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INTEGRABILITY AND TAIL ESTIMATES FOR GAUSSIAN ROUGH
DIFFERENTIAL EQUATIONS

BY THOMAS CASS1, CHRISTIAN LITTERER2 AND TERRY LYONS3

Imperial College London, Imperial College London and University of Oxford

We derive explicit tail-estimates for the Jacobian of the solution flow for
stochastic differential equations driven by Gaussian rough paths. In particu-
lar, we deduce that the Jacobian has finite moments of all order for a wide
class of Gaussian process including fractional Brownian motion with Hurst
parameter H > 1/4. We remark on the relevance of such estimates to a num-
ber of significant open problems.

1. Introduction. Gaussian processes that are not necessarily semimartingales
arise in modeling a large variety of natural phenomena. The range of their appli-
cations reaches from fluid dynamics (e.g., randomly forced Navier–Stokes sys-
tems [16]), the modeling of financial markets under transaction costs [14], to the
study of internet traffic through queuing models based on fractional Brownian mo-
tion (fBm) [13]. These applications motivate the study of stochastic differential
equations of the form

dYt = V (Yt ) dXt , Y (0) = y0,(1.1)

driven by a Gaussian process X. Over the past decade extensive progress has been
made understanding the behavior of solutions to such equations. In particular, for
the case of fBm with Hurst parameter H > 1/4, the work of Cass and Friz [2]
shows the existence of the density for (1.1) under Hörmander’s condition; Hairer
et al. [1, 18] have shown the smoothness of this density and established ergodicity
under the regime H > 1/2.

Various recent works (Coutin and Qian [5], Ledoux, Qian and Zhang [23], Friz
and Victoir [12], Lyons and Hambly [19]) have explored the use of rough paths
to understand differential equations driven by nonsemimartingale noise processes.
Within this framework we can make sense of the solutions to (1.1) driven by a
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broader class of Gaussian noises than classical analysis based on Young integra-
tion would allow. This class includes fBm with H > 1/4. Thus, if we consider
the flow UX

t←0(y0) ≡ Yt of the RDE (1.1), then under sufficient regularity on V,

the map UX
t←0(·) is a differentiable function (see, e.g., [12]), and its derivative (“the

Jacobian”)

J X
t←0(y0) ≡ DUX

t←0(·)|·=y0

satisfies path-by-path an RDE of linear growth driven by X.
A careful reading of the diverse applications in [1, 18] reveals a surprisingly

generic common obstacle to the extensions of such results to the rough path
regime. This obstacle eventually boils down to the need for sharp estimates on
the integrability of the Jacobian of the flow J X

t←0(y0). Cass, Lyons [4] and Ina-
hama [21] establish such integrability for the Brownian rough path, but only by
using the independence of the increments; for more general Gaussian processes a
more careful analysis is needed. To understand the difficulty of this problem, we
note from [12] that the standard deterministic estimate on J X

t←0(y0) gives∣∣J x
t←0(y0)

∣∣≤ C exp
(
C‖x‖p

p- var;[0,T ]
)
.(1.2)

The case where X is a Gaussian rough path and p > 2 (i.e., Brownian-type
paths or rougher) the Fernique-type estimates of [7] unfortunately only give that
‖X‖p-var;[0,T ] has a Gaussian tail. The right-hand side of (1.2) is hence not in-
tegrable in general. Worse still, the work Oberhauser and Friz [6] shows that the
inequality (1.2) can actually be saturated for a (deterministic) choice of differen-
tial equation and driving rough path. The essential contribution of this paper is
that for random processes having enough structure (in particular for Gaussian pro-
cesses) only a set of small (or zero) measure comes close to equality in (1.2). What
is therefore needed (and what we provide!) is a deterministic estimate which re-
spects the fine structure of path, and which allows us to more strongly interrogate
its probabilistic structure.

Our results will allow us to deduce the existence of moments of all orders for
J x

t←0(y0) for RDEs driven by a class of Gaussian processes (including, but not
restricted to, fBm with Hurst index H > 1/4). In fact, our main estimate shows
much more than simple moment estimates. Namely, that the logarithm of the Ja-
cobian has a tail that decays faster than an exponential. To be a little more precise,
we will show that

P
(
log

[∣∣J X·←0(y0)
∣∣
p-var;[0,T ]

]
> x

)
� exp

(−xr)(1.3)

for any r < r0 ∈ (1,2]. The constant r0 will be described in terms of the regularity
properties of the Gaussian path.

The results are relevant to a number of important problems. First, they are nec-
essary if one wants to extend the work of [16] and [18] on the ergodicity of non-
Markovian systems. Second, they are an important ingredient in a Malliavin cal-
culus proof on the smoothness of the density for RDEs driven by rough Gaussian
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noise in the elliptic setting. Furthermore, they allow one to achieve an analogue
of Hörmander’s theorem for Gaussian RDEs in conjunction with a suitable ver-
sion of Norris’s lemma; see [27, 28]. In this context, we remark that Hu and Tin-
del [20] have recently obtained a Norris lemma for fBm with H > 1/3 and proved
smoothness-of-density results for a class of nilpotent RDEs. Hairer and Pillai [17]
have also proved Hörmander-type theorems for a general class of RDEs; their re-
sults are predicated on the assumption that the Jacobian has finite moments of all
order. Hence, one application of this paper is to use the tail estimate (1.3) together
with the results in [20] or [17] to conclude that for t > 0 the law of Yt [the solution
to (1.1)] will, under Hörmander’s condition, have a smooth density w.r.t. Lebesgue
measure on R

e, for a rich classes of Gaussian processes X which includes fBm
H > 1/3. All of these problems (and many more besides) require the existence of
high-order moments of the Malliavin covariance matrix of Yt (ω), which is itself
expressed in terms of the Jacobian.

The techniques developed in this paper are relevant to the study of more general
RDEs, and not just the one solved by the Jacobian. Our estimates can be applied
to any random variable that can be controlled in terms of Nα,p,I (·), which is a
“greedy” approximation of the local p-variation we will introduce later. Similar
deterministic estimates we derive can also be obtained in the following cases (cf.
Friz, Victoir [12]):

(1) RDEs driven along linear vector fields of the form Vi(z) = Aiz + bi for
e × e matrices Ai and bi in R

e;
(2) higher order derivatives of the flow (subject to suitably enhance regularity

on the vector fields defining the flow);
(3) the inverse of the Jacobian of the flow;
(4) situations where one wants to control the distance between two RDE solu-

tions in the (inhomogeneous) rough path metric (e.g., in fixed point theorems).

Recent work [15] has extended the class of linear-growth RDEs for which we
have nonexplosion and there may be scope to extend our results to this setting. In
this paper we focus only on the Jacobian because of its central role in the wide
range of problems we have outlined and obtain explicit bounds for the tails of the
distribution of the Jacobian.

We now outline the structure of the paper. In Section 2 we introduce some im-
portant notation and concepts on the theory of rough paths. Because this is now
standard and there are many references available (e.g., [12, 24–26]), we keep the
detail to a minimum. In Section 4 we derive a quantitative bound on the growth
of J x

t←0; the estimates we derive here are based very closely on [12]. We end up
with a control on J x

t←0 in terms of a function on the space on (rough) path space
which we (suggestively) name the accumulated α local p-variation [denoted by
Mα,I,p(·)]. When X is taken to be a Gaussian rough path the integrability proper-
ties of Mα,I,p(X) are not immediately obvious or easy to study. We therefore spend
time in Section 4 deriving a relationship between Mα,I,p(·) and another function on
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path space, which we denote Nα,p,I (·). The analysis at this stage remains entirely
deterministic. Section 5 records some facts about Gaussian rough paths, including
the crucial embedding theorems for Cameron–Martin spaces that have been de-
rived in [12]. We then present the main tail estimate on Nα,p,I (X). Our analysis is
based on Gaussian isoperimetry and more specifically Borell’s inequality, which
we recall. Once this is achieved we can use the relationship between J X

t←0 and
Nα,p,I (X) to exhibit the stated tail behavior of J X

t←0. This estimate then consti-
tutes our main result.

2. Rough path concepts and notation. There are now many articles and texts
providing an overview on rough path theory (e.g., [26] and [12], to name just two).
We will focus on establishing the notation we need for the current application.
We will study continuous R

d -valued paths x parameterized by time on a compact
interval I (sometimes I will be taken to be [0, T ]), and we denote the space of such
functions by C(I,R

d). We write xs,t := xt − xs as a shorthand for the increments
of a path when x in C(I,R

d). For p ≥ 1 we will use

|x|∞ := sup
t∈I

|xt |, |x|p-var;I :=
(

sup
D[I ]=(tj )

∑
j :tj∈D[I ]

|xtj ,tj+1 |p
)1/p

,

and we refer to these quantities both symbolically and by name (they are, resp.,
the uniform norm and the p-variation semi-norm). We denote by Cp-var(I,R

d)

the linear subspace of C(I,R
d) consisting of path of finite p-variation. In the

case where x is in Cp-var(I,R
d) and p is in [1,2), the iterated integrals of x

are canonically defined by Young integration. The collection of all these iterated
integrals together then gives the signature: for s < t in I

S(x)s,t := 1 +
∞∑

k=1

∫
s<t1<t2<···<tk<t

dxt1 ⊗ dxt2 ⊗ · · · ⊗ dxtk ∈ T
(
R

d).
By writing S(x)inf I,· we can regard the signature as a path (on I ) with values in
the tensor algebra. In a similar way, the truncated signature

SN(x)s,t := 1 +
N∑

k=1

∫
s<t1<t2<···<tk<t

dxt1 ⊗ dxt2 ⊗ · · · ⊗ dxtk ∈ T N (
R

d)
is a path in the truncated tensor algebra, T N(Rd). It is a well-known fact that the
path SN(x)inf I,· takes values in the step-N free nilpotent group with d generators,
which we denote GN(Rd). More generally, if p ≥ 1 we can consider the set of
such group-valued paths

xt = (
1,x1

t , . . . ,x
p�
t

) ∈ G
p�(
R

d).
The advantage this offers is that the group structure provides a natural notion of in-
crement, namely xs,t := x−1

s ⊗xt . We can describe the set of “norms” on G
p�(Rd)
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which are homogeneous with respect to the natural scaling operation on the tensor
algebra; see [12] for definitions and details. The subset of these so-called homoge-
neous norms which are symmetric and sub-additive [12] gives rise to genuine met-
rics on G
p�(Rd), which in turn gives rise to a notion of homogenous p-variation
metrics dp-var on the G
p�(Rd)-valued paths. Let

‖x‖p- var;[0,T ] =
(
p�∑

i=1

sup
D=(tj )

∑
j :tj∈D

∣∣xi
tj ,tj+1

∣∣p/i

(Rd )⊗i

)1/p

,(2.1)

and note that if (2.1) is finite, then ω(s, t) := ‖x‖p
p- var;[s,t] is a control (i.e., it is a

continuous, nonnegative, super-additive function on the simplex �T = {(s, t) : 0 ≤
s ≤ t ≤ T } which vanishes on the diagonal.)

The space of weakly geometric p-rough paths [denoted WG�p(Rd)] is the
set of paths parameterised over I although this is often implicit with values in
G
p�(Rd) such that (2.1) is finite. A refinement of this notion is the space of geo-
metric p-rough paths, denoted G�p(Rd), which is the closure of{

S
p�(x)inf I,· :x ∈ C1-var(I,R
d)}

with respect to the rough path metric dp- var.
We will often end up considering an RDE driven by a path x in WG�p(Rd)

along a collection of vector fields V = (V 1, . . . , V d) on R
e. And from the point

of view of existence and uniqueness results, the appropriate way to measure the
regularity of the Vis results turns out to be the notion of Lipschitz-γ (short: Lip-γ )
in the sense of Stein4. This notion provides a norm on the space of such vector
fields (the Lip-γ norm), which we denote | · |Lip-γ , and for the collection of vector
fields V we will often make use of the shorthand

|V |Lip-γ = max
i=1,...,d

|Vi |Lip-γ ,

and refer to the quantity |V |Lip-γ as the Lip-γ norm of V .

3. Translated rough paths. Suppose x = (1,x1, . . . ,x
p�) is a weakly geo-
metric p-rough path. If h is in Cq-var(I,R

d) and 1/p + 1/q > 1, then the cross-
iterated integrals between h and x exists canonically using Young integration. This
gives rise to the so-called translated rough path Thx. The definition, which is stan-
dard, can be found, for example, in [12] or [24]. A key technical estimate used in
the paper will involve this object. Before we state and prove this estimate, we re-
call the specific structure of Thx at the first two nontrivial tensor levels. For levels
one and two we have

(Thx)1 = x1 + h,

(Thx)2 = x2 +
∫

h ⊗ dx1 +
∫

x1 ⊗ dh +
∫

h ⊗ dh.

4See [12] and [26], and note the contrast with classical Lipschitzness.
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The higher order terms become increasingly tiresome to write down. We will not
go beyond the levelt (Rd)⊗3, so we simply record for reference that this can be
written as

(Thx)3
s,t = x3

s,t +
∫ t

s

∫ v

s
hs,u ⊗ dhu ⊗ dhv

+
∫ t

s
x2

s,u ⊗ dhu +
∫ t

s

∫ v

s
x1
s,u ⊗ dhu ⊗ dx1

v −
∫ t

s
hs,u ⊗ dx2

u,t

(3.1)

+
∫ t

s

∫ v

s
hs,u ⊗ dx1

u ⊗ dhv +
∫ t

s

∫ v

s
x1

s,u ⊗ dhu ⊗ dhv

+
∫ t

s

∫ v

s
hs,u ⊗ dhu ⊗ dx1

v.

The proof of the following result will occupy the remainder of this section. The
lemma is important. It explains how we can control the p-variation of the translated
rough path by the sum of the p-variation of the (untranslated) rough path and the
q-variation of the path by which we translate.

LEMMA 3.1. Let 1 ≤ p < 4. Suppose that x is a weakly geometric p-rough
path parametrised over a compact interval I . Let h be a path in Cq-var(I,R

d)

where 1/q + 1/p > 1. If Thx denotes the translated rough path, then for any
[s, t] ⊆ I we have the estimate

‖Thx‖p
p-var;[s,t] ≤ Cp,q

[‖x‖p
p-var;[s,t] + |h|pq-var;[s,t]

]
.

The constant Cp,q is given explicitly by

Cp,q = 2p−1[1 + cp/2
p,q + c

p/3
p/2,q + c2p/3

p,q

]
,

where cl,m = 2 · 41/l+1/mζ(1
l
+ 1

m
), and ζ is the classical Riemann zeta function.

PROOF. We will only prove the lemma for the most difficult case p ∈ [3,4).
By definition we have that

‖Thx‖p
p-var;[s,t] = ∣∣(Thx)1∣∣p

p-var;[s,t] + ∣∣(Thx)2∣∣p/2
p/2-var;[s,t] + ∣∣(Thx)3∣∣p/3

p/3-var;[s,t],
where for i = 1,2,3 we have∣∣(Thx)i

∣∣p/i
p/i-var;[s,t] = sup

D[s,t]=(ti )

∑
i:ti∈D[s,t]

∣∣(Thx)iti ,ti+1

∣∣p/i

(Rd )⊗i .

Note that the formula for the translated rough path gives at level one of the tensor
algebra ∣∣(Thx)1∣∣p

p-var;[s,t] ≤ [∣∣x1∣∣
p-var;[s,t] + |h|q- var;[s,t]

]p
≤ 2p−1[‖x‖p

p- var;[s,t] + |h|pq- var;[s,t]
]

(3.2)

=: C1(p, q)
[‖x‖p

p- var;[s,t] + |h|pq- var;[s,t]
]
.
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At level two we need to analyze∑
i:ti∈D[s,t]

∣∣∣∣x2
ti ,ti+1

+
∫ ti+1

ti

hti ,u ⊗ dx1
u︸ ︷︷ ︸

=:A1
ti ,ti+1

+
∫ ti+1

ti

x1
ti ,u

⊗ dhu︸ ︷︷ ︸
=:A2

ti ,ti+1
(3.3)

+
∫ ti+1

ti

hti ,u ⊗ dhu

∣∣∣∣p/2

(Rd )⊗2
.

Using Young’s inequality we have for j = 1,2 that∣∣Aj
ti ,ti+1

∣∣p/2
(Rd )⊗2 ≤ cp/2

p,q

∣∣x1∣∣p/2
p-var;[ti ,ti+1]|h|p/2

q- var;[ti ,ti+1]

≤ c
p/2
p,q

2

(∣∣x1∣∣p
p-var;[ti ,ti+1] + |h|pq- var;[ti ,ti+1]

)
.

And also ∣∣∣∣∫ ti+1

ti

hti ,u ⊗ dhu

∣∣∣∣
(Rd )⊗2

≤ cp,q |h|2q- var;[ti ,ti+1].

Hence, we can deduce that

sup
D[s,t]=(ti )

∑
i:ti∈D[s,t]

∣∣Aj
ti ,ti+1

∣∣p/2
(Rd )⊗2

≤ c
p/2
p,q

2
sup

D[s,t]=(ti )

∑
i:ti∈D[s,t]

(∣∣x1∣∣p
p-var;[ti ,ti+1] + |h|pq- var;[ti ,ti+1]

)
(3.4)

≤ c
p/2
p,q

2

(∣∣x1∣∣p
p-var;[s,t] + |h|pq- var;[s,t]

)
,

and similarly

sup
D[s,t]=(ti )

∑
i:ti∈D[s,t]

∣∣∣∣∫ ti+1

ti

hti ,u ⊗ dhu

∣∣∣∣p/2

(Rd )⊗2
≤ cp/2

p,q |h|pq- var;[ti ,ti+1].(3.5)

From (3.3), (3.4) and (3.5) we easily obtain that∣∣(Thx)2∣∣p/2
p/2-var;[s,t]

≤ 4p/2−1[∣∣x2∣∣p/2
p/2-var;[s,t] + cp/2

p,q

(∣∣x1∣∣p
p-var;[s,t] + |h|pq- var;[s,t]

)
+ cp/2

p,q |h|pq- var;[s,t]
]

(3.6)

≤ 4(p−1)/2cp/2
p,q

[‖x‖p
p- var;[s,t] + |h|pq- var;[s,t]

]
=: C2(p, q)

[‖x‖p
p- var;[s,t] + |h|pq- var;[s,t]

]
.
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We finish the proof by performing a similar analysis on the third level. We need
to bound |(Thx)3|p/3

p/3-var;[s,t]. Recall that

(Thx)3
s,t = x3

s,t +
∫ t

s

∫ v

s
hs,u ⊗ dhu ⊗ dhv

+
∫ t

s
x2

s,u ⊗ dhu︸ ︷︷ ︸
=:B1

s,t

+
∫ t

s

∫ v

s
x1
s,u ⊗ dhu ⊗ dx1

v︸ ︷︷ ︸
=:B2

s,t

−
∫ t

s
hs,u ⊗ dx2

u,t︸ ︷︷ ︸
=:B3

s,t

(3.7)

+
∫ t

s

∫ v

s
hs,u ⊗ dx1

u ⊗ dhv︸ ︷︷ ︸
=:C1

s,t

+
∫ t

s

∫ v

s
x1

s,u ⊗ dhu ⊗ dhv︸ ︷︷ ︸
=:C2

s,t

+
∫ t

s

∫ v

s
hs,u ⊗ dhu ⊗ dx1

v︸ ︷︷ ︸
=:C3

s,t

.

We can split this up by first looking at the “pure” terms∑
i:ti∈D[s,t]

∣∣x3
ti ,ti+1

∣∣p/3
(Rd )⊗3 ≤ ‖x‖p

p- var;[s,t],(3.8)

∑
i:ti∈D[s,t]

∣∣∣∣∫ ti+1

ti

∫ v

ti

hti ,u ⊗ dhu ⊗ dhv

∣∣∣∣p/3

(Rd )⊗3

≤ c2p/3
p,q

∑
i:ti∈D[s,t]

|h|pq- var;[tt ,ti+1](3.9)

≤ c2p/3
p,q |h|pq- var;[s,t].

Second, we analyze the mixed terms in (3.7). The strategy here as before is to use
Young’s inequality. For j = 1 or j = 3 we have∑

i:ti∈D[s,t]

∣∣Bj
ti ,ti+1

∣∣p/3
(Rd )⊗3

≤ c
p/3
p/2,q

∑
i:ti∈D[s,t]

‖x‖2p/3
p-var;[ti ,ti+1]|h|p/3

q- var;[ti ,ti+1]
(3.10)

≤ c
p/3
p/2,q

∑
i:ti∈D[s,t]

[
2

3
‖x‖p

p- var;[ti ,ti+1] + 1

3
|h|pq- var;[ti ,ti+1]

]

≤ 2

3
c
p/3
p/2,q

[‖x‖p
p-var;[s,t] + |h|pq- var;[s,t]

]
.
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A similar calculation yields∑
i:ti∈D[s,t]

∣∣B2
ti ,ti+1

∣∣p/3
(Rd )⊗3 ≤ c2p/3

p,q

[
2

3
‖x‖p

p- var;[s,t] + 1

3
|h|pq- var;[s,t]

]
.(3.11)

Finally we have for j = 1,2,3∑
i:ti∈D[s,t]

∣∣Cj
ti ,ti+1

∣∣p/3
(Rd )⊗3

≤ c2p/3
p,q

∑
i:ti∈D[s,t]

∣∣x1∣∣p/3
p-var;[ti ,ti+1]|h|2p/3

q- var;[ti ,ti+1]
(3.12)

≤ c2p/3
p,q

∑
i:ti∈D[s,t]

[
1

3
‖x‖p

p- var;[ti ,ti+1] + 2

3
|h|pq- var;[ti ,ti+1]

]

≤ c2p/3
p,q

[
1

3
‖x‖p

p-var;[s,t] + 2

3
|h|pq- var;[s,t]

]
.

Using the fact that the estimates (3.8), (3.9), (3.10), (3.11) and (3.12) are uniform
over all partitions, we derive the the elementary bound∣∣(Thx)3∣∣p/3

p/3-var;[s,t] ≤ 8p/3−1[(3.8) + (3.9) + (3.10) + (3.11) + (3.12)
]
.

This then yields∣∣(Thx)3∣∣p/3
p/3-var;[s,t]

≤ 8p/3−1
[

4

3
c
p/3
p/2,q + 10

3
c2p/3
p,q

][‖x‖p
p- var;[s,t] + |h|pq- var;[s,t]

]
(3.13)

≤ 8(p−1)/3[cp/3
p/2,q + c2p/3

p,q

][‖x‖p
p- var;[s,t] + |h|pq- var;[s,t]

]
=: C3(p, q)

[‖x‖p
p-var;[s,t] + |h|pq- var;[s,t]

]
.

Putting together (3.2), (3.6) and (3.13) we establish that

‖Thx‖p
p-var;[s,t] ≤ ∑

i=1,2,3

{
Ci(p, q)

}[‖x‖p
p- var;[s,t] + |h|pq- var;[s,t]

]
,

and since
∑

i=1,2,3{Ci(p, q)} = 2p−1 + 4(p−1)/2c
p/2
p,q + 8(p−1)/3[cp/3

p/2,q + c
2p/3
p,q ]

the estimate follows. �

4. Deterministic estimates for solutions to RDEs. In this section we will
develop the pathwise estimate obtained in the previous section. To assist with the
clarity of the presentation it will be important to first introduce some definitions of
the main objects featuring in our discussion.
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NOTATION 1. If x is a weakly geometric p-rough path, then we will let ωx,p

denote the control which is induced by x in the sense that

ωx,p(s, t) ≡ ‖x‖p
p- var;[s,t].

DEFINITION 4.1. Let α > 0 and I ⊆ R be a compact interval. Suppose that
ω : I × I → R

+ is a control. We define the accumulated α-local ω-variation by

Mα,I (ω) = sup
D(I)=(ti )

ω(ti ,ti+1)≤α

∑
i:ti∈D(I)

ω(ti, ti+1).

REMARK 4.2. Note that we have the scaling property βMα/β,I (ω) =
Mα,I (βω) for any β > 0.

Of special interest is the case when the control is induced (in the sense of the
above notation) by a (weakly) geometric p-rough path.

DEFINITION 4.3. Let α > 0 and I ⊆ R be a compact interval. We define the
accumulated α-local p-variation to be the nonnegative function Mα,I,p which acts
on weakly geometric p-rough paths (parameterized over I ) by

Mα,I,p(x) ≡ Mα,I (ωx,p).(4.1)

REMARK 4.4. The function Mα,I,p is well-defined because the super-
additivity of the control ωx,p ensures that

Mα,I,p(x) ≤ ‖x‖p
p- var;I < ∞

for any weakly geometric rough path x (again, parameterized over I ). Mα,I,p(x) is
continuous and increasing in α, and it equals ‖x‖p

p-var;I whenever α ≥ ‖x‖p
p- var;I .

The following lemma shows how the α-local ω-variation can be used to derive
Lipschitz bounds on solutions to RDEs.5

LEMMA 4.5. Assume 
p� + 1 ≥ γ > p ≥ 1. Suppose that x is a weakly geo-
metric p-rough path parameterized on [0, T ], and V = (V 1, . . . , V d) is a collec-
tion of Lip-γ vector fields on R

e. Let (Ux
t←0(·))t∈[0,T ] denote the flow induced by

the RDE

dyt = V (yt ) dxt , y(0) = y0,

5It should be compared with Theorem 10.26 of [12], on which the proof is based.
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so that Ux·←0(y0) ≡ y. If ω is the control ω(u, v) ≡ |V |pLip-γ ωx,p(u, v), then for

any y1
0 and y2

0 in R
e, any α > 0 and any [s, t] ⊆ [0, T ], we have∣∣Ux·←0

(
y1

0
)− Ux·←0

(
y2

0
)∣∣

p-var;[s,t]
(4.2)

≤ C|V |Lip-γ ‖x‖p-var;[s,t]
∣∣y1

0 − y2
0
∣∣ exp

[
C max

(
1, α−1)Mα,[0,T ](ω)

]
,

where C is a constant depending only on p.

PROOF. Let yi
t ≡ Ux

t←0(y
i
0) for i = 1,2. We follow through the details in the

proof of Theorem 10.26 of [12], with the exception that we enhance each applica-
tion of their Lemma 10.63 by instead using Remark 10.64 of the same reference.
The contents of this remark can be improved so that we use an arbitrary truncation
parameter α rather than setting α = 1; the details are easily checked and we omit
them. These calculations result in the following estimate:∣∣y1

s,t − y2
s,t

∣∣≤ C
∣∣y1

0 − y2
0
∣∣ω(s, t)1/p exp

[
C max

(
1, α−1)Mα,[0,T ](ω)

]
.(4.3)

The estimate (4.2) then follows by an elementary computation. �

Using these Lipschitz estimates on the flow, it is a relatively simple matter to
derive growth bounds on the Jacobian. This is the content of the following corol-
lary.

COROLLARY 4.6. Assume 
p� + 1 > γ > p ≥ 1. Suppose that x is a weakly
geometric p-rough path parameterized on [0, T ], and V = (V 1, . . . , V d) is a col-
lection of Lip-γ vector fields on R

e. Let (Ux
t←0(·))t∈[0,T ] denote the flow induced

by the RDE

dyt = V (yt ) dxt , y(0) = y0.

Then the derivative J x
t←0(y0) of Ux

t←0(y0) exists and satisfies the growth-bound∣∣J x·←0(y0)
∣∣
p-var;[0,T ]

(4.4)
≤ C|V |Lip-γ ‖x‖p-var;[0,T ] exp

[
C max

(|V |pLip-γ , α−1)Mα,[0,T ],p(x)
]
.

PROOF. It is well known [12] under these hypotheses that Ux·←0(y0) is differ-
entiable. Fix α > 0 and define

δ := α|V |pLip-γ .

Let h be in R
e, and for a real number ε let y1

0 = y0 + εh and y2
0 = y0. Take

Ux·←0(y
i
0) ≡ yi for i = 1,2. Applying the previous lemma we obtain that for any

[s, t] ⊆ [0, T ]∣∣y1
s,t − y2

s,t

∣∣p ≤ Cp|V |pLip-γ ‖x‖p
p- var;[s,t]ε

p|h|p exp
[
Cp max

(
1, δ−1)Mδ,[0,T ](ω)

]
.
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Dividing by εp , taking the limit as ε ↓ 0 and then taking the supremum over all
|h| = 1 this estimate becomes∣∣J x

t←0(y0) − J x
s←0(y0)

∣∣p
(4.5)

≤ Cp|V |pLip-γ ‖x‖p
p- var;[s,t] exp

[
Cp max

(
1, δ−1)Mδ,[0,T ](ω)

]
.

Fix an arbitrary partition D of [0, T ]. Then by summing the terms in (4.5) and
using the super-additivity of ωx,p it follows that( ∑

i:ti∈D

∣∣J x
ti+1←0(y0) − J x

ti←0(y0)
∣∣p)1/p

≤ C|V |Lip-γ ‖x‖tp- var;[0,T ] exp
[
C max

(
1, δ−1)Mδ,[0,T ](ω)

]
.

To finish the proof we first optimize over all partitions D to give an estimate on
the p-variation. We then use the scaling property in Remark 4.2 and the definition
of Mα,I,p(x) to obtain that

Mδ,[0,T ](ω) = δ

α
Mα,[0,T ]

(
α

δ
ω

)
= |V |pLip-γ Mα,I,p(x).

Putting everything together gives (4.4). �

We have succeeded in showing how the derivative of the flow can be controlled
by using the function Mα,I,p(·). But it is still not obvious how to get a handle on
the tail behavior of Mα,I,p(·) when we evaluate it at a Gaussian p-rough path. To
expose the structure further, we will now consider another function Nα,I,p(·) on
WG�p(Rd), which is closely related to Mα,I,p(·). The following sequence will
play an important role in enabling us to achieve this.

DEFINITION 4.7 (The greedy sequence). Assume x ∈ WG�p(Rd) is param-
eterized over a compact interval I . If α > 0 we define a nondecreasing sequence
(τi(α,p,x))∞i=0 = (τi(α))∞i=0 in I in by

τ0(α) = inf I,
(4.6)

τi+1(α) = inf
{
t :‖x‖p

p- var;[τi ,t] ≥ α, τi(α) < t ≤ sup I
}∧ sup I,

with the convention that inf ∅ = +∞. We call this sequence the greedy sequence.

REMARK 4.8. Note that for τi(α) < sup I and ‖x‖p
p- var;[τi (α),sup I ] ≥ α,

τi+1(α) is intuitively the first time ‖x‖p
p- var;[τi (α),·] reaches α (recall that the

p-variation is a continuous function).
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We want to show that the greedy sequence is actually a partition of I ; in other
words it has only a finite number of distinct terms which include the endpoints.
With this objective in mind we introduce the function Nα,I,p :WG�p(Rd) → R+
given by

Nα,I,p(x) := sup
{
n ∈ N ∪ {0} : τn(α) < sup I

}
.(4.7)

We note that Nα,I,p describes the size of the nontrivial part of the sequence
(τi(α))∞i=0. More precisely, the number of distinct terms in the sequence (τi(α))∞i=0
equals Nα,I,p(x) + 1. The partition of the interval given by{

τi(α) : i = 0,1, . . . ,Nα,I,p(x) + 1
}

can now heuristically be thought of as a “greedy” approximation to the supremum
in identity (4.1), the definition of the accumulated α-local p-variation.

LEMMA 4.9. For any α > 0, p ≥ 1 and any compact interval I the function
Nα,I,p :WG�p(Rd) → R+ is well defined; that is, Nα,I,p(x) < ∞ whenever x is
in WG�p(Rd).

PROOF. From the continuity of ‖x‖p- var;[s,·] we can deduce that

‖x‖p
p-var;[τi−1(α),τi (α)] = α for i = 1,2, . . . ,Nα,I,p(x).

Thus, the super-additivity of ωx,p implies that if x is in WG�p(Rd), then

αNα,I,p(x) =
Nα,I,p(x)∑

i=1

ωx,p

(
τi−1(α), τi(α)

)≤ ωx,p

(
0, τNα,I,p(x)(α)

)
≤ ‖x‖p

p- var;[0,T ] < ∞. �

COROLLARY 4.10. Let x be a path in WG�p(Rd) and suppose α > 0. Define
the sequence (τi(α))∞i=0 by (4.6), and let Nα,I,p(x) be given by (4.7). Then the set

Dτ = {
τi(α) : i = 0,1, . . . ,Nα,I,p(x) + 1

}
is a partition of I .

PROOF. This now follows immediately from the definition of (τi(α))∞i=0 and
the fact that Nα,I,p(x) is finite. �

The following proposition shows how we can use Nα,I,p(x) to bound on the
α-local p-variation.

PROPOSITION 4.11. Let p ≥ 1 and suppose x is a path in WG�p(Rd) pa-
rameterized over the compact interval I, and then for every α > 0

Mα,I,p(x) ≤ (
2Nα,I,p(x) + 1

)
α.
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PROOF. First note that the case Nα,I,p(x) = 0 can be dealt with trivially.
We therefore can (and will) assume in the following that Nα,I,p(x) ≥ 1. Let
D = {ti : i = 0,1, . . . , n} be any partition of I with the property that

ωx,p(ti−1, ti) ≤ α for all i = 1, . . . , n.(4.8)

Corollary 4.10 ensures that Dτ is a partition of I . We relabel the points in D

with reference to the partition Dτ by writing ti = t lj for i = 1,2, . . . , n, where l

indicates which of disjoint subintervals {(τi(α), τi+1(α)] : i = 0,1, . . . ,Nα,I,p(x)}
contains ti , and j orders the tis within each of these subintervals. More precisely,
l ∈ {0,1, . . . ,Nα,I,p(x)} is the unique natural number such that

τl(α) < ti ≤ τl+1(α);
and then j ≥ 1 is well defined by

j = i − max
tr≤τl(α)

r.

For each l ∈ {0,1, . . . ,Nα,I,p(x)} let nl denote the number of elements of D in
(τl(α), τl+1(α)]. Suppose now for a contradiction that nl = 0. In this case, t l−1

nl−1

and t l+1
1 are two consecutive points of D with t l−1

nl−1
≤ τl(α) < τl+1(α) < tl+1

1 , and
since the (τi(α))∞i=0 are defined to be maximal [recall (4.6)] we have

ωx,p

(
t l−1
nl−1

, t l+1
1

)
> ωx,p

(
τl(α), τl+1(α)

)= α.

This contradicts the assumptions on D (4.8). We deduce that nl ≥ 1.
We observe that if nl ≥ 2, then the super-additivity of ωx,p results in

nl−1∑
j=1

ωx,p

(
t lj , t

l
j+1

)≤ ωx,p

(
t l1, t

l
nl

)
for l = 0,1, . . . ,Nα,I,p(x);

thus, by a simple calculation we have

n∑
j=1

ωx,p(tj−1, tj )

≤
Nα,I,p(x)−1∑

l=0

{[
ωx,p

(
t lnl

, t l+1
1

)+ ωx,p

(
t l+1
1 , t l+1

nl+1

)]
1{nl+1≥2}

(4.9)
+ ωx,p

(
t lnl

, t l+1
nl+1

)
1{nl+1=1}

}
+ ωx,p

(
0, t0

n0

)
.

To complete the proof we note that ωx,p(t l+1
1 , t l+1

nl+1
) ≤ α and ωx,p(0, t0

n0
) ≤ α

by the definition of the sequence (t lj ). Furthermore we have ωx,p(t lnl
, t l+1

1 ) ≤ α
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because t lnl
and t l+1

1 are two consecutive points in D. Hence, we may deduce
from (4.9) that

n∑
j=1

ωx,p(tj−1, tj ) ≤ (
2Nα,I,p(x) + 1

)
α.

Because the right-hand side of the last inequality does not depend on D, optimizing
over all such partitions gives the stated result. �

As a direct consequence of Proposition 4.11 and Corollary 4.6 we have the
estimate∣∣J x·←0(y0)

∣∣
p-var;[0,T ] ≤ C|V |Lip-γ ‖x‖p-var;[0,T ]

(4.10)
× exp

[
C max

(
1, α|V |pLip-γ

)(
2Nα,[0,T ],p(x) + 1

)]
.

If we take x = X to be Gaussian rough path, then the tail of the Jacobian can be
studied via the tail of Nα,I,p(X). This will be the objective of the remainder of the
paper.

REMARK 4.12. There are several ways to obtain bounds for the Jacobian in
terms of Nα,I,p(x). An alternative approach suggested by the anonymous referee
uses the Gronwall estimate∣∣J x·←0(y0)

∣∣∞;[0,T ] ≤ C exp
(
C‖X‖p

p-var;[0,T ]
)
.

Using the cocycle property

J x
t←0(y0) = J x

t←s

(
Ux

s←0(y0)
)
J x

s←0(y0)

a simple induction argument gives the following bound on the infinity norm of the
Jacobian: ∣∣J x·←0(y0)

∣∣∞;[0,T ] ≤ C exp
(
CαpNα,I,p(x)

)
.

This argument may be generalized to cover the p-variation of the Jacobian; see,
for example, [8] where the authors implement a variant of this idea based on a
previous version of this paper.

5. Gaussian rough paths. The previous section developed the pathwise es-
timates on J x

t←0(y0) we need. We learned that the p-variation of J x
t←0(y0) can

be bounded explicitly in terms of Nα,[0,T ],p(x). The importance of controlling
J x

t←0(y0) using Nα,[0,T ],p(x), as opposed to simpler alternatives [see, e.g., iden-
tity (1.2)], is best appreciated when the driving rough path is taken to be random.
Henceforth, we will distinguish situations where the path is random by writing it
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in upper-case: X. Of special interest is when X is the lift6 of some continuous R
d -

valued Gaussian process (Xt)t∈I . A theory of such Gaussian rough paths has been
developed by a succession of authors [3, 5, 7, 10], and we will mostly work within
their framework.

To be more precise, we will assume that Xt = (X1
t , . . . ,X

d
t ) is a continuous,

centered (i.e., mean zero) Gaussian process with independent and identically dis-
tributed components. Let R : I × I → R denote the covariance function of any
component, that is,

R(s, t) = E
[
X1

s X
1
t

]
.

Throughout we will assume that this process is realized on the abstract Wiener
space (W, H,μ) where W = C0(I,R

d), the space of continuous R
d -valued func-

tions on I . More precisely we mean that X is the canonical process on W ; that
is, Xt(ω) = ω(t), and (Xt)t∈I has the required Gaussian distribution under μ. We
recall the notion of the “rectangular increments of R” from [11]; these are defined
by

R

(
s, t

u, v

)
:= E

[(
X1

t − X1
s

)(
X1

v − X1
u

)]
.

The existence of a lift for X is guaranteed by insisting on a sufficient rate of decay
on the correlation of the increments. This is captured, in a very general way, by the
following two-dimensional ρ-variation constraint on the covariance function.

CONDITION 1. There exists of 1 ≤ ρ < 2 such that R has finite ρ-variation in
the sense

Vρ(R; I × I ) :=

⎛⎜⎜⎜⎝ sup
D=(ti )∈D(I )

D′=(t ′j )∈D(I )

∑
i,j

∣∣∣∣R(
ti , ti+1

t ′j , t ′j+1

)∣∣∣∣ρ
⎞⎟⎟⎟⎠

1/ρ

< ∞.(5.1)

REMARK 5.1. Under Theorem 35, Condition 1 of [10], (Xt)t∈[0,T ] lifts to a
geometric p-rough path for any p > 2ρ. Moreover, there is a unique natural lift
which is the limit (in the dp- var-induced rough path topology) of the canonical lift
of piecewise linear approximations to X.

The following theorem appears in [10] as Proposition 17; cf. also the recent
note [11]. It shows how the assumption Vρ(R; [0, T ]2) < ∞ allows us to embed H
in the space of continuous paths with finite ρ variation. The result, as it appears
in [10], applies to one-dimensional Gaussian processes. The generalization to ar-
bitrary finite dimensions is straightforward, and we will not elaborate on the proof.

6Recall that by X being a lift of X, we mean that the projection of X to the first tensor level is
exactly X.
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THEOREM 5.2 ([10]). Let (Xt)t∈I = (X1
t , . . . ,X

d
t )t∈I be a continuous, mean-

zero Gaussian process with independent and identically distributed components.
Let R denote the covariance function of (any) one of the components. Then if
R is of finite ρ-variation for some ρ ∈ [1,2) we can embed H in the space
Cρ-var(I,R

d); in fact,

|h|H ≥ |h|ρ-var;I√
Vρ(R; I × I )

.(5.2)

REMARK 5.3 ([9]). Writing HH for the Cameron–Martin space of fBm for H

in (1/4,1/2), the variation embedding in [9] gives the stronger result that

HH ↪→ Cq- var(I,R
d) for any q > (H + 1/2)−1.

Once we have established a lift X of X we will often want to make sense of
X(ω+h). The main technique used for achieving this is to relate it to the translated
rough path Thx; recall Section 3. The the following result appeared in [3] and
demonstrates that, under certain conditions, X(ω + h) and ThX(ω) are equal for
all h in H on a set of μ-full measure.

LEMMA 5.4. Let (Xt)t∈I = (X1
t , . . . ,X

d
t )t∈I be a mean-zero Gaussian pro-

cess with i.i.d. components. Assume that X has a natural lift to a geometric p-
rough path. Assume further that for some q ≥ 1 such that 1/p + 1/q > 1, we
have H ↪→ Cq-var(I,R

d). Then there exists a measurable subset E ⊆ W with
μ(E) = 1, such that for all ω in E, we have

ThX(ω) ≡ X(ω + h) for all h in H.

From the different choices of p and q with the properties that X lifts path in
G�p(Rd) and H continuously embeds in Cq- var(I,R

d), it will often prove useful
to work with a particular choice that satisfies certain constraints. The purpose of
the next lemma is to show that these constraints can always be satisfied for some
p and q, for the examples of Gaussian processes that will interest us most.

COROLLARY 5.5. Let (Xt)t∈I = (X1
t , . . . ,X

d
t )t∈I be a continuous, mean-

zero Gaussian process with i.i.d. components on (W, H,μ). Suppose that at least
one of the following holds:

(1) For some ρ in [1, 3
2) the covariance function of X has finite ρ-variation, in

the sense of Condition 1;
(2) X is a fractional Brownian motion for H in (1/4,1/2).

Then there exist real numbers p,q such that the following statements are true
simultaneously:
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(1) X has a natural lift to a geometric p-rough path;
(2) H ↪→ Cq-var(I,R

d) where 1/p + 1/q > 1.

PROOF. If Condition 1 is satisfied with ρ ∈ [1,3/2), then (taking 1
0 := ∞)

2ρ < 3 <
ρ

ρ − 1
.

If we therefore set q = ρ and choose p in (2q,3), Remark 5.1 guarantees the
existence of a natural lift for X. Furthermore, Theorem 5.2 ensures that H ↪→
Cq-var(I,R

d).
In the case where X is fBm let 4 > p > 1

H
, and then Remark 5.1 guarantees

that X lifts to a geometric p-rough path. Let q = ( 1
p

+ 1
2)−1. Then we have(

H + 1

2

)−1

< q

and
1

p
+ 1

q
= 2

p
+ 1

2
> 1.

The fact that H ↪→ Cq-var(I,R
d) now follows by Remark 5.3. �

6. The tail behavior of Nα,I,p(X(·)) via Gaussian isoperimetry. We con-
tinue to work in the setting of an abstract Wiener space (W, H,μ). If K denotes
the unit ball in H, then for any A ⊆ W we can consider the Minkowski sum

A + rK := {x + ry :x ∈ A,y ∈ K}.
We then recall the following isoperimetric inequality of C. Borell; cf. Theorem 4.3
of [22].

THEOREM 6.1 (Borell). Let (W, H,μ) be an abstract Wiener space and K
denote the unit ball in H. Suppose A is a Borel subset of W such that μ(A) ≥ �(a)

for some real number a. Then for every r ≥ 0,

μ∗(A + rK) ≥ �(a + r),

where μ∗ is the inner measure of μ, and � denotes the standard normal cumula-
tive distribution function.

The next proposition is crucial. It will allow us to apply Borell’s inequality to
control the tail of the random variable Nα,I,p(X(ω)).

PROPOSITION 6.2. Let (Xt)t∈I = (X1
t , . . . ,X

d
t )t∈I be a continuous, mean-

zero Gaussian process, parameterized over a compact interval I on the abstract
Wiener space (W, H,μ). Suppose that p and q are real numbers such that 1 ≤
p < 4 and 1/p + 1/q > 1. Assume further that:
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(1) X has a natural lift to a geometric p-rough path X;
(2) H ↪→ Cq-var(I,R

d).

Then there exists a set E ⊆ W , of μ-full measure, with the following property:
for all ω in E,h in H and α > 0, if∥∥X(ω − h)

∥∥
p-var;I ≤ α,

then

|h|q-var;I ≥ αNα̃p,I,p

(
X(ω)

)1/q
,

where Cp,q is the constant in Lemma 3.1 and α̃ = (2Cp,q)1/pα.

PROOF. Fix α > 0. We first note that the case Nα̃p,I,p(X(ω)) = 0 is trivial.
Hence we will assume in the following that Nα̃p,I,p(X(ω)) ≥ 1. From the def-
inition of the sequence (τi(α̃

p))∞i=0 and the integer Nα̃p,I,p(X(ω)) we have for
i = 0,1,2, . . . ,Nα̃p,I,p(X(ω)) − 1∥∥X(ω)

∥∥
p-var;[τi (α̃

p),τi+1(α̃
p)] = α̃.(6.1)

Consider the (measurable) subset of W defined by

E := {
ω ∈ W :ThX(ω) = X(ω + h) ∀h ∈ H

}
,

and recall from Lemma 5.4 that μ(E) = 1. For every ω in E define a subset Fα,ω

of H by

Fα,ω := {
h ∈ H :

∥∥X(ω − h)
∥∥
p-var;I ≤ α

}
.

Using the estimate in Lemma 3.1 we have for any ω in E∥∥X(ω)
∥∥p

p-var;[τi (α̃
p),τi+1(α̃

p)] = ∥∥ThX(ω − h)
∥∥p

p-var;[τi (α̃
p),τi+1(α̃

p)]
≤ Cp,q

(∥∥ThX(ω)
∥∥p
p-var;I + |h|p

q- var;[τi (α̃
p),τi+1(α̃

p)]
)
.

Hence, for any ω in E, h in Fα,ω we have

α̃p ≤ Cp,q

(
αp + |h|p

q- var;[τi (α̃
p),τi+1(α̃

p)]
)
.(6.2)

Substituting (2Cp,q)1/pα for α̃, estimate (6.2) becomes

|h|q
q- var;[τi (α̃

p),τi+1(α̃
p)] ≥ αq.

Summing over i = 0,1, . . . ,Nα̃,I,p(X(ω)) − 1 then gives

|h|qq- var;I ≥
Nα̃p,I,p(X(ω))−1∑

i=0

|h|q
q- var;[τi (α̃

p),τi+1(α̃
p)] ≥ αqNα̃p,I,p

(
X(ω)

)
,

which yields the desired estimate. �

By using these estimates in concert with Borell’s inequality we are lead directly
to the following theorem which describes the needed tail-estimate on the random
variable Nα̃p,I,p(X(·)).
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THEOREM 6.3. Let (Xt)t∈I = (X1
t , . . . ,X

d
t )t∈I be a continuous, mean-zero

Gaussian process, parameterized over a compact interval I, on the abstract
Wiener space (W, H,μ). Suppose that p and q are real numbers satisfying
1 ≤ p < 4 and 1/p + 1/q > 1. Assume that:

(1) X has a natural lift to a geometric p-rough path X;
(2) H ↪→ Cq-var(I,R

d), so that there exists Cemb in (0,∞) with |h|q-var;I ≤
Cemb|h|H for all h in H.

Let Cp,q be the constant in Lemma 3.1. Then for all α > 0 the natural lift X of
X to a geometric p-rough path satisfies

μ
{
ω :Nα̃p,I,p

(
X(ω)

)
> n

}≤ C1 exp
[−α2n2/q

2C2
emb

]
(6.3)

for all n ≥ 1, where α̃ = (2Cp,q)1/pα. The constant C1 is given explicitly by

C1 = exp
[
2�−1(μ(Aα)

)2]
,(6.4)

where �−1 is the inverse of the standard normal cumulative distribution function
and

Aα := {
ω ∈ W :

∥∥X(ω)
∥∥
p-var;I ≤ α

}
.

PROOF. By applying Proposition 6.2 together with hypothesis 2, we can de-
duce that {

ω :Nα̃p,I,p

(
X(ω)

)
> n

}∩ E ⊂ W \(Aα + rnK),(6.5)

where E ⊆ W with μ(E) = 1 and

rn := αn1/q

Cemb
.

Noticing that μ(Aα) =: �(aα) is in (0,1) [i.e., aα is in (−∞,∞)] an application
of Borell’s inequality then gives that

μ
{
ω :Nα̃p,I,p

(
X(ω)

)
> n

}≤ 1 − �(aα + rn) ≤ exp
[
−(aα + rn)

2

2

]
.(6.6)

If aα > −rn/2, then (6.6) implies

μ
{
ω :Nα̃p,I,p

(
X(ω)

)
> n

}≤ exp
(
−r2

n

8

)
.

Alternatively if aα ≤ −rn/2 then r2
n ≤ 4a2

α, and it is easy to see that

μ
{
ω :Nα̃p,I,p

(
X(ω)

)
> n

}≤ exp
(
−a2

α + 2aαrn

2

)
exp

(
−r2

n

2

)

≤ exp
(
2a2

α

)
exp

(
−r2

n

2

)
.
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Since aα = �−1(μ(Aα)) we have shown the required estimate (6.3). �

REMARK 6.4. Suppose that for some ρ in [1, 3
2) the covariance function of X

has finite ρ-variation (in the sense of Condition 1). In this case we deduce from
Corollary 5.5 and Theorem 5.2 that q = ρ and p ∈ (2ρ,3) satisfy the hypothesis
of Theorem 6.3 with the embedding constant given explicitly by

Cemb =
√

Vρ(R; I × I ).

Hence, the tail estimates just proved lead to moment estimates on Nα,I,p(X(ω)) in
the usual way. This leads to the conclusion that for any α > 0, and η satisfying

η <
α2

2Vρ(R; I × I )
,

we have ∫
W

exp
[
ηNα̃p,I,p

(
X(ω)

)2/ρ]
μ(dω) < ∞.(6.7)

For the Brownian rough path (i.e., ρ = 1) this shows that Nα,I,p(X(ω)) has a Gaus-

sian tail since in this case we have log |J X(ω)
t←0 (y0)| � Nα,I,p(X(ω)). Rudimentary

Itô or Stratonovich calculus tells us that we cannot expect the tail of Nα,I,p(X(ω))

to decay any faster than Gaussian, suggesting a degree of sharpness to our ap-
proach. By a similar argument, we can show that for any r < 2/ρ

exp
[
Nα,I,p

(
X(·))r ] is in

⋂
q>0

Lq(μ);

and similar calculations can be performed in the fractional Brownian setting too.

THEOREM 6.5 (Moment estimates on the Jacobian). Let (Xt)t∈[0,T ] =
(X1

t , . . . ,X
d
t )t∈[0,T ] be a continuous, mean-zero Gaussian process with i.i.d. com-

ponents associated to the abstract Wiener space (W, H,μ). Let ρ be in [1, 3
2),

p in (2ρ,3) and γ > p. Suppose that the covariance function of X has finite ρ-
variation in the sense of Condition 1. Then X lifts to a geometric p-rough path X,

and for any collection of Lip-γ vector fields V = (V 1, . . . , V d) on R
e with γ > p

the RDE

dYt = V (Y )dX, Y (0) = y0

has a unique solution. The flow U
X(ω)
t←0 (·) induced by the solution to this RDE is

differentiable. Let this derivative be given by

J
X(ω)
t←0 (y0) · a :=

{
d

dε
U

X(ω)
t←0 (y0 + εa)

}
ε=0

.
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And let M
(y0,V )
X(·) : W → R+ denote the random variable

M
(y0,V )
X(·) (ω) ≡ M

(y0,V )
X(ω) := ∣∣J X(ω)

t←0 (y0)
∣∣
p-var;[0,T ].

Then for all y0 in R
e and all r < 2/ρ we have

exp
[(

logM
(y0,V )
X(·)

)r ] is in
⋂
q>0

Lq(μ).

PROOF. Remark 5.1 guarantees the existence of a unique natural lift X for X.
Furthermore, we know that if V = (V 1, . . . , V d) is any collection of Lip-γ vector
fields (and γ > p), then the solution flow obtained by driving X along V is dif-
ferentiable. Lemma 4.6 and Proposition 4.11 together yield (4.10) from which it
follows that for any α > 0 and y0 in R

e

M
(y0,V )
X(·) ≤ c1

∥∥X(ω)
∥∥
p-var;[0,T ] exp

[
c1Nα,I,p

(
X(ω)

)]
,

where I = [0, T ] and c1 is a nonrandom constant which depends on α,p, γ and
|V |Lip-γ . Without loss of generality we take c1 > 1. Then for three further (again
nonrandom) constants c2 and c3 an easy calculation gives(

logM
(y0,V )
X(·)

)r ≤ c2 + c3
(
log

∥∥X(ω)
∥∥
p-var;[0,T ]

)r + c4Nα,I,p

(
X(ω)

)r
≤ c5 + c3 log

∥∥X(ω)
∥∥r
p-var;[0,T ] + c4Nα,I,p

(
X(ω)

)r
.

Hence, we have

exp
[(

logM
(y0,V )
X(·)

)r ]≤ c5
∥∥X(ω)

∥∥c3r
p-var;[0,T ] exp

[
c4Nα,I,p

(
X(ω)

)r ]
.(6.8)

By Theorem 6.3 and the remark following it, the random variable

exp
[
c5Nα,I,p

(
X(ω)

)r]
on the right-hand side of (6.8) is Lq(μ) for all q > 0 provided r < 2/ρ. On the
other hand ‖X(ω)‖p-var;[0,T ] has a Gaussian tail (see [12]), and hence also has
finite moments of all order. Using these two observations together with Cauchy–
Schwarz inequality in (6.8) gives the desired conclusion. �

The above result applies (in particular) to fractional Brownian motion, H > 1/3.
But in the case of fBm we can leverage the specific embedding properties to state
an alternative version of the theorem which applies when H > 1/4.

THEOREM 6.6 (Fractional Brownian motion). Let (Xt)t∈[0,T ] = (X1
t , . . . ,

Xd
t )t∈[0,T ] be fractional Brownian motion with Hurst parameter H > 1/4. Let

(W, H,μ) denote the abstract associated with X. Let γ > p > 1/H . ThenX lifts
to a geometric p-rough path X, and if V = (V 1, . . . , V d) is a collection of Lip-γ
vector fields on R

e, the RDE

dYt = V (Y )dX, Y (0) = y0
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has a unique solution. The flow U
X(ω)
t←0 (·) induced by the solution to this RDE is

differentiable. Let this derivative be given by

J
X(ω)
t←0 (y0) · a :=

{
d

dε
U

X(ω)
t←0 (y0 + εa)

}
ε=0

,

and let M
(y0,V )
X(·) : W → R+ denote the random variable

M
(y0,V )
X(·) (ω) ≡ M

(y0,V )
X(ω) := ∣∣J X(ω)

t←0 (y0)
∣∣
p-var;[0,T ].

Then for any r < 2H + 1, we have that

exp
[(

logM
(y0,V )
X(·)

)r] is in
⋂
q>0

Lq(μ)

for all y0 in R
e.

PROOF. The argument is the similar to that of the last theorem; we have to
verify the hypothesis of Theorem 6.3. Notice first that if r1 < r2, then a simple
calculation gives

exp
[(

logM
(y0,V )
X(·)

)r1
]≤ 1 + exp

[(
logM

(y0,V )
X(·)

)r2
]
.

It is therefore sufficient to prove the result for 1 < r < 2H + 1. Fix such any
such r . The fact that X lifts to a geometric p-rough path for any p > H−1 is by
now a familiar one. Since for any p̃ > p we have∣∣J X(ω)

t←0 (y0)
∣∣
p̃-var;[0,T ] ≤ ∣∣J X(ω)

t←0 (y0)
∣∣
p-var;[0,T ],

it is sufficient to prove the result for any p satisfying

H−1 < p < max
[
4,2(r − 1)−1].

Fix any such p in this interval and let q be given by

q =
(

1

p
+ 1

2

)−1

.

It follows that

r <
2

q
< 1 + 2H.

The calculations of Corollary 5.5 then ensure that H ↪→ Cq- var([0, T ],R
d). This

allows us to apply Theorem 6.3 to deduce that

exp
[
Nα,I,p

(
X(ω)

)r](6.9)

is μ-integrable. The result then follows by repeating the steps of the proof of the
previous theorem. �

REMARK 6.7. In particular these results imply (under the stated conditions)
that |J X(ω)

t←0 (y0)|p-var;[0,T ] has finite moments of all order.
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