
The Annals of Probability
2013, Vol. 41, No. 4, 2513–2543
DOI: 10.1214/12-AOP795
© Institute of Mathematical Statistics, 2013

DETERMINANTAL POINT PROCESSES WITH J -HERMITIAN
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Let X be a locally compact Polish space and let m be a reference Radon
measure on X. Let �X denote the configuration space over X, that is, the
space of all locally finite subsets of X. A point process on X is a probabil-
ity measure on �X . A point process μ is called determinantal if its corre-
lation functions have the form k(n)(x1, . . . , xn) = det[K(xi, xj )]i,j=1,...,n.
The function K(x,y) is called the correlation kernel of the determinantal
point process μ. Assume that the space X is split into two parts: X = X1 �X2.
A kernel K(x,y) is called J -Hermitian if it is Hermitian on X1 × X1 and
X2 × X2, and K(x,y) = −K(y,x) for x ∈ X1 and y ∈ X2. We derive a nec-
essary and sufficient condition of existence of a determinantal point process
with a J -Hermitian correlation kernel K(x,y).

1. Introduction and preliminaries.

1.1. Macchi–Soshnikov theorem. Let X be a locally compact Polish space, let
B(X) be the Borel σ -algebra on X, and let B0(X) denote the collection of all sets
from B(X) which are pre-compact. The configuration space over X is defined as
the set of all locally finite subsets of X:

� := �X := {
γ ⊂ X | for all � ∈ B0(X) |γ ∩ �| < ∞}

.

Here, for a set �, |�| denotes its capacity. Elements γ ∈ � are called configura-
tions. The space � can be endowed with the vague topology, that is, the weakest
topology on � with respect to which all maps � � γ �→ ∑

x∈γ f (x), f ∈ C0(X),
are continuous. Here C0(X) is the space of all continuous real-valued functions
on X with compact support. The configuration space � equipped with the vague
topology is a Polish space. We will denote by B(�) the Borel σ -algebra on �.
A probability measure μ on (�, B(�)) is called a point process on X. For more
detail, see, for example, [9, 11, 13, 16].

A point process μ can be described with the help of correlation functions, if
they exist. Let m be a reference Radon measure on (X, B(X)). The nth corre-
lation function of μ (n ∈ N) is an m⊗n-a.e. nonnegative measurable symmetric
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function k
(n)
μ (x1, . . . , xn) on Xn such that, for any measurable symmetric function

f (n) :Xn → [0,∞],∫
�

∑
{x1,...,xn}⊂γ

f (n)(x1, . . . , xn)μ(dγ )

(1)

= 1

n!
∫
Xn

f (n)(x1, . . . , xn)k
(n)
μ (x1, . . . , xn)m(dx1) · · ·m(dxn).

Under a mild condition on the growth of correlation functions as n → ∞, they
determine a point process uniquely [13].

A point process μ is called determinantal if there exists a function K(x,y)

on X2, called the correlation kernel, such that

k(n)
μ (x1, . . . , xn) = det

[
K(xi, xj )

]n
i,j=1, n ∈ N;(2)

see, for example, [21]. The integral operator K in L2(X,m) which has integral
kernel K(x,y) is called the correlation operator of μ.

Assume that the correlation operator K is self-adjoint and bounded on the (real
or complex) Hilbert space L2(X,m). In particular, the integral kernel K(x,y) is
Hermitian (symmetric in the real case). If the correlation functions (k

(n)
μ )n∈N in

(2) are pointwisely nonnegative, then K(x,y) is a positive definite kernel. Hence,
if additionally the function K(x,y) is continuous (it being possible to weaken the
latter condition), then the operator K must be nonnegative (K ≥ 0).

A bounded linear operator K on L2(X,m) is called a locally trace-class opera-
tor if, for each � ∈ B0(X), the operator K� := P �KP � is trace-class. Here P �

denotes the operator of multiplication by χ�, the indicator function of the set �.
[Thus, P � is the orthogonal projection of L2(X,m) onto L2(�,m).] If the op-
erator K is self-adjoint and nonnegative, then we can and will choose its integral
kernel, K(x,y), so that

TrK� =
∫
�

K(x, x)m(dx) for each � ∈ B0(X);
see [21] and [10]. By (1) and (2), for each � ∈ B0(X),∫

�
|γ ∩ �|μ(dγ ) =

∫
�

K(x, x)m(dx).

Hence, in order that the correlation functions of μ be finite, we must indeed assume
that the operator K is locally trace-class.

The following theorem, which is due to Macchi [15] and Soshnikov [21], plays
a fundamental role in the theory of point processes.

THEOREM 1 (Macchi–Soshnikov). Let K be a self-adjoint, nonnegative, lo-
cally trace-class, bounded linear operator on L2(X,m). Then the integral kernel
K(x,y) of the operator K is the correlation kernel of a determinantal point pro-
cess if and only if 0 ≤ K ≤ 1.
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Note that, in the above theorem, the condition of boundedness of the operator K

is not essential. One may instead initially assume that K is a Hermitian, nonnega-
tive, locally trace-class operator which is defined on a proper domain in L2(X,m).

Determinantal point processes with Hermitian correlation kernels occur in vari-
ous fields of mathematics and physics; see, for example, the review paper [21] and
Chapter 4 in [1].

1.2. Complementation principle (particle-hole duality). Assume that the un-
derlying space X is split into two disjoint parts: X = X1 � X2. Hence, we get
L2(X,m) = L2(X1,m) ⊕ L2(X2,m). For i = 1,2, let Pi denote the orthogonal
projection of L2(X,m) onto L2(Xi,m). Let us define a bounded linear operator J

on L2(X,m) by J := P1 − P2. Following, for example, [2], we define an (indefi-
nite) J -scalar product on L2(X,m) by

[f,g] := (Jf, g) = (P1f,P1g) − (P2f,P2g), f, g ∈ L2(X,m).

Here (·, ·) denotes the usual scalar product in L2(X,m). A bounded linear oper-
ator K on L2(X,m) is called J -self-adjoint if [Kf,g] = [f,Kg] for all f,g ∈
L2(X,m). An integral kernel K(x,y) of a J -self-adjoint, integral operator K is
called J -Hermitian. More precisely, K(x,y) is J -Hermitian if K(x,y) = K(y,x)

if x, y ∈ X1 or x, y ∈ X2, and K(x,y) = −K(y,x) if x ∈ X1, y ∈ X2.
For a bounded linear operator K on L2(X,m), we denote

K̂ := KP1 + (1 − K)P2.(3)

As is easily seen, K is J -self-adjoint if and only if K̂ is self-adjoint.
Assume now that the underlying space X is discrete, that is, X is a countable

set, and as a topological space X it totally disconnected. Thus, a configuration γ in
X is an arbitrary subset of X. Let m be the counting measure on X: m({x}) = 1 for
each x ∈ X. Any linear operator K in L2(X,m) may be identified with its matrix
[K(x,y)]x,y∈X [K(x,y) being the integral kernel of K in this case].

Let μ be a point process on X. By (1),

k(n)
μ (x1, . . . , xn) = μ

(
γ ∈ � : {x1, . . . , xn} ⊂ γ

)
for distinct points x1, . . . , xn ∈ X, otherwise k

(n)
μ (x1, . . . , xn) = 0. In particular, the

correlation functions uniquely identify the corresponding point process.
Following [4], we will now present a complementation principle (a particle-

hole duality) for determinantal point processes. (This observation is referred by
the authors of [4] to a private communication by S. Kerov.) Assume, as above, that
the underlying space X is divided into two disjoint parts: X = X1 � X2. Consider
the mapping I :� → � defined by

Iγ := γ̂ := (γ ∩ X1) ∪ (X2 \ γ ).

Thus, on the X1 part of the space, the configuration γ̂ coincides with γ , while on
the X2 part the configuration γ̂ consists of all points from X2 which do not belong
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to γ (holes). The mapping I is clearly an involution, that is, I 2 is the identity
mapping. For a point process μ on X, we denote by μ̂ the push-forward of μ

under I .

PROPOSITION 1 ([4]). Let μ be an arbitrary determinantal point process on
a discrete space X = X1 � X2, with a correlation kernel K(x,y). Then μ̂ is the
determinantal point process on X with the correlation kernel K̂(x, y), the integral
kernel of the operator K̂ defined by (3).

Combining the Macchi–Soshnikov theorem with Proposition 1, we immediately
get the following:

PROPOSITION 2. Let X = X1 �X2 be a discrete space and let m be a counting
measure on X. Let K be a bounded linear operator on L2(X,m) and let K be
J -self-adjoint. Then K(x,y) is the correlation kernel of a determinantal point
process on X if and only if 0 ≤ K̂ ≤ 1.

1.3. Formulation of the problem and the main result. In the case of a dis-
crete underlying space X, determinantal point processes with J -Hermitian corre-
lation kernels occurred in Borodin and Olshanski’s studies on harmonic analysis of
both the infinite symmetric group and the infinite-dimensional unitary group; see,
for example, [5–8, 17] and the references therein. The paper [7], page 1332, also
contains references to some earlier works of mathematical physicists on solvable
models of systems with positive and negative charged particles. In these papers,
one finds further examples of determinantal point processes with J -Hermitian cor-
relation kernels.

Furthermore, in their studies, Borodin and Olshanski derived three classes of de-
terminantal point processes with J -Hermitian correlation kernels in the case where
the underlying space X is continuous: the Whittaker kernel [6] (X = R− � R+), its
scaling limit—the matrix tail kernel [17] (X = R�R), and the continuous hyperge-
ometric kernel [7] [X = (−1

2 , 1
2)�{x ∈ R : |x| > 1

2}]. It is important to note that, in
all these examples, the self-adjoint operator K̂ appears to be an orthogonal projec-
tion. This follows from Proposition 5.1 in [8] and the respective results of [6, 17]
(see also [8], Proposition 6.6) and [7]. (It should be, however, noted that, in the
case of a continuous hypergeometric kernel, the corresponding projection prop-
erty was proved only under an additional assumption; see the last two paragraphs
of Section 10 in [7].)

The aim of the present paper is to derive, in the case of a general underlying
space X, a necessary and sufficient condition of existence of a determinantal point
process with a J -Hermitian correlation kernel. This problem was formulated to
the author by Grigori Olshanski. I am extremely grateful to him for this and for
many useful discussions and suggestions.
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Our main result may be stated as follows. (We will omit a technical detail related
to the choice of an integral kernel of the operator K .)

Main result. Assume that K is a J -self-adjoint bounded linear operator on
L2(X,m). Assume that the operators P1KP1 and P2KP2 are nonnegative. As-
sume that, for any �1,�2 ∈ B0(X) such that �1 ⊂ X1 and �2 ⊂ X2, the operators
K�i (i = 1,2) are trace-class, while P �2KP �1 is a Hilbert–Schmidt operator.
Then the integral kernel K(x,y) of the operator K is the correlation kernel of a
determinantal point process if and only if 0 ≤ K̂ ≤ 1.

Let us make two remarks regarding the conditions of the main result. First, we
note that, if the correlation operator K of μ is J -self-adjoint, then the restrictions
of the point process μ to X1 and X2 are determinantal point processes on X1
and X2 with self-adjoint, correlation operators P1KP1 and P2KP2, respectively.
Therefore, we assume that the latter operators are nonnegative.

Second, choose any � ∈ B0(X) such that m(�i) > 0, where �i := � ∩ Xi ,
i = 1,2. Then, since the operator K is not self-adjoint, the assumption in the main
result is weaker than the requirement that the operator K� be trace-class. In fact,
K being locally trace-class seems to be a rather unnatural assumption for J -self-
adjoint operators. This, of course, leads us to some additional difficulties in the
proof.

Clearly, Proposition 2 is the special case of our main result in the case where
the underlying space X is discrete. The drastic difference between the discrete and
the continuous cases is that the mapping γ �→ γ̂ has no analog in the case of a
continuous space X. Furthermore, if the space X is not discrete, the self-adjoint
operator K̂ is not even an integral operator, so it cannot be a correlation operator
of a determinantal point process.

To prove the main result, we follow the strategy of dealing with determinantal
point processes through the corresponding Fredholm determinants (compare with
[15, 19, 21]), or rather the extension of Fredholm determinant as proposed in [4].

Combining the main result and Proposition 5.1 in [8], we also derive a method
of constructing a big class of determinantal point processes with J -self-adjoint
correlation operators K such that the corresponding operators K̂ are orthogonal
projections. This class includes the above mentioned examples of determinantal
point processes obtained by Borodin and Olshanski.

The paper is organized as follows. In Section 2 we prove a couple of results
related to the mentioned extension of the Fredholm determinant. In Section 3 we
prove a series of auxiliary statements regarding J -self-adjoint operators and their
extended Fredholm determinants. Finally, in Section 4 we formulate and prove the
main results of the paper.

2. An extension of the Fredholm determinant. We first recall the classical
definition of a Fredholm determinant; see, for example, [20] for further detail. Let
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H be a complex, separable Hilbert space with scalar product (·, ·) and norm ‖ · ‖.
We denote by L (H) the space of all bounded linear operators on H . An operator
A ∈ L (H) is called a trace-class operator if ‖A‖1 = Tr(|A|) < ∞, where |A| =
(A∗A)1/2. The set of all trace-class operators in H will be denoted by L1(H).
The trace of an operator A ∈ L1(H) is given by Tr(A) = ∑∞

n=1(Aen, en), where
{en}∞n=1 is an orthonormal basis of H . Tr(A) is independent of the choice of a
basis. Note also that |Tr(A)| ≤ Tr(|A|). For any A ∈ L1(H) and B ∈ L (H), we
have AB,BA ∈ L1(H) with

max
{‖AB‖1,‖BA‖1

} ≤ ‖A‖1‖B‖,
where ‖B‖ denotes the usual operator norm of B . In the latter case, we have

Tr(AB) = Tr(BA).(4)

Denote by ∧n(H) the nth antisymmetric tensor power of the Hilbert space H ,
which is a closed subspace of H⊗n, the nth tensor power of H . For any A ∈ L (H),
the operator A⊗n in H⊗n acts invariantly on ∧n(H) and we denote by ∧n(A) the
restriction of A⊗n to ∧n(H). If A ∈ L1(H), then ∧n(A) ∈ L1(∧n(H)) and∥∥∧n(A)

∥∥
1 ≤ 1

n!‖A‖n
1.(5)

The Fredholm determinant is then defined by

Det(1 + A) = 1 +
∞∑

n=1

Tr
(∧n(A)

)
.(6)

The Fredholm determinant can be characterized as the unique function which is
continuous in A with respect to the trace norm ‖A‖1 and which coincides with the
usual determinant when A is a finite-dimensional operator.

One can extend the Fredholm determinant to a wider class on operators. Assume
that we are given a splitting of H into two subspaces:

H = H1 ⊕ H2.(7)

According to this splitting, we write an operator A ∈ L (H) in block form,

A =
[
A11 A21
A12 A22

]
,(8)

where Aij :Hj → Hi , i, j = 1,2. We define the even and odd parts of A as follows:

Aeven :=
[
A11 0

0 A22

]
, Aodd :=

[
0 A21

A12 0

]
.

We denote by L1|2(H) the set of all operators A ∈ L (H) such that Aeven ∈
L1(H) and Aodd ∈ L2(H). Here L2(H) denotes the space of all Hilbert–Schmidt
operators on H , equipped with the norm

‖A‖2 =
( ∞∑

n=1

‖Aen‖2

)1/2

,



DETERMINANTAL POINT PROCESSES 2519

where {en}∞n=1 is an orthonormal basis of H . Since L1(H) ⊂ L2(H), one con-
cludes that

L1(H) ⊂ L1|2(H) ⊂ L2(H).

We endow L1|2(H) with the topology induced by the trace norm on the even part
and by the Hilbert–Schmidt norm on the odd part.

PROPOSITION 3 ([4]). The function A �→ Det(1 + A) admits a unique exten-
sion to L1|2(H) which is continuous in the topology of L1|2(H). This extension is
given by the formula

Det(1 + A) = Det
(
(1 + A)e−A) · eTr(Aeven).(9)

REMARK 1. Note that, for each A ∈ L2(H), (1 + A)e−A − 1 ∈ L1(H).
Therefore, Det((1 + A)e−A) is a classical Fredholm determinant.

REMARK 2. It should be noted that a possibility of extension of the Fred-
holm determinant to L1|2(H) was already known to Berezin in the 1960s; see [3],
page 8.

We will now give another useful representation of Det(1+A) for A ∈ L1|2(H).

PROPOSITION 4. Let A ∈ L1|2(H) have a block form (8). Assume that
‖A11‖ < 1. Then

Det(1 + A) = Det(1 + A11) · Det
(
1 + A22 − A21(1 + A11)

−1A12
)
.(10)

[On the right-hand side of formula (10), both factors are classical Fredholm deter-
minants, as both operators A11 and A22 −A21(1 +A11)

−1A12 belong to L1(H).]

REMARK 3. It should be stressed that the inequality ‖A11‖ < 1 can be
achieved by every operator in L1|2(H). More generally, for each fixed ε > 0, we
can always assume that ‖A11‖ < ε. Indeed, assume ‖A11‖ ≥ ε. By the canonical
decomposition of a compact (in particular, trace-class) operator (e.g., [20], The-
orems 1.1 and 1.2), there exists an orthogonal splitting H1 = H ′

1 ⊕ R such that
the operator A11 acts invariantly in both subspaces H ′

1 and R, the subspace R is
finite-dimensional, and the norm of the operator A11 in the space H ′

1 is strictly less
than ε. Setting H ′

2 := H2 ⊕ R, we get a new orthogonal splitting H = H ′
1 ⊕ H ′

2.
Write the operator A in the block form with respect to this new splitting of H .
Since R is a finite-dimensional space, the even part of A in the new splitting is
still a trace-class operator, while the odd part of A in the new splitting is still a
Hilbert–Schmidt operator.
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PROOF OF PROPOSITION 4. For i = 1,2, let {P (n)
i }∞n=1 be an ascending se-

quence of finite-dimensional orthogonal projections in Hi such that P
(n)
i strongly

converges to the identity operator in Hi as n → ∞. Set P (n) := P
(n)
1 +P

(n)
2 , n ∈ N.

Then, for each n ∈ N, A(n) := P (n)AP (n) is a finite-dimensional operator in H , and∥∥A(n) − A
∥∥

1|2 → 0 as n → ∞.

Hence, by Proposition 3,

Det(1 + A) = lim
n→∞ Det

(
1 + A(n)).(11)

In the block form,

A(n) =
[

A
(n)
11 A

(n)
21

A
(n)
12 A

(n)
22

]
,(12)

where A
(n)
ij = P

(n)
i AijP

(n)
j , i, j = 1,2. For each n ∈ N, the operator A(n) is finite-

dimensional, hence, Det(1 +A(n)) is a classical Fredholm determinant. Therefore,

Det
(
1 + A(n)) = Det

[
1 + A

(n)
11 +A

(n)
21

A
(n)
12 1 + A

(n)
22

]
;(13)

the latter (in fact, usual) determinant refers to the finite-dimensional Hilbert space
P (n)H . Since ‖A11‖ < 1, we have ‖A(n)

11 ‖ < 1 for all n. Hence, 1 + A
(n)
11 is invert-

ible in P
(n)
11 H . Employing the well-known formula for the determinant of a block

matrix, we get from (11) and (13)

Det(1 + A) = lim
n→∞ Det

(
1 + A

(n)
11

) · Det
(
1 + A

(n)
22 − A

(n)
21

(
1 + A

(n)
11

)−1
A

(n)
12

)
.(14)

We state that ∥∥A(n)
11 − A11

∥∥
1 → 0,

∥∥A(n)
22 − A22

∥∥
1 → 0,(15) ∥∥A(n)

21

(
1 − A

(n)
11

)−1
A

(n)
12 − A21(1 − A11)

−1A12
∥∥

1 → 0(16)

as n → ∞. Formula (15) is evident. In view of the formula

‖BC‖1 ≤ ‖B‖2‖C‖2, B,C ∈ L2(H)

(see, e.g., [20], Theorem 2.8), the proof of (16) is routine, so we skip it. Thus, (10)
follows from (14)–(16). �

We will now derive an analog of formula (6) for A ∈ L1|2(H). As follows from
the proof of [19], Theorem 2.4, for each A ∈ L1(H), we have

Tr
(∧n(A)

) = 1

n!
∑
ξ∈Sn

sign(ξ)
∏

η∈Cycle(ξ)

Tr
(
A|η|).(17)
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Here Sn denotes the set of all permutations of 1, . . . , n, the product in (17) is
over all cycles η in permutation ξ , and |η| denotes the length of cycle η. For
A ∈ L1(H), we clearly have Tr(A) = Tr(Aeven). We further note that, for each
A ∈ L2(H), we have Ak ∈ L1(H) for k ≥ 2. Thus, for each A ∈ L1|2(H), we set
Cn(A) to be equal to the right-hand side of (17) in which we set

Tr(A) := Tr(Aeven), A ∈ L1|2(H).

Hence, Cn(A) is well defined for each A ∈ L1|2(H), and Cn(A) = Tr(∧n(A)) for
each A ∈ L1(H).

PROPOSITION 5. For each A ∈ L1|2(H), we have

Det(1 + A) = 1 +
∞∑

n=1

Cn(A).(18)

PROOF. We know that formula (18) holds for all A ∈ L1(H). Next, for each
A ∈ L2(H),∥∥Ak

∥∥
1 ≤ ‖A‖k−2∥∥A2∥∥

1 ≤ ‖A‖k−2‖A‖2
2 ≤ ‖A‖k

2, k ≥ 2.

Hence, by the definition of Cn(A),∣∣Cn(A)
∣∣ ≤ ‖A‖n

1|2,(19)

where

‖A‖1|2 := max
{‖A‖2,‖Aeven‖1

}
.

[Note that ‖ · ‖1|2 is a norm on L1|2(H) which determines its topology.] Hence,
if ‖A‖1|2 < 1, the series on the right-hand side of (18) converges absolutely. We

fix any A ∈ L1|2(H) with ‖A‖1|2 < 1. For i = 1,2, let {P (k)
i }∞k=1 be an ascending

sequence of finite-dimensional orthogonal projections as in the proof of Proposi-
tion 4. Then, for each k ∈ N, A(k) := P (k)AP (k) is a finite-dimensional operator
in H , and ∥∥A(k) − A

∥∥
1|2 → 0 as k → ∞.

Hence, by (19) and the dominated convergence theorem,

Det
(
1 + A(k)) = 1 +

∞∑
n=1

Cn

(
A(k)) → 1 +

∞∑
n=1

Cn(A).

Therefore, by Proposition 3, formula (18) holds in this case.
Now we fix an arbitrary A ∈ L1|2(H). Then, by (19), the function

z �→ 1 +
∞∑

n=1

Cn(zA) = 1 +
∞∑

n=1

znCn(A)
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is analytic on the set {z ∈ C : |z| < ‖A‖−1
1|2}. Thus, by the uniqueness of analytic

continuation, to prove the proposition, it suffices to show that the function

C � z �→ Det(1 + zA)

is entire. But this can be easily deduced from Proposition 4 and Remark 3. �

Let us now assume that H = L2(X,m), where X is a locally compact Polish
space and m is a Radon measure on (X, B(X)). We fix any X1,X2 ∈ B(X) such
that X = X1 � X2. By setting Hi := L2(Xi,m), i = 1,2, we get a splitting (7)
of H .

PROPOSITION 6. Let K ∈ L1|2(L2(X,m)) be an integral operator with inte-
gral kernel K(x,y) such that

∫
X |K(x,x)|m(dx) < ∞ and

Tr(Keven) =
∫
X

K(x, x)m(dx).(20)

Then

Det(1 + K) = 1 +
∞∑

n=1

1

n!
∫
Xn

det
[
K(xi, xj )

]
i,j=1,...,nm(dx1) · · ·m(dxn).(21)

PROOF. For each l = 2,3, . . . , we have

Tr
(
Kl) =

∫
Xl

K(x1, x2)K(x2, x3) · · ·K(xl, x1)m(dx1) · · ·m(dxl).(22)

Note that the integral in (22) is independent of the choice of a version of the integral
kernel of K . Hence, by the definition of Cn(K) and formulas (20) and (22), we
conclude that

Cn(K) = 1

n!
∫
Xn

det
[
K(xi, xj )

]
i,j=1,...,nm(dx1) · · ·m(dxn).

Now formula (21) follows from Proposition 5. �

3. J -self-adjoint operators. We again assume that a Hilbert space H is split
into two subspaces; see (7). According to this splitting, we write a vector f ∈ H as
f = (f2, f2) and an operator A ∈ L (H) in the block form (8). Denote by P1 and
P2 the orthogonal projections of the Hilbert space H onto H1 and H2, respectively.
Setting J := P1 − P2, we introduce an (indefinite) J -scalar product on H by

[f,g] := (Jf, g) = (f1, g1) − (f2, g2), f, g ∈ H.

An operator A ∈ L (H) is called self-adjoint in the indefinite scalar product [·, ·],
or J -self-adjoint, if

[Af,g] = [f,Ag], f, g ∈ H ;
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see, for example, [2]. In terms of the block form (8), an operator A ∈ L (H) is
J -self-adjoint if and only if

A∗
11 = A11, A∗

22 = A22, A∗
21 = −A12.(23)

REMARK 4. Assume A is a usual matrix which has a block form (8). If the
blocks of A satisfy (23), then we will call A a J -Hermitian matrix.

For any A ∈ L (H), we denote by Â the operator from L (H) given by

Â := AP1 + (1 − A)P2(24)

or, equivalently, in the block form,

Â =
[

A11 A21
−A12 1 − A22

]
.

Clearly, if the operator A is self-adjoint, then Â is J -self-adjoint, while if A is
J -self-adjoint, then Â is self-adjoint. Also ̂̂A = A.

We will use below the following results.

LEMMA 1. Let A ∈ L (H) be J -self-adjoint. Then ‖A‖ = ‖Â − P2‖.

PROOF. We have A = ÂP1 + (1 − Â)P2, hence,

A∗ = P1Â + P2(1 − Â).

Denote by BA∗ the quadratic form on H with generator A∗. For any f,g ∈ H ,

BA∗(f, g) = (
A∗f,g

)
= (Â11f1, g1) + (Â12f2, g1)

+ (
(1 − Â22)f2, g2

) + (−Â21f1, g2).

Denote g̃ = (g1,−g2) = (g̃1, g̃2). Then

BA∗(f, g) = (Â11f1, g̃1)H + (Â12f2, g̃1)H + (
(Â22 − 1)f2, g̃2

)
H + (Â21f1, g̃2)

= (Âf, g̃) − (f2, g̃)

= (
(Â − P2)f, g̃

)
= BÂ−P2

(f, g̃).

From here

‖Â − P2‖ = ‖BÂ−P2
‖ = ‖BA∗‖ = ∥∥A∗∥∥ = ‖A‖. �

PROPOSITION 7. Let A ∈ L (H) be J -self-adjoint and assume that 0 ≤ Â ≤
1. Then ‖A‖ ≤ 1.
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PROOF. By Lemma 1, it suffices to show that ‖Â−P2‖ ≤ 1. Note that Â−P2
is self-adjoint. For each f ∈ H ,(

(Â − P2)f, f
) = (Âf, f ) − (f2, f2) ≤ (Âf, f ) ≤ (f, f ).

Hence, Â − P2 ≤ 1. Next,(
(Â − P2)f, f

) = (Âf, f ) − (f2, f2) ≥ −(f2, f2) ≥ −(f, f ),

and so Â − P2 ≥ −1. Thus, −1 ≤ Â − P2 ≤ 1, which implies the statement. �

PROPOSITION 8. Let A ∈ L (H) be J -self-adjoint and assume that 0 ≤ Â ≤
1. Then ‖A‖ = 1 if and only if ‖Aeven‖ = 1.

PROOF. By Lemma 1, it suffices to prove that ‖Â − P2‖ = 1 if and only if
‖Aeven‖ = 1. Let us first assume that ‖Â − P2‖ = 1.

Since 0 ≤ Â ≤ 1, we have 0 ≤ Â11 ≤ 1 and 0 ≤ Â22 ≤ 1. Hence, 0 ≤ A11 ≤ 1
and 0 ≤ A22 ≤ 1, and so 0 ≤ Aeven ≤ 1, which in turn implies that ‖Aeven‖ ≤ 1.
We have to consider two cases.

Case 1. −1 ∈ σ(Â − P2). [Here, σ(B) denotes the spectrum of an operator
B ∈ L (H).] Then there exists a sequence (f (n))∞n=1 in H such that ‖f (n)‖ = 1
and (

(Â − P2)f
(n), f (n)) → −1.

Since (Âf (n), f (n)) ≥ 0 and (P2f
(n), f (n)) ≤ 1, we get(

Âf (n), f (n)) → 0,
∥∥f (n)

2

∥∥ → 1.

Hence, f
(n)
1 → 0. From here(

Â11f
(n)
1 , f

(n)
1

) + (
Â21f

(n)
1 , f

(n)
2

) + (
Â12f

(n)
2 , f

(n)
1

) → 0.

Thus, (
Â22f

(n)
2 , f

(n)
2

) → 0.

Hence, (
Â22

f
(n)
2

‖f (n)
2 ‖ ,

f
(n)
2

‖f (n)
2 ‖

)
→ 0.

Hence, 0 ∈ σ(Â22), and so 1 ∈ σ(1 − Â22) = σ(A22).
Case 2. 1 ∈ σ(Â − P2). Then there exists a sequence (f (n))∞n=1 in H such that

‖f (n)‖ = 1 and (
(Â − P2)f

(n), f (n)) → 1.
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Since (Âf (n), f (n)) ≤ 1 and (P2f
(n), f (n)) ≥ 0, we get(

Âf (n), f (n)) → 1,
∥∥f (n)

2

∥∥ → 0.

From here, analogously to the above, we conclude that 1 ∈ σ(Â11) = σ(A11).
Thus, in both cases, we get ‖Aeven‖ = 1. By inverting the arguments, we con-

clude the inverse statement. �

PROPOSITION 9. Let A ∈ L (H) be J -self-adjoint and let A ∈ L1|2(H). As-
sume that ‖A‖ < 1 and A11 ≥ 0. Then Det(1 − A) > 0.

PROOF. Since ‖A‖ < 1, we get ‖A11‖ < 1. Hence, by formula (10),

Det(1 − A) = Det(1 − A11) · Det
(
1 − A22 − A21(1 − A11)

−1A12
)

(25)
= Det(1 − A11) · Det

(
1 − A22 + A∗

12(1 − A11)
−1A12

)
.

Note that both operators −A11 and −A22 + A∗
12(1 − A11)

−1A12 are trace-class
and self-adjoint. Since ‖A11‖ < 1, we get Det(1 − A11) > 0. Further, ‖A22‖ < 1
and, hence, there exists ε > 0 such that 1 − A22 ≥ ε1. Clearly, since A11 ≥ 0,

A∗
12(1 − A11)

−1A12 ≥ 0,

which implies

1 − A22 + A∗
12(1 − A11)

−1A12 ≥ ε1.

From here

Det
(
1 − A22 + A∗

12(1 − A11)
−1A12

)
> 0,

and the proposition is proven. �

PROPOSITION 10. Let A ∈ L1|2(H) and let A be J -self-adjoint. Let 0 ≤ Â ≤
1 and let ‖A‖ < 1. Let L := A(1 − A)−1. Then L is J -self-adjoint, L ∈ L1|2(H),
and L11 ≥ 0, L22 ≥ 0.

PROOF. We have L = A + ∑∞
n=2 An, and

∞∑
n=2

∥∥An
∥∥

1 ≤ ‖A‖2
2

∞∑
n=0

‖A‖n < ∞.

Hence,
∑∞

n=2 An ∈ L1(H), so L ∈ L1|2(H).
Let us show that the operator L is J -self-adjoint. For any f,g ∈ H , we have

(Lf,g) =
∞∑

n=1

(
Anf,g

) =
∞∑

n=1

(
f,

(
A∗)n

g
) =

∞∑
n=1

(
f, (A11 − A21 − A12 + A22)

ng
)
.
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Denoting A′
11 := A11, A′

22 := A22, A′
12 := −A12, A′

21 := −A21, we get

(Lf,g) =
∞∑

n=1

∑
ik,jk=1,2
k=1,...,n

(
f,A′

i1j1
A′

i2j2
· · ·A′

injn
g
)
.(26)

Assume that f = f1 ∈ H1, g = g1 ∈ H1. Then, in the latter sum, the terms, in
which the number of the A′

12 operators is not equal to the number of the A′
21

operators, are equal to zero. Hence,

(L11f1, g1) = (Lf1, g1) =
∞∑

n=1

∑
ik,jk=1,2
k=1,...,n

(f1,Ai1j1Ai2j2 · · ·Ainjng1)

(27)

=
∞∑

n=1

(
f1,A

ng1
) = (f1,Lg1) = (f1,L11g1).

Thus, L∗
11 = L11. Analogously, L∗

22 = L22.
In the case where f = f1 ∈ H1 and g = g2 ∈ H2, those terms in the sum in (26),

in which the number of the A′
21 operators is not equal to the number of the A′

12
operators plus one, are equal to zero. Hence, similar to (27), we get

(L21f1, g2) = (f1,−L12g2),

so L∗
21 = −L12. Thus, L is J -self-adjoint.

Next, we will show that L11 ≥ 0. Analogously to the proofs of Propositions 4
and 5, we define operators A(n), n ∈ N. Thus, each A(n) is J -self-adjoint and∥∥A(n)

∥∥ ≤ ‖A‖ < 1.(28)

Let Â(n) denote the corresponding transformation of the operator A(n) in the
Hilbert space P (n)H . Recalling representation (12) of A(n), we thus get

Â(n) =
[

A
(n)
11 A

(n)
21

−A
(n)
12 P

(n)
2 − A

(n)
22

]
= P (n)

[
A11 A21

−A12 1 − A22

]
P (n) = P (n)ÂP (n).

Since 0 ≤ Â ≤ 1, we therefore conclude that 0 ≤ Â(n) ≤ 1. In particular, A
(n)
11 ≥ 0.

We may assume that the dimension of the Hilbert space P (n)H is n. Choose an
orthonormal basis (e(i))i=1,...,n of P (n)H such that e(i) ∈ P

(n)
1 H , i = 1, . . . , k, and

e(i) ∈ P
(n)
2 H , i = k + 1, . . . , n. In terms of this orthonormal basis, we may treat

the operator A(n) in P (n)H as an n × n J -Hermitian matrix [A(n)
ij ]i,j=1,...,n. Let

X(n) := {1,2, . . . , n}, X
(n)
1 := {1,2, . . . , k}, X

(n)
2 := {k+1, k+2, . . . , n},

so that X(n) = X
(n)
1 � X

(n)
2 . In view of Proposition 2, there exists a determinantal

point process μ(n) on �X(n) with correlation kernel

K(n)(i, j) := A
(n)
ij , i, j = 1, . . . , n.
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By Proposition 9, we have det(1 − A(n)) > 0. Let

L(n) := A(n)(1 − A(n))−1
.

We define a possibly signed measure ρ(n) on the configuration space �X(n) by
setting

ρ(n)({∅}) := Det
(
1 − A(n))

and for each nonempty configuration {i1, i2, . . . , im} ∈ �X(n) ,

ρ(n)({i1, i2, . . . , im}) := det
(
1 − A(n)) · det

(
L(n)(iu, iv)

)
u,v=1,...,m.

Analogously to the proof of Theorem 2 below, we may show that ρ(n) = μ(n).
Hence, for each nonempty configuration {i1, i2, . . . , im} ∈ �X(n) ,

det
(
L(n)(iu, iv)

)
u,v=1,...,m ≥ 0.

In particular, for any nonempty configuration {i1, i2, . . . , im} ∈ �
X

(n)
1

,

det
(
L

(n)
11 (iu, iv)

)
u,v=1,...,m ≥ 0.

Hence, by the Sylvester criterion, L
(n)
11 ≥ 0, and so(

L
(n)
11 f1, f1

) ≥ 0, f1 ∈ H1.(29)

By (28) and the dominated convergence theorem, we get

lim
n→∞

(
L

(n)
11 f1, f1

) = lim
n→∞

(
L(n)f1, f1

)
= lim

n→∞
∞∑
l=1

((
A(n))lf1, f1

)
(30)

=
∞∑
l=1

lim
n→∞

((
A(n))lf1, f1

)

=
∞∑
l=1

(
Alf1, f1

) = (Lf1, f1) = (L11f1, f1).

Thus, by (29) and (30), (L11f1, f1) ≥ 0 for all f1 ∈ H1. Analogously, we get
L22 ≥ 0. �

The following statement about J -Hermitian matrices was proven in [17].

PROPOSITION 11 ([17]). Assume that A is a J -Hermitian matrix and assume
that its diagonal blocks, A11, A22, are nonnegative definite. Then det(A) ≥ 0.
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REMARK 5. Note that the arguments we used in the proof of Proposition 9
are similar to the arguments Olshanski [17] used to prove Proposition 11.

From now on we will again assume that H = L2(X,m), where X is a locally
compact Polish space, m is a Radon measure on (X, B(X)), and X1,X2 ∈ B(X)

are such that X = X1 � X2. We also set Hi := L2(Xi,m), i = 1,2. We further
define

B(Xi) := {
� ∈ B(X) | � ⊂ Xi

}
and, analogously, B0(Xi), for i = 1,2.

For � ∈ B0(X), we denote by P � the orthogonal projection of L2(X,m)

onto L2(�,m), that is, the operator of multiplication by χ�. For an operator
K ∈ L (L2(X,m)), we denote K� := P �KP �. We will say that an operator
K ∈ L (L2(X,m)) is locally trace-class on X1 and X2 if, for each � ∈ B0(Xi),
i = 1,2, we have K� ∈ L1(L

2(X,m)).

PROPOSITION 12. Let K ∈ L (L2(X,m)) be J -self-adjoint and a locally
trace-class operator on X1 and X2, and let 0 ≤ K̂ ≤ 1. Then, for each � ∈ B0(X),
K� ∈ L1|2(L2(X,m)).

PROOF. For each �1 ∈ B0(X1), we have

P �1K̂P �1 = K�1 ∈ L1
(
L2(X,m)

)
.(31)

Since K̂ ≥ 0, we get P �1K̂P �1 ≥ 0. Hence, by (31),
√

K̂P �1 ∈ L2(L
2(X,m)).

Next, for each �2 ∈ B0(X2),

P �2(1 − K̂)P �2 = K�2 ∈ L1
(
L2(X,m)

)
.

Hence, analogously to the above,
√

1 − K̂P �2 ∈ L2(L
2(X,m)). From here

KP �1 = K̂P �1 =
√

K̂
√

K̂P �1 ∈ L2
(
L2(X,m)

)
,

KP �2 = (1 − K̂)P �2 =
√

1 − K̂

√
1 − K̂P �2 ∈ L2

(
L2(X,m)

)
.

Therefore, K(P �1 + P �2) ∈ L2(L
2(X,m)). Thus, for each � ∈ B0(X), KP � ∈

L2(L
2(X,m)), and so K� ∈ L2(L

2(X,m)).
By our assumption, for each � ∈ B0(X),

K�
even = P �KevenP

� = P �1K11P
�1 + P �2K22P

�2

= K�1 + K�2 ∈ L1
(
L2(X,m)

)
.

(Here �i := � ∩ Xi , i = 1,2.) Thus, K� ∈ L1|2(L2(X,m)). �

PROPOSITION 13. Let K ∈ L (L2(X,m)) be J -self-adjoint, let K� ∈
L1|2(L2(X,m)) for each � ∈ B0(X), and let K11 ≥ 0, K22 ≥ 0. Then K is an
integral operator and its integral kernel K(x,y) can be chosen so that:
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(i) The kernel K(x,y) is J -Hermitian.
(ii) For i = 1,2 and any x1, . . . , xn ∈ Xi (n ∈ N), the matrix[

K(xi, xj )
]
i,j=1,...,n

is nonnegative definite.
(iii) For each � ∈ B0(X),

Tr
(
K�

even
) =

∫
�

K(x, x)m(dx).(32)

PROOF. For any �1 ∈ B0(X1) and �2 ∈ B0(X2), P �2KP �1 is a Hilbert–
Schmidt operator, hence an integral operator. Therefore, we can choose an integral
kernel of K21, which is a function K21(x, y) on X2 × X1. We now define an inte-
gral kernel K12(x, y) of the operator K12 by setting K12(x, y) := −K21(y, x) for
(x, y) ∈ X1 × X2. Next, the operators K11 and K22 are nonnegative, locally trace-
class operators. Hence, we can choose their integral kernels according to [10],
Lemma A.3; see also [14], Section 3. By combining the integral kernels Kij (x, y),
i, j = 1,2, we obtain an integral kernel K(x,y) of K with needed properties. �

From now on, for an operator K as in Proposition 13, we will always assume
that its integral kernel satisfies statements (i)–(iii) of this proposition.

We denote by B0(X) the space of all measurable bounded real-valued functions
on X with compact support. For each ϕ ∈ B0(X), we preserve the notation ϕ for
the bounded linear operator of multiplication by ϕ in L2(X,m).

PROPOSITION 14. Let K ∈ L (L2(X,m)) be J -self-adjoint, let K11 ≥ 0,
K22 ≥ 0, and let K� ∈ L1|2(L2(X,m)) for each � ∈ B0(X). Fix any � ∈ B0(X)

and any ϕ ∈ B0(X) which vanishes outside �. Then K�ϕ, sgn(ϕ)
√|ϕ|K√|ϕ| ∈

L1|2(L2(X,m)) and

Det
(
1 + K�ϕ

) = Det
(
1 + sgn(ϕ)

√|ϕ|K√|ϕ|)
= 1 +

∞∑
n=1

1

n!
∫
Xn

ϕ(x1) · · ·ϕ(xn)(33)

× det
[
K(xi, xj )

]
i,j=1,...,nm(dx1) · · ·m(dxn).

PROOF. Since K� ∈ L2(L
2(X,m)), K�ϕ ∈ L2(L

2(X,m)). Since K�
even ∈

L1(L
2(X,m)), (

K�ϕ
)
even = K�

evenϕ ∈ L1
(
L2(X,m)

)
.

Thus, K�ϕ ∈ L1|2(L2(X,m)).
Denote ψ1 := sgn(ϕ)

√|ϕ| and ψ2 := √|ϕ|, ψ1,ψ2 ∈ B0(X). Since ψ1 and ψ2
vanish outside �, we get

ψ1Kψ2 = ψ1K
�ψ2
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and, analogously to the above, we conclude that ψ1Kψ2 ∈ L1|2(L2(X,m)).
Since K�

even ∈ L1(L
2(X,m)) and since ψ1,ψ2 ∈ L (L2(X,m)), by (4),

Tr
((

K�ϕ
)
even

) = Tr
(
K�

evenψ2ψ1
) = Tr

(
ψ1K

�
evenψ2

)
(34)

= Tr(ψ1Kevenψ2) = Tr
(
(ψ1Kψ2)even

)
.

Next, for l = 2,3, . . . ,

Tr
(
(ψ1Kψ2)

l) = Tr
(
ψ1K

�ϕK�ϕ · · ·K�ϕK�ψ2
)

(35)
= Tr

(
K�ϕK�ϕ · · ·K�ϕK�ψ2ψ1

) = Tr
((

K�ϕ
)l)

.

By (34) and (35), Cn(K
�ϕ) = Cn(ψ1Kψ2) for each n ∈ N, hence, formula (33)

holds.
Next, we note that the integral kernel K�(x, y) of the operator K� is the re-

striction of K(x,y) to �2. Clearly, the integral kernel of K�ϕ is K�(x, y)ϕ(y).
Using (32), it is not hard to show that

Tr
((

K�ϕ
)
even

) =
∫
X

K�(x, x)ϕ(x)m(dx).

Hence, by Proposition 6,

Det
(
1 + K�ϕ

)
= 1 +

∞∑
n=1

1

n!
∫
Xn

det
[
K�(xi, xj )ϕ(xj )

]
i,j=1,...,nm(dx1) · · ·m(dxn)

= 1 +
∞∑

n=1

1

n!
∫
Xn

ϕ(x1) · · ·ϕ(xn)

× det
[
K�(xi, xj )

]
i,j=1,...,nm(dx1) · · ·m(dxn)

= 1 +
∞∑

n=1

1

n!
∫
Xn

ϕ(x1) · · ·ϕ(xn)

× det
[
K(xi, xj )

]
i,j=1,...,nm(dx1) · · ·m(dxn). �

4. Main results. We again assume that X is a locally compact Polish space
and m is a Radon measure on (X, B(X)). We will also assume that m takes a
positive value on each open nonempty set in X. Let � = �X be the configuration
space over X. Let μ be a point process on X, that is, a probability measure on
(�, B(�)). Assume that μ satisfies∫

�
C|γ∩�|μ(dγ ) for all � ∈ B0(X) and all C > 0.(36)
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Then the Bogoliubov functional of μ is defined as

Bμ(ϕ) :=
∫
�

∏
x∈γ

(
1 + ϕ(x)

)
μ(dγ ), ϕ ∈ B0(X).(37)

Note that, since the function ϕ has compact support, only a finite number of terms
in the product

∏
x∈γ (1+ϕ(x)) are not equal to one. Note also that the integrability

of the function
∏

x∈γ (1+ϕ(x)) for each ϕ ∈ B0(X) is equivalent to condition (36).

If a point process μ has correlation functions (k
(n)
μ )∞n=1 [see (1)], then condition

(36) is also equivalent to

∞∑
n=1

Cn

n!
∫
�n

k(n)
μ (x1, . . . , xn)m(dx1) · · ·m(dxn) < ∞

for all � ∈ B0(X) and all C > 0,

and the Bogoliubov functional of μ is given by

Bμ(ϕ) = 1 +
∞∑

n=1

1

n!
∫
Xn

ϕ(x1) · · ·ϕ(xn)k
(n)
μ (x1, . . . , xn)m(dx1) · · ·m(dxn)(38)

for each ϕ ∈ B0(X). The Bogoliubov functional of μ uniquely determines this
point process. For more detail about the Bogoliubov functional see, for exam-
ple, [12].

Let us now briefly recall some known facts about configuration spaces and point
processes; see, for example, [9, 16] for further details. The σ -algebra B(�) coin-
cides with the minimal σ -algebra on � with respect to which all mappings of the
form � � γ �→ |γ ∩�| with � ∈ B0(X) are measurable. For a fixed set � ∈ B(X),
we denote by B�(�) the minimal σ -algebra on � with respect to which all map-
pings of the form � � γ �→ |γ ∩ �| with � ∈ B0(X), � ⊂ �, are measurable. In
particular, B�(�) is a sub-σ -algebra of B(�). The σ -algebras B(��) and B�(�)

can be identified in the sense that, for each A ∈ B(��), {γ ∈ � | γ ∩ � ∈ A} ∈
B�(�) and each set from B�(�) has a unique such representation. Hence, the re-
striction of a point process μ on X to the σ -algebra B�(�)—denoted by μ�—can
be identified with a point process on �, that is, with a probability measure on
(��, B(��)).

Let � be a compact subset of X. Then the configuration space �� consists of
all finite configurations in �, that is, �� = ⊔∞

n=0 �
(n)
� , where �

(0)
� := {∅} and for

n ∈ N, �
(n)
� consists of all n-point configurations in �. Denote

�̃n := {
(x1, . . . , xn) ∈ �n | xi �= xj if i �= j

}
.

Let B(�
(n)
� ) denote the image of the σ -algebra B(�̃n) under the mapping

�̃n � (x1, . . . , xn) �→ {x1, . . . , xn} ∈ �
(n)
� .
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Then B(��) is the minimal σ -algebra on �� which contains all B(�
(n)
� ), n ∈ N.

A point process μ on X has local densities in � if, for each n ∈ N, there exists a
nonnegative measurable symmetric function d

(n)
μ [�](x1, . . . , xn) on �̃n such that∫

�
(n)
�

f (n)(γ )μ�(dγ )

= 1

n!
∫
�̃n

f (n)({x1, . . . , xn})d(n)
μ [�](x1, . . . , xn)m(dx1) · · ·m(dxn)

for each measurable function f (n) :�(n)
� → [0,∞). We also denote d

(0)
μ [�] :=

μ�({∅}). In the case where X = � (so that X is a compact Polish space), we
will write d

(n)
μ instead of d

(n)
μ [�].

THEOREM 2. Let K ∈ L (L2(X,m)) be J -self-adjoint. Let K be a locally
trace-class operator on X1 and X2, and let 0 ≤ K̂ ≤ 1. Then there exists a unique
point process μ on X which has correlation functions

k(n)
μ (x1, . . . , xn) = det

[
K(xi, xj )

]
i,j=1,...,n.(39)

The Bogoliubov functional of μ is given by

Bμ(ϕ) = Det
(
1 + sgn(ϕ)

√|ϕ|K√|ϕ|), ϕ ∈ B0(X).(40)

If additionally ‖K‖ < 1, then for each � ∈ B0(X), the point process μ has local
densities in �:

d(0)
μ [�] = Det

(
1 − K�)

,
(41)

d(n)
μ [�](x1, . . . , xn) = Det

(
1 − K�)

det
[
L[�](xi, xj )

]
i,j=1,...,n,

where L[�] := K�(1 − K�)−1.

PROOF. By Proposition 7, ‖K‖ ≤ 1. We first assume that ‖K‖ < 1. We fix
any compact � ⊂ X. By Proposition 12, K� ∈ L1|2(L2(X,m)), hence, K� ∈
L1|2(L2(�,m)). Clearly, K� is J -self-adjoint. Setting �i := � ∩ Xi , i = 1,2,
we get

P �K̂P � = P �(
KP1 + (1 − K)P2

)
P �

(42)
= K�P �1 + (

1 − K�)
P �2 = K̂�,

where the latter operator is understood as the transformation (24) of the operator
K� in the Hilbert space L2(�,m) = L2(�1,m) ⊕ L2(�2,m). As 0 ≤ K̂ ≤ 1, we
conclude from (42) that 0 ≤ K̂� ≤ 1. Since ‖K‖ < 1, we have ‖K�‖ < 1. Hence,
by Proposition 9, Det(1 − K�) > 0.

Furthermore, by Proposition 10, the operator L[�] is J -self-adjoint and

L[�] ∈ L1|2
(
L2(�,m)

)
, L[�]11 ≥ 0, L[�]22 ≥ 0.
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Hence, we can choose an integral kernel L[�](x, y) of the operator L[�] accord-
ing to Proposition 13. Therefore, for any x1, . . . , xn ∈ �1, xn+1, . . . , xn+m ∈ �2,
the matrix [L[�](xi, xj )]i,j=1,...,n+m is J -Hermitian and the diagonal blocks[

L[�](xi, xj )
]
i,j=1,...,n,

[
L[�](xi, xj )

]
i,j=n+1,...,n+m

are nonnegative definite. Hence, by Proposition 11,

det
[
L[�](xi, xj )

]
i,j=1,...,n+m ≥ 0.

Therefore, for each n ∈ N, the function

�̃n � (x1, . . . , xn) �→ det
[
L[�](xi, xj )

]
i,j=1,...,n

is symmetric and takes nonnegative values.
Hence, we can define a positive measure μ� on (��, B(��)) for which

d(0)
μ�

= Det
(
1 − K�)

,
(43)

d(n)
μ�

(x1, . . . , xn) = Det
(
1 − K�)

det
[
L[�](xi, xj )

]
i,j=1,...,n, n ∈ N.

Note that

det
[
L[�](xi, xj )

]
i,j=1,...,n = 0 for all (x1, . . . , xn) ∈ �n \ �̃n, n ∈ N.

Hence, the Bogoliubov functional of μ� is given by

Bμ�(ϕ) = Det
(
1 − K�)

×
(

1 +
∞∑

n=1

1

n!
∫
�n

(
1 + ϕ(x1)

) · · · (1 + ϕ(xn)
)

(44)

× det
[
L[�](xi, xj )

]
i,j=1,...,nm(dx1) · · ·m(dxn)

)
,

ϕ ∈ B(�).

Here B(�) denotes the set of all bounded measurable functions on �. It follows
from Proposition 14 and (44) that

Bμ�(ϕ) = Det
(
1 − K�)

Det
(
1 + L[�](1 + ϕ)

)
, ϕ ∈ B(�).(45)

Hence, by [4], Corollary A.3, and Proposition 14,

Bμ�(ϕ) = Det
(
1 − K�)(

1 + L[�](1 + ϕ)
)

= Det
(
1 + K�ϕ

)
(46)

= Det
(
1 + sgn(ϕ)

√|ϕ|K√|ϕ|), ϕ ∈ B(�).

Now we take any sequence of compact subsets of X, {�n}∞n=1, such that

�1 ⊂ �2 ⊂ · · · ,
∞⋃

n=1

�n = X.
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By (46), the probability measures μ�n on (�, B�n(�)) form a consistent family
of probability measures. Therefore, by the Kolmogorov theorem, there exists a
unique probability measure on (�, B(�)) such that the restriction of μ to each
B�n(�) coincides with μ�n . By (46), the Bogoliubov functional of μ is given
by (40), while the statement about the local densities of μ follows from (43). The
determinantal form of the correlation functions of μ—formula (39)—follows from
(38), (40) and Proposition 14.

Let us now consider the case where ‖K‖ = 1. For each ε ∈ (0,1), set Kε := εK .
Hence, ‖Kε‖ < 1. We have

K̂ε = εKP1 + (1 − εK)P2 = εK̂ + (1 − ε)P2.(47)

Since K̂ ≥ 0 and P2 ≥ 0, we get K̂ε ≥ 0, and since K̂ ≤ 1 and P2 ≤ 1, we get
K̂ε ≤ 1. Hence, by the proved above, there exists a point process με which has
correlation functions

k(n)
με

(x1, . . . , xn) = εn det
[
K(xi, xj )

]
i,j=1,...,n.(48)

Hence, the corresponding correlation measure is �-positive definite in the sense
of [11]; see also [14]. By taking the limit as ε → 0, we therefore conclude that the
functions

k(n)
μ (x1, . . . , xn) := det

[
K(xi, xj )

]
i,j=1,...,n, n ∈ N,(49)

determine a �-positive definite correlation measure. By Proposition 14, for each
� ∈ B0(X) and C > 0,

1 +
∞∑

n=1

Cn

n!
∫
�n

k(n)
μ (x1, . . . , xn)m(dx1) · · ·m(dxn) = Det

(
1 + CK�)

< ∞.

Hence, by [14], Corollary 1, we conclude that there exists a unique probability
measure μ on (�, B(�)) which has correlation functions (49). By Proposition 14
and formula (38), the Bogoliubov functional of μ is given by (40). �

The following corollary easily follows from Theorem 2 and Proposition 5.1 in
[8] and its proof.

COROLLARY 1. Let G :L2(X1,m) → L2(X2,m) be a bounded linear oper-
ator such that, for any �1 ∈ B0(X1) and �2 ∈ B0(X2), the operators GP �1 and
P �2G are Hilbert–Schmidt. Let an operator L ∈ L (L2(X,m)) be defined by

L :=
[

0 G

−G∗ 0

]
.

Then operator 1 + L is invertible, and we set K := L(1 + L)−1. We further have
the following:

(i) The operator K is J -self-adjoint.
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(ii) The operator K is locally trace-class on X1 and X2.
(iii) The operator K̂ is the orthogonal projection of L2(X,m) onto the sub-

space {
h ⊕ Gh | h ∈ L2(X1,m)

}
.

Thus, by Theorem 2, there exists a unique determiminantal point process with
correlation kernel K(x,y).

REMARK 6. As we mentioned in Section 1, the Whittaker kernel [6], the ma-
trix tail kernel [17] and the continuous hypergeometric kernel [7] have their L

operators as in Corollary 1, and so their K̂ operators are orthogonal projections.

PROOF OF COROLLARY 1. That the operator 1 + L is invertible is shown
in [8], Section 5. Statement (iii) is just [8], Proposition 5.1. By the proof of Propo-
sition 5.1 [8], the operator L has the following block form:

K11 = G∗G
(
1 + G∗G

)−1
,

K22 = GG∗(
1 + GG∗)−1

,

K21 = G
(
1 + G∗G

)−1
,

K21 = −G∗(
1 + G∗G

)−1
.

Hence, statement (i) obviously follows. So we only need to prove statement (ii).
To this end, we fix any �1 ∈ B0(X1) and �2 ∈ B0(X2). By the assumption of the
corollary, P �2G is a Hilbert–Schmidt operator. Therefore,

P �2K21P
�1 = P �2G

(
1 + G∗G

)−1
P �1

is a Hilbert–Schmidt operator, hence so is the operator P �1K12P
�2 . Again by the

assumption of the corollary, GP �1 is a Hilbert–Schmidt operator, hence,(
GP �1

)∗(
GP �1

) = P �1G∗GP �1

is a trace-class operator. Let {e(n)}n≥1 be an orthonormal basis in L2(�1,m). Then,
by the spectral theorem,∑

n≥1

(
K11e

(n), e(n))
L2(�1,m) = ∑

n≥1

(
G∗G

(
1 + G∗G

)−1
e(n), e(n))

L2(�1,m)

≤ ∑
n≥1

(
G∗Ge(n), e(n))

L2(�1,m) < ∞.

Therefore, the operator P �1K11P
�1 is trace-class. Analogously, we may also

show that the operator P �2K22P
�2 is trace-class. Thus, statement (ii) is proven.

�
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COROLLARY 2. Let an operator K ∈ L (L2(X,m)) be J -self-adjoint and lo-
cally trace-class on X1 and X2. Let 0 ≤ K̂ ≤ 1 and let ‖K‖ = 1. Let μ be the
corresponding determinantal point process. Assume that � ∈ B0(X) is such that
‖K�‖ = 1. Then

μ�

({∅}) = Det
(
1 − K�) = 0,

that is, the μ probability of the event that there are no particles in � is equal to
zero.

PROOF. By (40), for each � ∈ B0(X) and z > 0,∫
�

e−z|γ∩�|μ(dγ ) =
∫
�

∏
x∈γ

(
1 + (

e−z − 1
)
χ�

)
μ(dγ )

= Det
(
1 − (

1 − e−z)K�)
.

Letting z → ∞ and using the dominated convergence theorem, we get

μ�

({∅}) = Det
(
1 − K�)

.

Since ‖K�‖ = 1, by Proposition 8, at least one of the operators K�1 = K
�1
11 ,

K�2 = K
�2
22 must have norm 1. (Here, as above, �i = � ∩ Xi , i = 1,2.) Assume

‖K�1‖ = 1 (the other case is analogous). As Det(1−K�1) is a classical Fredholm
determinant and the operator K�1 is self-adjoint, we get Det(1 −K�1) = 0. Thus,
we have μ�1({∅}) = 0, that is, the μ probability of the event that there are no
particles in the set �1 is equal to 0. From here the statement follows. �

REMARK 7. Note that, for a determinantal point process μ with a J -self-
adjoint correlation operator K , the restriction of μ to the σ -algebra BXi

(�)

(i = 1,2) may be identified with the determinantal point process on Xi whose
correlation operator is the self-adjoint operator Kii .

We will now show that the conditions on a J -self-adjoint operator K in The-
orem 2 are, in fact, necessary for a determinantal point process with correlation
kernel K(x,y) to exist.

THEOREM 3. Let K ∈ L (L2(X,m)) be J -self-adjoint, let K11 ≥ 0, K22 ≥ 0,
and let K� ∈ L1|2(L2(X,m)) for each � ∈ B0(X). Let an integral kernel K(x,y)

of the operator K be chosen so that statements (i)–(iii) of Proposition 13 are sat-
isfied. Then there exists a unique point process μ on X which has correlation
functions (39) if and only if 0 ≤ K̂ ≤ 1.

PROOF. We only have to prove that, if a point process μ exists, then 0 ≤ K̂ ≤
1. We divide the proof into several steps.
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(1) Fix any compact � ⊂ X. By Proposition 14 and (38), the Bogoliubov func-
tional of μ is given by (40). Hence, analogously to the proof of Corollary 2, we
get

μ�

({∅}) = Det
(
1 − K�)

.

In particular,

Det
(
1 − K�) ≥ 0.(50)

(2) From now on we will additionally assume that ‖K‖ < 1. Then ‖K�‖ < 1
and we set L[�] := K�(1 −K�)−1. Just as in the proof of Proposition 10, we de-
rive that L[�] is J -self-adjoint and L[�] ∈ L1|2(L2(X,m)). To choose an integral
kernel of the operator L[�], we represent it in the form

L[�] = K� + K�L[�].
As L[�] ∈ L2(L

2(�,m)), we first choose an arbitrary J -Hermitian integral ker-
nel of this operator, which we denote by L̃[�](x, y). Now we set

L[�](x, y) := K(x,y) +
∫
�

K(x, z)L̃[�](z, y)m(dy), x, y ∈ �.

As is easily seen, this integral kernel satisfies

Tr
(
L[�]�even

)
(51)

=
∫
�

L[�](x, x)m(dx) for each � ∈ B0(X),� ⊂ �.

(3) By (51),

Tr
((

L[�](1 + ϕ)
)
even

) =
∫
�

L[�](x, x)
(
1 + ϕ(x)

)
, ϕ ∈ B0(X).(52)

Since formula (45) clearly holds for the Boliubov functional of μ�, using (52) and
Proposition 6, we get, for each ϕ ∈ B(�),

Bμ�(ϕ) = Det
(
1 − K�)

×
(

1 +
∞∑

n=1

∫
�n

(
1 + ϕ(x1)

) · · · (1 + ϕ(xn)
)

× det
[
L[�](xi, xj )

]
i,j=1,...,nm(dx1) · · ·m(dxn)

)
.

This implies that the measure μ� has densities (43). Hence, by (50), for m⊗n-a.a.
(x1, . . . , xn) ∈ �n,

det
[
L[�](xi, xj )

]
i,j=1,...,n ≥ 0.
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In particular, for i = 1,2, for m⊗n-a.a. (x1, . . . , xn) ∈ �n
i ,

det
[
L[�]ii(xi, xj )

]
i,j=1,...,n ≥ 0.(53)

Here �i := � ∩ Xi , i = 1,2.
(4) Following [17], Proposition 1.5, let us find a representation of L[�]11 in

terms of the blocks of the operator K�. Since L[�](1 − K�) = K�, we have

L[�]11
(
1 − K�

11
) − L[�]12K

�
21 = K�

11,(54)

−L[�]11K
�
12 + L[�]12

(
1 − K�

22
) = K�

12.(55)

From (55),

−L[�]11K
�
12

(
1 − K�

22
)−1 + L[�]12 = K�

12
(
1 − K�

22
)−1

,

hence,

−L[�]11K
�
12

(
1 − K�

22
)−1

K�
21 + L[�]12K

�
21 = K�

12
(
1 − K�

22
)−1

K�
21.

Adding this to (54) yields

L[�]11
(
1 − Q[�]11

) = Q[�]11,

where

Q[�]11 := K�
11 + K�

12
(
1 − K�

22
)−1

K�
21

(56)
= K�

11 − (
K�

21
)∗(

1 − K�
22

)−1
K�

21.

Since the operator 1 − K�
11 is strictly positive and the operator (K�

21)
∗(1 −

K�
22)

−1K�
21 is nonnegative, the operator 1 − Q[�]11 is strictly positive, hence in-

vertible. Therefore,

L[�]11 = Q[�]11
(
1 − Q[�]11

)−1
.(57)

(5) By (56), the operator Q[�]11 is self-adjoint and trace-class. Since the oper-
ator 1 − Q[�]11 is strictly positive, we therefore get

Det
(
1 − Q[�]11

)
> 0.

[Note that Det(1 − Q[�]11) is a usual Fredholm determinant.] Therefore, by (53),
we can define a nonnegative, finite measure ν[�1] on (��1, B(��1)) whose local
densities are

d
(0)
ν[�1] = Det

(
1 − Q[�]11

)
,

d
(n)
ν[�1](x1, . . . , xn) = Det

(
1 − Q[�]11

)
det

[
L[�]11(xi, xj )

]
i,j=1,...,n,(58)

n ∈ N.
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Analogously to (43)–(46), we conclude from (58) that the Bogoliubov transform
of the measure ν[�1] is given by

Bν[�1](ϕ) =
∫
��1

∏
x∈γ

(
1 + ϕ(x)

)
ν[�1](dγ )

(59)
= Det

(
1 + sgn(ϕ)

√|ϕ|Q[�]11
√|ϕ|), ϕ ∈ B0(�1).

Setting ϕ ≡ 0, we see that ν[�1](��1) = 1, that is, ν[�1] is a point process in �1.
(6) We can now choose an integral kernel of the operator Q[�]11 analo-

gously to [10], Lemma A.3, and [14], Section 3. Indeed, since K�
21 is a Hilbert–

Schmidt operator, (K�
21)

∗(1 − K�
22)

−1K�
21 is a nonnegative trace-class operator in

L2(�1,m). The operator ((K�
21)

∗(1 − K�
22)

−1K�
21)

1/2 is Hilbert–Schmidt, hence
an integral operator. We choose its integral kernel, denoted by θ(x, y), so that

θ(x, y) = θ(y, x) for all x, y ∈ �1,

θ(x, ·) ∈ L2(�1,m) for all x ∈ �1.

[Recall that
∫
�2

1
|θ(x, y)|2m(dx)m(dy) = ‖((K�

21)
∗(1 − K�

22)
−1K�

21)
1/2‖2

2 < ∞.]

Now, we set an integral kernel of the operator (K�
21)

∗(1 − K�
22)

−1K�
21 to be(

K�
21

)∗(
1 − K�

22
)−1

K�
21(x, y) :=

∫
�1

θ(x, z)θ(z, y)m(dz)

= (
θ(x, ·), θ(y, ·))L2(�1,m), x, y ∈ �1.

We similarly construct an integral kernel of the operator K�
11:

K�
11(x, y) = (

η(x, ·), η(y, ·))L2(�1,m), x, y ∈ �1.

Hence, by virtue of (56), we may choose an integral kernel of the operator Q[�]11
as follows:

Q[�]11(x, y) = (
η(x, ·), η(y, ·))L2(�1,m) − (

θ(x, ·), θ(y, ·))L2(�1,m).(60)

As is easily seen, for each � ∈ B0(X), � ⊂ �1,

Tr
(
Q[�]�11

) =
∫
�

Q[�]11(x, x)m(dx).

Now, analogously to Proposition 14, we get from (59)

Bν[�1](ϕ) = 1 +
∞∑

n=1

1

n!
∫
�n

1

ϕ(x1) · · ·ϕ(xn)

× det
[
Q[�]11(xi, xj )

]
i,j=1,...,nm(dx1) · · ·m(dxn)

for each ϕ ∈ B0(�1). Hence, the correlation functions of the point process ν[�1]
are

k
(n)
ν[�1](x1, . . . , xn) = det

[
Q[�]11(xi, xj )

]
i,j=1,...,n, n ∈ N.
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Therefore, for each n ∈ N,

det
[
Q[�]11(xi, xj )

]
i,j=1,...,n ≥ 0 for m⊗n-a.a. (x1, . . . , xn) ∈ �n

1 .(61)

(7) Obviously, the following two mappings are measurable:

�1 � x �→ η(x, ·) ∈ L2(�1,m), �1 � x �→ θ(x, ·) ∈ L2(�1,m).

Therefore, by Lusin’s theorem (see, e.g., [18]), for each ε > 0, there exists a com-
pact set �ε ⊂ �1 such that m(�1 \ �ε) ≤ ε and the mappings

�ε � x �→ η(x, ·) ∈ L2(�1,m), �ε � x �→ θ(x, ·) ∈ L2(�1,m)

are continuous. Therefore, by (60), the function

�2
ε � (x, y) �→ Q[�]11(x, y) ∈ C(62)

is continuous. Hence, by (61),

det
[
Q[�]11(xi, xj )

]
i,j=1,...,n ≥ 0 for all (x1, . . . , xn) ∈ �n

ε .

Thus, the continuous kernel (62) is positive definite, and therefore the opera-
tor Q[�]11 is nonnegative on L2(�ε,m). By letting ε → 0, we conclude that
Q[�]11 ≥ 0 on L2(�1,m). Hence, by (56),

K�
11 ≥ (

K�
21

)∗(
1 − K�

22
)−1

K�
21 on L2(�1,m).(63)

(8) We denote by K̂� the corresponding transformation of the operator K� in
the Hilbert space L2(�,m) = L2(�1,m) ⊕ L2(�2,m). Hence, K̂� = P �K̂P �

and

K̂� =
[

K�
11 K�

21(
K�

21

)∗ 1 − K�
22

]
.

By (63), for each f = (f1, f2) ∈ L2(�,m),(
K̂�f,f

) = (
K�

11f1, f1
) + (

K�
21f1, f2

)
+ ((

K�
21

)∗
f2, f1

) + ((
1 − K�

22
)
f2, f2

)
≥ ((

K�
21

)∗(
1 − K�

22
)−1

K�
21f1, f1

)
(64)

+ ((
1 − K�

22
)
f2, f2

) − 2
∣∣(K�

21f1, f2
)∣∣

= ((
1 − K�

22
)−1

K�
21f1,K

�
21f1

)
+ ((

1 − K�
22

)
f2, f2

) − 2
∣∣(K�

21f1, f2
)∣∣.

Since K�
22 is a compact self-adjoint operator in L2(�2,m), we can choose an or-

thnormal basis of L2(�2,m) which consists of eigenvectors of the operator K�
22,
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and we denote by λn the eigenvalue belonging to eigenvector en, n ≥ 1. Clearly,
λn < 1 for all n. Then, by (64),(

K̂�f,f
) ≥

∞∑
n=1

(1 − λn)
−1∣∣(K�

21f1, en

)∣∣2 +
∞∑

n=1

(1 − λn)
∣∣(f2, en)

∣∣2
−

∞∑
n=1

2
∣∣(K�

21f1, en

)
(f2, en)

∣∣
=

∞∑
n=1

(
(1 − λn)

−1/2∣∣(K�
21f1, en

)∣∣ − (1 − λn)
1/2∣∣(f2, en)

∣∣)2 ≥ 0.

Thus, for each compact � ⊂ X, the operator K̂� = P�K̂P� is nonnegative.
Hence, K̂ ≥ 0. Exchanging the role of the sets X1 and X2 and using instead of
the operator K the operator 1 − K , we therefore get 1 − K̂ ≥ 0. Thus, 0 ≤ K̂ ≤ 1.

(9) We now assume that ‖K‖ = 1. Using the procedure of thinning of the point
process μ (see, e.g., [9], Example 8.2(a)), we conclude that, for each ε ∈ (0,1),
there exists a point process με which has correlation functions as in formula (48),
that is, a determinantal point process corresponding to the operator Kε := εK . By
the proved above 0 ≤ K̂ε ≤ 1. Hence, by (47),

0 ≤ εK̂ + (1 − ε)P2 ≤ 1.

Letting ε → 1, we get 0 ≤ K̂ ≤ 1.
(10) Finally, we assume that ‖K‖ > 1 and we have to show that a determi-

nantal point process does not exist in this case. Assume the contrary, that is,
assume that there exists a determinantal point process with correlation kernel
K(x,y). Since ‖K‖ > 1, there exists a compact set � ⊂ X such that ‖K�‖ > 1.
Analogously to part (9), using the procedure of thinning, we conclude that, for
each ε ∈ (0,1), there exists a determinantal point process with correlation kernel
Kε(x, y) := εK(x, y). We choose ε := ‖K�‖−1, so that ‖K�

ε ‖ = 1. We take the
restriction of the corresponding probability measure to the σ -algebra B�(�), that
is, a point process on (��, B(��)). We denote this point process by με,�. By
part (9), we have 0 ≤ K̂�

ε ≤ 1. Then, by Corollary 2,

Det
(
1 − K�

ε

) = 0.

Next, following the idea of [21], Remark 4, we consider∫
�
(1 − ε)|γ∩�|μ(dγ ) =

∫
�

∏
x∈γ

(
1 − εχ�(x)

)
μ(dγ )

= Det
(
1 − εK�) = Det

(
1 − K�

ε

) = 0.

On the other hand, (1 − ε)|γ∩�| > 0 for all γ ∈ �. Hence,∫
�
(1 − ε)|γ∩�|μ(dγ ) > 0,

which is a contradiction. �
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