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The Interval Property in Multiple Testing
of Pairwise Differences
Arthur Cohen and Harold Sackrowitz

Abstract. The usual step-down and step-up multiple testing procedures
most often lack an important intuitive, practical, and theoretical property
called the interval property. In short, the interval property is simply that for an
individual hypothesis, among the several to be tested, the acceptance sections
of relevant statistics are intervals. Lack of the interval property is a serious
shortcoming. This shortcoming is demonstrated for testing various pairwise
comparisons in multinomial models, multivariate normal models and in non-
parametric models.

Residual based stepwise multiple testing procedures that do have the inter-
val property are offered in all these cases.

Key words and phrases: All pairwise differences, change point, multino-
mial distributions, multivariate normal distributions, rank tests, step-down
procedure, step-up procedure, stochastic order, treatments versus control.

1. INTRODUCTION

Stepwise multiple testing procedures are valuable
because they are less conservative than standard single-
step procedures which often rely on Bonferroni critical
values. In other words, they are more powerful than
their single-step counterparts. In constructing stepwise
testing procedures it is common to begin with tests for
the individual hypotheses that are known to have desir-
able properties. For example, the tests may be UMPU,
they may have invariance properties and are likely to be
admissible. Then a sequential component is added that
tells us which hypotheses to accept or reject at each
step and when to stop. We begin with the realization
that all stepwise procedures induce new tests on the
individual testing problems. Carrying out a stepwise
procedure in a multiple hypothesis testing problem is
equivalent to applying these induced tests separately to
the individual hypotheses. Thus, if the induced indi-
vidual tests can be improved, then the entire procedure
is improved. Due to the sequential component, the na-
ture of these induced tests is typically complicated and
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overlooked. Unfortunately they frequently do not re-
tain all the desirable properties that the original tests
possessed.

In this paper we focus on an important type of practi-
cal property (which in many models is also a necessary
theoretical property) that we call the interval property.
This is a desirable property that the original tests would
typically have but that the stepwise induced tests can
easily lose. Informally the interval property is simply
that the resulting test has acceptance sections that are
intervals.

To further clarify, suppose one is constructing a test
for a one-sided hypothesis testing problem. In addition
to asking for other properties it is sensible to examine
the acceptance and rejection regions. There are often
pairs of sample points, X and X∗, for which there are
compelling practical (and sometimes theoretical) rea-
sons for the following to be true. If the point X is in
the rejection region, then the point X∗ should also be
in the rejection region. The practical desirability of this
property is usually due to the fact that it is intuitively
“clear” that X∗ is a stronger indication of the alterna-
tive than is X. In the case of two-sided hypotheses there
are often triples of points, X,X∗ and X∗∗ (on the same
line), such that if both X and X∗∗ are in the acceptance
region, then one would also want X∗ to be in the accep-
tance region if in fact X∗ was not the most indicative
of the alternative of the three points.
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TABLE 1
Health Status data at sample point x

Same Improved Cured

Placebo 15 226 4 245
Dose 1 4 226 15 245
Dose 2 6 196 43 245

We illustrate this idea with an example that will be
treated fully in Section 5.1. Suppose one observes the
data in Table 1 based on the three labeled indepen-
dent treatments. One of the hypotheses of interest is
whether or not the distribution for Dose 1 is stochas-
tically larger than that for the placebo. If the method
used decides in favor of stochastic order based on ob-
serving Table 1, then it should also decide in favor of
Dose 1 if Table 2 is observed. Repeated use of a test
procedure not having this property will ultimately lead
to conclusions that seem contradictory and would be
difficult to justify. The interval property is not only nat-
ural but is necessary for admissibility. We will return to
Tables 1 and 2 later in Section 5.1.

We study this idea in the most common of multiple
testing situations, that is, those where hypotheses un-
der consideration involve collections of pairwise dif-
ferences. The most common of these are (i) treatments
versus control problems, (ii) change point problems
and (iii) problems examining all pairwise differences.
We will investigate these problems in a broad spec-
trum of models: univariate models involving means or
variances, multivariate models concerning mean vec-
tors, ordinal data models involving equality of multino-
mial distributions and nonparametric models involving
equality of distributions.

Two popular types of multiple testing procedures for
such problems are a step-down procedure (to be de-
fined later) and a step-up procedure. To simplify the
presentation we focus mainly on the step-down pro-
cedure as analogous results can be obtained for the
FDR controlling step-up procedure of Benjamini and
Hochberg (1995). We will see that these step-down in-
duced tests often do not retain the interval property. In

TABLE 2
Health Status data at sample point x∗

Same Improved Cured

Placebo 16 226 3 245
Dose 1 3 226 16 245
Dose 2 6 196 43 245

fact, among all the models considered the usual step-
down procedure maintains the interval property only
when testing treatments versus control in the one-sided
case. We will also show how to construct a step-down
procedure that does have the interval property. Fur-
thermore, it should be clear from the examples and
from the way that the methods are used that this phe-
nomenon exists in a far greater variety of models.

The usual step-down procedure is given in Lehmann
and Romano (2005). For testing all pairwise compar-
isons variations are offered in Holm (1979), Shaffer
(1986), Royen (1989) and Westfall and Tobias (2007).
The lack of the interval property in a one-way ANOVA
model for testing all pairwise contrasts is shown in
Cohen, Sackrowitz and Chen (2010) (CSC) under a
normal model. It has also been demonstrated for rank
tests in a one-way ANOVA model in Cohen and Sack-
rowitz (2012) (CS).

Many multiple testing procedures are designed to
control some error rate such as the familywise error
rate FWER (weak and strong), the false discovery rate
FDR and k-FWER (see Lehmann and Romano, 2005).
Some researchers also take a finite action decision the-
ory problem approach with a variety of loss functions
(e.g., Genovese and Wasserman, 2002). In these stud-
ies procedures are evaluated and compared by their risk
functions. The risk function approach does not always
necessitate the need to control a particular type of error
rate. Dudoit and Van der Laan (2008) study expected
values of functions of numbers of Type I and Type II er-
rors. In any particular application one would typically
have a sense of desirable criteria as well as those por-
tions of the parameter space that are most relevant. To
get a more complete understanding of the behavior of
one’s procedure we recommend that, if feasible, error
control and risk function properties should be exam-
ined.

In this paper we specify procedures that have the in-
terval property for a much wider class of both univari-
ate and multivariate models. For exponential family
models, where individual test statistics are dependent,
each individual test induced by usual step-down and
step-up procedures has been shown to be inadmissi-
ble with respect to the classical hypothesis testing 0–1
loss. See Cohen and Sackrowitz (2005, 2007, 2008)
and CSC (2010) cited above. Those proofs are based on
results of Matthes and Truax (1967) that, in effect, say
that the interval property is equivalent to admissibility.
One implication of this is that no Bayesian approach
would lead to a procedure that lacks the interval prop-
erty. Thus no prior distribution can be used to explain
a lack of the interval property.
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Lack of the interval property not only means that, in
exponential family models, procedures exist with both
better size and power for every individual hypothesis,
but it may also lead to very counterintuitive results. It
is hard to believe a client would be happy with a proce-
dure that could yield a reject of a null hypothesis in one
instance and then yield an accept of the same hypothe-
sis in another instance when the evidence and intuition
is more intuitively compelling in the latter case.

The methodology we present leads to procedures
that are admissible. Furthermore, their operating char-
acteristics often compare favorably with the usual step-
down procedures. This behavior can be seen from the
simulations presented in Cohen, Sackrowitz and Xu
(2009) (CSX). In that same paper a family of resid-
ual based procedures were defined. The step-down pro-
cedures having the interval property that will be pre-
sented in this paper stem from those procedures. They
are exhibited in special cases in CSC (2010) and CS
(2012).

In the models considered here, the Residual based
Step-Down procedures, labeled RSD, exhibit two im-
portant characteristics. It begins with the set S =
{1,2, . . . , k} where each integer is associated with a
population. Next, based on all the data, S is partitioned
into a collection of disjoint sets through a sequential
process. Finally, hypothesis Hij (that population i is
equal to population j) is accepted if and only if both
i and j are in the same set of the final partition. Sec-
ond, the partitioning process is based on the pooling
of various samples (depending on the particular model
at hand) at each stage. The final partition of the set is
reached through a sequence of partitions that become
finer at each step

There are some noteworthy differences between
step-up or step-down and RSD. Depending on the col-
lection of hypotheses being tested, there will be corre-
lation between many of the test statistics being used.
Neither step-up nor step-down allows for this in the
construction of the test statistic itself. Thus those test
statistics will be the same regardless of the correla-
tion structure. The RSD methodology yields statistics
that are determined by the correlation structure. Fur-
thermore, the RSD test statistics change at each step
depending on the actions taken at the previous step.

Unfortunately, insight as to why the interval property
will ensue in some cases but not others is still wanting.
The crucial element seems to be the way the test statis-
tics and stopping rules mesh and this must be checked
mathematically.

We point out that many of the step-down procedures
discussed here are symmetric in the sense that what-
ever is true for any one hypothesis to be tested is also
true for the other hypotheses to be tested. So although
the lack of the interval property is shown for one par-
ticular testing problem, it is true for all individual prob-
lems. This takes on added significance for exponential
family models. It means that every individual test is in-
admissible. When the number of hypotheses is large,
the number of opportunities for inconsistent decisions
also gets to be large. For risk functions that would sum
mistakes, such as the classification risk (Genovese and
Wasserman, 2002), this could amount to considerable
error.

Lastly, we mention the issue of critical values. The
shortcoming of RSD and to some extent all stepwise
procedures is in determining sharp critical values. This
is particularly true in the face of dependence which is
exactly the situations in which usual stepwise proce-
dures tend to lack the interval property. With knowl-
edge (based on practicality) of relevant criteria and rel-
evant portions of the parameter space as focus, one
can search for appropriate critical values using simu-
lations. A good first simulation for RSD is to use the
critical values suggested in the work of Benjamini and
Gavrilov (2009) and modify them if necessary. The
standard step-up and step-down procedures do not take
dependency into account in choosing a level and can
also benefit by using simulation to modify their critical
values. As examples, two simulations are given for a
simple model in Section 6.3. There we compare RSD
and step-up in a treatments versus control setting.

In the next section we give models and definitions.
Several models, for which the results of the paper hold,
are listed. These include normal models, multinomial
models, and arbitrary continuous distribution models
treated nonparametrically. Section 3 discusses coun-
terexamples to the interval property. In Section 4 we
introduce a step-down method, called RSD, that leads
to procedures that do have the interval property. Sec-
tions 5, 6 and 7 contain results for multinomial models,
multivariate normal models and nonparametric models,
respectively.

2. MODELS AND DEFINITIONS

Let πi, i = 1, . . . , k, be k independent populations.
Data from population πi is denoted by a q × 1 vector
Xi and X represents (X′

1, . . . ,X′
k)

′.
Hypotheses of interest, for particular (i, j) combina-

tions, are denoted by Hij :πi = πj versus Kij :πi �= πj
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or Kij :πi < πj . The latter one-sided case can be in-
terpreted as the difference in two scalar parameters in
case πi is characterized by a single parameter or < can
be interpreted as πj is stochastically larger than πi in
case πi are multinomial distributions or other distribu-
tions not necessarily characterized by parameters. We
consider situations where there are at least two con-
nected hypotheses among those to be tested, that is, an
Hij ,Hjm or an Hij ,Him. We study the following three
problems in the domain of pairwise differences:

1. All pairwise differences. Here Hij :πi = πj versus
Kij :πi �= πj , all i < j, i, j = 1, . . . , k.

2. Change point. Hi(i+1) :πi = πi+1 versus Ki(i+1) :
πi < πi+1, i = 1, . . . , k − 1, where < can mean
stochastically less than or if πi is characterized by
a parameter it simply means that the parameter for
population i is less than the parameter for popula-
tion i + 1. Two-sided alternatives can also be con-
sidered.

3. Treatments versus control. Hik :πi = πk versus
Kij :πi �= πk, i = 1, . . . , k − 1.

Problems 1, 2 and 3 will be studied for the following
probability models:

1. πi are independent multinomial distributions. For
problem 2 assume π1 ≤ π2 ≤ · · · ≤ πk so that the
alternative hypotheses are strict stochastic order.

2. πi are independent p-variate normal distributions
with unknown mean vectors μi and known covari-
ance matrix �.

3. Assume πi has c.d.f. Fi with Fi continuous. For
problem 2 assume F1 ≤ · · · ≤ Fk so alternatives are
strict stochastic order.

The intuitive description of the interval property
given in Section 1 will be given a formal interpreta-
tion on a case by case basis as follows. In each specific
model, when Hij is being tested, a vector gij will be
identified based on compelling practical (and/or the-
oretical) considerations so that a nonrandomized test
ϕij (x) will be said to have the interval property (rela-
tive to the identified gij ) if ϕij (x + agij )

(i) is nondecreasing as a function of a in the one-
sided case,

(ii) has a convex acceptance region in a in the two-
sided case.

These practical considerations turn out to involve
only the data coming from the populations πi and πj as
they are independent of all the other populations. Thus
gij will be seen to have entries of 0 for all coordinates

that do not correspond to data from πi or πj . Let ĝij be
the 2q × 1 vector consisting of the elements of gij that
pertain to πi and πj .

Now let T̂ij (xi ,xj ) be the two-population test statis-
tic for testing Hij that, when only (xi ,xj ) are observed,
is the basis of the usual step-down procedure. When all
of x is observed we define Tij (x) = T̂ij (xi ,xj ). That
is, Tij is a function that depends on x only through
(xi ,xj ).

Also let ψ̂ij ((xi ,xj )) be the nonrandomized test
function which utilizes T̂ij (xi ,xj ). That is, for a
one-sided test ψ̂ij (xi ,xj ) = 1 if T̂ij ((xi ,xj )) > C

and ψ̂ij (xi ,xj ) = 0 otherwise. For a two-sided test
ψ̂ij (xi ,xj ) = 1 if T̂ij (xi ,xj ) < CL or T̂ij (xi ,xj ) >

CU . Otherwise ψ̂ij (xi ,xj ) = 0.
In the vast majority of multiple testing problems the

same two-sample test statistic is used for every Hij . To
simplify notation we will use this setting. Extension
to the general case would follow easily. Thus, when
clear, we suppress subscript notation for two-sample
functions as follows:

ĝij = ĝ, T̂ij (xi ,xj ) = T̂ (xi ,xj ) and

ψ̂ij (xi ,xj ) = ψ̂(xi ,xj ), all i < j.

We will say ψ̂(xi ,xj ) has the interval property rela-
tive to ĝ in the two-sample problem if ψ̂ij ((x′

i ,x′
j )

′ +
aĝ) satisfies (i) and (ii) above.

At this point we describe the usual step-down pro-
cedure for multiple testing of a collection of hypothe-
ses Hij based on statistics T̂ (xi ,xj ). See, for exam-
ple, Cohen, Sackrowitz and Xu (2009). We describe
the procedure for one-sided alternatives. For two-sided
alternatives sometimes statistics are absolute values or
upper and lower critical values are used. For one-sided
alternatives let K be the number of hypotheses to be
tested and let 0 ≤ C1 < C2 < · · · < CK be critical val-
ues. Define the collection of pairs Q = {(i, j) :Hij is
to be tested}.

Step 1: Let T̂i1,j1 = max(i,j)∈Q T̂ (xi ,xj ). If T̂i1,j1 ≤
CK, accept all hypotheses and stop.

If T̂i1,j1 > CK, reject Hi1,j1 and go to step 2.
Step 2: Consider T̂i2,j2 = max(i,j)∈Q\(i1,j1) T̂ (xi ,

xj ). If T̂i2,j2 ≤ CK−1, accept all remaining hypothe-
ses. If T̂i2,j2 > CK−1, reject Hi2,j2 and go to step 3.

Step m: Consider

T̂im,jm = max
(i,j)∈Q\{(i1,j1)···(im−1,jm−1)}

T̂ (xi ,xj ).

If T̂im,jm ≤ CK−(m−1), accept all remaining hypothe-
ses.

If T̂im,jm > CK−(m−1), reject Him,jm and go to
step (m + 1).
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We remark that the RSD methods presented are also
based on the function T̂ . However, the arguments used
are not (xi ,xj ).

3. PROTOTYPE COUNTEREXAMPLES TO THE
INTERVAL PROPERTY

In this section we describe the fundamentals of
searching for points at which step-down procedures
might violate the interval property. The idea is to cap-
italize on a consequence of the sequential process as
follows. Suppose, when x is observed, the step-down
procedure rejects Hij based on the value of Tij (x) but
does not do so until stage m > 1. Further suppose that
when x∗ is observed there is even more evidence to
reject Hij based on Tij (x∗). The difficulty is that the
stopping rule may prevent the procedure from even
reaching stage m when x∗ is observed.

To demonstrate we will consider some multiple test-
ing situations using only three populations π1, π2, π3.
All the fundamentals can be seen in the case that all xi

are one-dimensional and Tij = xj −xi in the one-sided
case and Tij = |xi −xj | in the two-sided case. Figures 1
and 2 give an intuitive sense of the sort of behavior that
one seeks for a violation of the interval property. To
extend these ideas to more general situations we use
the figures to determine the desired relative positions
(with distances measured by the value of the test statis-
tic) of sample points as one moves along the sequence
of points x,x∗ and x∗∗.

Figure 1 is appropriate when the (change point)
hypotheses to be tested are H12 :π1 = π2 versus
K12 :π1 < π2 and H23 :π2 = π3 versus K23 :π2 < π3.
Suppose g12 = (−1,1,0). When x is observed H23 is

FIG. 1. Violation of interval property for one-sided change point
problem.

FIG. 2. Violation of interval property for two-sided treatments
versus control problem.

rejected at stage 1 and then H12 is rejected at stage 2.
When x∗ = x + (2ε)g12 is observed H23 is now ac-
cepted at stage 1, causing the procedure to stop. Thus
H12 is now accepted despite an increase in evidence
against it.

Figure 2 is appropriate when the (treatments versus
control) hypotheses to be tested are H13 :π1 = π3 ver-
sus K13 :π1 �= π3 and H23 :π2 = π3 versus K23 :π2 �=
π3. Here π3 is the control and g13 = (−1,0,1). When
x is observed H23 is rejected at stage 1 and then H13 is
accepted at stage 2. When x∗ = x + ((C1 + ε)/2)g13 is
observed H23 is rejected at stage 1 and then H13 is re-
jected at stage 2. Finally, when x∗∗ = x∗ + (2ε))g13 is
observed both hypotheses are accepted. In the sample
space as we go from x to x∗ to x∗∗ the evidence against
H13 continues to mount. Yet the step-down procedure’s
decisons are to accept, reject and then accept again on
this sequence of points.

Figure 2 is also appropriate when testing all pairwise
comparisons provided C1 + 2C2 > 2C3.

4. RSD FEATURES AND FIRST PROPERTIES

In this section we describe some specifics of the
step-down procedures we will present that do have the
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interval property. As previously mentioned, decisions
are, in effect, based on a final partition of the set S =
{1,2, . . . , k} that is reached through a sequence of data
based partitions that become finer at each step. Each in-
teger is associated with a population. Suppose the hy-
pothesis Hij :πi = πj is under consideration. Then Hij

is rejected if and only if i and j are in different sets of
the final partition of S. The precise rules for the parti-
tioning depend on the model and the data. Illustrative
examples of the process will be given at the end of this
section. However, certain principles are common to all
models.

At the first step the process either stops and S itself
is the final partition (in this case no hypothesis can be
rejected) or S is divided into two sets. At any future
step the process either stops or one of the sets in the
current partition is divided into two nonempty sets. The
types of allowable sets in the partition process are often
restricted by the particular model being considered. For
the process to begin we must determine three (model-
driven) classes of sets, �,�1 and �2. At any step only
sets that lie in � are eligible to be split. Of course �

must contain at least two integers. One way the process
will be stopped is if the current partition contains no
such sets. Further, if a set B ∈ � is to be divided into
A and B \ A we require A ∈ �1 and B \ A ∈ �2. It is
often the case that �1 = �2. Whenever a set, say B =
{i1, . . . , im}, is under consideration to be split into two
parts the decision is based on some metric H(A,B \
A;x) of set dispersion. Here H is defined only for A ⊂
B with A and B \ A both nonempty. For any set of
integers, A, define

n(A) = number of integers in A and
(4.1)

Y(A;x) = ∑
j∈A

xj .

Due to the pairwise nature of each Hij the functions
H(A,B \ A;x) used in the various multiple testing
problems will be chosen to depend only on the func-
tions n(·) and Y(·;x). Next let, for any B ⊂ �,

D(B;x) = max
A⊂B,A⊂�1,B\A⊂�2

H(A,B \ A;x)

and let the max be attained for the set AB . That is,
D(B;x) = H(AB,B \ AB;x). If the set B is ever to
be divided, it will be split into AB and B \ AB . The
dependence of AB on x will usually be suppressed in
the notation.

Let {Cm},m = 1, . . . , k be an increasing set of criti-
cal values. Suppose that for some sample point x stage

m is reached and the current partition entering stage m
is denoted by B1m, . . . ,Bmm. If

max(D(B1m;x), . . . ,D(Bmm;x)) > Ck+1−m

then split the set corresponding to the largest D(Bim;x)

and continue to the next stage. Otherwise stop.
This construction leads to the following two basic

results.

THEOREM 4.1. Suppose H(A,B \ A;x + ag) has
the following properties. It is

(i) a nondecreasing function of a if {i} ∈ A, {j} ∈
B \ A or {j} ∈ A, {i} ∈ B \ A;

(ii) constant as a function of a if {i, j} ⊆ A or
{i, j} ⊆ B \ A;

(iii) constant as a function of a if {i, j} ∩ B = φ.

If the final partition at the sample point x places i and
j in different sets, then the final partition at x∗ = x +
ag, a > 0 will also place i and j in different sets.

PROOF. Since the final partition at the point x
placed i and j in different sets, the partitioning pro-
cess continued, at least, until i and j were sepa-
rated. Consider any stage in which i and j have not
yet been separated. In that partition let B∗ denote
the set containing both i and j . By assumptions (i)–
(iii), for any B in that same partition we must have
H(A,B \A;x + ag) = H(A,B \A;x) unless B = B∗
and {i} ∈ A, {j} ∈ B∗ \ A or {j} ∈ A, {i} ∈ B∗ \ A. In
that case if they are not equal, then [by (i)] we must
have H(A,B∗ \ A;x + ag) > H(A,B∗ \ A;x). Thus
i and j would become separated at the point x + ag at
least as early as they were at the point x. The result now
follows. �

THEOREM 4.2. Suppose H(A,B \ A;x + ag) has
the following properties. It is

(i) nonincreasing and then nondecreasing as a
function of a if {i} ∈ A, {j} ∈ B \ A or {j} ∈ A, {i} ∈
B \ A;

(ii) constant as a function of a if {i, j} ⊆ A or
{i, j} ⊆ B \ A;

(iii) constant as a function of a if {i, j} ∩ B = φ.

If the final partition at the sample point x places i and
j in the same set but the final partition at the sample
point x∗ = x + a1g, a1 > 0 places i and j in different
sets, then the final partition at x∗∗ = x + a2g, a2 > a1
will also place i and j in different sets.

PROOF. Since the final partition at the point x
placed i and j in the same set the partitioning process
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stopped before i and j were separated. Consider any
stage and suppose B∗ is the set in the partition contain-
ing both i and j. By assumptions (i)–(iii), for any B in
that partition we must have H(A,B \ A;x + a1g) =
H(A,B \ A;x) unless B = B∗ and {i} ∈ A, {j} ∈
B∗ \ A or {j} ∈ A, {i} ∈ B∗ \ A. Since i and j are
separated in the final partition at the point x + a1g we
must have, at some stage, H(A,B∗ \ A;x + a1g) >

H(A,B∗ \ A;x) for some A. It now follows from (i)
that H(A,B∗ \ A;x + a2g) > H(A,B∗ \ A;x + a1g)

for this A. Hence i and j will be separated at the point
x + a2g at least as early as they were at x + a1g. �

We conclude this section with some examples of the
partitioning process using simple models.

EXAMPLE 4.1 (Treatments versus control in a nor-
mal model). Let Xi ∼ N(μi,1), i = 1,2,3,4 be in-
dependent. Let i = 4 represent the control population
and i = 1,2,3 represent the treatment populations.
The objective is to test Hi4 :μi = μ4 versus Ki4 :μi �=
μ4, i = 1,2,3.

To determine an RSD procedure we have opted to
begin by taking � to be the collection of all sets con-
taining the integer 4 (control) and at least one other in-
teger chosen from {1,2,3}. �1 is the collection of sets
containing exactly one integer from among 1, 2 and 3.
�2 is the collection of sets containing the integer 4. As
our H(A,B \ A;X) function we will use

H(A,B \ A;X)
(4.2)

=
∣∣∣∣
∑
j∈A

Xj/n(A) − ∑
j∈B\A

Xj/n(B \ A)

∣∣∣∣/τ,

where τ = √
1/n(A) + 1/n(B \ A).

We take our three constants from the Benjamini and
Gavrilov (2009) critical values by using the normal
distribution with α = 0.05. That is, C1 = 1.48,C2 =
1.97 and C3 = 2.40. To fix ideas we will take some
simple numbers and let X1 = 1,X2 = 4,X3 = −2,
X4 = 0.

By our choice of �1 one set must contain only one
integer and be of the form A = {i}. Thus at step 1, the
RSD procedure considers the following three possible
partitions of S:

(i) A = {1}, S \ A = {2,3,4},
(ii) A = {2}, S \ A = {1,3,4},

(iii) A = {3}, S \ A = {1,2,4}.
Thus we have n(A) = 1 and n(S \A) = 3 in all three

cases. When A = {i} the function H becomes

H(A,S \ A;X) =
∣∣∣∣Xi − ∑

j �=i

Xj/3
∣∣∣∣
/√

4/3.

In case (i)

H = H({1}, {2,3,4};X)

= |1 − (4 − 2 + 0)/3|/
√

4/3 = 0.29.

In case (ii)

H = H({2}, {1,3,4};X)

= |4 − (1 − 2 + 0)/3|/
√

4/3 = 3.75.

In case (iii)

H = H({3}, {1,2,4};X)

= | − 2 − (1 + 4 + 0)/3|/
√

4/3 = 3.18.

The largest of these is 3.75 which is greater than
2.40 = C3. Thus, at step 1, S is split into {2} and
{1,3,4} and we continue to step 2. Next we consider
splitting B = {1,3,4} into two parts where the possi-
bilities are

(iv) A = {1}, and B \ A = {3,4},
(v) A = {3}, and B \ A = {1,4}.

Thus we have n(A) = 1 and n(B \ A) = 2 in both
cases. When A = {i} the function H becomes

H(A,B \ A;X) =
∣∣∣∣Xi − ∑

j �=i

Xj/2
∣∣∣∣
/√

3/2.

In case (iv)

H = H({1}, {3,4};X)

= |1 − (−2 + 0)/2|/
√

3/2 = 1.63.

In case (v)

H = H({3}, {1,4};X)

= | − 2 − (1 + 0)/2|/
√

3/2 = 2.04.

The largest of these is 2.04 which is greater than
1.97 = C2. Thus, at step 2, {1,3,4} is split into {3} and
{1,4} and we continue to step 3. At step 3 we consider
splitting {1,4} into two parts. H is now simply

H = H({1}, {4};X) = |1 − (0)|/√2 = 0.71.

Since 0.71 < 1.48 = C1 the set {1,4} remains intact
and the process stops. The final partition is {2}, {3} and
{1,4}. Recalling that if i and j are placed in different
sets then Hij will be rejected, we find that H14 is ac-
cepted, H24 is rejected and H34 is rejected.

For each (treatment) i = 1,2,3 in this setting the in-
terval property would pertain to the behavior of the test
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as Xi increased and Xk decreased while the other (in-
dependent variables) remained fixed. Thus the vector
g would have a −1 in the fourth position, a +1 in the
ith position and zeroes elsewhere. It is not difficult to
check that the function H given in (4.2) satisfies the
conditions of Theorems 1 and 2.

EXAMPLE 4.2 (Change point in a normal model).
Let Xi ∼ N(μi,1), i = 1, . . . ,10, be independent.
The objective is to test Hi,i+1 :μi = μi+1 versus
Ki,i+1 :μi �= μi+1, i = 1, . . . ,9.

To determine an RSD procedure we will begin by
taking � to be the collection of all sets containing at
least two consecutive integers chosen from {1, . . . ,10}.
�1 is the collection of sets containing consecutive inte-
gers chosen from among 1, . . . ,9. �2 is the collection
of sets containing consecutive integers chosen from
2, . . . ,10. As our H(A,B \ A;X) function we will
again use the function defined in Equation (4.2). Now
there can be, at most, nine steps in the partition pro-
cess. Again we can use nine constants coming from the
Benjamini and Gavrilov (2009) critical values by using
the normal distribution with α = 0.05.

At step 1 the possible partitions are

A = {1, . . . , i}, S \ A = {i + 1, . . . ,10}
for i = 1, . . . ,9.

Proceeding as in Example 4.2 we use the H func-
tion and the constant C9 to decide if and how to di-
vide S. Suppose it is determined (based on the data)
to split S into the sets {1, . . . , d} and {d + 1, . . . ,10}
for some d = 1, . . . ,9. If d = 1, then at step 2 only
{2, . . . ,10} is eligible to be split while if d = 9, only
{1, . . . ,9} is eligible. However, if 1 < d < 9, then both
{1, . . . , d} and {d + 1, . . . ,10} must be considered at
step 2. At step 2 we consider all divisions of the form

A = {1, . . . , i}, B \ A = {i + 1, . . . , d}
for i = 1, . . . , d − 1

and

A = {d + 1, . . . , i}, B \ A = {i + 1, . . . ,10}
for i = 1, . . . ,9.

Now using the H functions and the constant C8 we
would determine one which, if any, of the above sets
should be split. We continue in this fashion until either
there are no more sets eligible to be split or none satisfy
the criterion to be split. As in Example 4.2, if i and i+1
are placed in different sets of the final partition, then
Hi,i+1 will be rejected.

5. MULTINOMIAL MODELS

In this section we assume that there are k indepen-
dent multinomial populations each with q cells. Let
πi, i = 1, . . . , k represent the ith population with cell
probabilities pij , j = 1, . . . , q .

The individual testing problems are either Hi,j :πi =
πj versus Ki,j :πi < πj or Hi,j :πi = πj versus
Ki,j :πi �= πj where i < j . In this case πi < πj means
population j is stochastically larger than population i,
that is,

∑m
l=1 pil ≥ ∑m

l=1 pjl for m = 1, . . . , q with
some strict inequality.

Let T̂ (xi ,xj ) be the two-sample test statistics used
to test Hij that are to be used in the usual step-down
multiple testing procedure. A variety of such test statis-
tics have been recommended. See, for example, Basso
et al. (2009) (BPSS). Most such statistics, when used
to test Hij , not as part of a step-down multiple testing
procedure, have the interval property described below.

In this setting it is natural to consider a test’s be-
havior as xi1 and xjq both increase while xiq and xj1
both decrease. Such changes in data would suggest to
a practitioner an ever-increasing amount of stochastic
order. To be precise, suppose (xi ,xj ) is a reject sam-
ple point by virtue of using the two-sample test ϕ̂.
Next, for a > 0, consider any sample point x∗ where
x∗
α,β = xα,β + a for (α,β) = (i,1) and (α,β) = (j, q),

x∗
α,β = xα,β − a for (α,β) = (j,1) and (α,β) = (i, q)

and x∗
α,β = xα,β otherwise. Then ϕ̂ has the interval

property if ϕ̂ also rejects at (x∗
i ,x∗

j ). In other words
(x∗

i ,x∗
j ) is more indicative of stochastic order than

(xi ,xj ). So if (xi ,xj ) is a reject point, (x∗
i ,x∗

j ) should
also be a reject point.

Here ϕ̂ has the interval property relative to the 2q ×1
vector ĝ with 1 in positions 1 and 2q , −1 in positions
q and q + 1 and 0 elsewhere. Thus for the multiple
testing problem the kq × 1 vector gij has the value +1
in positions (i − 1)(q) + 1 and (j)(q), the value −1 in
positions (i)(q) and (j − 1)(q) + 1 and the value 0 in
all other positions.

It can be verified that all linear statistics and most
nonlinear statistics listed in BPSS (2009), Section 2.2
have this interval property. However, these same statis-
tics used as part of a step-down multiple testing proce-
dure will often lead to induced tests that fail to have the
interval property.

5.1 Change Point

In the one-sided change point problem the hy-
potheses are Hi,i+1 :πi = πi+1 versus Ki,i+1 :πi <

πi+1, i = 1, . . . , k − 1. That is, in the above j = i + 1.
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At this point we will demonstrate a simple search that
would often lead to the result that the usual step-down
procedure for testing H12, for example, will not have
the interval property. That is, if ϕ12 denotes the induced
test of H12 for the usual step-down procedure, ϕ12 will
not have the interval property relative to g12. The only
impediment to this type of search is the fact that the
data consists of integers in each cell and if sample sizes
are small this could be problematic. An example will
follow the recipe.

We follow the pattern exhibited in Figure 1 while al-
lowing for the presence of additional hypotheses (i.e.,
k can be greater than 3). Recall that Ti(i+1)(x) de-
pends only on (xi ,xi+1). Begin by choosing a sample
point x = (x′

1,x′
2, . . . ,x′

k)
′ so that Ti(i+1)(x) > Ci, i =

3, . . . , k − 1;T12(x) = C1 + ε1, T23(x) = C2 + ε2, ε1 >

0, ε2 > 0. At x, all hypotheses are rejected by step-
down. Next consider points x∗ of the form x∗ = x+ag.
That is, x∗ = (x∗′

1 , . . . ,x∗′
k )′ where x∗

i = xi for i =
3, . . . , k but x∗

11 = x11 +a, x∗
1j = x1j , j = 2, . . . , q −1,

x∗
1q = x1q −a, x∗

21 = x21 −a, x∗
2j = x2j , j = 2, . . . , q−

1, x∗
2q = x2q + a.

We note that for most of the statistics used in BPSS
(2009) T12 is an increasing function of a, T23 is a de-
creasing function of a and Ti,i+1 for i ≥ 3 does not
change with a. Choose a > 0 so that T23(x∗) ≤ C2 and
C1 + ε1 < T12(x∗) < C2. Hence at x∗ the step-down
procedure would reject Hi,i+1 for i ≥ 3, but H12 and
H23 would be accepted. Thus the usual step-down pro-
cedure does not have the interval property in this case.

EXAMPLE 5.1. Consider three independent multi-
nomial distributions, each with three cells. Test H12 :
π1 = π2 versus K12 :π1 < π2 and H23 :π2 = π3 versus
K23 :π2 < π3. Use Wilcoxon–Mann–Whitney (WMW)
test statistics Wi(i+1) using midranks. See BPSS
(2009). The statistics are then normalized by letting
Zi(i+1) = [Wi(i+1) − m(m + n + 1)/2]/√

mn(m + n + 1)/12, where m and n are the row totals
of a two-row table.

For the usual step-down procedure choose constants
C1 = 1.645 and C2 = 1.96. The data in Table 1 offers
sample point x.

The statistics are Z12(x) = 1.653 and Z23(x) =
2.006 leading to rejection of H23 followed by rejec-
tion of H12. Now we simply choose a = 1 to get
the sample point x∗ corresponding to Table 2. For
x∗,Z12(x∗) = 1.954 and Z23(x∗) = 1.865. The usual
step-down procedure now accepts both hypotheses at
x∗. Thus the usual step-down procedure with induced

TABLE 3
Data of Table 1 with first two rows combined

Same Improved Cured

(Placebo + Dose 1)/2 9.5 226 9.5 245
Dose 2 6 196 43 245

test ϕ12 for H12 does not have the interval property rel-
ative to g12 where ĝ has a 1 in positions 1 and 6, a −1
in positions 3 and 4 and 0 elsewhere.

Next we introduce another procedure based on the
RSD method that does have the interval property. Infor-
mally, the RSD approach will, at each stage, consider
collections of 2 × q tables formed by collapsing sets of
consecutive rows. It will then apply a two-sample test
having the interval property to these adaptively formed
2 × q tables. In order to make this precise we need
only define the function H and the sets �,�1 and �2.
First we take � to be the collection of sets containing
at least two consecutive integers and take �1 = �2 to
be the collection of all sets of consecutive integers cho-
sen from S = {1,2, . . . , k}. Then for any T̂ having the
interval property relative to ĝ let

H(A,B \ A;x) = T̂
(
Y (A),Y (B \ A)

)
,

where Y is as defined in Equation (4.1).
Now we use the current choice of g along with the

definitions of Y and H as well as the fact that T̂ has the
interval property relative to ĝ. This allows us to verify
that assumptions (i)–(iii) of Theorem 4.1 are satisfied.
Thus we have

THEOREM 5.1. RSD has the interval property.

To demonstrate the use of the RSD methodology
here we apply it to the model of Example 5.1.

EXAMPLE 5.1 (Continued). RSD for the data in
Table 1, which represents sample point x, is carried
out as follows: First Tables 3 and 4 are formed from
Table 1 by averaging frequencies in rows 1 and 2 for
Table 3 and averaging rows 2 and 3 for Table 4.

TABLE 4
Data of Table 1 with second two rows combined

Same Improved Cured

Placebo 15 226 4 245
(Dose 1 + Dose 2)/2 5 211 29 245
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At step 1, WMW test statistics W12,3(x) and
W1,23(x) are calculated using midranks and then con-
verted to normalized statistics Z12,3(x) and Z1,23(x).
We calculate Z12,3(x) = 2.78 and Z1,23(x) = 2.603.
Using critical values C1 = 1.645 and C2 = 1.96 we re-
ject H23 at step 1 based on Z12,3(x). At step 2 we test
H12 by using W12(x) normalized to Z12(x) = 1.653
and thereby reject H12 as well. The sample point x∗
is represented by the data in Table 2. Proceeding as
above we calculate Z12,3(x∗) = 2.78 and Z1,23(x∗) =
2.824. This leads to rejection of H23. Next calculate
Z12(x∗) = 1.946 which leads to rejection of H12.

5.2 Treatments versus Control

Let πk be the control population. The hypotheses are
Hik :πi = πk versus Kik :πi �= πk, i = 1, . . . , k−1. Let
T (xi ,xk) be the two-sample test statistics used for test-
ing Hik that are to be used in the usual step-down test-
ing procedure. A wide variety of such tests are listed
in BPSS (2009). When we focus on just one hypoth-
esis testing problem we are again comparing just two
populations. Therefore the natural ĝ is the same as that
defined in the beginning of this section. That is, the
two-sample interval property is relative to the 2q × 1
vector ĝ with 1 in positions 1 and 2q , −1 in positions
q and q + 1 and 0 elsewhere. For the multiple test-
ing problem the kq × 1 vector gik has the value +1 in
positions (i − 1)(q) + 1 and (k)(q), the value −1 in
positions (i)(q) and (k − 1)(q) + 1 and the value 0 in
all other positions.

To show that the usual step-down procedure does not
have the interval property we follow the pattern ex-
hibited in Figure 2 while allowing for the presence of
additional hypotheses (i.e., k can be greater than 3).
Again the discreteness could create a problem with
small sample sizes. Recall that Tik(x) depends only on
(xi ,xk).

Choose a sample point x so that x1 and xk are the
same, xi , i = 3, . . . , k − 1 are such that Tik(x) exceeds
Ci by a substantial amount, x2 is such that T2k(x) >

C1 +C2. Thus at x,H2k is accepted. Now choose x∗ so
that C1 < T1k(x∗) < C2, and T2k(x∗) = C2 + ε. This is
possible since T1k has the interval property and since
x∗

2 is closer to x∗
k than x2 is to xk . Now at x∗ the

procedure rejects H1k and H2k . Finally choose x∗∗ so
that T2k(x∗∗) ≤ C2 and T1k(x∗∗) ≤ C2. This is possible
since x∗∗ is such that x∗∗

1 and x∗∗
k are moving further

apart while x∗∗
2 and x∗∗

k are moving closer to each other.
Thus at x∗∗

2 ,H1k and H2k are accepted. This demon-
strates that the usual step-down procedure lacks the in-
terval property relative to g.

Now we indicate the RSD method that does have the
interval property. Informally, the RSD approach will, at
each stage, consider collections of 2 × q tables formed
by taking one row to be one of the treatments while the
other row is the result of combining all other treatments
with the control. It will then apply a two-sample test
having the interval property to these adaptively formed
2 × q tables. In order to make this precise we need
only define the function H and the sets �,�1 and �2.
First we take � to be the collection of all sets con-
taining k and at least one other integer chosen from
{1,2, . . . , k − 1}. �1 is the collection of sets contain-
ing exactly one integer. �2 is the collection of sets con-
taining the integer k. Then for any T̂ having the interval
property relative to ĝ let

H(A,B \ A;x) = T̂
(
Y (A),Y (B \ A)

)
.

Now we use the current choice of g along with the
definitions of Y and H as well as the fact that T has the
interval property relative to ĝ. This allows us to verify
that assumptions (i)–(iii) of Theorem 4.2 are satisfied.
Thus we have

THEOREM 5.2. RSD has the interval property.

5.3 All Pairwise Differences

The hypotheses are Hij :πi = πj versus Kij :πi �=
πj , i = 1, . . . , k − 1, j = i + 1, . . . , k. Once again it
can be shown that the usual step-down procedure does
not have the interval property in this case. Focusing on
H12 and utilizing statistics T12 and T23 as in the argu-
ments of Section 5.1 will suffice to give the results in
this case.

We now offer an RSD procedure that does have the
interval property. The basis of this RSD procedure is
the PADD procedure for testing all pairwise normal
means in CSC (2010). For the multinomial case we de-
scribe the procedure now.

Again it suffices to follow the exposition in Sec-
tion 3. Here we let � be the collection of all sets con-
taining at least two integers. Further let �1 = �2 be the
collection of all nonempty subsets of S = {1,2, . . . , k}.
Next take

H(A,B \ A;x) = T̂
(
Y(A;x), Y (B \ A;x)

)
,

where T̂ is any test statistic for testing independence in
a 2 × q table that has the interval property relative to ĝ.

The interpretation is as follows: By definition every
Y(A;x) will be the result of combining all rows corre-
sponding to indices in A. In determining how a set B

might be split we look at every possible way to collapse
all the rows corresponding to the indices in B into just
two rows. Then a test is performed for each resulting
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2 × q table. For example, if k = 4 and B = {1,2,3,4},
then the possible splits are {1} and {2,3,4}, {2} and
{1,3,4}, {3} and {1,2,4}, {4} and {1,2,3}, {1,2} and
{3,4}, {1,3} and {2,4} or {1,4} and {2,3}.

With these definitions one can check that assump-
tions (i)–(iii) of Theorem 4.2 are satisfied. Thus we
have

THEOREM 5.3. RSD has the interval property.

6. MULTIVARIATE NORMAL MODELS

Let xi , i = 1, . . . , k, be independent q-variate normal
random vectors with mean vectors μi and known non-
singular covariance matrix �. All hypotheses are con-
cerned with pairwise differences between mean vec-
tors. In light of this we assume without loss of gener-
ality that � = I. The two-sample test statistic that will
serve as the basis for all usual step-down procedures
considered to test Hij :μi = μj versus Kij :μi �= μj is

T̂ (xi ,xj ) = (xi − xj )
′(xi − xj )/2(6.1)

which has a chi-squared distribution with q degrees of
freedom.

Here a natural form of the interval property is along
points

x = (x′
1,x′

2, . . . ,x′
k)

′,(6.2)

x∗ = (
(x1 − r11)′, (x2 + r11)′,x′

3, . . . ,x′
k

)′
,(6.3)

x∗∗ = (
(x1 − r21)′, (x2 + r21)′,x′

3, . . . ,x′
k

)′
,(6.4)

where 0 < r1 < r2 and 1 is a vector of all 1’s. Thus
ĝ = (−1, . . . ,−1,1, . . . ,1)′ and g has entries of −1 for
coordinates corresponding to population i, 1 for coor-
dinates corresponding to population j and 0 elsewhere.

6.1 All Pairwise Differences

The case of q = 1 has been studied by CSC (2010).
For arbitrary q, the lack of the interval property of the
usual step-down procedure is shown by focusing on
H12 and utilizing statistics T12, T23 as in the argument
of Section 5.1.

At this point we describe an RSD which does have
the interval property. Here we let � be the collection
of all sets containing at least two integers. Further let
�1 = �2 be the collection of all nonempty subsets of
S = {1,2, . . . , k}. Next take

H(A,B \ A;x)

= T̂
(
Y(A;x)/n(A),Y (B \ A;x)/n(B \ A)

)
/
(
1/n(A) + 1/n(B \ A)

)
.

Again the assumptions of Theorem 4.2 can be veri-
fied and the interval property established.

6.2 Change Point

The hypotheses are Hi(i+1) :μi = μi+1 versus
Ki(i+1) :μi �= μi+1, i = 1,2, . . . , k − 1. Test statistics
for the usual step-down procedure are T̂ (xi ,xi+1) as
given in (6.1). The lack of the interval property for
the usual step-down is shown by focusing on H12 and
utilizing statistics T12 and T23 as in the argument of
Section 5.1. Here again we let x,x∗,x∗∗ be as in (6.2),
(6.3) and (6.4).

For RSD we proceed as follows: Take � to be
the collection of sets containing at least two consec-
utive integers and take �1 = �2 to be the collection
of all sets of consecutive integers chosen from S =
{1,2, . . . , k} and again choose

H(A,B \ A;x)

= T̂
(
Y(A;x)/n(A),Y (B \ A;x)/n(B \ A)

)
/
(
1/n(A) + 1/n(B \ A)

)
.

Once again the assumptions of Theorem 4.2 can be
verified and so RSD has the interval property in this
case.

REMARK 6.1. For the univariate normal change
point problem, MRD is a special case of an RSD pro-
cedure. For a numerical simulation study comparing
MRD with step-down see Cohen, Sackrowitz and Xu
(2009).

6.3 Treatments versus Control

The case q = 1 is treated in CSX (2009) and the case
of arbitrary q was treated in Cohen, Sackrowitz and Xu
(2008) (CSX).

The hypotheses are Hik :μi = μk versus Kik :μi �=
μk , i = 1,2, . . . , k − 1. The usual step-down two-
sample statistics at step 1 are Tik = (xi − xk)

′(xi −
xk)/2. To determine the RSD procedure we take � to
be the collection of all sets containing the integer k and
at least one other integer chosen from {1,2, . . . , k −1}.
�1 is the collection of sets containing exactly one inte-
ger from among {1, . . . , k − 1}. �2 is the collection of
sets containing the integer k. As in Sections 6.1 and 6.2
let

H(A,B \ A;x)

= T̂
(
Y(A;x)/n(A),Y (B \ A;x)/n(B \ A)

)
(6.5)

/
(
1/n(A) + 1/n(B \ A)

)
.

The RSD we use in this situation is simply the vector
analog to the procedure shown in Example 4.1. Now, of
course, q ≥ 1, scalar variables and parameters become
vectors and the number of treatments is k − 1. For the
function H we use the vector analog to (4.2) that is
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given in (6.5). Implementation follows the same steps
as in Example 4.1. The only difference might be in the
choice of constants as discussed below.

Here again it can be shown that the usual step-down
test of Hik does not have the interval property when
g = (0, . . . ,0,−1,0, . . . ,0,1) with the −1 in the ith
position while RSD does have the interval property.

We now give two simple examples of how the
RSD method might be constructed and used. First we
mention that for the standard step-up procedure the
Benjamini and Hochberg (1995) constants in the two-
sided case are given by

CBH
i = �−1(

1 − (k + 1 − i)(α/2)/k
)
.(6.6)

The constants given in Benjamini and Gavrilov
(2009) are

CBG
i = �−1(

1 − i(α/2)/(k + 1 − i(1 − α/2)
)
.(6.7)

Take q = 1 and k = 101 so we have 100 treatments
and one control. Suppose further that the only reason-
able scenario is that the number of truly significant
treatments is sparse, say, at the very most, 15% of the
treatments. Table 5 gives the results of a simulation us-
ing 5000 iterations at each parameter point. We com-
pare the RSD method with step-up on the criteria of
FDR, the expected number of Type I errors and the ex-
pected number of Type II errors. For RSD we were able

to use the critical values of (6.7) with α = 0.05 with-
out any modification. For step-up, on the other hand,
using α = 0.05 in (6.6) resulted in a procedure that
was (due to the dependence) too conservative and put it
at a disadvantage. Instead we found, using simulation,
that taking α = 0.07 in (6.6) gave a better performing
procedure for this covariance structure. For this appli-
cation RSD has the interval property, is comparable to
step-up relative to FDR and makes fewer mistakes than
step-up. Table 6 allows for a less sparse situation allow-
ing as many as 24% better treatments. Here simulation
indicated that we should again take α = 0.07 in (6.6)
for step-up and the critical values of RSD should cor-
respond to α = 0.03 in (6.7).

In both Tables 5 and 6 the mean of the control popu-
lation is taken to be 0.0. In Table 5 the means given
in the first three columns each represent five treat-
ment means. The other 85 treatment means are 0.0.
For example, in the next to last row, the first 10 treat-
ment means would be 4.00 and the next five treatment
means would be −4.00. In this case 15% of the treat-
ments would be nonzero. In Table 6 the means given
in the first three columns each represent eight treat-
ment means. Thus the maximum number of nonzero
treatment means would be, at most, 24%. Note both
Tables 5 and 6 indicate fewer errors for RSD for all
parameter points considered.

TABLE 5
Performance of RSD and SU. The mean of the control population is 0.0. Each mean value listed represents five treatments. All unspecified

means are equal to 0.0

Expected number of errors

Means for treatment number Type I Type II Total FDR

1–5 6–10 11–15 RSD SU RSD SU RSD SU RSD SU

0.00 0.00 0.00 0.1 0.7 0.0 0.0 0.1 0.7 0.048 0.045
0.00 0.00 −2.00 0.1 0.7 3.5 4.4 3.6 5.1 0.046 0.050
0.00 0.00 −4.00 0.3 0.8 0.0 0.8 0.4 1.6 0.051 0.054
0.00 2.00 −2.00 0.3 0.7 6.0 8.8 6.2 9.5 0.045 0.044
0.00 2.00 2.00 0.2 0.8 6.8 8.5 7.0 9.2 0.048 0.044
0.00 2.00 −4.00 0.4 1.0 2.7 4.6 3.1 5.6 0.049 0.054
0.00 2.00 4.00 0.4 0.8 2.7 4.8 3.2 5.6 0.048 0.048
0.00 4.00 −4.00 0.6 0.9 0.0 1.0 0.6 1.9 0.050 0.052
0.00 4.00 4.00 0.6 0.9 0.0 1.1 0.6 2.0 0.049 0.050
2.00 2.00 −2.00 0.4 0.9 8.1 12.8 8.5 13.7 0.045 0.048
2.00 2.00 2.00 0.4 0.9 10.0 12.3 10.3 13.2 0.055 0.045
2.00 2.00 −4.00 0.6 0.9 5.3 8.2 5.9 9.2 0.051 0.048
2.00 2.00 4.00 0.6 0.9 5.3 8.6 5.9 9.4 0.034 0.047
2.00 4.00 −4.00 0.7 1.1 2.3 4.6 3.0 5.7 0.049 0.052
2.00 4.00 4.00 0.7 1.0 2.3 4.7 3.0 5.7 0.049 0.049
4.00 4.00 −4.00 0.8 1.2 0.0 1.1 0.8 2.3 0.048 0.050
4.00 4.00 4.00 0.8 1.3 0.0 1.3 0.9 2.6 0.050 0.055



306 A. COHEN AND H. SACKROWITZ

TABLE 6
Performance of RSD and SU. The mean of the control population is 0.0. Each mean value listed represents eight treatments. All unspecified

means are equal to 0.0

Expected number of errors

Means for treatment number Type I Type II Total FDR

1–8 9–16 17–24 RSD SU RSD SU RSD SU RSD SU

0.00 0.00 0.00 0.0 0.5 0.0 0.0 0.0 0.5 0.031 0.038
0.00 0.00 −2.00 0.1 0.7 6.1 6.9 6.2 7.6 0.029 0.046
0.00 0.00 −4.00 0.3 0.8 0.0 0.9 0.3 1.8 0.031 0.051
0.00 2.00 −2.00 0.2 0.8 9.6 13.7 9.8 14.5 0.027 0.043
0.00 2.00 2.00 0.2 0.8 12.1 13.0 12.3 13.8 0.037 0.043
0.00 2.00 −4.00 0.4 1.1 4.5 6.7 4.9 7.8 0.030 0.051
0.00 2.00 4.00 0.4 1.0 4.6 6.9 5.0 7.9 0.029 0.048
0.00 4.00 −4.00 0.5 1.4 0.0 1.2 0.6 2.6 0.030 0.056
0.00 4.00 4.00 0.5 1.3 0.0 1.3 0.6 2.6 0.030 0.053
2.00 2.00 −2.00 0.3 1.0 13.3 19.6 13.6 20.6 0.028 0.045
2.00 2.00 2.00 0.3 1.0 19.2 18.8 19.5 19.7 0.058 0.040
2.00 2.00 −4.00 0.5 1.0 9.4 12.1 9.9 13.1 0.034 0.045
2.00 2.00 4.00 0.5 1.0 9.4 12.5 10.0 13.5 0.034 0.045
2.00 4.00 −4.00 0.6 1.3 3.8 6.5 4.5 7.8 0.030 0.048
2.00 4.00 4.00 0.6 1.2 3.8 6.7 4.5 7.9 0.029 0.046
4.00 4.00 −4.00 0.8 1.4 0.0 1.3 0.8 2.7 0.030 0.047
4.00 4.00 4.00 0.8 1.6 0.0 1.4 0.8 3.0 0.030 0.052

REMARK 6.2. For the univariate normal treat-
ments versus control problem MRD is a special case
and natural choice of an RSD procedure. One of the
simulation studies in Cohen, Sackrowitz and Xu (2009)
was done for this same model but for many more treat-
ments. Both step-up and step-down were considered.
As described in that paper it was more difficult to arrive
at appropriate choices for critical values. The nature of
the results was the same but, due to the large number
of populations, the results were stronger.

7. NONPARAMETRIC MODELS

Nonparametric multiple testing is discussed in
Hochberg and Tamhane (1987). Here we begin with
n independent observations from each of k indepen-
dent populations F1, . . . ,Fk . The collection of all nk
observations are ranked and we let Ri = the aver-
age of the ranks for the observations coming from
population i. Also let R = (R1, . . . ,Rk)

′. For testing
Hij :Fi = Fj versus Kij :Fi < Fj or Hij :Fi = Fj ver-
sus Kij :Fi �= Fj based on R it is natural to study the
behavior of testing procedures as Ri decreases and Rj

increases.
This model fits our original setting with Ri playing

the role of xi and q = 1. Here ĝ = (−1,1)′ and g is the

k × 1 vector with −1 as the ith coordinate, 1 as the j th
coordinate and 0 elsewhere.

7.1 All Pairwise Differences

The problem of nonparametric multiple testing of all
pairwise comparisons of distributions has been treated
by Cohen and Sackrowitz (2012) (CS). There it is
shown that the step-down procedure of Campbell and
Skillings (1985) based on ranks lacks an interval prop-
erty. It is also shown in CS (2010) that the RSD proce-
dure (called RPADD there) does have the interval prop-
erty.

7.2 Change Point

Next we consider testing Hi(i+1) :Fi = Fi+1 versus
Ki(i+1) :Fi < Fi+1, i = 1, . . . , k − 1 assuming Fi ≤
F2 ≤ · · · ≤ Fk . Assume sample sizes are n for each
population. It is possible to show that a typical step-
down procedure using two-sample rank tests (based
on separate ranks or joint ranks) for Hi(i+1) would
not have the interval property. However, the RSD pro-
cedure which we now describe will have the interval
property. As in the other change point settings, take
� to be the collection of sets containing at least two
consecutive integers and take �1 = �2 to be the col-
lection of all sets of consecutive integers chosen from



INTERVAL PROPERTY IN MULTIPLE TESTING 307

S = {1,2, . . . , k}. Here we let

H(A,B \ A;R)

= (
Y(A;R)/N(A)

− Y(B \ A;R)/N(B \ A)
)
/σA,B,

where

σ 2
A,B = w

(
1/N(A) + 1/N(B \ A)

)
/12 and

w = k(kn + 1).

With these definitions it is easy to verify the conditions
of Theorem 4.1 to obtain

THEOREM 7.1. RSD has the interval property for
testing Hi,i+1.

7.3 Treatments versus Control

For testing treatments versus control the hypotheses
are Hik :Fi = Fk versus Kik :Fi �= Fk . Now consider
the usual step-down procedure which is based on the
two-population statistic

Tik = |Ri − Rk|/σ{i},{k}

in comparing the ith treatment with the control. It can
be shown that the usual step-down procedure does not
have the interval property for testing Hik .

On the other hand, it can be shown that the RSD
procedure for this model does have the interval prop-
erty for testing Hik . RSD in this case is defined as
follows: Let � be the collection of all sets contain-
ing k and at least one other integer chosen from S =
{1,2, . . . , k −1}. �1 is the collection of sets containing
exactly one integer. �2 is the collection of sets contain-
ing the integer k. Then take

H(A,B \ A;R)

= ∣∣Y (
A;R/N(A)

)
− Y(B \ A;R)/N(B \ A)

∣∣/σA,B,

where σ 2
A,B is as defined in Section 7.2 above. With

these definitions it is easy to verify the conditions of
Theorem 4.1 to obtain

THEOREM 7.2. RSD has the interval property for
testing Hi,k.
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