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Abstract. The authors consider copula models for vectors of binary response
variables having marginal distributions that depend on covariates through lo-
gistic regressions. They show how to test for residual pairwise dependence
between responses, given the explanatory variables. The procedure they pro-
pose is based on the score statistic derived from the assumed copula struc-
ture under the alternative. The authors further argue that conditional depen-
dence can be conveniently modelled with meta-elliptical copulas, which offer
a wide range of positive and negative degrees of association. They call on a
composite likelihood to estimate the copula parameters and they provide stan-
dard error estimates of the same via linearization. They illustrate their results
with Canadian data on the presence or absence of various log grades in trees.

1 Introduction

Consider a multivariate binary regression setup in which d ≥ 2 dependent 0–1
random variables Y1, . . . , Yd are observed together with a vector x ∈ R

p of ex-
planatory variables. A frequent objective of statistical analysis is to estimate the
joint distribution of (Y1, . . . , Yd) given x. In forestry, for example, the presence
or absence of various log grades in a tree is of considerable interest to maximize
timber harvest. As the information about log grades is generally unknown until the
tree is felled down and sawn, characteristics of the standing tree such as species or
diameter at breast height can be used to estimate the probability of each configura-
tion of 0’s and 1’s. A multivariate binary regression model is thus useful for forest
management purposes.

A natural way to build a model for (Y1, . . . , Yd)|x is to specify its joint distribu-
tion by successive conditionings, for example, Y1|x, Y2|(Y1,x), Y3|(Y1, Y2,x), . . .

This is the approach adopted, for example, by Bonney (1987). It may be convenient
when the response variables are naturally ordered, but the lack of permutation in-
variance of the resulting model is often problematic (Prentice, 1988).
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Copula modelling provides a convenient solution to this problem. In this ap-
proach, the marginal distribution functions F1(·|x), . . . ,Fd(·|x) are fitted sepa-
rately and dependence between them is induced through a copula, that is, a d-
variate distribution function with uniform margins on [0,1]. In other words, a cop-
ula model for (Y1, . . . , Yd) consists of assuming that the relation

Pr(Y1 ≤ y1, . . . , Yd ≤ yd |x) = C{F1(y1|x), . . . ,Fd(yd |x)} (1.1)

holds for a specific copula C and all values of y1, . . . , yd ∈ {0,1} and x ∈ R
p .

Multivariate binary regression data modelling through copulas is not new. The
approach was originally proposed by Meester and MacKay (1994), who explored
the merits of Archimedean copulas, and Frank’s family in particular, as exchange-
able dependence structures. Nonexchangeable copulas were first used for the anal-
ysis of trivariate data: Molenberghs and Lesaffre (1994) considered the Plackett
family, which does not extend beyond the case d = 3, while Gauvreau and Pagano
(1997) called on the class of Farlie–Gumbel–Morgenstern copulas, which may be
defined in any dimension but can only accommodate weak degrees of dependence
between the variables.

In arbitrary dimension d ≥ 2, Gaussian copulas were promoted early on by
Song (2000, 2007) as a highly flexible class of dependence structures, but his
applications were largely limited to situations involving exchangeable pairs, in
which case multivariate Normal integrals conveniently reduce to one dimension
(Joe, 1995). More recently, Nikoloulopoulos and Karlis (2008) called on mixtures
of max-infinitely divisible copulas in this context. Although the latter class covers
a wide range of pairwise dependence (Joe and Hu, 1996), it does not allow for neg-
ative associations, which is the case in the above-mentioned forestry application,
which motivated this work.

This paper considers the use of meta-elliptical copulas for multivariate binary
regression data modelling purposes. These copulas, which stem from multivariate
elliptical distributions, were first investigated by Fang, Fang and Kotz (2002) as
an extension of the Gaussian dependence structure. They were further studied by
Abdous, Genest and Rémillard (2005) and are now commonly used, for example,
in actuarial science and finance.

Meta-elliptical copulas share with Gaussian copulas the ability to accommodate
any feasible pattern of association in a set of random variables. However, the meta-
elliptical class offers greater flexibility than the Gaussian in modelling the nature
of dependence between the variables. For example, Student t copulas can account
for tail dependence in multivariate continuous data (Nikoloulopoulos, Joe and Li,
2009), whereas Gaussian copulas cannot. It is of interest, therefore, to investigate
this class of dependence structures for binary data. As they cannot be expressed in
closed form, however, their use in a truly multivariate context poses non-negligible
numerical challenges (Nikoloulopoulos and Karlis, 2009).



Modelling dependent binary variables 267

Background material on copula-based multivariate logistic regression mod-
elling is provided in Section 2. As a preliminary step to model construction, tests
of residual pairwise dependence are introduced in Section 3. Given a family of bi-
variate copula alternatives, the optimal procedure is identified; it reduces in many
cases to a generalized Mantel–Haenszel statistic. Meta-elliptical copulas are re-
viewed in Section 4, along with the interpretation of their parameters when the
data are binary. In Section 5, the composite likelihood estimation method for mul-
tivariate binary regression is adapted to this context. To avoid the computational
burden of the jackknife procedure of Zhao and Joe (2005), an explicit variance es-
timator is constructed via linearization. A real-life application is then presented in
Section 6; it features data on the presence or absence of various log grades in trees.
Concluding remarks are made in Section 7, followed by a technical Appendix.

2 Multivariate logistic regression modelling through copulas

Let (Y1, . . . , Yd) be a vector of Bernoulli random variables and let x ∈ R
p

be a vector of covariates. Suppose that the conditional distribution function of
(Y1, . . . , Yd)|x is of the form (1.1) for a specific choice of copula C (independent
of x) and marginal distributions F1(·|x), . . . ,Fd(·|x).

As the response variables are dichotomous, Fj (·|x) is completely specified by
πj (x) = Pr(Yj = 1|x) for each j ∈ {1, . . . , d}. In particular, the copula C induces
a multivariate logistic regression model for (Y1, . . . , Yd) if, for all j ,

πj (x) = exp(x�βj )

1 + exp(x�βj )
, (2.1)

where βj is a p × 1 vector of parameters.
The role of the copula C is to account for possible dependence between the

residuals of the marginal models. As explained, for example, in Genest and Nešle-
hová (2007), this copula is uniquely defined only on

C(x) = Ran{F1(·|x)} × · · · × Ran{Fd(·|x)},
where, in general, Ran(F ) denotes the range of F . In the present case,

Ran{Fj (·|x)} = {0, π̄j (x),1}, π̄j (x) = 1 − πj (x)

for all j ∈ {1, . . . , d}. Thus, Pr(Y1 = y1, . . . , Yd = yd |x) is given at arbitrary
y1, . . . , yd ∈ {0,1} by

hC(y1, . . . , yd |x) = ∑
sign(v)C{F1(v1|x), . . . ,Fd(vd |x)}, (2.2)

where the sum is over all v = (v1, . . . , vd) ∈ {y1, y1 − 1} × · · · × {yd, yd − 1} and
sign(v) ∈ {−1,1} equals 1 if and only if #{j :vj = yj − 1} is even. This formula
uses the facts that Fj (y|x) = 0 if y < 0 and C(u1, . . . , ud) = 0 if uj = 0 for at
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Table 1 Conditional distribution of (Y1, Y2) as a function of πj =
πj (x), j = 1,2

Y2 = 0 Y2 = 1

Y1 = 0 C(π̄1, π̄2) π̄1 − C(π̄1, π̄2)

Y1 = 1 π̄2 − C(π̄1, π̄2) 1 − π̄1 − π̄2 + C(π̄1, π̄2)

Table 2 Conditional distribution of (Y1, Y2, Y3) as a function of πj = πj (x), j = 1,2,3

Y3 = 0

Y2 = 0 Y2 = 1

Y1 = 0 C(π̄1, π̄2, π̄3) C(π̄1,1, π̄3) − C(π̄1, π̄2, π̄3)

Y1 = 1 C(1, π̄2, π̄3) − C(π̄1, π̄2, π̄3) π̄3 − C(π̄1,1, π̄3)

− C(1, π̄2, π̄3) + C(π̄1, π̄2, π̄3)

Y3 = 1

Y2 = 0 Y2 = 1

Y1 = 0 C(π̄1, π̄2,1) − C(π̄1, π̄2, π̄3) π̄1 − C(π̄1,1, π̄3)

− C(π̄1, π̄2,1) + C(π̄1, π̄2, π̄3)

Y1 = 1 π̄2 − C(π̄1, π̄2,1) 1 − π̄1 − π̄2 − π̄3
− C(1, π̄2, π̄3) + C(π̄1, π̄2, π̄3) + C(1, π̄2, π̄3) + C(π̄1,1, π̄3)

+ C(π̄1, π̄2,1) − C(π̄1, π̄2, π̄3)

least one j ∈ {1, . . . , d}. Tables 1 and 2 show what the general formula reduces to
when d = 2 and 3, respectively.

Although C is not uniquely defined outside C(x), there is no harm in assuming
that it arises from a parametric class of copulas. This approach was taken, for
example, by Meester and MacKay (1994), Molenberghs and Lesaffre (1994), Gau-
vreau and Pagano (1997), Song (2000, 2007), and Nikoloulopoulos and Karlis
(2008). Further, note that if the probit transform is preferred to (2.1), a Gaussian
copula in (1.1) leads to the model considered, for example, by Joe (1997), Chib and
Greenberg (1998), Gueorguieva and Agresti (2001), and Papathomas and O’Hagan
(2005).

3 Score tests of independence

An advantage of model (1.1) is that the selection of an appropriate structure C for
dependence can be performed independently from the inference on the marginal
distributions F1(·|x), . . . ,Fd(·|x). The first step of the analysis consists in fitting
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logistic regressions to each of the response variables Y1, . . . , Yd . This results in
estimates β̂1, . . . , β̂d for the regression parameters β1, . . . , βd , respectively. The
second step involves selecting a copula family and fitting it to the residuals. Be-
fore proceeding, however, tests of independence should be carried out. One such
procedure is proposed here, which is geared to detect the presence of pairwise
dependence among residuals.

Suppose that it is desired to test for independence in the pair (Yk, Y�) for
given k, � ∈ {1, . . . , d} with k �= �. Further assume that the alternative is repre-
sented by a family (Cθ ) of copulas in which θ0 corresponds to independence,
that is, Cθ0(uk, u�) = uku� for all uk , u� ∈ [0,1]. Denote the observed pairs
by (Y1k, Y1�), . . . , (Ynk, Yn�) and to get compact expressions, set πij = πj (xi ) =
1 − π̄ij for j ∈ {k, �} and all i ∈ {1, . . . , n}.

The log-likelihood for the pair (Yk, Y�) is derived using the expressions given
in Table 1. Upon differentiation of this expression with respect to θ , the score
function for θ is seen to be

sθ (θ, βk, β�) =
n∑

i=1

Ċθ (π̄ik, π̄i�)

{
(1 − Yik)(1 − Yi�)

Cθ(π̄ik, π̄i�)
− (1 − Yik)Yi�

π̄i� − Cθ(π̄ik, π̄i�)

− Yik(1 − Yi�)

π̄ik − Cθ(π̄ik, π̄i�)
(3.1)

+ YikYi�

1 − π̄ik − π̄i� + Cθ(π̄ik, π̄i�)

}
,

where Ċθ (uk, u�) = ∂Cθ(uk, u�)/∂θ is assumed to exist for arbitrary uk , u� ∈
(0,1). At independence, this reduces to

sθ (θ0, βk, β�) =
n∑

i=1

Ċθ0(π̄ik, π̄i�)
(Yik − πik)(Yi� − πi�)

πikπi�π̄ikπ̄i�

.

Given that logistic regressions were fitted to the marginals j ∈ {k, �}, the score
function for βj equals

sj (θ0, βj ) =
n∑

i=1

(Yij − πij )xi .

Under the null hypothesis of independence, one gets for j ∈ {k, �},

cov(sj , sθ ) =
n∑

i1=1

n∑
i2=1

Ċθ0(π̄i2k, π̄i2�)

πi2kπi2�π̄i2kπ̄i2�

× cov{(Yi2k − πi2�)(Yi2� − πi2�), (Yi1j − πi1j )}xi1

= 0.

This shows that the Fisher Information Matrix for (θ, βk, β�) is block diagonal at
independence. Accordingly, score tests of H0 : θ = θ0 are obtained by dividing the
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Table 3 Functional form of Ċθ0 for common families of bivariate copulas

Parametric families Functional form of Ċ(uk,u�)

of copulas at independence

Ali–Mikhail–Haq, Da̧browska,
Farlie–Gumbel–Morgenstern, Frank, Plackett uku�(1 − uk)(1 − u�)

Archimedean copula φ−1
θ {φθ (uk) + φθ (u�)} uku�{φ̇θ0 (uku�) − φ̇θ0 (uk) − φ̇θ0 (u�)}

Clayton, Gumbel–Barnett uku� ln(uk) ln(u�)

Gaussian �′{�−1(uk)}�′{�−1(u�)}

statistic sθ (θ0, β̂k, β̂�) by the square root of an estimate of the Fisher information
for θ . The resulting procedure rejects H0 if

zobs =
n∑

i=1

Ċθ0(
ˆ̄πik, ˆ̄πi�)(Yik − π̂ik)(Yi� − π̂i�)

π̂ikπ̂i�
ˆ̄πik

ˆ̄πi�

/√√√√√ n∑
i=1

Ċ2
θ0

( ˆ̄πik, ˆ̄πi�)

π̂ikπ̂i�
ˆ̄πik

ˆ̄πi�

is larger in absolute value than a critical value derived from the standard Normal
distribution, denoted N (0,1).

As observed by various authors in other contexts, the most common copula
models listed in the books of Joe (1997) or Nelsen (2006) can be clustered into
broad classes, according to the functional form of Ċθ0 . Table 3 summarizes the
calculations presented in Section 5 of Genest, Quessy and Rémillard (2006) and
Proposition 4 therein. It is worth noting that when Ċθ0(uk, u�) ∝ uku�(1−uk)(1−
u�), the score test is a generalized Mantel–Haenszel statistic, viz.

zobs =
n∑

i=1

(Yik − π̂ik)(Yi� − π̂i�)

/√√√√ n∑
i=1

π̂ikπ̂i�
ˆ̄πik

ˆ̄πi�. (3.2)

In fact, the latter is exactly equal to a standard Mantel–Haenszel statistic when the
explanatory variables in the marginal logistic regressions define mutually exclu-
sive strata. When the intercept is the only explanatory variable in the logistic re-
gressions, z2

obs is Pearson’s classical chi-squared statistic for testing independence
in the 2 × 2 marginal contingency table.

To check whether the N (0,1) is a good approximation for the distribution of
the Mantel–Haenszel score test statistic under the hypothesis of independence,
samples of sizes 100, 300, 1000, 3000 and 10,000 were generated from two inde-
pendent Bernoulli distributions with parameters

πj (x) = exp(j + jx1 − jx2 − jx3)

1 + exp(j + jx1 − jx2 − jx3)
, j ∈ {1,2}. (3.3)

The explanatory variables were assumed to be mutually independent; x1 and x2
were drawn randomly (once and for all) from a N (0,1), while x3 was taken to be
Bernoulli(1/2).
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Table 4 Empirical level of the Mantel–Haenszel score test

Sample size

Nominal level 100 300 1000 3000 10,000

1% 1.2 1.0 1.1 1.2 1.0
5% 5.6 5.4 5.4 5.1 4.9

10% 11.1 10.5 10.4 9.9 9.8

Figure 1 Power of the Mantel–Haenszel score test for independence, based on random samples
of size n = 300 (dotted) and n = 1000 (solid) from bivariate Gaussian copula alternatives with
correlation varying in (0,1).

Table 4 reports the observed level of the bilateral test for three common nominal
levels. As the results are based on 10,000 repetitions, the standard error never
exceeds 0.5%. While H0 tends to be rejected somewhat too often in small samples,
this is not a concern when n is sufficiently large.

Figure 1 shows the percentage of rejection of H0 based on 10,000 random sam-
ples of sizes n = 300 and 1000 from the bivariate Gaussian copula with latent
correlation ρ = 0 to 1 in 0.1 increments and with Bernoulli margins with parame-
ters specified in (3.3). The graph shows that the power increases as a function of n

and ρ, as expected.

4 Meta-elliptical copulas

Stated succinctly, meta-elliptical copulas are the dependence structures associated
with random vectors having elliptically contoured distributions. They were intro-
duced in the statistical literature by Fang, Fang and Kotz (2002) and further studied
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by Abdous, Genest and Rémillard (2005). They can be viewed as a broad exten-
sion of the class of Gaussian copulas which includes, for example, the multivariate
Student t copulas.

To be specific, a continuous random vector Z = (Z1, . . . ,Zd) is said to have
an elliptically contoured distribution H if it can be expressed as Z = R
1/2 U
in terms of a strictly positive random variable R, a d × d positive semi-definite
correlation matrix 
, and a vector U which is uniformly distributed on the unit
sphere Sd = {(s1, . . . , sd) ∈ R

d : s2
1 +· · ·+s2

d = 1}. It is easily seen that the margins
of H are identical, that is, F1 = · · · = Fd = F . The copula associated with Z is thus
the cumulative distribution function of the vector (F (Z1), . . . ,F (Zd)), that is, it is
given by C(u1, . . . , ud) = H(F−1(u1), . . . ,F

−1(ud)) for all u1, . . . , ud ∈ [0,1].
Meta-elliptical copulas offer a wide range of dependence properties that are

governed both by the distribution of R and the choice of correlation matrix

 = (ρk�). For example, Hult and Lindskog (2002) show that for arbitrary i, j ∈
{1, . . . , d}, the population value of Kendall’s tau between Zk and Z� is linked to
ρk� through the relation

τk� = 2 arcsin(ρk�)/π, (4.1)

but the case τk� = ρk� = 0 corresponds to independence only when R has a chi-
square distribution, that is, when Z is Gaussian. However, when a meta-elliptical
copula is used in (1.1) to induce dependence in a pair (Yk, Y�) of binary random
variables, relation (4.1) fails. In fact, it can be seen (Nikoloulopoulos and Karlis,
2008) that

τk� = 2{Cρk�
(π̄ik, π̄i�) − π̄ikπ̄i�},

where πij = πj (xi ) = 1 − π̄ij for j ∈ {k, �} and all i ∈ {1, . . . , n}. Thus, Kendall’s
tau is no longer a function of the copula alone but also depends on the marginal
probabilities. See, for example, Denuit and Lambert (2005), Mesfioui and Tajar
(2005) or Nešlehová (2007) for further discussion.

An important practical consequence of this observation is that in multivariate
logistic regression copula modelling, the range of τk� is substantially smaller than
[−1,1]. In fact, consideration of the Fréchet–Hoeffding bounds leads to the con-
clusion that τk� ∈ [−1/2,1/2]. A simple way to compensate for this shorter span
is to work with a scale version of Kendall’s tau, viz.

γk� = τk�

2ξ(ρ, k, �)
,

where ξ(ρ, k, �) = 2Cρk�
(π̄ik, π̄i�)

2 + π̄ikπ̄i� + Cρk�
(π̄ik, π̄i�)(−3 + 2πik + 2πi�).

This coefficient is known as Goodman’s gamma (Goodman and Kruskal, 1954).
Equivalently, one could consider the odds ratio

λk� = Cρk�
(π̄ik, π̄i�){1 − π̄ik − π̄i� + Cρk�

(π̄ik, π̄i�)}
{π̄ik − Cρk�

(π̄ik, π̄i�)}{π̄i� − Cρk�
(π̄ik, π̄i�)} ,

as done, for example, by Trégouët et al. (1999). The latter is a strictly increasing
function of γ through the relation λ = (1 + γ )/(1 − γ ); see Agresti (1980).
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5 Composite likelihood estimation

Consider a d-variate family of copulas indexed by a parameter θ . If C is meta-
elliptical with a fixed distribution for the radial part R (i.e., Gaussian or Stu-
dent t with fixed degrees of freedom ν, say), then θ is a parameter of dimension
d(d − 1)/2 whose components are the upper diagonal entries of the symmetric
correlation matrix 
. The global log-likelihood for θ and the logistic regression
parameters β1, . . . , βd is given by

n∑
i=1

log{hCθ (Yi1, . . . , Yid |x)},

where hC is defined in (2.2). Each term in this sum requires d-dimensional in-
tegration. When d > 3, the numerical problems associated with the evaluation of
this log-likelihood call for an alternative estimation strategy.

A two-step composite likelihood approach such as the “CL1” technique of Zhao
and Joe (2005) is adequate in this context. First, logistic regression models are
fitted to the margins, leading to estimates β̂1, . . . , β̂d . Next, estimates of the off-
diagonal entries ρk� = ρ�k of the correlation matrix 
 are obtained by solving a
system of d(d − 1)/2 estimating equations of the form

sρk�
(ρk�, β̂k, β̂�) = 0,

where k, � ∈ {1, . . . , d} with k < � and sρk�
is given in (3.1).

5.1 An explicit variance estimator for ρ̂k�

In their paper, Zhao and Joe (2005) suggest the jackknife as a general strategy for
estimating the variance of ρ̂k�. In large samples, however, it may be more con-
venient to use an explicit variance estimator. Such an estimator can be derived
through linearization (Gong and Samaniego, 1981).

Fix k, � ∈ {1, . . . , d} with k < � and to simplify notation, set ρ = ρk� through-
out this subsection. Adapted to the present context, Theorem 2.2 in Gong and
Samaniego (1981) implies (under appropriate regularity conditions) that an esti-
mator for the asymptotic variance of ρ̂ is given by

v(ρ̂) = 1

Îρρ

+ Îρβ

Î 2
ρρ

(
̂ββ Î�
ρβ − 2
̂ρβ).

Here, Îρρ and Îρβ are plug-in estimates for the (ρ,ρ) entry and the vectors
of the (ρ,βk) and (ρ,β�) components of the Fisher information matrix, respec-
tively. Similarly, 
̂ββ is a plug-in estimate of the asymptotic covariance matrix
of (β̂�

k , β̂�
� )�. As for 
̂ρβ , it should estimate the asymptotic covariance between
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sρ(ρ,βk,β�) and (β̂�
k , β̂�

� )�. As shown in the Appendix,

Iρρ =
n∑

i=1

Ċρ(π̄ik, π̄i�)
2
{

1

Cρ(π̄ik, π̄i�)
+ 1

π̄i� − Cρ(π̄ik, π̄i�)

+ 1

π̄ik − Cρ(π̄ik, π̄i�)
(5.1)

+ 1

1 − π̄ik − π̄i� + Cρ(π̄ik, π̄i�)

}
,

and for j ∈ {k, �},

Iρβj
= −

n∑
i=1

Ċρ(π̄ik, π̄i�)

{
Ċρj (π̄ik, π̄i�)

Cρ(π̄ik, π̄i�)
+ Ċρj (π̄ik, π̄i�)

π̄i� − Cρ(π̄ik, π̄i�)

− 1 − Ċρj (π̄ik, π̄i�)

π̄ik − Cρ(π̄ik, π̄i�)
(5.2)

− 1 − Ċρj (π̄ik, π̄i�)

1 − π̄ik − π̄i� + Cρ(π̄ik, π̄i�)

}
× π̄ik(1 − π̄ik)x�

i ,

where xi is the vector of explanatory variables for the ith observation in the j th
logistic regression and Ċρj (uk, u�) = ∂Cρ(uk, u�)/∂uj . It is further shown in the
Appendix that 
ρβ = 0 and


ββ =
(

I (βk)
−1 J (βk,β�)

J (βk,β�)
� I (β�)

−1

)
,

where

J (βk,β�) = I (βk)
−1

[
n∑

i=1

xix�
i {Cρ(π̄ik, π̄i�) − π̄ikπ̄i�}

]
I (β�)

−1

and for j ∈ {k, �}, I (βj ) is the Fisher information matrix for the marginal logistic
regression for Yj , viz.

I (βj ) =
n∑

i=1

πij π̄ij xix�
i .

The final estimate v(ρ̂) is then obtained from (5.2) upon replacing ρ, βk and β� by
their estimates in each of the above expressions.

Remark 5.1. Because 
ρβ = 0, one always has v(ρ̂) ≥ 1/Îρρ . The lower bound
is the variance estimate that would be used if the marginal parameters βk and β�

were known or if Yk and Y� were independent given x.
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Interestingly, one has v(ρ̂) = 1/Îρρ when the underlying bivariate copula is
from Plackett’s family. Typically, the latter is not parametrized by ρ ∈ [−1,1] but
rather by θ ∈ (0,∞) \ {1}, viz.

Cθ(u, v) = 1 + (u + v)(θ − 1) −
√

{1 + (u + v)(θ − 1)}2 − 4uvθ(θ − 1)

2(θ − 1)

for all u, v ∈ (0,1). As defined by Plackett (1965), copulas in this class are pre-
cisely those for which

C(u, v){1 − u − v + C(u, v)} = θ{u − C(u, v)}{v − C(u, v)} (5.3)

for some θ > 0, the limiting case θ = 1 corresponding to independence.
Glonek and McCullach (1995) observed that for Plackett copulas, Iθβj

= 0 for
j ∈ {1,2}. This result also follows from the above developments. Indeed, upon
differentiation with respect to u on both sides of (5.3), one gets

Ċ(u, v) = ∂

∂u
C(u, v) = θv + (1 − θ)C(u, v)

1 − (1 − θ){u + v − 2C(u, v)}
and hence for all u, v ∈ (0,1),

Ċ(u, v)

C(u, v)
+ Ċ(u, v)

v − C(u, v)
− 1 − Ċ(u, v)

u1 − C(u, v)
− 1 − Ċ(u, v)

1 − u − v + C(u, v)
= 0.

Accordingly, (5.2) vanishes and v(ρ̂) = 1/Îρρ in Plackett’s model.

5.2 Performance of the linearized variance estimator

To gauge the small-sample efficiency of the proposed variance estimator, sev-
eral simulation studies were performed using three- and four-dimensional meta-
elliptical copula-based models with marginal logistic regressions. The following
experiment is typical of the results that were obtained.

For n ∈ {300,500,1000}, 10,000 random samples of size n were generated from
the trivariate Gaussian copula with correlation matrix


 =
⎛⎝ 1.0 −0.5 −0.3

−0.5 1.0 0.3
−0.3 0.3 1.0

⎞⎠
and Bernoulli margins with parameters

πj (x) = exp(βj + βjx)

1 + exp(βj + βjx)
, j ∈ {1,2,3},

where β = (−0.5,0.5,1) and x was drawn from a Uniform distribution on the
interval [−1,1].

Table 5 reports the parameter values, bias, variance, and mean square error
(MSE) of the CL1 estimates, along with average values of v(ρ̂) and 1/Îρρ . From
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Table 5 Observed bias, variance, and MSE of the CL1 estimates, along with average values of v(ρ̂)

and 1/Îρρ , for a trivariate Gaussian copula model with Bernoulli margins

n Bias Variance MSE v(ρ̂) 1/Îρρ

ρ12 = −0.5 300 −0.017 0.006 0.006 0.006 0.006
500 −0.018 0.003 0.004 0.003 0.003

1000 −0.017 0.002 0.002 0.002 0.002

ρ13 = −0.3 300 −0.011 0.009 0.009 0.008 0.008
500 −0.014 0.005 0.005 0.005 0.005

1000 −0.013 0.003 0.003 0.002 0.002

300 0.011 0.009 0.009 0.008 0.008
ρ23 = 0.3 500 0.013 0.005 0.005 0.005 0.005

1000 0.013 0.003 0.003 0.002 0.002

this simulation and similar ones performed for other choices of parameters and
meta-elliptical copulas, it appears that ρ̂k� and its variance estimator are nearly
unbiased. In addition, it is found that E{v(ρ̂k�)} 
 E(1/Îρk�ρk�

). Accordingly, one
can conclude that, in practice, Iρk�β ≈ 0 and, thus, that the composite likelihood
estimator ρ̂k� is nearly efficient.

6 Illustration

In forest management, industrial needs are often expressed as timber volumes of a
specific quality or grade. In order to maximize returns from timber harvest while
ensuring a constant supply, information on log grade is required. For practical
reasons, information about log grade in a given tree is generally unknown until it
is felled down and sawn. Consequently, models for estimating the occurrence of
particular log grades in trees are required.

Since 2002, the DAFPP (Direction de l’aménagement des forêts publiques et
privées) at the Ministère des Ressources naturelles et de la Faune du Québec has
undertaken a sampling program aimed at providing a representative sample of log
grade occurrence in trees for three major hardwood species: paper birch (Betula
papyrifera Marsh.), yellow birch (Betula alleghaniensis Britton), and sugar maple
(Acer saccharum Marsh.). Data were collected on 1695 trees from eight different
sectors between 2002 and 2007.

Before the felling, tree species and diameter at breast height (DBH at 1.3 m
high) were recorded. Each tree was also classified according to two binary classifi-
cations: one for tree vigor and another for the potential product recovery (Majcen
et al., 1990). The tree vigor classification aims at identifying trees that are thought
to be at a high risk of dying before the next cutting cycle. It relies mostly on crown
and bole defects. If more than one third of the crown showed evidence of dieback
or damage, or if some defects could be observed (e.g., canker, decay, fungus or
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Table 6 Descriptive statistics for a forestry data set of size n = 1695

Paper birch (PB) Yellow birch (YB) Sugar maple (SM)

Number of trees 104 772 819

DBH range (cm) [23.1,49.6] [23.1,95.0] [23.1,79.3]
Vigorous trees 83 359 139
Potential sawlog trees 102 717 698

Trees with F1 grade 7 53 34
F2 grade 29 271 203
F3 grade 82 487 512
F4 grade 24 126 93
P grade 45 413 728

Table 7 Parameter estimates of the marginal logistic regression models. Significant parameters at
the 5% level are in boldface

P F1 F2 F3 F4

Variable β̂P SE β̂F1 SE β̂F2 SE β̂F3 SE β̂F4 SE

Intercept 0.66 0.37 −7.84 0.87 −6.39 0.48 0.45 0.27 −1.90 0.41
PB vs YB 0.03 0.22 0.50 0.44 0.00 0.25 0.15 0.26 0.24 0.26
SM vs YB 1.81 0.14 −0.03 0.24 −0.01 0.13 0.09 0.12 −0.36 0.16
DHP 0.02 0.01 0.07 0.01 0.07 0.01 −0.04 0.00 −0.01 0.01
Vigor −0.69 0.13 0.83 0.25 0.74 0.13 0.53 0.13 0.20 0.16
Sawlog −1.08 0.28 1.51 0.73 2.36 0.39 1.69 0.18 0.67 0.30

large open wounds), the tree was assigned to the non-vigorous class. Otherwise,
it was deemed to be a vigorous tree. Likewise, depending on the straightness of
the bole and external defects, trees were classified as pulpwood or having sawlog
potential. See Martel et al. (2001) for a complete list of criteria used in both clas-
sifications.

After the felling, the selected trees were brought to the lumber mill and sawn
into logs. The latter were then ranked according to the modified Petro classifica-
tion (Petro and Calvert, 1976), which is commonly used in Québec to grade the
different hardwood sawlogs. The classification has one grade of pulpwood logs
(P) and four grades of sawlogs, labeled F1, F2, F3 and F4, in decreasing order of
quality. The resulting data are summarized in Table 6.

This data set comprises n = 1695 observations, five dependent binary variables
(F1–F4, P) and four explanatory variables, that is, DBH (cm), Vigor (vigorous =
1), Sawlog (potential sawlog = 1), and Species (YB, PB, SM). The parameter esti-
mates of the marginal logistic regression models appear in Table 7, together with
their standard errors. The boldface type identifies parameters that are significant
at the 5% level. As can be seen, there are no differences between the PB and YB
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Table 8 Score tests of independence, composite likelihood estimates of the pairwise correlations
and their standard errors in four meta-elliptical copula models

t5 t10 t15 Gaussian

Pair zobs ρ̂ SE ρ̂ SE ρ̂ SE ρ̂ SE

P–F1 −4.95 −0.30 0.08 −0.31 0.07 −0.32 0.07 −0.33 0.07
P–F2 −4.76 −0.23 0.05 −0.23 0.05 −0.24 0.05 −0.24 0.05
P–F3 −7.54 −0.37 0.05 −0.36 0.04 −0.36 0.04 −0.35 0.04
P–F4 −4.69 −0.21 0.05 −0.22 0.05 −0.23 0.05 −0.24 0.05
F1–F2 2.65 0.16 0.08 0.16 0.07 0.16 0.07 0.16 0.07
F1–F3 −2.60 −0.14 0.08 −0.15 0.07 −0.15 0.07 −0.16 0.07
F1–F4 −0.34 −0.17 0.10 −0.10 0.09 −0.07 0.09 −0.02 0.08
F2–F3 −5.26 −0.22 0.05 −0.22 0.04 −0.22 0.04 −0.22 0.04
F2–F4 0.32 −0.02 0.06 0.00 0.06 0.01 0.05 0.02 0.05
F3–F4 −0.21 0.02 0.05 0.01 0.05 0.00 0.05 −0.01 0.05

Table 9 Average values of γ for each fitted model

t5 t10 t15 Gaussian

Pair γ̂ SE γ̂ SE γ̂ SE γ̂ SE

P–F1 −0.57 0.16 −0.58 0.11 −0.58 0.09 −0.57 0.06
P–F2 −0.38 0.14 −0.37 0.10 −0.37 0.09 −0.36 0.06
P–F3 −0.49 0.05 −0.50 0.04 −0.51 0.04 −0.51 0.05
P–F4 −0.40 0.12 −0.39 0.08 −0.38 0.07 −0.37 0.04
F1–F2 0.43 0.19 0.38 0.15 0.36 0.13 0.31 0.07
F1–F3 −0.31 0.14 −0.30 0.08 −0.30 0.06 −0.29 0.04
F1–F4 0.05 0.13 0.01 0.08 0.00 0.06 −0.03 0.01
F2–F3 −0.32 0.06 −0.32 0.03 −0.32 0.03 −0.32 0.05
F2–F4 0.09 0.15 0.07 0.09 0.06 0.06 0.03 0.01
F3–F4 −0.01 0.08 −0.01 0.04 −0.01 0.03 −0.02 0.00

species. Furthermore, the same predictors are significant for dependent variables
F1–F3. It seems harder to predict F4, as none of the explanatory variables is sig-
nificant at the 1% level. Nevertheless, all variables were kept in the model for
prediction purposes.

Values of the Mantel–Haenszel statistic (3.2) are reported in Table 8 for the
10 pairs of variables. It appears from it that variable F4 is conditionally corre-
lated with P only. Also given in Table 8 are composite likelihood estimates of the
pairwise correlations, along with their standard errors assuming either a Gaussian
copula or a Student t copula tν with ν = 5, 10 or 15 degrees of freedom. As a
reality check, alternative estimates of the standard errors were obtained via a non-
parametric bootstrap procedure; the results (not included) were identical within
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bootstrap sampling error. In addition, Table 9 provides the value, averaged over all
trees, of Goodman’s gamma in the different models.

From Tables 8 and 9, it appears that while variables Vigor and Sawlog account
for some of the dependence between P and F1–F4, substantial negative residual
association remains between these two sets of variables. The multivariate copula
models account for most of this residual dependence, but it is difficult to distin-
guish between them.

To compare the predictive power of the models, the probability of {Y1 =
y1, . . . , Y5 = y5} was estimated for each combination of y1, . . . , y5 ∈ {0,1} by av-
eraging over all cases, viz.

ĥ(y1, . . . , y5) = 1

n

n∑
i=1

P̂r(Y1 = y1, . . . , Y5 = y5|xi ).

Each summand was computed with formula (2.2) using the estimated parameters
of the marginal logistic regressions and the copula. The results are reported in
Table 10 for each model, as well as under independence. The joint probabilities for
the Gaussian copula model were computed using the second order approximation
of Joe (1995), while the randomized quasi Monte Carlo method of Genz and Bretz
(1999, 2002) was used for the Student t copula models.

As a coarse measure of goodness of fit, the observed relative frequencies Oy

were compared to the expected or model estimated frequencies Ey = ĥ(y1, . . . , y5)

via the statistic

χ2 = ∑
y

(Oy − Ey)
2

Ey
,

where the sum is taken over the 32 combinations of y = (y1, . . . , y5). Table 10
confirms that the use of copulas results in a dramatic decrease in the value of the
χ2 statistic. For most categories, the observed and predicted frequencies are very
close. An exception, however, is the combination y1 = · · · = y5 = 0. Under the
independence assumption, this cell’s contribution to the lack of fit is {(0.0047 −
0.0475)2/0.0475}/0.0954 ≈ 40% of the total. This is reduced, for example, to
approximately 26% for the t5 copula. The difficulty in predicting this particular
cell leads to the speculation that, in this study, such trees might have been under-
sampled because they have no commercial value.

7 Conclusion

This paper provides additional evidence in favour of copula modelling in the con-
text of multivariate logistic regression. It was seen that formulating alternatives
to independence in terms of copulas leads to useful tests for detecting pairwise
dependence between binary responses. When residual dependence is present, it
can then be accounted for with relative ease through a model of the form (1.1).
Meta-elliptical copulas are especially flexible in this regard, as they provide a wide
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Table 10 Observed (obs.) frequencies of the dependent variables and average estimated proba-
bilities under the fitted models and independence (ind.), along with values of the goodness-of-fit
statistic χ2

P F1 F2 F3 F4 Obs. Ind. t5 t10 t15 Gaussian

0 0 0 0 0 0.0047 0.0475 0.0157 0.0160 0.0161 0.0164
0 0 0 0 1 0.0059 0.0089 0.0056 0.0057 0.0057 0.0058
0 0 0 1 0 0.1209 0.1131 0.1158 0.1152 0.1150 0.1145
0 0 0 1 1 0.0366 0.0247 0.0343 0.0345 0.0345 0.0345
0 0 1 0 0 0.0248 0.0241 0.0194 0.0195 0.0195 0.0196
0 0 1 0 1 0.0083 0.0045 0.0066 0.0065 0.0065 0.0064
0 0 1 1 0 0.0572 0.0492 0.0581 0.0583 0.0584 0.0585
0 0 1 1 1 0.0124 0.0105 0.0164 0.0163 0.0162 0.0162
0 1 0 0 0 0.0024 0.0025 0.0022 0.0022 0.0022 0.0022
0 1 0 0 1 0.0012 0.0005 0.0007 0.0006 0.0006 0.0006
0 1 0 1 0 0.0094 0.0054 0.0063 0.0066 0.0067 0.0068
0 1 0 1 1 0.0018 0.0012 0.0015 0.0015 0.0015 0.0016
0 1 1 0 0 0.0088 0.0030 0.0064 0.0063 0.0062 0.0061
0 1 1 0 1 0.0018 0.0005 0.0015 0.0015 0.0015 0.0015
0 1 1 1 0 0.0035 0.0042 0.0081 0.0080 0.0080 0.0079
0 1 1 1 1 0.0006 0.0008 0.0016 0.0016 0.0017 0.0016
1 0 0 0 0 0.1917 0.1632 0.1754 0.1755 0.1755 0.1756
1 0 0 0 1 0.0171 0.0211 0.0208 0.0209 0.0210 0.0210
1 0 0 1 0 0.2667 0.2555 0.2798 0.2792 0.2790 0.2786
1 0 0 1 1 0.0360 0.0413 0.0340 0.0341 0.0342 0.0343
1 0 1 0 0 0.0690 0.0612 0.0790 0.0789 0.0789 0.0788
1 0 1 0 1 0.0118 0.0089 0.0105 0.0104 0.0103 0.0102
1 0 1 1 0 0.0737 0.0954 0.0656 0.0661 0.0663 0.0668
1 0 1 1 1 0.0077 0.0158 0.0076 0.0075 0.0075 0.0074
1 1 0 0 0 0.0035 0.0063 0.0058 0.0058 0.0058 0.0056
1 1 0 0 1 0.0000 0.0009 0.0007 0.0006 0.0006 0.0007
1 1 0 1 0 0.0053 0.0097 0.0043 0.0044 0.0045 0.0047
1 1 0 1 1 0.0000 0.0016 0.0004 0.0004 0.0004 0.0002
1 1 1 0 0 0.0100 0.0082 0.0111 0.0109 0.0109 0.0107
1 1 1 0 1 0.0012 0.0011 0.0009 0.0009 0.0010 0.0010
1 1 1 1 0 0.0047 0.0083 0.0037 0.0037 0.0037 0.0037
1 1 1 1 1 0.0012 0.0013 0.0002 0.0002 0.0003 0.0003

χ2 0.0954 0.0290 0.0285 0.0282 0.0280

range of pairwise dependence when compared with other parametric families such
as Archimedean copulas. Although their lack of closed form makes estimation
somewhat challenging, this problem can be overcome by resorting to a composite
likelihood method. When dealing with large data sets, added convenience is also
provided by the variance estimator of the dependence parameters proposed here.

While little difference was observed between the Gaussian and Student t copu-
las in the forestry data, the meta-elliptical class of copulas represents a vast exten-
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sion of the multivariate Gaussian copula model. This added flexibility may prove
useful in other applications.

Appendix

Fix k, � ∈ {1, . . . , d} with k �= � and write ρ = ρk�. To determine the value of
Iρρ = var{sρ(ρ,βk,β�)}, first observe that the 4 × 1 random vector

Zi = (
(1 − Yik)(1 − Yi�), (1 − Yik)Yi�, Yik(1 − Yi�), YikYi�

)�
has a multinomial distribution with E(Zi ) = pi = (pi1,pi2,pi3,pi4)

�, where

pi1 = Cρ(π̄ik, π̄i�), pi2 = π̄i� − Cρ(π̄ik, π̄i�),

pi3 = π̄ik − Cρ(π̄ik, π̄i�), pi4 = 1 − π̄ik − π̄i� + Cρ(π̄ik, π̄i�).

Letting qi = (1/pi1,−1/pi2,−1/pi3,1/pi4)
�, one may rewrite (3.1) as

sρ(ρ,βk,β�) =
n∑

i=1

Ċρ(π̄ik, π̄i�)q�
i Zi .

Now var(Zi ) = diag(pi ) − pip�
i and, hence,

var(q�
i Zi ) = q�

i var(Zi )qi = 1/pi1 + 1/pi2 + 1/pi3 + 1/pi4.

As Z1, . . . ,Zn are mutually independent, formula (5.1) ensues.
To compute Iρβj

, first note that if i ∈ {1, . . . , n} and j ∈ {k, �}, one has

∂

∂βj

Cρ(π̄ik, π̄i�) = −Ċρj (π̄ik, π̄i�)πikπ̄i�xi . (A.1)

Accordingly,

Iρβj
= −E

{
∂

∂βj

sρ(ρ,βk,β�)

}

= −
n∑

i=1

{
∂

∂βj

Ċρ(π̄ik, π̄i�)E(q�
i Zi ) + Ċρ(π̄ik, π̄i�)E

(
∂

∂βj

q�
i Zi

)}
.

Formula (5.2) then obtains, upon observing that E(q�
i Zi ) = 0 and exploiting (A.1)

for the evaluation of the second summand.
Now the standard asymptotic theory of maximum likelihood estimation in the

logistic regression model (e.g., Cox and Hinkley, 1974, Chap. 9) yields

β̂j − βj = I (βj )
−1

n∑
i=1

{(1 − Yij ) − π̄ij }xi + op(n−1/2).
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To compute 
ββ , it then suffices to use the fact that

cov{(1 − Yik) − π̄ik, (1 − Yi�) − π̄i�} =
{

πikπ̄ik if k = �,
Cρ(π̄ik, π̄i�) − π̄ikπ̄i� if k �= �.

Finally, one has 
ρβk
= 0 because E(q�

i Zi ) = 0 and, hence,

cov{q�
i Zi , (1 − Yik) − π̄ik} = E{q�

i Zi (1 − Yik)} = (pi1,pi2,0,0)qi = 0.
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