1 = 1 and for all b �= 1,DB=b = 0).

Thus PNS(D,B) is the probability that D would occur if every literal L ∈ B
occurred and would not have done so had at least one literal in B not occurred.

PROPOSITION 5.10. If |B| = |C|, then PNS(D,B) > 0 if and only if B is
singular for D(C,�).

PROOF. The proof follows directly from Theorem 5.4 and Definition 5.9. �

This connection also provides an interpretation for condition (5.6). For expo-
sitional convenience in the following proposition, we assume that B and D are
unconfounded and do not make monotonicity assumptions; it would be straight-
forward to do so.

PROPOSITION 5.11. Under the conditions of Corollary 5.6, with W = ∅ =
B+, PNS(B,D) is bounded below by the right-hand side of (5.6).

PROOF.

PNS(D,B) = P(DB=1 = 1 and for all b �= 1,DB=b = 0)

≥ P(DB=1 = 1) + P(for all b �= 1,DB=b = 0) − 1

= P(DB=1 = 1) − P(for some b �= 1,DB=b = 1)

≥ P(DB=1 = 1) − ∑
b�=1

P(DB=b = 1)

= E[D = 1|B = 1] − ∑
b�=1

E[D|B = b]

which is the right-hand side of (5.6) with W = ∅ = B+. �

This generalizes some of the lower bounds on PNS(D,X) given by Pearl [18],
Section 9.2.
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6. Relation to statistical models with linear links. In related work [39] it is
noted that the presence of interaction terms in statistical models do not, in general,
correspond to sufficient conditions for irreducibility. Consider, for example, a sat-
urated Bernoulli regression model for D with identity link and binary regressors
C = {X1, . . . ,Xp},

E[D|C = c] = ∑
B̃⊆C

βB̃

(∧
(B̃)

)
c
.(6.1)

Note that with c = (x1, . . . , xp), then (
∧

(B̃))c = ∏
Xi∈B̃ xi , the usual product inter-

action term. The conditions, given earlier, for detecting the presence of irreducibil-
ity and singularity lead to linear restrictions on the regression coefficients βB̃.∑

B̃⊆C

mB̃βB̃ > 0.(6.2)

Note that (6.2) includes an intercept β∅. First we define

degT(L) ≡ ∣∣{E|E ∈ T,L ∈ E}∣∣,
the degree of L in a tree T, to be the number of edges in T that contain L.

PROPOSITION 6.1. Under the conditions of Theorem 4.11, with B = C, con-
dition (4.3) is equivalent to restriction (6.2) with mB̃ = mirred

B̃
where

mirred
B̃ ≡ 1 − |B \ B̃| + |T|

(6.3)
− ∑

L∈B̃∩B+

degT(L) + ∣∣{E|E ∈ T,E ⊆ B̃ ∩ B+}∣∣.
Note that since T is a tree on B+, the last term in (6.3) has a natural graphi-

cal interpretation as the number of edges in the “induced subgraph” of T on the
subset B̃. Definition (6.3) also subsumes condition (4.2) given in Theorem 4.3
(without monotonicity), in which case the last three terms in (6.3) vanish. Though
Proposition 6.1 assumes that C2 = ∅, the condition given by (6.2) and (6.3) con-
tinues to apply in the case where c2 = 0, as in Corollaries 4.14 and 4.15; obvious
extensions apply to the case where c2 �= 0.

PROOF. This follows by counting the number (and sign) of expectations
in (4.3) for which B̃ is a subset of the variables assigned the value 1 in the con-
ditioning event. The first two terms in (4.3) correspond, respectively, to the first
two terms in (6.3). The remaining three terms in (6.3) correspond to the last sum
in (4.3): |T|, the number of edges in T, is the total number of terms in the sum. The
sum over degrees subtracts the number of terms in which some L ∈ B̃ is assigned
zero. Since this double counts terms corresponding to edges contained in B̃, the
last term corrects for this. �
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PROPOSITION 6.2. Under the conditions of Theorem 5.5, with B = C, condi-
tion (5.3) is equivalent to restriction (6.2) with mB̃ = m

sing
B̃

where

m
sing
B̃

≡ mirred
B̃ + (∣∣B′ \ B̃

∣∣) − (
2|B′\B̃| − 1

)
.(6.4)

PROOF. Expression (6.4) follows from another counting argument similar to
the proof of Proposition 6.1, together with the observation that conditions (4.3)
and (5.3) only differ in that the terms in the sum over L in (4.3) for L ∈ B′ are
replaced by a sum over all subsets of B′. �

EXAMPLE 4 (Two-way interactions). Consider the saturated Bernoulli regres-
sion with identity link with C = {X1,X2}.

E[D|X1 = x1,X2 = x2] = β∅ + β1x1 + β2x2 + β12x1x2.

Suppose that X1 and X2 are unconfounded with respect to D, so (4.1) holds
with W = ∅. Proposition 6.1 implies that {X1,X2} is irreducible relative to C
if β12 > β∅; Proposition 6.2 implies that {X1,X2} is singular relative to C if
β12 > 2β∅. If one of X1 or X2 have positive monotonic effects on D relative to C,
then Proposition 6.1 and Corollary 5.7 imply that {X1,X2} is both irreducible and
singular relative to C if β12 > β∅. If X1 and X2 have positive monotonic effects
on D relative to C, then Proposition 6.1 and Corollary 5.7 imply that {X1,X2} is
both irreducible and singular relative to C if β12 > 0.

Thus only under the assumption of positive monotonic effects for both X1 and
X2 does the sufficient condition for the irreducibility and singularity of {X1,X2}
coincide with the classical two-way interaction term β12 being positive. Note that
under the assumption of negative monotonic effects of X1 and X2 on D, β12 < 0 is
equivalent to irreducibility and singularity for D̄ ≡ (1 − D); see [36] for this and
other remarks on recoding of exposures or outcomes.

It also follows from Proposition 3.4 that if {X1,X2} is irreducible relative to C,
then there exists some ω ∈ � for whom {X1,X2} is a minimal sufficient cause
relative to C (since |B| = |C|).

EXAMPLE 5 (Three-way interactions). The saturated Bernoulli regression
with three binary variables and a identity link can be written as

E[D = 1|X1 = x1,X2 = x2,X3 = x3]
= β∅ + β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3

+ β23x2x3 + β123x1x2x2.

Suppose that C = {X1,X2,X3} is unconfounded for D. Proposition 6.1 implies
that {X1,X2,X3} is irreducible relative to C if

β123 > 2β∅ + β1 + β2 + β3.(6.5)
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It follows from Proposition 3.4 that if {X1,X2,X3} is irreducible relative to C,
then there exists some ω ∈ � for whom {X1,X2,X3} is a minimal sufficient cause
relative to C (since |B| = |C|).

Proposition 6.2 implies {X1,X2,X3} is singular relative to C if

β123 > 6β∅ + 2β1 + 2β2 + 2β3.

However, if X1, X2 and X3 have positive monotonic effects on D (relative to C),
then Proposition 6.1 implies {X1,X2,X3} is irreducible relative to C if any of the
following hold:

β123 > β1, β123 > β2, β123 > β3;(6.6)

equivalently, β123 > min{β1, β2, β3}. By Corollary 5.7 this also establishes that
{X1,X2,X3} is singular relative to C.

If only X1 and X2 have positive monotonic effects on D relative to C, then
Proposition 6.1 implies that {X1,X2,X3} is irreducible relative to C if

β123 > β∅ + β1 + β2.(6.7)

By Corollary 5.7, condition (6.7) also implies that {X1,X2,X3} is singular relative
to C (since only X3 does not have a positive monotonic effect on D). As we would
expect condition (6.7) is weaker than (6.5), but stronger than any of the conditions
in (6.6). If only one potential cause has a monotonic effect on D relative to C, then
we can only use (6.5) to establish irreducibility.

Thus for three-way interactions, β123 > 0 does not correspond to any of the
sufficient conditions for irreducibility or singularity of {X1,X2,X3} relative to C,
regardless of whether or not monotonicity assumptions hold.

7. Interpretation of sufficient cause models. As mentioned in Section 2.1
the observed data for an individual (C(ω),D(ω)) represents a strict subset of the
potential outcomes D(C,ω); this is the “fundamental problem of causal inference.”
Further, as we have seen, for a given set of potential outcomes there can exist differ-
ent determinative sets of minimal sufficient causes B for the same set of potential
outcomes; see (2.3) and (2.4). Thus we have the following for an individual:

... ↘ ... ↘
B → D(C,ω) → (

C(ω),D(ω)
)
.

... ↗ ... ↗
many-one many-one

(7.1)

It is typically impossible to know the set of potential outcomes for an individ-
ual D(C,ω), even when C = {X}, even from randomized experiments. However,
possession of this knowledge would permit one to predict how a given individual
would respond under any given pattern of exposures C = c.
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The results in this paper demonstrate that, given data from a randomized exper-
iment (or when sufficient variables are measured to adjust for confounding), it is
possible to infer the existence of an individual for whom all sets of minimal suffi-
cient causes B have certain features in common. However, given the double many-
one relationship (7.1), and the fact that the set of potential outcomes D(C,ω), if
they were known, apparently address all potential counterfactual queries, it is nat-
ural to ask what is to be gained by considering such representations. We now mo-
tivate our results by presenting several different interpretations of sufficient cause
representations.

7.1. The descriptive interpretation. Under this view, sets of minimal sufficient
causes are merely a way to describe the set of potential outcomes D(C,�). The
representation (A,B) may be more compact; compare Table 2 and (2.5). Extend-
ing this to a population �, the variables A in a representation (A,B) merely de-
scribe subpopulations with particular patterns of potential outcomes.

Knowing that there exists an individual for whom all representations B have
certain features in common provides qualitative information about the set of po-
tential outcomes.

For two binary causes {X1,X2}, Theorem 3.2 implies that {X1,X2} is irre-
ducible relative to C for ω∗ if D11(ω

∗) = 1 and D10(ω
∗) = D01(ω

∗) = 0. Such
a pattern is of interest insofar as it indicates that the causal process resulting in
this individual’s potential outcomes D(C,ω∗) is such that (for some setting of the
variables in C\ {X1,X2}), D = 1 if both X1 = 1 and X2 = 1, but not when X1 = 1
and X2 = 0 or vice versa.

Similarly it follows from Theorem 5.2 that if {X1,X2} is singular relative to
C for ω∗ then D11(ω

∗) = 1 and D10(ω
∗) = D01(ω

∗) = D00(ω
∗) = 0. Hence the

causal process producing D(C,ω∗) is such that, for some setting of the variables
in C \ {X1,X2}, D = 1 if both X1 = 1 and X2 = 1, but not when either X1 = 0 or
X2 = 0.

In contrast to the classical notions of interaction arising in linear models (see
Section 6), irreducibility and singularity are causal in that they relate to the po-
tential outcomes. Sections 4 and 5 contain empirical tests for the presence of irre-
ducible or singular interactions.

7.2. Generative mechanism interpretations. A minimal sufficient cause repre-
sentation may be interpreted in terms of a “generative mechanism”:

DEFINITION 7.1. A mechanism M(ω) relative to C takes as input an assign-
ment c to C, and outputs a “state” Mc(ω) which is either “active” (1) or “inac-
tive” (0). A mechanism is said to be generative for D if whenever it is active,
the event D = 1 is caused, so that Mc(ω) = 1 implies Dc(ω) = 1. Conversely, a
mechanism is said to be preventive for D if whenever Mc(ω) = 1, Dc(ω) = 0 is
caused.
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Though this definition refers to a mechanism “causing” D = 1 or D = 0, we ab-
stain from defining this more formally in terms of potential outcomes until the next
section. Our reason for proceeding in this way is that there may be circumstances
in which an investigator is able to posit the existence of a causal mechanism caus-
ing D = 1 or D = 0, for example, based on experiments manipulating the inputs
C and output D, but lacks sufficiently detailed information to posit well-defined
counterfactual outcomes involving interventions on these (hypothesized) mecha-
nisms.

DEFINITION 7.2. A set of generative mechanisms M = 〈M1, . . . ,Mp〉 will
be said to be exhaustive for a given set of potential outcomes D(C,�) if for all
ω ∈ �, and all c, if Dc(ω) = 1, then for some Mi ∈ M, Mi

c(ω) = 1.

Note that if M forms an exhaustive set of mechanisms for D(C,�), then it
follows that in a context in which no mechanism Mi is active, D = 0.

PROPOSITION 7.3. If M = 〈M1, . . . ,Mp〉 forms an exhaustive set of genera-
tive mechanisms for D(C,�), then D = ∨

(M) and Dc(ω) = ∨
(Mc(ω)).

PROOF. The proof follows from Definitions 7.1 and 7.2. �

PROPOSITION 7.4. Suppose M forms an exhaustive set of generative mecha-
nisms for D(C,�). If B ∈ Ṗ(L(C)), |B| = |C| and B is irreducible for D(C;�),
then there exists an individual ω∗ and a mechanism Mi such that Mi

B=1(ω
∗) = 1

but for all L ∈ B, Mi
B\{L}=1,L=0(ω

∗) = 0.

Thus if there exists an exhaustive set of generative mechanisms for D(C,�)

and B is irreducible, then there is an individual ω∗ and a mechanism Mi such that
Mi is active when all the literals in B take the value 1, and is inactive when any
one literal is 0, and the rest continue to take the value 1.

PROOF. By Theorem 3.2, since B is irreducible for D(C;�), there exists
ω∗ ∈ � such that DB=1(ω

∗) = 1 and for all L ∈ B, DB\{L}=1,L=0(ω
∗). Since M

is an exhaustive set of generative mechanisms for D(C,�), we have that for all c,
Dc(ω

∗) = ∨
(Mc(ω)∗). Since DB=1(ω

∗) = 1, for some Mi ∈ M, Mi
B=1(ω

∗) = 1.
Since for all L ∈ B, DB\{L}=1,L=0(ω

∗) = 0 we have that Mi
B\{L}=1,L=0(ω

∗) = 0.
�

PROPOSITION 7.5. Suppose M forms an exhaustive set of generative mecha-
nisms for D(C,�). If B ∈ Ṗ(L(C)), |B| = |C| and B is singular for D(C;�), then
there exists an individual ω∗ and a mechanism Mi such that Mi

B=b(ω∗) = 1 if and
only if b = 1.
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Hence under the conditions of Proposition 7.5, if B is singular, then there is an
individual ω∗ and a mechanism Mi such that Mi is active if and only if all the
literals in B take the value 1.

PROOF. The proof is similar to the proof of Proposition 7.4, replacing Theo-
rem 3.2 by Theorem 5.2. �

As the next example shows, the assumption that there exists an exhaustive set
of generative mechanisms is substantive, and does not hold in all cases.

EXAMPLE 6. Suppose C = {X1,X2} where X1 and X2 denote the presence of
a variant allele at two particular loci. Let M1 and M2 denote two different proteins
such that Mi is produced if and only if Xi = 0, that is, the associated allele is not
present. Finally, let D denote some characteristic whose occurrence is blocked by
the presence of either M1 or M2 (or both). In this example,

Mi
x1x2

(ω) = (1 − xi),

Dx1x2(ω) = (
1 − M1

x1x2

) ∨ (
1 − M2

x1x2

) = x1x2.

By De Morgan’s law, the second equation here may also be expressed as

1 − Dx1x2(ω) = M1
x1x2

(ω)M2
x1x2

(ω) = 1 − x1x2.

The mechanisms M1 and M2 are preventive for D, so that D = 1 only occurs
when both mechanisms are inactive. An exhaustive set of generative mechanisms
does not exist because in this example there are no generative mechanisms (all
mechanisms are preventive).

It is natural to suppose that mechanisms are “modular” and thus may be iso-
lated or rendered inactive without affecting other such mechanisms. This may be
formalized via potential outcomes:

DEFINITION 7.6. An exhaustive set of generative mechanisms M for D(C,�)

are said to support counterfactuals if there exist well-defined potential outcomes
DC=c,M=m(ω) and DM=m(ω) such that

DC=c,M=m(ω) = DM=m(ω) =
(∨

(M)
)

m
.

The important assumption here is the existence of the potential outcomes
Dm(ω) and Dc,m(ω). Note that if M supports counterfactuals then interventions
on C do not affect D if interventions are also made on M.

PROPOSITION 7.7. If the exhaustive set of generative mechanisms M support
counterfactuals, then

DM=M(ω)(ω) = DC=C(ω),M=M(ω)(ω) = D(ω)

so that consistency holds for the potential outcomes Dm(ω) and Dc,m(ω).
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PROOF. This follows because

DC=C(ω),M=M(ω)(ω) = DM=M(ω)(ω) = ∨(
M(ω)

) = D(ω). �

7.3. Counterfactual interpretation of a sufficient cause representation. If we
have an exhaustive set of generative mechanisms which supports counterfactuals,
and further each mechanism is a conjunction of literals, then there will be a suffi-
cient cause representation that itself supports counterfactuals.

DEFINITION 7.8. A representation (A,B) for D(C,�) will be said to be
structural if for each pair (Ai,Bi), Ai∈ A, Bi∈ B there exists a generative mech-
anism (or mechanisms) Mi such that Mi = Ai ∧ (

∧
(Bi )) and

Mi
C=c(ω) = Ai(ω) ∧

(∧
(Bi )

)
c.

Thus if (A,B) is structural, then each pair (Ai,Bi), Ai∈ A, Bi∈ B corresponds
to a mechanism Mi . Thus in this case the variables Ai(ω) may be interpreted as in-
dicating whether the corresponding mechanism(s) Mi is “present” in individual ω.
We may thus associate potential outcomes with the Ai , corresponding to removing
(or inserting) the corresponding mechanism(s). This interpretation of the Ai ’s is
consistent with the notion of “co-cause” which arises in the literature on minimal
sufficient causes.

We note that “structural” is often used as a synonym for “causal.” However,
even under the weak interpretation, a sufficient cause representation is causal in
that it represents a set of potential outcomes. The word is used in Definition 7.8 to
connote that the structure of the representation itself represents (additional) poten-
tial outcomes for a set of mechanisms M that correspond with the pairs (Ai,Bi),
Ai∈ A, Bi∈ B. Note that there need not be a unique structural representation
(A,B) for D(C,�). There might be several functionally equivalent, yet substan-
tively different, generative mechanisms corresponding to a given pair (Ai,Bi ); see
Example 6.

PROPOSITION 7.9. If a representation (A,B) for D(C,�), where A =
〈A1, . . . ,Ap〉, is structural, then the associated set of generative mechanisms
〈M1, . . . ,Mp〉 is exhaustive.

PROOF. This follows from Definitions 2.7 and 7.2. �

PROPOSITION 7.10. Suppose that M forms an exhaustive set of generative
mechanisms for D(C,�), and M supports counterfactuals. If for all Mi ∈ M there
exists Bi ∈ Ṗ(L(C)), and an Ai such that for all c, and ω ∈ �, if Ai(ω) = 1,
then (Mi)c(ω) = ∧

(Bi )c, then (A = 〈A1, . . . ,Ap〉,B = 〈B1, . . . ,Bp〉) forms a
representation for D(C,�) that is structural.
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PROOF. This follows from Definitions 2.7 and 7.8. �

PROPOSITION 7.11. If there is some representation (A,B) that is structural,
and B ∈ Ṗ(L(C)) is irreducible for D(C;�), then there exists a mechanism Mi

that is active only if B = 1.

PROOF. If B is irreducible for D(C;�), then there exists Bi ∈ B with B ⊆ Bi ;
the mechanism Mi = Ai ∧ (

∧
(Bi )) is such that Mi = 1 only if B = 1. �

Note that the conclusion of Proposition 7.11, unlike those of Propositions 7.4
and 7.5, does not make reference to an individual ω∗. This is because Proposi-
tion 7.11 assumes that there is a representation (A,B) that is structural: in this
representation the Ai variables may be seen as a constituent part of the corre-
sponding mechanism Mi .

Note that there may exist a set of exhaustive generative mechanisms, but these
mechanisms may not themselves be conjunction of literals so that there is no suf-
ficient cause representation for D(C;�) that is structural:

EXAMPLE 7. Suppose C = {X1,X2} where X1 and X2 again denote the pres-
ence of variant alleles, acquired by maternal and paternal inheritance, respectively,
at a particular locus. Let M denote a protein that is produced if and only if either
X1 = X2 = 1 or X1 = X2 = 0 and let D denote some characteristic that occurs if
and only if M = 1. Suppose we can intervene to remove or add the protein. We
then have that

Mx1x2(ω) = x1x2 ∨ (1 − x1)(1 − x2),

Dx1x2(ω) = Mx1x2(ω),

Dx1x2m(ω) = Dm(ω) = m.

Thus {M} constitutes an exhaustive set of generative mechanisms for D(C,�). We
have the following representation for D(C,�):

Dx1x2(ω) = (
A1(ω)X1X2 ∨ A2(ω)(1 − X1)(1 − X2)

)
x1x2

with A1(ω) = A2(ω) = 1 for all ω ∈ �. However, this representation is not struc-
tural because A1(ω)X1X2 and A2(ω)(1 − X1)(1 − X2) do not constitute separate
mechanisms for which interventions are conceivable; there is only one mecha-
nism M , the protein. Since for any ω ∈ �, D11(ω) = 1 and D10(ω) = D01(ω) = 0,
{X1,X2} is irreducible relative to C; however it is not the case that there is a mech-
anism Mi that is active only if X1X2 = 1 since for the only mechanism M it is the
case that M = 1 if X1 = X2 = 0. Note, however, in this example there is still a
mechanism, namely M , that will be “active” if X1 = X2 = 1 but will be “inactive”
if only one of X1 or X2 is 1.
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EXAMPLE 8. To illustrate the results in the paper we consider again the data
presented in Table 1. We let D denote bladder cancer, X1 smoking, X2 the S NAT2
genotype and X3 the *10 allele on NAT1. As discussed in Example 5, if the effect
of C = {X1,X2,X3} is unconfounded for D and we fit the model

E[D = 1|X1 = x1,X2 = x2,X3 = x3]
= β∅ + β1x1 + β2x2 + β3x3 + β12x1x2(7.2)

+ β13x1x3 + β23x2x3 + β123x1x2x2,

then if X1, X2 and X3 have positive monotonic effects on D (relative to C), then
{X1,X2,X3} is irreducible relative to C if any of the following hold:

β123 > β1, β123 > β2, β123 > β3.

We cannot fit model (7.2) directly with case control data. However, under the as-
sumption that the outcome is rare (reasonable with bladder cancer) so that odds
ratios approximate risk ratios, we can fit the model

E[D = 1|X1 = x1,X2 = x2,X3 = x3]/E[D = 1|X1 = 0,X2 = 0,X3 = 0]
(7.3)

= θ1x1 + θ2x2 + θ3x3 + θ12x1x2 + θ13x1x3 + θ23x2x3 + θ123x1x2x2,

and the conditions for the irreducibility of {X1,X2,X3} relative to C under mono-
tonicity of {X1,X2,X3} become

θ123 > θ1, θ123 > θ2, θ123 > θ3.

If we fit model (7.3) using maximum likelihood, we find that

θ123 − θ1 = 1.21 (95% CI: − 3.83,6.26),

θ123 − θ2 = 2.93 (95% CI: − 2.85,8.72),

θ123 − θ3 = 2.97 (95%CI: − 2.80,8.74).

In each case, under our assumption of no confounding, the point estimate suggests
evidence of irreducibility, under monotonicity of {X1,X2,X3}, but the sample size
is not sufficiently large to draw this conclusion confidently. With monotonicity of
{X1,X2,X3}, irreducibility also implies a singular interaction for {X1,X2,X3}. If
we assume that only {X1,X2} or {X1,X3} or {X2,X3} are monotonic relative to C,
then the conditions for irreducibility in Example 5 can be expressed, respectively,
as

θ123 > 1 + θ1 + θ2, θ123 > 1 + θ1 + θ3, θ123 > 1 + θ2 + θ3.

From model (7.3) we have that

θ123 − (1 + θ1 + θ2) = 0.09 (95% CI: − 4.77,4.96),

θ123 − (1 + θ1 + θ3) = 0.13 (95% CI: − 4.69,4.95),

θ123 − (1 + θ2 + θ3) = 1.86 (95% CI: − 3.41,7.12).
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Again, under our assumption of no confounding, in each case the point estimate
suggests evidence of irreducibility, under monotonicity of just two of the three
exposures, but the sample size is not sufficiently large to draw this conclusion
confidently. With monotonicity of two of the three exposures, irreducibility also
implies a singular interaction for {X1,X2,X3}. The test for irreducibility in Ex-
ample 5 without assumptions about monotonicity can be expressed as

θ123 > 2 + θ1 + θ2 + θ3.

From model (7.3) we have that

θ123 − (2 + θ1 + θ2 + θ3) = −0.99 (95% CI: − 5.86,3.88).

In this case, not even the point estimate is positive.
If {X1,X2,X3} is in fact irreducible and if there exists a representation that is

structural, then it follows by Proposition 7.11 that there exists a mechanism that is
active only if X1 = 1,X2 = 1,X3 = 1.

8. Concluding remarks. In this paper we have developed general results for
notions of interaction that we referred to as “irreducibility” (aka “a sufficient cause
interaction”) and “singularity” (aka “a singular interaction”) for sufficient cause
models with an arbitrary number of dichotomous causes. The theory could be ex-
tended by developing notions of sufficient cause, irreducibility and singularity for
causes and outcomes that are categorical and/or ordinal in nature; see [34].
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