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BERNSTEIN–VON MISES THEOREM FOR LINEAR FUNCTIONALS
OF THE DENSITY1
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In this paper, we study the asymptotic posterior distribution of linear
functionals of the density by deriving general conditions to obtain a semi-
parametric version of the Bernstein–von Mises theorem. The special case of
the cumulative distributive function, evaluated at a specific point, is widely
considered. In particular, we show that for infinite-dimensional exponential
families, under quite general assumptions, the asymptotic posterior distribu-
tion of the functional can be either Gaussian or a mixture of Gaussian distri-
butions with different centering points. This illustrates the positive, but also
the negative, phenomena that can occur in the study of Bernstein–von Mises
results.

1. Introduction. The Bernstein–von Mises property, in Bayesian analysis,
concerns the asymptotic form of the posterior distribution of a quantity of inter-
est θ , and more specifically it corresponds to the asymptotic normality of the pos-
terior distribution of θ with mean θ̂ and asymptotic variance σ 2 and where, if θ is
the true parameter, θ̂ is asymptotically distributed as a Gaussian random variable
with mean θ and variance σ 2. Such results are well known in regular paramet-
ric frameworks; see, for instance, [19] where general conditions are given. This
is an important property for both practical and theoretical reasons. In particular,
the asymptotic normality of the posterior distributions allows us to construct ap-
proximate credible regions, and the duality between the behavior of the posterior
distribution and the frequentist distribution of the asymptotic centering point of the
posterior implies that credible regions will also have good frequentist properties.
These results are given in many Bayesian textbooks; see, for instance, [1] or [24].

In a frequentist perspective the Bernstein–von Mises property enables the con-
struction of confidence regions since under this property a Bayesian credible region
will be asymptotically a frequentist confidence region as well. This is even more
important in complex models, since in such models the construction of confidence
regions can be difficult, whereas the Markov chain Monte Carlo algorithms usu-
ally make the construction of a Bayesian credible region feasible. But of course,
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the more complex the model, the harder it is to derive Bernstein–von Mises theo-
rems.

Semi-parametric and nonparametric models are widely popular, both from a
theoretical and practical perspective and have been used by frequentists as well
as Bayesians, although their theoretical asymptotic properties have been mainly
studied in the frequentist literature. The use of Bayesian nonparametric or semi-
parametric approaches is more recent and has been made possible mainly by the
development of algorithms such as Markov chain Monte Carlo algorithms, but has
grown rapidly over the past decade.

However, there is still little work on asymptotic properties of Bayesian proce-
dures in semi-parametric models or even in nonparametric models. Most of exist-
ing works on the asymptotic posterior distributions deal with consistency or rates
of concentration of the posterior. In other words, it consists of controlling objects
of the form P

π [Un|Xn], where P
π [·|Xn] denotes the posterior distribution given

a n-vector of observations Xn, and Un denotes either a fixed neighborhood (con-
sistency) or a sequence of shrinking neighborhoods (rates of concentration). How-
ever, to obtain a Bernstein–von Mises theorem, it is necessary not only to bound
from above P

π [Un|Xn], as in the studies of consistency and concentration rates
of the posterior distribution, but also to determine an equivalent of P

π [Un|Xn]
for some specific types of sets Un. This difficulty explains that there is, up to now,
hardly any work on Bernstein–von Mises theorems in infinite-dimensional models.
The most well-known results are negative results and are given in [7] and [8]. Re-
cently [4] has proposed another interesting counter-example where the Bernstein–
von Mises property does not hold, due to a subtle behavior of the prior which
introduces a bias term in the posterior distribution. This phenomenon will be also
encountered in our framework and discussed below. Some positive results are pro-
vided by [9] on the asymptotic normality of the posterior distribution of the param-
eter in an exponential family with increasing number of parameters. In a discrete
setting, [3] derive Bernstein–von Mises results. Nice positive results are obtained
in [16] and [15]; however, they rely heavily on a conjugacy property and on the
fact that their priors put mass one on discrete probabilities, which makes the com-
parison with the empirical distribution more tractable. In a semi-parametric frame-
work, where the parameter can be separated into a finite-dimensional parameter
of interest and an infinite-dimensional nuisance parameter, [5] obtains interesting
conditions leading to a Bernstein–von Mises theorem on the parameter of interest,
clarifying an earlier work of [26]. More precisely, when the parameter of interest
is handled in the case of no loss of information, then some classical parametric
tools can be used (such as the continuity around the true parameter). In this paper,
such a separation cannot be considered. Other differences with our paper have to
be pointed out: The centering considered by [26] is based on the sieve maximum
likelihood estimate, whereas priors considered by [5] are merely Gaussian in the
information loss case. In Section 2.1 we describe more precisely results by [5, 26]
and establish connections with ours. An alternative set of assumptions has been
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recently proposed in [2] in the same context as in [5]. Interesting results have also
been obtained in the Gaussian white noise model, by [18] in the case of direct es-
timation and by [17] in the context of linear inverse problems. These are based on
explicit expressions of the posterior distribution.

In this paper we are interested in studying the existence of a Bernstein–von
Mises property in semi-parametric models where the parameter of interest is a
functional of the density of the observations. The estimation of functionals of
infinite-dimensional parameters, such as the cumulative distribution function at
a specific point, is a widely studied problem, both in the frequentist and Bayesian
literature. There is a vast literature on the rates of convergence and on the asymp-
totic distribution of frequentist estimates of functionals of unknown curves and of
finite-dimensional functionals of curves in particular; see, for instance, [28] for an
excellent presentation of a general theory on such problems.

One of the most common functionals considered in the literature is the cumu-
lative distribution function calculated at a given point, say F(x0). The empirical
cumulative distribution function is a natural frequentist estimator, and its asymp-
totic distribution is Gaussian with mean F(x0) and variance F(x0)(1 − F(x0))/n.

A Bayesian counterpart of this estimator is the one derived from a Dirichlet pro-
cess prior and it is well known to be asymptotically equivalent to Fn(x0); see, for
instance, [12]. This result is obtained by using the conjugate nature of the Dirich-
let prior, leading to an explicit posterior distribution. Other frequentist estimators,
based on density estimates such as kernel estimators, have also been studied in
the frequentist literature. Hence a natural question arises. Can we generalize the
Bernstein–von Mises theorem of the Dirichlet estimator to other Bayesian estima-
tors? What happens if the prior has support on distributions absolutely continuous
with respect to the Lebesgue measure?

In this paper, we provide an answer to these questions by establishing conditions
under which a Bernstein–von Mises theorem can be obtained for linear functionals
of the density of f such as F(x0). We also study cases where the asymptotic pos-
terior distribution of the functional is not asymptotically Gaussian, but is asymp-
totically a mixture of Gaussian distributions with different centering points.

1.1. Notation and aim. In this paper, we assume that, given a distribution
P with a compactly supported density f with respect to the Lebesgue measure,
X1, . . . ,Xn are independent and identically distributed according to P. We set
Xn = (X1, . . . ,Xn) and denote F the cumulative distribution function associated
with f . Without loss of generality we assume that for any i, Xi ∈ [0,1], and we
set

F =
{
f : [0,1] → R

+ s.t.
∫ 1

0
f (x) dx = 1

}
.

We denote �n(f ), the log-likelihood associated with the density f , and if f

is parametrized by a finite-dimensional parameter θ , we set �n(θ) = �n(fθ ). For
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any integrable function g, we set F(g) = ∫ 1
0 f (u)g(u)du. We denote by 〈·, ·〉f the

inner product and by ‖ · ‖f the associated norm in

L2(F ) =
{
g s.t.

∫
g2(x)f (x) dx < +∞

}
.

We also consider the classical inner product in L2[0,1], denoted 〈·, ·〉2, and ‖ · ‖2,
the associated norm. The Kullback–Leibler divergence and the Hellinger distance
between two densities f1 and f2 will be, respectively, denoted K(f1, f2) and
h(f1, f2). We recall that

K(f1, f2) = F1
(
log(f1/f2)

)
, h(f1, f2) =

[∫ (√
f1(x) −

√
f2(x)

)2
dx

]1/2

.

In the sequel, we shall also use

V (f1, f2) = F1
((

log(f1/f2)
)2)

.

Let P0 be the true distribution of the observations Xi whose density and cumu-
lative distribution function are, respectively, denoted f0 and F0. We consider usual
notation on empirical processes, namely

Pn(g) = 1

n

n∑
i=1

g(Xi), Gn(g) = 1√
n

n∑
i=1

[
g(Xi) − F0(g)

]
,

and Fn is the empirical distribution function.
For any given ψ ∈ L∞[0,1], we consider � the functional on M, the set of

finite measures on [0,1], defined by

�(μ) =
∫

ψ dμ, μ ∈ M.(1.1)

In particular, we have

�(Pn) = Pn(ψ) =
∑n

i=1 ψ(Xi)

n
.

Most of the time, to simplify notation when μ is absolutely continuous with respect
to the Lebesgue measure with g = dμ

dx
, we use �(g) instead of �(μ). A typical

example of such functionals is given by the cumulative distribution function at a
fixed point x0,

�x0(f ) = F(x0) =
∫ 1

0
1x≤x0f (x) dx, x0 ∈ R.

Let π be a prior on F . The aim of this paper is to study the posterior distribution
of �(f ) and to derive conditions under which, for all z ∈ R,

P
π [√

n
(
�(f ) − �(Pn)

) ≤ z|Xn] → �V0(z) in P0-probability,(1.2)
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where V0 is the variance of
√

n�(Pn) under P0, and �V0(z) is the cumulative
distribution function of a centered Gaussian random variable with variance V0.
Note that under this duality between the Bayesian and the frequentist behaviors,
credible regions for �(f ) (such as highest posterior density regions, equal tail
or one-sided intervals) have also the correct asymptotic frequentist coverage. In
Section 2.2, we study in detail the special case of infinite-dimensional exponential
families as described in the following section.

1.2. Infinite-dimensional exponential families based on Fourier and wavelet ex-
pansions. Fourier and wavelet bases are the dictionaries from which we build
exponential families in the sequel. We recall that Fourier bases constitute uncondi-
tional bases of periodized Sobolev spaces Wγ where γ is the smoothness param-
eter. Wavelet expansions of any periodized function h take the following form:

h(x) = θ−101[0,1](x) +
+∞∑
j=0

2j−1∑
k=0

θjkϕjk(x), x ∈ [0,1],

where θ−10 = ∫ 1
0 h(x) dx and θjk = ∫ 1

0 h(x)ϕjk(x) dx. We recall that the functions
ϕjk are obtained by periodizing dilations and translations of a mother wavelet ϕ

that can be assumed to be compactly supported. Under standard properties of ϕ

involving its regularity and its vanishing moments (see Lemma D.1), wavelet bases
constitute unconditional bases of Besov spaces Bγ

p,q for 1 ≤ p,q ≤ +∞ and γ >

max(0, 1
p

− 1
2). We refer the reader to [13] for a good review of wavelets and Besov

spaces. We just mention that the scale of Besov spaces includes Sobolev spaces,
that is, Wγ = Bγ

2,2. In the sequel, to shorten notation, the considered orthonormal
basis will be denoted Φ = (φλ)λ∈N, where φ0 = 1[0,1] and:

- for the Fourier basis, if λ ≥ 1,

φ2λ−1(x) = √
2 sin(2πλx), φ2λ(x) = √

2 cos(2πλx),

- for the wavelet basis, if λ = 2j + k, with j ∈ N and k ∈ {0, . . . ,2j − 1},
φλ = ϕjk.

Now, the decomposition of each periodized function h ∈ L2[0,1] on (φλ)λ∈N is
written as follows:

h(x) = ∑
λ∈N

θλφλ(x), x ∈ [0,1],

where θλ = ∫ 1
0 h(x)φλ(x) dx. We denote ‖ · ‖γ and ‖ · ‖γ,p,q the norms associated

with Wγ and Bγ
p,q , respectively.

We use such expansions to build nonparametric priors on F in the following
way. For any k ∈ N

∗, we set

Fk =
{
fθ = exp

(
k∑

λ=1

θλφλ − c(θ)

)
s.t. θ ∈ R

k

}
,
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where

c(θ) = log

(∫ 1

0
exp

(
k∑

λ=1

θλφλ(x)

)
dx

)
.(1.3)

So, we define a prior π on the set F∞ = ⋃
k Fk ⊂ F by defining a prior p on

N
∗ and then, once k is chosen, we fix a prior πk on Fk . Such priors are often

considered in the Bayesian nonparametric literature. See, for instance, [25]. The
special case of log-spline priors has been studied by [10] and [14], whereas the
prior considered by [30] is based on Legendre polynomials. The wavelet basis is
treated in [14] in the special case of the Haar basis.

We now define the class of priors π considered for these models, which we call
the class of sieve priors.

DEFINITION 1.1. Given β > 1/2, the prior p on k satisfies one of the follow-
ing conditions:

[Case (PH)] There exist two positive constants, c1 and c2, and r ∈ {0,1} such
that for any k ∈ N

∗,

exp
(−c1kL(k)

) ≤ p(k) ≤ exp
(−c2kL(k)

)
,(1.4)

where L(x) = (logx)r .
[Case (D)] Let k∗

n = 
k0n
1/(2β+1)�, that is, the largest integer smaller than

k0n
1/(2β+1), where k0 is some fixed positive real number; then k is determinis-

tic and we set k := k∗
n (p is then the Dirac mass at the point k∗

n).
Conditionally on k the prior πk on Fk is defined by

θλ√
τλ

i.i.d.∼ g, τλ = τ0λ
−2β, 1 ≤ λ ≤ k,

where τ0 is a positive constant, and g is a continuous density on R such that for
any x,

A∗ exp
(−c̃∗|x|p∗) ≤ g(x) ≤ B∗ exp

(−c∗|x|p∗),
where p∗, A∗, B∗, c̃∗ and c∗ are positive constants.

Observe that the prior is not necessarily Gaussian since we allow for densities
g with different tails. In the Dirac case (D), the prior on k is nonrandom. For the
case (PH), Poisson prior satisfies the condition with L(x) = logx, and geometric
prior satisfies the condition with L(x) = 1.

1.3. Organization of the paper. We first give very general conditions under
which we obtain a Bernstein–von Mises theorem; see Theorem 2.1 in Section 2.1.
In Section 2.2, we focus on infinite-dimensional exponential families. Theorem 2.2
gives the asymptotic posterior distribution of �(f ) which can be either Gaussian
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or a mixture of Gaussian distributions. Corollary 2.1 illustrates positive results with
respect to our purpose, but Proposition 2.1 shows that some bad phenomena may
happen. Proofs of the results are given in Section 3, except for the proofs of Propo-
sition 2.1 and Lemma 2.1 which are given in the supplementary material [23].

2. Bernstein–von Mises theorems.

2.1. The general case. In the sequel, we consider a functional � as defined in
(1.1) associated with the function ψ ∈ L∞[0,1], and we set

ψ̃(x) = ψ(x) − F0(ψ).(2.1)

Note that this notation is coherent with the definition of the influence function
associated with the tangent set {s ∈ L2(F0) s.t. F0(s) = 0}, defined, for instance,
in Chapter 25 of [28] or used by [26].

For each density function f ∈ F , we define h such that for any x,

h(x) = √
n log

(
f (x)

f0(x)

)
or equivalently f (x) = f0(x) exp

(
h(x)√

n

)
.

For the sake of clarity, we sometime write fh instead of f and hf instead of h to
emphasize the relationship between f and h. Note that in this context h is not the
score function, as defined in Chapter 25 of [28] since F0(h) �= 0 (in particular h

depends on n and f ). Then we consider the following assumptions:

(A1) The posterior distribution concentrates around f0. More precisely, there
exists un = o(1) such that if A1

un
= {f ∈ F s.t. V (f0, f ) ≤ u2

n}, the posterior dis-
tribution of A1

un
satisfies

P
π{

A1
un

|Xn} = 1 + oP0(1).

(A2) There exists ũn = o(1) such that if An is the subset of functions f ∈ A1
un

such that ∫ ∣∣∣∣log
(

f (x)

f0(x)

)∣∣∣∣f (x) dx ≤ ũn,(2.2)

then

P
π{

An|Xn} = 1 + oP0(1).

(A3) Let

Rn(h) = √
nF0(h) + F0(h

2)

2
and for any x,

ψ̄h,n(x) = ψ̃(x) +
√

n

t
log

(
F0

[
exp

(
h√
n

− tψ̃√
n

)])
.
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We have for any t ,∫
An

exp
(
−F0((hf − tψ̄h,n)

2)

2
+ Gn(hf − tψ̄h,n) + Rn(hf − tψ̄h,n)

)
dπ(f )

×
(∫

An

exp
(
−F0(h

2
f )

2
+ Gn(hf ) + Rn(hf )

)
dπ(f )

)−1

(2.3)

= 1 + oP0(1).

Now, we can state the main result of this section.

THEOREM 2.1. Let f0 be a density on F such that ‖log(f0)‖∞ < ∞. Assume
that (A1), (A2) and (A3) are true. Then, as n goes to infinity,

sup
z∈R

∣∣Pπ{√
n
(
�(f ) − �(Pn)

) ≤ z|Xn} − �F0(ψ̃
2)(z)

∣∣ → 0(2.4)

in P0-probability.

The proof of Theorem 2.1 is given in Section 3.1. It is based on the asymptotic
behavior of the Laplace transform of

√
n(�(f ) − �(Pn))1An , calculated at the

point t , which is proved to be equivalent to exp(t2F0(ψ̃
2)/2) times the left-hand

side of (2.3), under (A1) and (A2), so that (A3) implies (2.4).
Now, we discuss the assumptions. Condition (A1) concerns concentration rates

of the posterior distribution, and there exists now a large literature on such results;
see, for instance, [27] or [10] for general results. The difficulty here comes from the
use of V instead of the Hellinger or the L1 distances. However, note that un does
not need to be optimal. In the case of exponential families, obtaining a posterior
concentration rate in terms of V has no impact on posterior concentration rates;
see Section 2.2. It is also interesting to note that the loss function V is similar to
the ‖ · ‖L-norm considered in [5] (i.e., the norm induced by the LAN expansion
associated to linear paths on logf ) and to the Fisher norm considered in [26].
Indeed, the proof of Theorem 2.1 gives

�n(f ) − �n(f0) = −nV (f0, f )

2
+ Gn(hf ) + Rn(hf )

with Rn(hf ) = oP0(1) pointwise (i.e., for a fixed function f ). This condition is
thus to be related to Condition C in [5] and to Condition (9) in [26]. However, the
formulation of Condition (9) in [26] is not quite as general as Condition C in [5],
or as our conditions, since [26] also requires (stated in our framework)

sup
f : V (f0,f )>εn

{
�n(f ) − �n(f0)

} ≤ −cnε2
n.

Indeed, a concern of [26] is to obtain a Bernstein–von Mises theorem with a cen-
tering point which is the maximum likelihood (or a sieve maximum likelihood
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estimator), for which such a condition is quite natural. It is known now (see, e.g.,
[11]) that weaker conditions can be obtained to derive the posterior concentration
rate.

Condition (A2) could be viewed as a symmetrization of (A1) since if on A1
un

we
also have V (f,f0) ≤ u2

n, then (A2) is true. Actually, (A2) is a weaker condition
since it is only based on the first moment of log(f/f0) with respect to the density f .

The main difficulty comes from condition (A3). Roughly speaking, (A3) means
that a change of parameter induced by a transformation T of the form T (fh) =
fh−tψ̄h,n

, or close enough to it, can be considered, and such that the prior is hardly
modified by this transformation. In parametric setups, continuity of the prior near
the true value is enough to ensure that the prior would hardly be modified by such
a transformation. A similar condition can be found in [26] [see Condition (14)].
We emphasize two major differences between Shen’s condition [26] and ours: first
Shen’s condition is based on the sieve MLE of logf , which we do not consider
since we re-center on the empirical ψ(Pn). Second and more importantly, Con-
dition (14) in [26] is expressed in terms of the conditional prior distribution of f

given θ = �(f ), which is very difficult to control in most nonparametric models,
whereas in our case the expectation is taken with respect to the prior on f .

However, (A3) still remains a demanding condition (the most demanding one)
to verify in general models, and it is often the condition which is not verified when
the Bernstein–von Mises theorem is not satisfied, as illustrated in our example be-
low. Interestingly, this condition can also be found in [5], but in a less explicit way.
Indeed, in [5], the parameter is split into (θ, g), say, where g is a function (so it is
infinite dimensional), and θ is the parameter of interest and is finite dimensional.
Two cases are then considered, namely, the case without loss of information and
the case with loss. In the former, the computations simplify greatly and the change
of parameter is only made on the parametric part θ , which usually is easy to verify.
In the latter, the nonparametric part is more influential, and this case is handled
merely in the setup of Gaussian priors for which an interesting discussion on how
this change of parameter is influenced by the respective smoothness of the prior
(see page 14 of [5]) and of the true parameter is lead. In our context, the smooth-
ness of the functional � , of the true density f0 and of the prior are certainly in-
fluential, as will be illustrated in the examples below. However, for non-Gaussian
priors, the notion of smoothness of the prior is not so relevant. We rather view this
condition as a no bias condition, which also applies to the Gaussian case. Indeed,
choosing a less regular Gaussian prior allows for correct approximation of rougher
curves and thus avoids biases in the estimation of rough functionals. To make this
statement more precise, we consider now the framework of sieve models.

Consider a sequence of subsets Fk such that F = ⋃
k Fk and Fk = {fθ s.t. θ ∈

�k} with �k ⊂ R
rk , and (rk) is an increasing sequence going to infinity. A prior

on F is then defined as a probability on k, say p(·), and given k a probability on θ ,
say πk . This set up is quite general, and it includes in particular random histograms,
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free-knot splines, mixtures models with random numbers of components and our
example about exponential families; see Section 2.2. For notational ease, we write
hθ instead of hfθ and ψ̄h,n instead of ψ̄hfθ

,n. Assumption (A3) then corresponds

to a change of parameter from hθ to hθ − tψ̄h,n. So a first difficulty comes from
expressing this change in terms of θ . In other words, for each k such that An ∩ �k

is nonempty, construct a map Tk :An ∩ �k → �k and define ψk,θ such that

hTkθ = hθ − tψk,θ

(equivalently fTkθ = fθe
−tψk,θ /

√
n). The aim is to build Tk such that ψk,θ ≈ ψ̄h,n.

Mathematically, this approximation is expressed via log-likelihoods, and we set

ρn,k(θ) := �n(fTkθ ) − �n

(
fθe

−tψ̄h,n/
√

n)
.

Note that

ρn,k(θ) = −F0(h
2
Tkθ

)

2
+ Gn(hTkθ ) + Rn(hTkθ )

−
(
−F0((hθ − tψ̄h,n)

2)

2
+ Gn(hθ − tψ̄h,n) + Rn(hθ − tψ̄h,n)

)
.

Relation (2.3) of assumption (A3) is then verified if uniformly over k such that
Fk ∩ Ãn �= ∅∫

Ãn∩�k
exp(−F0(h

2
Tkθ

)/2 + Gn(hTkθ ) + Rn(hTkθ ))e
−ρn,k(θ)πk(θ) dθ∫

Ãn∩�k
exp(−F0(h

2
θ )/2 + Gn(hθ ) + Rn(hθ ))πk(θ) dθ

(2.5)
= 1 + oP0(1).

Proposition A.1 in the Appendix states that under mild conditions uniformly over⋃
k≤ln

�k ∩ Ãn,

ρn,k(θ) = −tF0[�k,θhθ ] + tGn(�k,θ )

− t2

2
F0

(
(ψ̄h,n − ψk,θ )

2) + t2F0
[
(ψ̄h,n − ψk,θ )ψ̄h,n

] + oP0(1),

where �k,θ is the difference ψ̄h,n − ψk,θ up to an additive constant, that is, there
exists a constant bk,θ ∈ R such that

�k,θ (x) = ψ̄h,n(x) − ψk,θ (x) + bk,θ , x ∈ [0;1].
The function ψk,θ is related to the approximation γn of the least favorable direction
considered in [5].

As will be illustrated in subsequent examples, under many priors, we can obtain
πk(Tkθ) = πk(θ)(1+o(1)) uniformly over Tk(Ãn ∩�k) so that the key (sufficient)
condition to verify (A3) is ρn,k = oP0(1), which is implied by

F0(hθ�k,θ ) = o(1) and F0
(
(ψ̄h,n − ψk,θ )

2) = o(1)(2.6)
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uniformly over Ãn; see Section 3. Condition (2.6) expresses that the difference
ψ̄h,n − ψk,θ has to be small enough, illustrating in this context what we mean by
a no bias condition.

The following family of examples shows the importance of this no bias condi-
tion.

2.2. Bernstein–von Mises for exponential families. In this section, we con-
sider the nonparametric models (priors) defined in Section 1.2. Assume that f0 is
1-periodic and f0 ∈ L

2[0,1]. Let Φ = (φλ)λ∈N be one of the bases introduced in
Section 1.2; then there exists a sequence θ0 = (θ0λ)λ∈N∗ such that

f0(x) = exp
( ∑

λ∈N∗
θ0λφλ(x) − c(θ0)

)
.

We denote �f0,k the projection operator on the vector space generated by
(φλ)0≤λ≤k for the scalar product 〈·, ·〉f0 and

�k = ψ − �f0,kψ = ψ̃ − �f0,kψ̃,

where ψ̃ is defined in (2.1). We expand the functions ψ̃ and �f0,kψ̃ on Φ .

ψ̃(x) = ∑
λ∈N

ψ̃λφλ(x), �f0,kψ̃(x) =
k∑

λ=0

ψ̃�,λφλ(x), x ∈ [0,1],

so that (ψ̃λ)λ∈N and (ψ̃�,λ)λ≤k denote the sequences of coefficients of the expan-
sions of the functions ψ̃ and �f0,kψ̃ , respectively. We finally note that

ψ̃
[k]
� = (ψ̃�,1, . . . , ψ̃�,k).

Let (εn)n be the sequence decreasing to zero defined in Theorem B.1; see Ap-
pendix B. The sequence L(n) is based on the function L defined in the case (PH)
of Definition 1.1 and, in the sequel, we set L(n) = 1 in the case (D) by convention.
Using Definition 1.1, for all a > 0, there exists a constant l0 > 0 large enough so

that Pp(k >
l0nε2

n

L(n)
) ≤ e−anε2

n . Following, for instance, [11], page 221, it implies that
there exists c > 0 and l0 large enough such that

P0

[
P

π

(
k >

l0nε2
n

L(n)

∣∣∣Xn

)
≤ e−cnε2

n

]
= 1 + o(1).

Now, setting ln = l0nε2
n/L(n), we have the following result.

THEOREM 2.2. We consider the prior (PH) defined in Definition 1.1. We
assume that ‖log(f0)‖∞ < ∞ and log(f0) ∈ Bγ

p,q with p ≥ 2, 1 ≤ q ≤ ∞ and
γ > 1/2 is such that

β < 1/2 + γ if p∗ ≤ 2 and β < γ + 1/p∗ if p∗ > 2,
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where p∗ is defined in Definition 1.1. For any k ∈ N
∗, set

Bk =
{
θ ∈ R

k s.t.
k∑

λ=1

(θλ − θ0λ)
2 ≤ 4(logn)3

L2(n)
ε2
n

}
,

and assume that for any t ∈ R,

lim
n→+∞ max

k≤ln
sup
θ∈Bk

πk(θ)

πk(θ − tψ̃
[k]
� /

√
n)

= 1(2.7)

and

sup
k≤ln

{∥∥∥∥∑
λ>k

ψ̃λφλ

∥∥∥∥∞
+ √

k

∥∥∥∥∑
λ>k

ψ̃λφλ

∥∥∥∥
2

}
= o

(
(logn)−3

√
nε2

n

)
.(2.8)

Then, for all z ∈ R,

P
π [√

n
(
�(f ) − �(Pn)

) ≤ z|Xn] = ∑
k

p
(
k|Xn)

�V0k
(z + μn,k) + oP0(1),(2.9)

where:

- V0k = F0(ψ̃
2) − F0(�

2
k),

- μn,k = √
nF0(�k

∑
λ≥k+1 θ0λφλ) + Gn(�k).

REMARK 1. A stronger result holds for the case (D). Indeed, by replacing
k ≤ ln with k = k∗

n in (2.7) and (2.8), where k∗
n is defined in Definition 1.1, and by

assuming that ∑
λ>k∗

n

ψ̃2
λ = o

(
n2γ /(2β+1)−1)

,(2.10)

then we have

sup
z∈R

∣∣Pπ [√
n
(
�(f ) − �(Pn)

) ≤ z|Xn] − �V0(z)
∣∣ = oP0(1),(2.11)

where V0 = F0(ψ̃
2).

The proof of Theorem 2.2 is given in Section 3.2. This result is a consequence
of Theorem 2.1. Conditions (A1) and (A2) are verified using Theorem B.1. Con-
ditions (2.7) and (2.8) are needed to study the asymptotic behavior of the ratio
defined in equation (2.3) which must go to 1 for condition (A3) to be satisfied. As
explained in Section 2.1 (Proposition A.1), to control the ratio defined in (2.3), we
need to express the change of parameter h to h− tψ̄h,n in terms of a change of pa-
rameter from θ ∈ Bk to θ − tψ̃

[k]
� /

√
n. Condition (2.7) ensures that the prior is not

dramatically modified by this change of parameter. The following three examples
of priors illustrate this condition. For the sake of simplicity, we only consider the
case p = q = 2.
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LEMMA 2.1. Assume that log(f0) ∈ Wγ . We still assume that β > 1/2 and
γ > 1/2. Condition (2.7) is satisfied in the following cases:

- g is the standard Gaussian density and γ > β − 1/4 for the case (PH), γ >

β − 1/2 for the case (D).
- g is the Laplace density g(x) ∝ e−|x| and γ > β − 1/2 for the case (PH) [no

further condition for the case (D)].
- g is a Student density g(x) ∝ (1 + x2/d)−(d+1)/2 under the same conditions as

for the Gaussian density.

The proof is given is Section 2 of the supplementary material [23]. Lemma 2.1
holds for any bounded function ψ . For the special case ψ(x) = 1x≤x0 , conditions
on γ and β can be relaxed. In particular, in the case (PH), if g is the Laplace
density, (2.7) is satisfied as soon as γ > β − 1/2. By choosing 1/2 < β ≤ 1, this is
satisfied for any γ > 1/2 as imposed by Theorem 2.2. Note that in the case (PH),
Theorem B.1 implies that the posterior distribution concentrates with the adaptive
minimax rate up to a logarithmic term, so that choosing β close to 1/2 is not
restrictive.

Condition (2.8) is needed to obtain ‖�k‖∞ = o((
√

nu2
n)

−1) for all k ≤ ln as
required by Proposition A.1. Indeed, (3.12) gives

√
nu2

n = √
nε2

n(logn)3 which
goes to 0 with n, so that condition (2.8) is quite mild. It requires some minimal
smoothness on ψ through the decay to zero of its coefficients. Note that we require
εn = o(n−1/4), which is a consequence of the conditions imposed on β,γ and p∗,
but which is necessary in various parts of the proof. The threshold n−1/4 is often
encountered in semi-parametric analysis as the no bias condition (see, e.g., [29],
Section 25.8) and is also required in [5] in the Cox model example (i.e., with
information loss).

Conditions (2.7) and (2.8) are rather mild, so that quite generally, the poste-
rior distribution of

√
n(�(f ) − �(Pn)) is asymptotically a mixture of Gaussian

distributions with variances V0k − F0(�
2
k) and mean values −μn,k with weights

p(k|Xn). To obtain an asymptotic Gaussian distribution with mean zero and vari-
ance V0 it is necessary for μn,k and F0(�

2
k) to be small whenever p(k|Xn) is

not. The situation where F0(�
2
k) �= o(1) under the posterior distribution corre-

sponds to the case where there exists k0 such that f0 ∈ Fk0 . In that case, it
can be proved that P

π [k0|Xn] = 1 + oP0(1) (see [6]), and the posterior distri-
bution of �(f ) is asymptotically Gaussian with mean �(f

θ̂k0
), where θ̂k0 is

the maximum likelihood estimator in Fk0 , and the variance is the asymptotic
variance of �(f

θ̂k0
). The posterior distribution therefore satisfies a Bernstein–

von Mises theorem, but it is a parametric instead of a nonparametric Bernstein–
von Mises theorem. However, even if F0(�

2
k) = o(1), the posterior distribution

might not satisfy the nonparametric Bernstein–von Mises property since then
μn,k = √

nF0(�k

∑
λ≥k+1 θ0λφλ)+ oP0(1), which might not be a oP0(1) [note that
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√
nF0(�k

∑
λ≥k+1 θ0λφλ) corresponds to F0(hθ�k,θ ) in (2.6), so that the first part

of (2.6) leads to μn,k = oP0(1) in the setup of exponential families]. The term
μn,k is a bias term in the posterior distribution. It is related to the term γn − γ

in [5] in the case of information loss, since �f0,kψ̃ plays the same role as γn. In
the case of Gaussian priors the control of γn − γ is induced by a smoothness as-
sumption on the prior. Here the notion of smoothness is not so clearly defined
and the control of μn,k strongly depends on a lower bound on the set of k’s
such that

∑
λ≥k+1 θ2

0λ ≤ ε2
n, which can be interpreted as a no bias condition. In-

deed |μn,k| ≤ C
√

n(
∑

λ>k ψ̃2
λ)1/2(

∑
λ>k θ2

0λ)
1/2. Therefore for the Bernstein–von

Mises property to be satisfied over a class of functions f0, the posterior on k needs
to be almost 0 for k’s such that (

∑
λ>k ψ̃2

λ)1/2 is larger than [√n(
∑

λ>k θ2
0λ)

1/2]−1.
In general we cannot assess a lower bound on k for which

∑
λ>k θ2

0λ ≤ ε2
n unless

we assume some extra conditions on the behavior on the θ0λ’s. Thus in the case
(PH), the Bernstein–von Mises theorem will often not be satisfied, even for regular
functional ψ̃ unless strong assumptions are put on the behavior of the coefficients
(θ0λ)λ. This remark is illustrated in Proposition 2.1, where we prove the nonvalid-
ity of the Bernstein–von Mises theorem for a given family of functions f0 (with
various smoothness parameters).

The Bernstein–von Mises theorem is, however, satisfied in the case of a prior
of type (D), under condition (2.10). The latter is verified if either γ > β + 1/2 or
if γ > β and ψ is a smooth function like a continuously differentiable function
in the case of the Fourier basis or a piecewise constant function (as in the case
of the cumulative distribution function). Therefore to obtain a BVM theorem, the
true density f0 and the functional ψ̃ are required to have a minimal smoothness
[γ > 1/2 for f0 and condition (2.8) on ψ̃]. Conditions (2.10), k = k∗

n and the
constraints on β on the contrary, force the prior to approximate correctly functions
that are potentially less smooth.

We illustrate this issue in the special case of the cumulative distribution function
calculated at a given point x0 :ψ(x) = 1x≤x0 . We recall that the variance of Gn(ψ)

under P0 is equal to V0 = F0(x0)(1 − F0(x0)). We consider the case of the Fourier
basis (the case of wavelet bases can be handled in the same way). Straightforward
computations lead to the following result.

COROLLARY 2.1. Assume that ψ is a piecewise constant function. Consider
the class of sieve priors defined in Definition 1.1 in the case (D) where g is either
the Gaussian or the Laplace density. Then if f0 ∈ Wγ , with γ ≥ β > 1/2, the pos-
terior distribution of

√
n(F (x0)−Fn(x0)) is asymptotically Gaussian with mean 0

and variance V0. If g is a Student density and if γ ≥ β > 1, the same result holds.

We now illustrate the fact that for the case (PH), the Bernstein–von Mises prop-
erty may be not valid.
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PROPOSITION 2.1. Let us consider the Fourier basis and let

f0(x) = exp
( ∑

λ≥k0

θ0λφλ(x) − c(θ0)

)
,

where k0 is fixed and for any λ, θ0,2λ+1 = 0 and

θ0,2λ = sin(2πλx0)

λγ+1/2
√

logλ log logλ
.

Consider the prior defined in Section 1.2 with g being the Gaussian or the Laplace
density, but the prior p is now the Poisson distribution with parameter ν > 0. If k0
is large enough, there exists x0 such that the posterior distribution of

√
n(F (x0)−

Fn(x0)) is not asymptotically Gaussian with mean 0 and variance F0(x0)(1 −
F0(x0)).

Actually, we prove that the asymptotic posterior distribution of
√

n(F (x0) −
Fn(x0)) is a mixture of Gaussian distributions with means bounded from below
by c̃

√
logn for some positive constant c̃ and variance F0(x0)(1 − F0(x0)) and

the support of the posterior distribution of k is included in {m ∈ N
∗ s.t. m ≤ ckn}

where c is a constant, and kn is defined by

kn = n1/(2γ+1)(logn)−2/(2γ+1)(log logn)−2/(2γ+1);

see the proof of Proposition 2.1. It does not exclude the fact that the posterior
distribution of

√
n(F (x0) − Fn(x0)) could be asymptotically Gaussian, but even

if it were, it would not have mean equal to zero, and therefore, the Bernstein–von
Mises property is not valid.

2.3. A conclusion. As a conclusion on the existence of Bernstein–von Mises
theorem for linear functionals of the density, we see that apart from the usual con-
centration results of the posterior distribution, the key condition is to be able to
define a change of parameter from f to f e−tψ̄f /

√
n, which does not modify much

the prior. Such a construction differs, depending on the family of priors consid-
ered. In this paper we have called this a no bias condition since it means that not
only f0 needs to be well approximated with such a prior but also f e−tψ̄f /

√
n, for

all f in a neighborhood of f0. This can be problematic since the posterior (being
driven by the likelihood) is targeted to approximate correctly f0, and in the case of
adaptive posterior such as (PH), it is thus adapted to the smoothness of f0, which

might not be the same as the smoothness of f e−tψ̄f /
√

n or even f0e
−tψ̄f0/

√
n. In

the case of Gaussian priors, as considered in [5], this implies that the prior is not
too smooth so that f e−tψ̄f /

√
n can be correctly approximated by sequences in the

associated RKHS. In the family of sieve priors, it means that the posterior distri-
bution concentrates on k’s that are large enough.
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3. Proofs. In the sequel, C denotes a generic positive constant whose value is
of no importance and may change from line to line. To simplify some expressions,
we omit at some places the integer part 
·�.

3.1. Proof of Theorem 2.1. Let Zn = √
n(�(f ) − �(Pn)). We have

P
π{

An|Xn} = 1 + oP0(1).(3.1)

So, it is enough to prove that conditionally on An and Xn, the distribution of Zn

converges to the distribution of a Gaussian variable whose variance is F0(ψ̃
2).

This will be established if for any t ∈ R,

lim
n→+∞Ln(t) = exp

(
t2

2
F0

[
ψ̃2])

,(3.2)

where Ln(t) is the Laplace transform of Zn conditionally on An and Xn:

Ln(t) = E
π [

exp
(
t
√

n
(
�(f ) − �(Pn)

))|An,X
n]

= E
π [exp(t

√
n(�(f ) − �(Pn)))1An(f )|Xn]

Pπ {An|Xn}(3.3)

=
∫
An

exp(t
√

n(�(f ) − �(Pn)) + �n(f ) − �n(f0)) dπ(f )∫
An

exp(�n(f ) − �n(f0)) dπ(f )
.

We set for any x,

Bh,n(x) =
∫ 1

0
(1 − u)euh(x)/

√
n du.(3.4)

Note that, with h = hf = √
n(logf − logf0),

Bh,n(x) ≤ 0.5 × 1{f (x)≤f0(x)} + 1{f (x)>f0(x)}
∫ 1

0
eu(logf (x)−logf0(x)) du

(3.5)

≤ 1{f (x)≤f0(x)} + 1{f (x)>f0(x)}
(
logf (x) − logf0(x)

)−1 f (x)

f0(x)
.

So, using (3.4),

exp
(

h(x)√
n

)
= 1 + h(x)√

n
+ h2(x)

n
Bh,n(x),

which implies that

f (x) − f0(x) = f0(x)

(
h(x)√

n
+ h2(x)

n
Bh,n(x)

)
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and

t
√

n
(
�(f ) − �(Pn)

) = −tGn(ψ̃) + t
√

n

(∫
ψ̃(x)

(
f (x) − f0(x)

)
dx

)

= −tGn(ψ̃) + tF0(hψ̃) + t√
n
F0

(
h2Bh,nψ̃

)
.

Since

�n(f ) − �n(f0) = −F0(h
2)

2
+ Gn(h) + Rn(h),

we have

Ln(t) =
∫
An

exp
(
Gn(h − tψ̃) + tF0(hψ̃)

+ t√
n
F0

(
h2Bh,nψ̃

) − F0(h
2)

2
+ Rn(h)

)
dπ(f )

×
(∫

An

exp
(
−F0(h

2)

2
+ Gn(h) + Rn(h)

)
dπ(f )

)−1

=
∫
An

exp
(
−F0((h − tψ̄h,n)

2)

2

+ Gn(h − tψ̄h,n) + Rn(h − tψ̄h,n) + Uh,n

)
dπ(f )

×
(∫

An

exp
(
−F0(h

2)

2
+ Gn(h) + Rn(h)

)
dπ(f )

)−1

,

where straightforward computations show that

Uh,n = tF0
(
h(ψ̃ − ψ̄h,n)

) + t2

2
F0

(
ψ̄2

h,n

)
+ Rn(h) − Rn(h − tψ̄h,n) + t√

n
F0

(
h2Bh,nψ̃

)

= tF0(hψ̃) + t
√

nF0(ψ̄h,n) + t√
n
F0

(
h2Bh,nψ̃

)

= tF0(hψ̃) + n log
(
F0

[
exp

(
h√
n

− tψ̃√
n

)])
+ t√

n
F0

(
h2Bh,nψ̃

)
.

Now let us expand the second term of the last expression. The first and third terms
of the expression will then cancel out with this expansion. Using

‖ψ̃‖∞ ≤ 2‖ψ‖∞ < ∞,(3.6)
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the Taylor expansion of exp(−tψ̃/
√

n) and the formula

f (x) = f0(x) exp
(

h(x)√
n

)
,

we obtain

F0

[
exp

(
h√
n

− tψ̃√
n

)]
= F0

[
eh/

√
n

(
1 − tψ̃√

n
+ t2

2n
ψ̃2

)]
+ O

(
n−3/2)

= 1 − t√
n
F0

[
eh/

√
nψ̃

] + t2

2n
F0

[
eh/

√
nψ̃2] + O

(
n−3/2)

.

Also,

F0
[
eh/

√
nψ̃

] = F0[hψ̃]√
n

+ F0[h2Bh,nψ̃]
n

;

F0
[
eh/

√
nψ̃2] = F0

[
ψ̃2] + F0[hψ̃2]√

n
+ F0[h2Bh,nψ̃

2]
n

.

Note that, on An, we have F0(h
2) = O(nu2

n) and, by using (3.5),

F0
(
h2Bh,n

) ≤ nF0

[(
log

(
f

f0

))2]
+ nF

[∣∣∣∣log
(

f

f0

)∣∣∣∣
]

≤ nu2
n + nũn

so, F0(h
2Bh,n) = o(n). So, uniformly on An, since ψ̃ is bounded [see (3.6)],

F0

[
exp

(
h√
n

− tψ̃√
n

)]

= 1 − t√
n

(
F0[hψ̃]√

n
+ F0[h2Bh,nψ̃]

n

)

+ t2

2n

(
F0

[
ψ̃2] + F0[hψ̃2]√

n
+ F0[h2Bh,nψ̃

2]
n

)
+ o

(
n−1)

(3.7)

= 1 − t

n

[
F0[hψ̃] + F0[h2Bh,nψ̃]√

n
− tF0(ψ̃

2)

2
+ o(1)

]

= 1 + o
(
n−1/2)

and

n log
(
F0

[
exp

(
h√
n

− tψ̃√
n

)])
= −t

[
F0(hψ̃)+ F0[h2Bh,nψ̃]√

n
− tF0(ψ̃

2)

2

]
+o(1).
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Finally,

Uh,n = t2

2
F0

[
ψ̃2] + o(1)

and up to a multiplicative factor equal to 1 + o(1),

Ln(t) = exp
(

t2

2
F0

[
ψ̃2])

×
∫
An

exp
(
−F0((h − tψ̄h,n)

2)

2

+ Gn(h − tψ̄h,n) + Rn(h − tψ̄h,n)

)
dπ(f )

×
(∫

An

exp
(
−F0(h

2)

2
+ Gn(h) + Rn(h)

)
dπ(f )

)−1

.

Finally (A3) implies (3.2) and the theorem is proved.

3.2. Proof of Theorem 2.2. We use the same approach as in Theorem 2.1.
We first prove that conditions (A1) and (A2) are satisfied. Let εn be the posterior
concentration rate obtained in Theorem B.1. Recall that:

- εn = ε0n
−γ /(2γ+1)(logn)γ/(2γ+1) and ln = l0nε2

n

L(n)
in the case (PH);

- εn = ε0(logn)1{γ≥β}n−(β∧γ )/(2β+1) and ln = k∗
n = k0n

1/(2β+1) in the case (D).

Note that for any a ≥ 0, since γ > 1/2 and β > 1/2, we have

(logn)alnε
2
n = o(1).(3.8)

Note also that in the sequel we can restrict ourselves to
⋃

k≤ln
Fk . Indeed, in the

case of the prior (PH),

Pπ

[( ⋃
k≤ln

Fk

)c]
= ∑

λ>ln

p(λ)

(3.9)
≤ C exp

(−c2lnL(ln)
) = o

(
e−cnε2

n
)

for some positive c and in the case of the prior (D) Pπ [(⋃k≤ln
Fk)

c] = 0 by defi-
nition.

In the sequel, for any k ≤ ln and any θ ∈ R
k , we still denote θ the sequence

whose λth component is equal to θλ for λ ≤ k and whose λth component is equal
to 0 for λ > k. Then we can define

An =
{
θ ∈ ⋃

k≤ln

R
k s.t. ‖θ − θ0‖�2 ≤ 2(logn)3/2εn

L(n)1/2

}
, Ãn = {fθ s.t. θ ∈ An}
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and note that from Theorem B.1

P
π{

Ãn|Xn} = 1 + oP0(1).

To prove (A1) and (A2) we control V (f0, fθ ) and Fθ [|log(fθ/f0)|] for fθ ∈ Ãn.
For any θ ∈ An, we have

V (f0, fθ ) ≤ 2‖f0‖∞‖θ − θ0‖2
�2

+ 2
(
c(θ) − c(θ0)

)2
.

Note that for θ ∈ An, by using (D.1), (D.3) and (3.8),∥∥∥∥∥
+∞∑
λ=1

(θ0λ − θλ)φλ

∥∥∥∥∥∞
≤ C

√
ln‖θ − θ0‖�2 + Cl1/2−γ

n = o(1).(3.10)

Therefore for θ ∈ An,

c(θ) − c(θ0)

= log
(∫ 1

0
f0(x)e−∑+∞

λ=1(θ0λ−θλ)φλ(x) dx

)

= log

{
1 −

+∞∑
λ=1

(θ0λ − θλ)F0(φλ) + 1

2
F0

[(+∞∑
λ=1

(θ0λ − θλ)φλ

)2](
1 + o(1)

)}

= −
+∞∑
λ=1

(θ0λ − θλ)F0(φλ)
(
1 + o(1)

) + O
(‖θ − θ0‖2

�2

)
and for n large enough,∣∣c(θ) − c(θ0)

∣∣ ≤ 2‖f0‖2‖θ − θ0‖�2 .(3.11)

This implies that on An,

V (f0, fθ ) = O
(
ε2
n(logn)3/L(n)

)
.(3.12)

Thus (A1) is verified with u2
n = u2

0ε
2
n(logn)3/L(n) and u0 large enough. To estab-

lish (A2), we observe that we have on Ãn,

‖logfθ − logf0‖∞ ≤
∥∥∥∥ ∑
λ∈N∗

(θ0λ − θλ)φλ

∥∥∥∥∞
+ ∣∣c(θ) − c(θ0)

∣∣

≤ 2
∥∥∥∥ ∑
λ∈N∗

(θ0λ − θλ)φλ

∥∥∥∥∞
= o(1)

by using (3.10). So, on Ãn,

V (fθ , f0) ≤ CV (f0, fθ )

and (A2) is implied by (A1). Conditions (1) and (2) of Proposition A.1 are also
true.
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Now, let us study the validity of (A3): For any t , we study the term

In =
∫
Ãn

exp
(
−F0((hf − tψ̄h,n)

2)

2

+ Gn(hf − tψ̄h,n) + Rn(hf − tψ̄h,n)

)
dπ(f )

×
(∫

Ãn

exp
(
−F0(h

2
f )

2
+ Gn(hf ) + Rn(hf )

)
dπ(f )

)−1

.

We introduce

Jk,n :=
∫
Ãn∩Fk

exp
(
−F0((hf − tψ̄h,n)

2)

2

+ Gn(hf − tψ̄h,n) + Rn(hf − tψ̄h,n)

)
dπk(f )

×
(∫

Ãn∩Fk

exp
(
−F0(h

2
f )

2
+ Gn(hf ) + Rn(hf )

)
dπk(f )

)−1

,

so that

In =
∑

k Jk,nP
π [Ãn ∩ Fk|Xn]∑

k Pπ [Ãn ∩ Fk|Xn] .(3.13)

We now study Jk,n, using the approach described in Section 2.1 and Proposi-
tion A.1. At this stage, we have only to focus on condition (3) of Proposition A.1.
Let Hn = (hθ − tψ̃)/

√
n and

Dn,k,t = t�f0,kψ̃ − tψ̃�,0√
n

= t√
n

k∑
λ=1

ψ̃�,λφλ,

then define

Tkθ = θ − t
ψ̃

[k]
�√
n

,

ψk,θ =
√

nDn,k,t

t
−

√
n

t

(
c(θ) − c

(
θ − t

ψ̃
[k]
�√
n

))

so that fTkθ = fθe
−tψk,θ /

√
n. The function ψk,θ can then be understood as the

projection of ψ̄h,n on the first k components of φλ with the constraint that
fθe

−tψk,θ /
√

n is indeed a probability density. Then we define �k,θ = ψ̃ − �f0,kψ̃

and bk,θ satisfying ψ̄h,n −ψk,θ = �k,θ −bk,θ . Straightforward computations show
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that

bk,θ = −ψ̃�,0 −
√

n

t

(
c(θ) − c

(
θ − t

ψ̃
[k]
�√
n

))

−
√

n

t
log

(
F0

[
exp

(
hθ√
n

− tψ̃√
n

)])

=
√

n

t
log

[
F0(e

Hn+t�k,θ /
√

n)

F0(eHn)

]
.

To emphasize the fact that �k,θ does not depend on θ , we write hereafter �k :=
�k,θ . The following lemma controls the terms Hn, bk,θ and �k :

LEMMA 3.1. We have

‖Hn‖∞ = o(1), ‖�k‖∞ = o

(
1√
nu2

n

)
, |bk,θ | = o(1)

uniformly on k such that Fk ∩ Ãn �= ∅.

The proof is given in Appendix C.1.
Note that F0((ψ̄h,n − ψk,θ )

2) = F0((�k − bk,θ )
2) = F0(�

2
k) + o(1) = O(1)

uniformly over An, and condition (3) of Proposition A.1 is satisfied with wn = 1
for any n, which implies that

ρn,k = −tF0[�khθ ] + tGn(�k)

− t2

2
F0

(
(ψ̄h,n − ψk,θ )

2) + t2F0
[
(ψ̄h,n − ψk,θ )ψ̄h,n

] + o(1).

Since �k is orthogonal to any φλ,λ ≤ k including φ0 = 1, we obtain, using the
expression of hθ in exponential families,

F0(hθ�k) = −√
nF0

((∑
λ>k

θ0λφλ

)
�k

)
,

which is independent of θ . Also,

F0
(
(ψ̄h,n − ψk,θ )ψ̄h,n

) = F0
(
�2

k

) + F0(ψk,θ�k) + o(1) = F0
(
�2

k

) + o(1),

where the last equality comes from the orthogonality between �k and ψk,θ . There-
fore

ρn,k = tμn,k + t2

2
F0

(
�2

k

) + o(1)
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and for all k such that Fk ∩ Ãn �= ∅,

Jk,n = e−t2F0(�
2
k)/2e−tμn,k

×
(∫

Rk∩An

e
−F0(h

2
Tkθ )/2+Gn(hTkθ )+Rn(hTkθ )

dπk(θ)

×
(∫

Rk∩An

e−F0(h
2
θ )/2+Gn(hθ )+Rn(hθ ) dπk(θ)

)−1)(
1 + o(1)

)
.

In the following lemma, using the above approximation, we obtain an equivalent
of In.

LEMMA 3.2.

In =
ln∑

k=1

e−t2F0(�
2
k)/2e−tμn,kP

π [
k|Xn](

1 + oP0(1)
)
.

The proof of Lemma 3.2 is given in Appendix C.2. Using (3.3) and the last
equality of the proof of Theorem 2.1 and combining the above inequalities with
(3.13), we obtain

ζn(t) := E
π [

exp
(
t
√

n
(
�(f ) − �(Pn)

))
1

Ãn
(f )|Xn]

= Ln(t) × P
π{

Ãn|Xn} = Ln(t)
(
1 + o(1)

)
= et2F0(ψ̃

2)/2In

(
1 + o(1)

)
,

which, combined with Lemma 3.2, implies that the posterior distribution of√
n(�(f ) − �(Pn)) is asymptotically equal to a mixture of Gaussian distribu-

tions with variance V0k = F0(ψ̃
2)−F0(�

2
k), means −μn,k and weights P

π(k|Xn).
Straightforward computations prove the last part of the theorem.

APPENDIX A: A TECHNICAL RESULT

We state the following technical result that constitutes the first step to prove the
condition (A3) which expresses the change of parameter.

PROPOSITION A.1. For a sequence (un)n such that
√

nun → +∞, we as-
sume that the following three conditions are satisfied:

(1) Assumption (A1) is satisfied with (un)n, and there exists a sequence (ln)n of
integers such that P

π [k > ln|Xn] = oP0(1).
(2) There exists a sequence (wn)n lower bounded by a positive constant such that

wn

√
nu2

n = o(1) and

Ãn ⊂ A1
un

∩
( ⋃

k≤ln

Fk

)
∩ {

fθ s.t. V (fθ , f0) ≤ wnu
2
n

}
,
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satisfies

P
π [

Ãn|Xn] = 1 + oP0(1).

(3) For each k such that Fk ∩ Ãn �= ∅, there exists a map: Tk : Ãn ∩�k → �k and
a function ψk,θ such that for all θ ∈ Ãn ∩ �k :
(a) fTkθ = fθe

−tψk,θ /
√

n;
(b)

max
k≤ln

sup
θ∈�k∩Ãn

F0
[
(ψ̄h,n − ψk,θ )

2] = O(1);

(c) for all θ ∈ �k such that fθ ∈ Ãn, ψ̄h,n(x) − ψk,θ (x) can be decomposed
as

ψ̄h,n(x) − ψk,θ (x) = �k,θ (x) − bk,θ ,

where bk,θ is a constant such that

max
k≤ln

sup
θ∈�k∩Ãn

|bk,θ | = o
(
u−1

n w−1/2
n

)

and �k,θ (x) is a function satisfying

max
k≤ln

sup
f ∈Fk∩Ãn

‖�k,θ‖∞ = o
(
w−1

n n−1/2u−2
n

)
.

Then, we have uniformly over
⋃

k≤ln
Fk ∩ Ãn

ρn,k(θ) = −tF0[�k,θhθ ] + tGn(�k,θ )

− t2

2
F0

(
(ψ̄h,n − ψk,θ )

2) + t2F0
[
(ψ̄h,n − ψk,θ )ψ̄h,n

] + o(1).

The conditions considered in Proposition A.1 are mild and, apart from condi-
tion (3), are slightly stronger versions of assumptions (A1) and (A2). In the exam-
ple considered in this paper, wn = 1 and in many cases, wn increases to infinity
at most as a power of logn. The constraints on bk,θ and �k,θ are mild since the
right-hand terms go to infinity.

PROOF OF PROPOSITION A.1. We consider the change of parameter θ �→ Tkθ

for all θ such that fθ ∈ Ãn ∩ Fk , and we study

ρn,k = −F0(h
2
Tkθ

)

2
+ Gn(hTkθ ) + Rn(hTkθ )

−
(
−F0((hθ − tψ̄h,n)

2)

2
+ Gn(hθ − tψ̄h,n) + Rn(hθ − tψ̄h,n)

)
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with hTkθ = √
n log(fTkθ/f0). Recall that

ψ̄h,n = ψ̃ +
√

n

t
log

(
F0

[
exp

(
hθ√
n

− tψ̃√
n

)])

and ‖ψ̃‖∞ < ∞. From (3.7) of the main text,
√

n

t
log

(
F0

[
exp

(
hθ√
n

− tψ̃√
n

)])
= o(1),

so that ‖ψ̄h,n‖∞ < +∞. Writing hTkθ = hθ − tψ̄h,n + t (ψ̄h,n −ψk,θ ) and combin-
ing the above upper bound with condition (3) of Proposition A.1, we obtain

F0
(
h2

Tkθ

) = F0
(
(hθ − tψ̄h,n)

2) + t2F0
(
(ψ̄h,n − ψk,θ )

2)
+ 2tF0

(
hθ(ψ̄h,n − ψk,θ )

)
− 2t2F0

(
ψ̄h,n(ψ̄h,n − ψk,θ )

)
,

Gn(hTkθ ) = Gn(hθ − tψ̄h,n) + tGn(ψ̄h,n − ψk,θ )

= Gn(hθ − tψ̄h,n) + tGn(�k,θ )

and

Rn(hTkθ ) = Rn(hθ − tψ̄h,n)

+ t
√

nF0(ψ̄h,n − ψk,θ ) + t2

2
F0

(
(ψ̄h,n − ψk,θ )

2)
(A.1)

+ tF0
(
(ψ̄h,n − ψk,θ )(hθ − tψ̄h,n)

)
so that

ρn,k = t
√

nF0(ψ̄h,n − ψk,θ ) + tGn(�k,θ ).

Recall that ψ̄h,n − ψk,θ = �k,θ − bk,θ , where bk,θ is a constant with respect to x,
and note that by definition of ψk,θ , F0(e

(hθ−tψk,θ )/
√

n) = 1 so that since

‖ψ̄h,n − ψk,θ‖∞ = ‖�k,θ − bk,θ‖∞ = o
(√

n
)
,(A.2)

1 = F0
(
e(hθ−tψ̄h,n)/

√
n+t (ψ̄h,n−ψk,θ )/

√
n)

= F0
(
e(hθ−tψ̄h,n)/

√
n)

+ t√
n
F0

(
e(hθ−tψ̄h,n)/

√
n(ψ̄h,n − ψk,θ )

)

+ t2

n
F0

(
e(hθ−tψ̄h,n)/

√
n(ψ̄h,n − ψk,θ )

2B(ψ̄h,n−ψk,θ ),n

)
,
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where Bh,n is defined in (3.4) in the main text. Note that F0(e
(hθ−tψ̄h,n)/

√
n) = 1

and multiplying the previous expression by n, we obtain
∑6

i=1 Si = 0, with

S1 = t
√

nF0(ψ̄h,n − ψk,θ ), S2 = tF0
[
(ψ̄h,n − ψk,θ )(hθ − tψ̄h,n)

]
,

S3 = t√
n
F0

[
(ψ̄h,n − ψk,θ )(hθ − tψ̄h,n)

2Bhθ−tψ̄h,n,n

]
,

S4 = t2F0
[
(ψ̄h,n − ψk,θ )

2B(ψ̄h,n−ψk,θ ),n

]
,

S5 = t2
√

n
F0

[
(ψ̄h,n − ψk,θ )

2(hθ − tψ̄h,n)B(ψ̄h,n−ψk,θ ),n

]
and

S6 = t2

n
F0

[
(ψ̄h,n − ψk,θ )

2(hθ − tψ̄h,n)
2B(ψ̄h,n−ψk,θ ),nBhθ−tψ̄h,n,n

]
.

We successively study each term except the first one.

S2 = tF0(�k,θhθ ) − tbk,θF0(hθ ) − t2F0
[
(ψ̄h,n − ψk,θ )ψ̄h,n

]
.

Since ‖ψ̄h,n‖∞ ≤ C, Bhθ−tψ̄h,n,n = Bhθ ,n(1 + O(1/
√

n)) uniformly over Ãn.
Then,

S3 = − tbk,θ√
n

F0
[
h2

θBhθ−tψ̄h,n,n

] + o
(
u−1

n w−1/2
n n−1/2 + w−1

n n−1u−2
n

)
+ O

(
n−1/2‖�k,θ‖∞F0

(
h2

θBhθ ,n

))
+ O

(
n−1/2(|bk,θ | + ‖�k,θ‖∞

)
F0

(|hθ |Bhθ ,n

))
since from condition (3)(c) of Proposition A.1, we have |bk,θ | = o(u−1

n w
−1/2
n ) and

‖�k,θ‖∞ = o(w−1
n n−1/2u−2

n ). We have also used that

2f0(x)Bhθ ,n(x) = 2
∫ 1

0
(1 − u)f 1−u

0 (x)f u
θ (x) du ≤ f0(x) + fθ(x).

This inequality implies

2F0
(
h2

θBhθ ,n

) ≤ F0
(
h2

θ

) + Fθ

(
h2

θ

) ≤ 2nu2
nwn, 2F0

(|hθ |Bhθ ,n

) ≤ 2un

√
nwn,

therefore,

S3 = − tbk,θ√
n

F0
[
h2

θBhθ ,n

] + o(1).

Using (A.2),

‖B(ψ̄h,n−ψk,θ ),n − 0.5‖∞ =
∥∥∥∥
∫ 1

0
(1 − u)eu(ψ̄h,n−ψk,θ )/

√
n du − 0.5

∥∥∥∥∞
= o(1)
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and

S4 = t2F0((ψ̄h,n − ψk,θ )
2)

2

(
1 + o(1)

)
.

The fifth term is controlled as follows:

|S5| ≤ t2‖ψ̄h,n − ψk,θ‖∞√
n

(
F0

(
h2

θ

))1/2
(F0

(
(ψ̄h,n − ψk,θ )

2)1/2 + o(1)

= o

( √
nun√

nun
√

wn

+
√

nun

nu2
nwn

)
+ o(1) = o(1).

Finally,

|S6| ≤ t2‖ψ̄h,n − ψk,θ‖2∞F0(h
2
θBhθ ,n)

n
+ o(1) = o(1).

So, combining the bounds on S2–S6, we obtain

0 = t
√

nF0(ψ̄h,n − ψk,θ ) + tF0(�k,θhθ ) − tbk,θF0(hθ ) − tbk,θ√
n

F0
[
h2

θBhθ ,n

]

+ t2F0((ψ̄h,n − ψk,θ )
2)

2
− t2F0

[
(ψ̄h,n − ψk,θ )ψ̄h,n

] + o(1).

Using the relation

F0(hθ ) + F0(h
2
θBhθ ,n)√
n

= 0,

which comes from a Taylor expansion of 1 = F0(e
hθ /

√
n), we obtain

0 = t
√

nF0(ψ̄h,n − ψk,θ ) + tF0(�k,θhθ ) + t2F0((ψ̄h,n − ψk,θ )
2)

2

− t2F0
[
(ψ̄h,n − ψk,θ )ψ̄h,n

] + o(1).

We finally obtain that, uniformly on Ãn,

ρn,k = −tF0[�k,θhθ ] + tGn(�k,θ ) − t2

2
F0

(
(ψ̄h,n − ψk,θ )

2)
+ t2F0

[
(ψ̄h,n − ψk,θ )ψ̄h,n

] + o(1),

and Proposition A.1 is proved. �
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APPENDIX B: POSTERIOR RATES FOR INFINITE-DIMENSIONAL
EXPONENTIAL FAMILIES

Since one of the key conditions needed to obtain a Bernstein–von Mises theorem
is a concentration rate of the posterior distribution, we now state the following
result established in [22].

THEOREM B.1. We assume that ‖log(f0)‖∞ < ∞ and log(f0) ∈ Bγ
p,q with

p ≥ 2, 1 ≤ q ≤ ∞ and γ > 1/2 is such that

β < 1/2 + γ if p∗ ≤ 2 and β < γ + 1/p∗ if p∗ > 2.

Then, there exists c > 0 such that if

�n =
{
θ s.t. h(f0, fθ ) ≤

√
logn

L(n)
εn and ‖θ0 − θ‖�2 ≤

√
(logn)3

L(n)
εn

}
,

lim
n→+∞ P0

{
P

π{
�n|Xn} ≥ 1 − exp

(−cnε2
n

)} = 1,

where in the case (PH),

εn = ε0

(
logn

n

)γ /(2γ+1)

,

in the case (D), L(n) = 1,

εn = ε0(logn)n−β/(2β+1) if γ ≥ β,

εn = ε0n
−γ /(2β+1) if γ < β,

and ε0 is a given constant. We also have that there exists a > 0 such that

P
π{

fθ s.t. K(f0, fθ ) ≤ ε2
n;V (f0, fθ ) ≤ ε2

n

} ≥ e−anε2
n .

APPENDIX C: PROOFS OF LEMMAS 3.1 AND 3.2

C.1. Proof of Lemma 3.1. Let c0 be a positive lower bound of f0. We then
have using (D.1),

‖Dn,k,t‖∞ ≤ t
√

k√
n

∥∥ψ̃ [k]
�

∥∥
�2

≤ t
√

k√
n

‖�f0,kψ̃‖2 ≤ t
√

k√
c0

√
n
‖�f0,kψ̃‖f0

≤ t
√

k√
c0

√
n
‖ψ̃‖f0 ≤ t

√
ln√

c0
√

n
‖ψ̃‖∞ = O(εn).

Since ‖ψ̃‖∞ = O(1) and since on An,

n−1/2‖hθ‖∞ ≤
∥∥∥∥∥
+∞∑
λ=1

(θ0λ − θλ)φλ(x) − c(θ0) + c(θ)

∥∥∥∥∥∞
≤ C

√
ln‖θ0 − θ‖�2 + C‖θ0 − θ‖�2 = o(1),
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‖Hn‖∞ = o(1).
To bound ‖�k‖∞, we set ψ+k = ∑

λ>k ψ̃λφλ, so �k = ψ+k −�f0,k(ψ+k). Then
by using (D.1),

‖�k‖∞ ≤ ‖ψ+k‖∞ + ‖�f0,kψ+k‖∞

≤ ‖ψ+k‖∞ + C
√

k‖�f0,kψ+k‖f0

≤ ‖ψ+k‖∞ + C
√

k‖ψ+k‖f0

≤ ‖ψ+k‖∞ + C
√

k‖ψ+k‖2 = o

(
1√
nu2

n

)
,

where the last inequality comes from condition (2.8).
We now bound bk,θ . Since F0(�

2
k) = O(1) and ‖�k‖∞ = o(

√
n),

F0
(
eHn+t�k/

√
n) = F0

(
eHn

(
1 + t�k√

n

))
+ 0

(
F0(�

2
k)

n

)

= F0
(
eHn

) + t√
n
F0

(
eHn�k

) + o
(
1/

√
n
)
.

Note also that from (3.7), F0(e
Hn) = 1+o(1/

√
n). Furthermore, since F0(|�k|) <

∞, ‖ψ̃‖∞ < ∞ and since n−1/2‖hθ‖∞ = o(1),

F0
(
eHn�k

) = F0
(
�ke

hθ/
√

n) − t√
n
F0

(
�ke

hθ/
√

nψ̃
) + O

(
1

n

)

= F0(�k) + o(1) = o(1).

We thus obtain that

bk,θ =
√

n

t
log

[
F0(e

Hn+t�k/
√

n)

F0(eHn)

]
= o(1),(C.1)

which completes the proof of Lemma 3.1.

C.2. Proof of Lemma 3.2. To prove Lemma 3.2 we first show that the prior
πk is not affected by the change of parameter θ → Tkθ . For k ≤ ln, ‖ψ̃ [k]

� ‖�2 ≤ C,
where C does not depend on k and n. So, if we set

Tk(An) =
{
θ + t

ψ̃
[k]
�√
n

s.t. θ ∈ R
k ∩ An

}

for all θ ∈ Tk(An), using Theorem B.1 and (a + b)2 ≤ 2a2 + 2b2,

‖θ − θ0‖2
�2

≤ 4ε2
n log3 n

L(n)
+ 2t2C2

n
≤ 4ε2

n log3 n

L(n)

(
1 + o(1)

)
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since nε2
n → +∞. Conversely, for all θ ∈ R

k ∩ An such that ‖θ − θ0‖�2 ≤
1.5(logn)3/2L(n)−1/2εn,

θ − t
ψ̃

[k]
�√
n

∈ An ∩ R
k

for n large enough, and we can write (still for n large enough)

R
k ∩ An,1 ⊂ Tk(An) ⊂ R

k ∩ An,2(C.2)

with

An,1 = {
θ ∈ An s.t. ‖θ − θ0‖�2 ≤ 1.5(logn)3/2L(n)−1/2εn

}
,

An,2 = {
θ s.t. ‖θ − θ0‖�2 ≤ √

5(logn)3/2L(n)−1/2εn

}
.

Therefore,

Jk,n ≤ e−t2F0(�
2
k)/2e−tμn,k

∫
Rk∩An,2

e−F0(h
2
θ )/2+Gn(hθ )+Rn(hθ ) dπk(θ)∫

Rk∩An
e−F0(h

2
θ )/2+Gn(hθ )+Rn(hθ ) dπk(θ)

(
1 + o(1)

)
,

Jk,n ≥ e−t2F0(�
2
k)/2e−tμn,k

∫
Rk∩An,1

e−F0(h
2
θ )/2+Gn(hθ )+Rn(hθ ) dπk(θ)∫

Rk∩An
e−F0(h

2
θ )/2+Gn(hθ )+Rn(hθ ) dπk(θ)

(
1 + o(1)

)
.

Therefore,

In ≤
∑ln

k=1 e−t2F0(�
2
k)/2e−tμn,kP

π [An,2 ∩ R
k|Xn]∑ln

k=1 Pπ [An,1 ∩ Rk|Xn]
(
1 + o(1)

)
(C.3)

≤
ln∑

k=1

e−t2F0(�
2
k)/2e−tμn,kP

π [
k|Xn](

1 + o(1)
)
.

Actually, using the exponential rate pointed out in Theorem B.1, we have with P0-
probability tending to 1, P

π [An,i |Xn] ≥ 1 − e−ncε2
n , for some positive c > 0 and

i = 1,2. We also have that for 0 < a < 1/(2 max(β;γ ) + 1),

P0

[
max
k≤ln

∣∣Gn(�k)
∣∣ > n−anε2

n

]
≤

ln∑
k=1

F0[�2
k]

n−2a(nε2
n)

2

≤ F0[ψ̃2]ln
n−2a(nε2

n)
2 = o(1).

Define the event

�n =
{
max
k≤ln

∣∣Gn(�k)
∣∣ ≤ n−anε2

n,P
π [

An,i |Xn] ≥ 1 − e−ncε2
n, i = 1,2

}
,
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so that P0[�c
n] = o(1), and on �n, we have

In ≥
∑ln

k=1 e−t2F0(�
2
k)/2e−tμn,kP

π [An,1 ∩ R
k|Xn]∑ln

k=1 Pπ [An,2 ∩ Rk|Xn]
(
1 + o(1)

)

≥
ln∑

k=1

e−t2F0(�
2
k)/2e−tμn,k

[
P

π [
k|Xn] − P

π [
(An,1)

c ∩ R
k|Xn]]

.

Now, we introduce

I0 = {
k ≤ ln s.t. P

π [
k|Xn] ≥ r−1

n P
π [

(An,1)
c ∩ R

k|Xn]}
,

I1 = {
k ≤ ln s.t. P

π [
k|Xn]

< r−1
n P

π [
(An,1)

c ∩ R
k|Xn]}

with rn = e−ncε2
n/2. We have

In ≥ (1 − rn)
∑
k∈I0

e−tμn,k e−t2F0(�
2
k)/2

P
π [

k|Xn]

and ∑
k∈I1

P
π [

k|Xn] ≤ r−1
n P

π [(
A′

n,1
)c|Xn] ≤ e−ncε2

n/2.(C.4)

Moreover, on �n, since
√

nεn = o(nε2
nn

−a) for some a > 0 small enough,

|μn,k| ≤ C

[√
n

( +∞∑
λ=k+1

ψ̃2
λ

)1/2( +∞∑
λ=k+1

θ2
0λ

)1/2

+ n−anε2
n

]

≤ O
(√

nεn + n−anε2
n

)
≤ O

(
n−anε2

n

)
.

This yields ∑
k∈I1

e−tμn,k e−t2F0(�
2
k)/2

P
π [

k|Xn] ≤ Ce2tn−anε2
n−ncε2

n/2.

Using (3.9) and (C.4), for n large enough,∑
k∈I0

e−tμn,k e−t2F0(�
2
k)/2

P
π [

k|Xn]

≥ e−3tn−anε2
n ≥ encε2

n/4
∑
k∈I1

e−tμn,k e−t2F0(�
2
k)/2

P
π [

k|Xn]
.

This yields

In ≥
ln∑

k=1

e−tμn,k e
−t2F0(�

2
ψ,k)/2

P
π [

k|Xn](
1 + o(1)

)
.(C.5)
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APPENDIX D: TECHNICAL LEMMA

In Section 3, we use at many places results of the following lemma.

LEMMA D.1. Set Kn = {1,2, . . . , kn} with kn ∈ N
∗. Assume one of the follow-

ing two cases:

- γ > 0, p = q = 2 when Φ is the Fourier basis;
- 0 < γ < r , 2 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ when Φ is the wavelet basis with r vanishing

moments; see [13].

Then the following results hold:

- There exists a constant c1,Φ depending only on Φ such that for any θ = (θλ)λ ∈
R

kn , ∥∥∥∥ ∑
λ∈Kn

θλφλ

∥∥∥∥∞
≤ c1,Φ

√
kn‖θ‖�2 .(D.1)

- If log(f0) ∈ Bγ
p,q(R), then there exists c2,γ depending on γ , only such that∑

λ/∈Kn

θ2
0λ ≤ c2,γ R2k−2γ

n .(D.2)

- If log(f0) ∈ Bγ
p,q(R) with γ > 1

2 , then there exists c3,Φ,γ depending on Φ and
γ only such that ∥∥∥∥ ∑

λ/∈Kn

θ0λφλ

∥∥∥∥∞
≤ c3,Φ,γ Rk1/2−γ

n .(D.3)

PROOF. Let us first consider the Fourier basis. We have∥∥∥∥ ∑
λ∈Kn

θλφλ

∥∥∥∥∞
≤ ∑

λ∈Kn

|θλ| × ‖φλ‖∞

≤ √
2

∑
λ∈Kn

|θλ|,

which proves (D.1). Inequality (D.2) follows from the definition of Bγ
2,2 = Wγ . To

prove (D.3), we use the following inequality: for any x,∣∣∣∣ ∑
λ/∈Kn

θ0λφλ(x)

∣∣∣∣ ≤ √
2

∑
λ/∈Kn

|θ0λ|

≤ √
2
( ∑

λ/∈Kn

|λ|2γ θ2
0λ

)1/2( ∑
λ/∈Kn

|λ|−2γ

)1/2

.
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Now, we consider the wavelet basis. Without loss of generality, we assume that
log2(kn + 1) ∈ N

∗. We have for any x,∣∣∣∣ ∑
λ∈Kn

θλφλ(x)

∣∣∣∣ ≤
( ∑

λ∈Kn

θ2
λ

)1/2( ∑
λ∈Kn

φ2
λ(x)

)1/2

≤ ‖θ‖�2

( ∑
−1≤j≤log2(kn)

∑
k<2j

ϕ2
jk(x)

)1/2

with ϕ−10 = 1[0,1]. Since for some constant A > 0, ϕ(x) = 0 for x /∈ [−A,A], for
j ≥ 0,

card
{
k ∈ {

0, . . . ,2j − 1
}

s.t. ϕjk(x) �= 0
} ≤ 3(2A + 1);

see [20], page 282, or [21], page 112. So, there exists cϕ depending only on ϕ such
that ∣∣∣∣ ∑

λ∈Kn

θλφλ(x)

∣∣∣∣ ≤ ‖θ‖�2

( ∑
0≤j≤log2(kn)

3(2A + 1)2j c2
ϕ

)1/2

,

which proves (D.1). For the second point, we just use the inclusion Bγ
p,q(R) ⊂

Bγ
2,∞(R) and

∑
λ/∈Kn

θ2
0λ = ∑

j>log2(kn)

2j−1∑
k=0

θ2
0 jk ≤ R2

∑
j>log2(kn)

2−2jγ ≤ R2

1 − 2−2γ
k−2γ
n .

Finally, for the last point, we have for any x,

∣∣∣∣ ∑
λ/∈Kn

θ0λφλ(x)

∣∣∣∣ ≤ ∑
j>log2(kn)

(2j−1∑
k=0

θ2
0 jk

)1/2(2j−1∑
k=0

ϕ2
jk(x)

)1/2

≤ Ck1/2−γ
n ,

where C ≤ R(3(2A + 1))1/2cϕ(1 − 21/2−γ )−1. �
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SUPPLEMENTARY MATERIAL

Bernstein–von Mises theorem for linear functionals of the density: Supple-
mentary material (DOI: 10.1214/12-AOS1004SUPP; .pdf). The supplementary
material gives the proofs of Proposition 2.1 and of Lemma 2.1.
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