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Bayesian Cointegrated Vector Autoregression

Models Incorporating α-stable Noise for

Inter-day Price Movements Via Approximate

Bayesian Computation.

Gareth W. Peters∗, Balakrishnan Kannan†, Ben Lasscock†,
Chris Mellen† and Simon Godsill‡

Abstract. We consider a statistical model for pairs of traded assets, based on a

Cointegrated Vector Auto Regression (CVAR) Model. We extend standard CVAR

models to incorporate estimation of model parameters in the presence of price se-

ries level shifts which are not accurately modeled in the standard Gaussian error

correction model (ECM) framework. This involves developing a novel matrix-

variate Bayesian CVAR mixture model, comprised of Gaussian errors intra-day

and α-stable errors inter-day in the ECM framework. To achieve this we de-

rive conjugate posterior models for the Scale Mixtures of Normals (SMiN CVAR)

representation of α-stable inter-day innovations. These results are generalized to

asymmetric intractable models for the innovation noise at inter-day boundaries

allowing for skewed α-stable models via Approximate Bayesian computation.

Our proposed model and sampling methodology is general, incorporating the

current CVAR literature on Gaussian models, whilst allowing for price series level

shifts to occur either at random estimated time points or known a priori time

points. We focus analysis on regularly observed non-Gaussian level shifts that

can have significant effect on estimation performance in statistical models failing

to account for such level shifts, such as at the close and open times of markets.

We illustrate our model and the corresponding estimation procedures we develop

on both synthetic and real data. The real data analysis investigates Australian

dollar, Canadian dollar, five and ten year notes (bonds) and NASDAQ price series.

In two studies we demonstrate the suitability of statistically modeling the heavy

tailed noise processes for inter-day price shifts via an α-stable model. Then we

fit the novel Bayesian matrix variate CVAR model developed, which incorporates
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a composite noise model for α-stable and matrix variate Gaussian errors, under

both symmetric and non-symmetric α-stable assumptions.

Keywords: Cointegrated Vector Autoregression, α-stable, Approximate Bayesian

Computation

1 Introduction

In this paper we consider estimation of Bayesian models for pairs trading strategies. Re-
cent empirical studies by Bock and Mestel (2009) and Gatev et al. (2006) have shown
that, in spite of the increasing volume of statistical arbitrage quantitative funds perform-
ing algorithmic trading, statistical pairs trading still seems to be consistently assessed
as a profitable trading strategy. This provides motivation to further develop Bayesian
cointegrated vector autoregression (CVAR) pairs trading models for practical financial
applications.

CVAR models have been studied widely in the econometric literature, see Engle
and Granger (1987) and Sugita (2009). For the error correction representation of a
co-integrated series, see Granger and Weiss (2001), Strachan and Inder (2004) and the
overview of Koop et al. (2006). Bayesian analysis of CVAR models has been addressed
in several papers, see Bauwens and Lubrano (1994), Geweke (1996), Kleibergen and
Van Dijk (2009), Ackert and Racine (1999), Strachan (2003), Sugita (2002) and Peters
et al. (2010a). Typically CVAR models are fitted to low frequency data on time intervals
of daily, monthly or yearly data. In this paper we explore their utility in higher frequency
data modeling for pairs trading. In the process we develop a novel Bayesian model to
overcome associated complications that arise when modeling on an intra-day sampling
period. In particular we demonstrate that, when estimating matrix-variate parameters
for CVAR models using data which is sampled at a frequency less than one day, the
accuracy and robustness of the statistical model fit and portfolio weights estimation is
strongly affected by level shifts or jumps in price series due to inter-day price movements.

In practice level shifts in price series occur as a result of the time delays between
the open and close of markets for each asset in a traded pair. These can not solely be
accounted for by the evolution of the statistical model during the time period in which
either market is closed. Instead, these level shifts in each price series are a result of
complicated economic and social market factors, we do not attempt to explain these
with an economic rationale, see discussions in Granger and Hyung (2004), Wang and
Zivot (2000) and Mills and Markellos (2008). Instead we analyze the consequences of
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failing to account for these level shifts in CVAR parameter estimation. To achieve this
we develop a composite matrix-variate α-stable and Gaussian statistical model that
allows us to account for such features in our high frequency data.

We model the level shifts in each price series via the class of α-stable models, see
Zolotarev (1986), Samorodnitsky and Taqqu (1994), Qiou and Ravishanker (1998) and
Nolan (1997). This class of models is of particular interest as they are flexible in terms
of skew and kurtosis, whilst also admitting Gaussian distributions as a family member.
The statistical challenge then lies in the development of an integrated matrix-variate
CVAR model with standard Gaussian errors for intra-day observations and α-stable er-
rors for inter-day observations capturing the price series level shifts. In this regard the
matrix-variate model we develop, which incorporates under a unified likelihood model
these two error structures, represents a novel contribution to CVAR model develop-
ment. We then extend this result into a Bayesian CVAR framework. In doing so we
consider two cases, the first involves the class of symmetric α-stable models which after
a novel transformation of the data and representation of the matrix-variate α-stable
errors that we develop, produce closed form matrix-variate conjugate posterior models.
The second case involves a non-symmetric α-stable model which results in an intractable
likelihood model which we tackle utilizing Approximate Bayesian Computation (ABC)
methodology, see Peters et al. (2008), Tavaré et al. (1997), Fearnhead and Prangle
(2010), Beaumont et al. (2009), Del Moral et al. (2011) and the review of Sisson and
Fan (2010).

1.1 Contribution and Structure

The novelty of this paper springs from two aspects related to matrix-variate Bayesian
model construction and the resulting Markov chain sampling and estimation frame-
works. First we develop a novel model for Bayesian co-integration, incorporating a
mixture of matrix-variate and matrix α-stable observation errors under an error cor-
rection model (ECM) framework. We consider two distinct cases, the symmetric and
asymmetric α-stable models. In the symmetric model a non-standard version of the
scale mixture of normals (SMiN) representation of the matrix variate α-stable model is
developed.

We utilize this SMiN representation to derive a new result for representation of a
matrix-variate likelihood of the CVAR model. This representation combines a Gaussian
matrix variate CVAR likelihood with matrix-variate α-stable errors at inter-day time
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points, which are combined into a single matrix-variate Gaussian likelihood. To achieve
this we developed a novel transformation that, when applied to the intra and inter-day
price series, results in the transformed price series going from a composite model of
matrix-variate α-stable and Gaussian errors, to being distributed according to a single
matrix-variate Gaussian likelihood. We then derive all the results for the properties of
the resulting combined matrix-variate Gaussian likelihood, including relevant moments
and the uniqueness of the inverse transform in order to ensure estimation of the model
parameters can be obtained in the original untransformed model. The advantage of
this representation is that it allowed us to obtain a conjugate family of matrix-variate
Bayesian models for the proposed CVAR model. We then sample this posterior via an
adaptive matrix-variate Metropolis within Gibbs sampler.

In the non-symmetric α-stable setting the likelihood becomes analytically intractable
to write down in closed form. Therefore we develop an ABC based estimation and
sampling procedure for estimation of the resulting matrix-variate Bayesian model. In
particular the Markov chain proposal which we develop for this matrix-variate model
utilizes the Scale Mixture of Normals (SMiN) CVAR posterior model developed for
the symmetric case. We demonstrate the utility of this proposal in several simulation
studies and show that it works well in this ABC-MCMC sampling framework.

In the data analysis, we begin by studying the statistical properties of the inter-
day level shifts in the differenced price series. These are obtained from the difference
between the open and close prices of the times when both markets are trading for
each pair of assets considered. The multivariate α-stable model is fitted to the intra-
day price level shifts over a range of currency and index pairs, each for 30 contract
segments dating back to 1999 on 10 minute sampled price data. This totals around
30,000 combined intra and inter-day observations for each pair. This provides us with
a statistical model of the inter-day left shifts via generalized α-stable models for each
asset pair. We demonstrate that in most cases the standard assumption of Gaussian
residuals for these time periods is inadequate. In particular several assets demonstrate
that significantly heavy tailed distributions are appropriate for capturing the inter-day
price deviations resulting from these level shifts. This contradicts typical statistical
assumptions of constant homoskedastic, multi-variate Gaussian innovation noise, made
when fitting the basic CVAR models, widely utilized when trading pairs of assets.

Next we study the impact of naively applying the standard Johansen procedure
(Johansen (1988)) and the Bayesian model of Peters et al. (2010a) to price series which
contain these intra-day level shifts. We focus on the impact on the CVAR parameter
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estimates if one fails to adequately account for the level shifts present in the data.
We demonstrate that estimation of the matrix-variate parameters of a CVAR model is
adversely affected by level shifts in the price series, on both synthetic and actual data.
In such situations, trading systems, utilizing such parameter estimates, will in turn be
sensitive to the changes in parameter estimates, arising from the level shifts at day break
boundaries. If this issue is not addressed, this could result in regular changes to portfolio
allocations, resulting in additional transaction costs and other complications related to
trade volumes. Therefore, in this paper we demonstrate that the underlying CVAR
model will be a suitable model for the intra-day price series in which the parameter
estimation can be made less sensitive through appropriately modeling the price level
shifts in the inter-day prices at open and close of markets.

Finally, we demonstrate the ability of the Bayesian models we developed, which
incorporate a novel formulation of a composite Gaussian and SMiN matrix variate α-
stable model, to account for level shifts when performing posterior parameter estimation
on several synthetic and real data studies.

2 Standard Gaussian CVAR Error Correction Model

We first briefly review the standard matrix-variate Gaussian model before extending
to the matrix-variate α-stable setting. For the error correction representation of a co-
integrated series, see Granger and Weiss (2001), Strachan and Inder (2004) and the
overview of Koop et al. (2006). We denote the vector observation at time t by xt and
we assume xt is an integrated of order 1, (n× 1)-dimensional vector with r linear coin-
tegrating relationships. The error vector at time t, εt is assumed time independent and
zero mean multivariate Gaussian distributed, with covariance Σ. The Error Correction
Model (ECM) representation is given by,

4xt = µ + αβ′xt−1 +
p−1∑

i=1

Ψi4xt−i + εt, (1)

where t = p, p+1, . . . , T and p is the number of lags. Furthermore, the matrix dimensions
are given by: µ and εt each (n× 1), Ψi and Σ each (n× n), α and β are each (n× r).
We can now re-express the model in Equation (1) in a multivariate regression format,
as follows

Y = XΓ + Zβα′ + E = WB + E, (2)
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where,

Y =
(
4xp 4xp+1 . . . 4xT

)′
, Z =

(
xp−1 xp . . . xT−1

)′

E =
(

εp εp+1 . . . εT

)′
,Γ =

(
µ Ψ1 . . . Ψp−1

)′

X =




1 4x′p−1 . . . 4x′1
1 4x′p . . . 4x′2
.
..

.

.. . . .
.
..

1 4x′T−1 . . . 4x′T−p+1


,W =

(
X Zβ

)
, B =

(
Γ′ α

)′
.

Here, we let t be the number of rows of Y , hence t = T − p + 1, producing X with
dimension t× (1 + n(p− 1)), Γ with dimension ((1 + n(p− 1))× n), W with dimension
t × k and B with dimension (k × n), where k = 1 + n(p − 1) + r. The parameters µ

represent the trend coefficients, and Ψi is the ith matrix of autoregressive coefficients
and the long run multiplier matrix is given by Π = αβ′.

The latter long run multiplier matrix is an important quantity of this model, its
properties include: if Π is a zero matrix, xt contains n unit roots; if Π has full rank,
univariate series in xt are trend-stationary; and co-integration occurs when Π is of rank
r < n. The matrix β contains the co-integration vectors, reflecting the stationary long
run relationships between the univariate series within xt and the α matrix contains the
adjustment parameters, specifying the speed of adjustment to equilibria β′xt.

According to Gupta and Nagar (1999) [Theorem 2.2.1] we see that if we have an
(n × T ) random matrix-variate Gaussian Y ′ ∼ Nn,T (M, Σ, Ψ) with row dependence
captured in an (n × n) covariance matrix Σ and column dependence captured in a
(T × T ) matrix Ψ, then the vectorized form, in which the columns are stacked on top
of each other to make an nT × 1 random vector, is multivariate Gaussian and denoted
by V ec(Y ) ∼ NnT (V ec(M), Σ ⊗ Ψ). Here we denote the Kronecker or tensor product
between two matrices by the ⊗ operator. This allows us to represent the matrix-variate
likelihood for this regression, for the model parameters of interest B, Σ and β, by

L(B, Σ,β; Y ) ∝ |Σ⊗ It|−0.5 exp
(−0.5V ec(Y −WB)′(Σ−1 ⊗ I−1

t )V ec(Y −WB)
)

∝ |Σ|−0.5t exp
(
−0.5tr[Σ−1(Ŝ + R)]

)
,

(3)

where Σ = Cov(ε) and R = (B − B̂)′W ′W (B − B̂), Ŝ = (Y − WB̂)′(Y − WB̂),
B̂ = (W ′W )−1W ′Y .
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3 Mixture matrix-variate α-stable and Gaussian CVAR

Noise modeling via α-stable distributions has been suggested in several areas, such
as wireless communications and in financial data analysis, see Fama and Roll (1968),
Godsill (2000), Neslehova et al. (2006) and Peters et al. (2010a). α-stable distributions
possess several useful properties, including infinite mean and infinite variance, skewness
and heavy tails, see Zolotarev (1986) and Samorodnitsky and Taqqu (1994). One can
think of α-stable distributions as generalizations of the Gaussian distribution, which are
defined as the class of location-scale distributions which are closed under convolutions.
In this paper we focus on the S0 parameterization, see Peters et al. (2010a) for details.

The univariate α-stable distribution is typically specified by four parameters: α ∈
(0, 2] determining the rate of tail decay; β ∈ [−1, 1] determining the degree and sign of
asymmetry (skewness); γ > 0 the scale (under some parameterizations); and δ ∈ R the
location. The parameter α is termed the characteristic exponent, with small and large
α implying heavy and light tails respectively. Gaussian (α = 2, β = 0) and Cauchy
(α = 1, β = 0) distributions provide the only analytically tractable sub-members of this
family. In general, as α-stable models admit no closed form expression for the density
which can be evaluated point-wise (excepting Gaussian, Cauchy and Levy members),
inference typically proceeds via the characteristic function, see discussions in Peters et al.
(2010a). Though intractable to evaluate point-wise, simulation of random variates is
very efficient, see Chambers et al. (1976). This observation is crucial to the ABC based
approach we develop in Section 4.

The advantage of modeling the inter-day level shifts between the open and close
of a market via an α-stable statistical model is that the CVAR model matrix-variate
parameter estimation is improved substantially. This is demonstrated on real and syn-
thetic data sets in Section 6. In addition, by considering an α-stable noise process for
inter-day price shifts, we include as a special sub-case of our model the standard CVAR
Gaussian models in Section 2.

The CVAR model we now consider incorporates a composite mixture of noise pro-
cesses with εt ∼ N(0,Σ) for intra-day samples and εt ∼ Sa(β, γ, δ) for inter-day ob-
servations. In this notation, the i-th asset has stable inter-day error model ε

(i)
t ∼

Sa(i)(β(i), γ(i), δ(i)). Here we utilize the notation of the majority of recent literature on
α-stable models where Sa(i)(β(i), γ(i), δ(i)) is used for the class of stable laws, see Nolan
(2012). Therefore, the resulting multivariate model we consider for innovation errors εt
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at time t is given by dependent elements ε
(i)
t ,

ε
(i)
t ∼ N

(
0, σ(i)

)
I (t /∈ τ ) + Sa(i)

(
β(i), γ(i), δ(i)

)
I (t ∈ τ ) , (4)

where Sa (β, γ, δ) denotes the α-stable distribution and τ represents a vector of each of
the first instants in time that both assets can be traded on their respective markets on
each given day for the data series.

Under this α-stable composite model assumption we would like to utilize the inno-
vation error structure provided in Equation (4) within a matrix variate Bayesian CVAR
model. In the standard α-stable form, this model is intractable. We will first develop a
non-standard SMiN representation for the matrix-variate CVAR likelihood. It will be
specifically designed via a novel transformation to ensure that we can parameterize the
model according to the same structure as presented in Section 2. The advantage of this
is that we will then be able to derive conjugate models in our Bayesian framework. We
achieve this by first considering a symmetric matrix variate representation, and then we
generalize via ABC methods to the non-symmetric α-stable settings.

3.1 Matrix-variate SMiN CVAR Likelihood-model

In this section we develop a previously unpublished non-standard representation of a
matrix-variate CVAR likelihood model. This involves utilizing a SMiN representation
for the matrix-variate α-stable CVAR model inter-day errors combined with a Gaussian
matrix-variate CVAR likelihood model for intra-day errors. This novel result is only
achieved by our introduction of a specifically developed transformation of the intra and
inter-day observation matrix. Under this transformation, we are able to demonstrate
that we can combine these two likelihood models into a single Gaussian matrix-variate
likelihood for the transformed data. In particular, the representation we develop is
specifically designed to possess a covariance structure which will admit conjugacy in a
Bayesian framework for the transformed parameters. In developing this transformation
it is then important to clearly derive the properties of the resulting matrix-variate
likelihood model.

Therefore, we then derive the properties of the resulting combined matrix-variate
Gaussian likelihood, including relevant moments and the uniqueness of the inverse trans-
form. This result for the inverse transform is important to ensure estimation of the
model parameters can be obtained in the original untransformed model. The advantage
of this representation is that it allowed us to obtain a conjugate family of matrix-variate
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Bayesian models for the proposed CVAR model. We note that without the transforma-
tion we develop here in our non-standard SMiN representation it would not be possible
to obtain the likelihood structure required for conjugacy.

Hence, summarizing this section we present Lemma 1 and Lemma 2 which are com-
bined with Theorem 1 to demonstrate that under our specifically designed transfor-
mation for the vectorized matrix of observations, we can obtain a joint matrix-variate
likelihood for the α-stable and Gaussian innovations mixture model. Next, we solve
explicitly for the covariance matrix under this transformed representation. Lemma 3
and Theorem 2 then derive the form of the mean matrix for this matrix-variate likeli-
hood, via a tensor product identity on vectorized transformed data. To achieve this we
consider a special form of non-negative tensor factorization of our transformation ma-
trix. Additionally we prove that the solution to the mean structure parameter matrix in
the transformed model can be uniquely recovered under the transformation developed.
Throughout this section we assume a lag p = 1, this can be extended trivially.

When the noise model in Equation (4) is strictly symmetric, i.e. the α-stable inter-
day noise model is symmetric, it admits an exact SMiN representation given in Equation
5, see Godsill (2000),

ε
(i)
t ∼ N

(
0, σ(i)

)
I (t /∈ τ ) + N

(
δ(i), γ(i)λ(i)

)
I (t ∈ τ ) , (5)

with auxiliary scale variables distributed as λ(i) ∼ Sa(i)/2 (0, 1, 1).

We denote by Ỹ the matrix of observation differenced price vectors corresponding
to intra-day prices with a total of t̃ rows and W̃ is the corresponding matrix for Ỹ ,
defined in Section 2. The definition of W(T−t̃) is the matrix for W corresponding to
the observation vectors taken from the set of intra-day times when t ∈ τ . The vectors
λ =

[
λ̃1γ1, . . . , λ̃nγn

]
are the scale parameters in the SMiN representation and Dλ is

a diagonal matrix with each value of λ in the diagonal.

Lemma 1. The combined grouped vectorized likelihood for intra-day and inter-day

observation price vectors denoted V ec(Y∗) ∼ NnT (V ec(M∗), Σ∗ ⊗Ψ∗) is given by:

L(Σ,B, β, λ, α, γ, δ; Y∗)

= (2π)−0.5nT |Σ∗ ⊗Ψ∗|−0.5 exp
(−0.5V ec(Y∗ −M∗)

′(Σ−1
∗ ⊗Ψ−1

∗ )V ec(Y∗ −M∗)
)

∝ |Σ∗|−0.5T |Ψ∗|−0.5n exp
(−0.5tr

{
Σ−1
∗ (Y∗ −D∗ −W∗B)′Ψ−1

∗ (Y∗ −D∗ −W∗B)
})

,

(6)

where we have ordered the intra and inter-day observation vectors according to

Y∗ = y1:T = [y1 y2 . . . yτ1−1 yτ1+1 . . . yT yτ1 yτ2 . . . yτiD
]′,
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and there are a total of iD inter-day boundaries in the series. The relevant likelihood

matrices are,

D∗ =

(
0

1iD
δT

)
,W∗ =

(
W̃

W(T−t̃)

)
.

We consider a general covariance matrix structure Σ∗⊗Ψ∗ (for Σ∗ an n×n matrix and

Ψ∗ a T × T matrix)

Proof. The result in Lemma 1 follows by first utilizing the assumption of conditional
independence of the observation vectors given model parameter matrices
Σ, B, β,λ,α, γ, δ which states E [ys, yt] = E [ys]E [yt] for all s, t s 6= t. Followed by
application of the theorems in Gupta and Nagar (1999) ([Theorem 2.2.1], [Theorem
2.3.11]) and the trace identity and determinant identities of Gupta and Nagar (1999)
[Theorem 1.2.21 (v and x)] are applied. 2

Remark 1: To relate the matrix-variate Gaussian model in Lemma 1 to the original

likelihood model in Equation (3) we need to find the relationship between the covariance

matrices, Σ∗, Ψ∗ and the original model parameters Σ, It. Under this reordered and

repacked matrix-variate Gaussian, the independence of columns of the random matrix

in the model in Equation (3) no longer holds, that is Ψ∗ is only diagonal when Dλ = Σ.

Once we have developed the combined matrix-variate likelihood model for intra and
inter-day observation vectors, we would like to exploit possible conjugacies. Conjugacy
of the posterior for the standard matrix-variate Gaussian CVAR model is beneficial for
inference and sampling. To achieve this under our α-stable mixture would require us
to identify the sufficient statistics, (M∗, Σ∗, Ψ∗), for the grouped matrix-variate Gaus-
sian model in Lemma 1, as Σ∗ = Σ and Ψ∗ diagonal, conditional on parameters from
the fitted α-stable SMiN intra-day noise model. Lemmas 2, 3 and Theorems 1 and
2 presented next allow us to identify the sufficient statistics and then transform the
vectorized random observation matrix Y∗ to recover required conjugacy properties.

Importantly, this will provide a significant dimension reduction in the posterior pa-
rameter space. Since, it allows us to specify a matrix-variate prior only on a matrix Σ∗
which is n× n rather than on a multivariate covariance which is nT × nT .

Lemma 2. The mean and covariance of the vectorized observation matrix V ec(Y∗)
in terms of the original CVAR model matrices are given by,

Cov(V ec(Y∗)) = Σ∗ ⊗Ψ∗ =

(
Σ⊗ It̃ 0

0 Dλ ⊗ I(T−t̃)

)
.
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In addition we can obtain the covariance of V ec(Y ′
∗) as

Cov(V ec(Y ′
∗)) = Ψ∗ ⊗ Σ∗ =

(
It̃ ⊗ Σ 0

0 I(T−t̃) ⊗Dλ

)
.

Proof. Using [Definition 2.2.1] and [Theorem 2.2.1] of Gupta and Nagar (1999), the
random vector V ec(Y∗) is conditionally a multivariate Gaussian random vector of dimen-
sion nT × 1. Using Lemma 1 and the SMiN CVAR model assumption of conditionally
independent, but not identically distributed, Gaussian observation random vectors we
can explicitly identify the mean and covariance structure of the vectorized observation
matrix V ec(Y∗) in terms of the original CVAR model matrices. 2

Having identified the covariance structure for the vectorized reordered observation
matrix, next we present Theorem 1 producing a likelihood structure that admits con-
jugacy under the priors presented in Section 4.1.

Theorem 1. The transformed random vector denoted V ec(Z∗) = Q∗V ec(Y∗) is mul-

tivariate Gaussian with V ec(Z∗) = Q∗V ec(Y∗) ∼ N(Q∗V ec(M∗), QT
∗ (Σ∗ ⊗ Ψ∗)Q∗).

Under the specially designed transformation selected as,

Q∗ =

(
In ⊗ It̃ 0

0 Q⊗ I(T−t̃),

)
,

one obtains Z∗ ∼ Nn,T (µ∗, Σ, IT ). In addition we can define

Q∗ =

(
It̃ ⊗ In 0

0 I(T−t̃) ⊗Q

)
,

such that when it is used to transform Q∗V ec(Y ′
∗) we obtain Q∗V ec(Y ′

∗) ∼ Nn,T (µ∗, IT , Σ)
and we also have that Z ′∗ = Q∗V ec(Y ′

∗).

Proof. Apply Lemma 1 and Lemma 2 which gives an (nT × 1) random vector
V ec(Y∗) conditionally distributed according to a multivariate Gaussian distribution,
under a transformation by an nT × nT matrix Q∗ to obtain V ec(Z∗) = Q∗V ec(Y∗)
which is also multivariate Gaussian. Using Luetkepohl (2005) [Proposition B.2] we ob-
tain, for V ec(Y∗) ∼ N (V ec(M∗), Σ∗ ⊗Ψ∗), a transformed random vector
V ec(Z∗) = Q∗V ec(Y∗) ∼ N(Q∗V ec(M∗), QT

∗ (Σ∗ ⊗ Ψ∗)Q∗). Next, to prove the covari-
ance structure of the transformed random vector under this particular transformation
consider the new covariance structure for V ec(Z∗) which will be given by,
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Cov(V ec(Z∗))

=

(
In ⊗ It̃ 0

0 Q⊗ I(T−t̃)

)T (
Σ⊗ It̃ 0

0 Dλ ⊗ I(T−t̃)

) (
In ⊗ It̃ 0

0 Q⊗ I(T−t̃)

)

=

(
Σ⊗ It̃ 0

0
(
QT DλQ⊗ I(T−t̃)

)
)

.

We can therefore obtain Cov(V ec(Z∗)) = Σ⊗ IT by solving the equation QT DλQ = Σ
for matrix Q. We can make use of the fact that the n × n matrix Dλ is diagonal and
the covariance matrix Σ is real and symmetric with an eigen decomposition Σ = V FV T

with diagonal eigen values matrix F . Therefore if we select Q = S
1
2 UT where S

1
2 is the

diagonal matrix with the elements Sii =
√

Fii

Dλ,ii
then the matrix U is the orthonormal

matrix of eigen vectors for Σ, that is U = V . The proof for the transformation Q∗ of
V ec(Y ′

∗) follows trivially from this result. 2

Hence, we have transformed the observation vector V ec(Y∗) via matrix Q∗ to obtain
a new random vector, which, when un-vectorized, produces a matrix-variate Gaussian
with row dependence given by Σ and column dependence given by IT . The significance
of this new result is that it allows us to recover the conditional independence property of
each vector observation whilst identifying under the transformation the identity Σ∗ = Σ
and Ψ∗ = IT . Therefore the matrix-variate likelihood for transformed observations z1:T

is given by Lemma 3.

Lemma 3. The likelihood of the transformed observations is given by,

L(Σ, B, β, λ, α, γ, δ, Q; z1:T )

∝ |Σ∗ ⊗ IT |−0.5 exp
(−0.5 (V ec(Z∗)−Q∗V ec(D∗ −W∗B))′ (Σ−1

∗ ⊗ I−1
T )

× (V ec(Z∗)−Q∗V ec(D∗ −W∗B)))

= |Σ∗|−0.5T exp

(
−1

2
tr

{
Σ−1
∗

(
̂̃
S∗ + (B̃ − ̂̃

B∗)
′W̃ ′

∗W̃∗(B̃ − ̂̃
B∗)

)})
,

where we define D̃∗ = HD∗GT , W̃∗ = HW∗, B̃ = BGT and

̂̃
B∗ =

(
W̃ ′
∗W̃∗

)−1

W̃ ′
∗(Z∗ − D̃∗) and

̂̃
S∗ =

(
Z∗ − D̃∗ − W̃∗

̂̃
B∗

)′(
Z∗ − D̃∗ − W̃∗

̂̃
B∗

)
.

Proof. Utilize [Definition 2.2.1] and [Theorem 2.2.1] of Gupta and Nagar (1999),
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to obtain the likelihood of the transformed observations according to

L(Σ, B, β, λ, α, γ, δ, Q; z1:T )

∝ |Σ∗ ⊗ IT |−0.5 exp
(−0.5 (V ec(Z∗)−Q∗V ec(D∗ −W∗B))′ (Σ−1

∗ ⊗ I−1
T )

× (V ec(Z∗)−Q∗V ec(D∗ −W∗B))) .

Then apply the identity in [Theorem 1.2.22] of Gupta and Nagar (1999), given by

(B′ ⊗A)V ec(X) = V ec(AXB), (7)

and rearrange the mean structure. Next, make an arbitrary choice of factorization of
Q∗ into the form Q∗ = G ⊗H with the only constraints that G is (p × n) and that H

is (q × T ) dimensions, with pq = nT . Hence, the rearranged mean structure gives,

L(Σ, B, β, λ, α, γ, δ, Q; z1:T )

∝ |Σ∗ ⊗ IT |−0.5 exp
(−0.5 (V ec(Z∗)−Q∗V ec(D∗ −W∗B))′ (Σ−1

∗ ⊗ I−1
T )

× (V ec(Z∗)−Q∗V ec(D∗ −W∗B)))

∝ |Σ∗ ⊗ IT |−0.5 exp
(
−0.5

(
V ec(Z∗)− V ec(D̃∗ − W̃∗B̃)

)′
(Σ−1
∗ ⊗ I−1

T )
(
V ec(D̃∗ − W̃∗B̃)

))
,

with D̃∗ = HD∗GT , W̃∗ = HW∗ and B̃ = BGT . 2

We can now comment on the possible solutions to the tensor factorization utilized
for Q∗ = G⊗H. Typically the basic Singular Value Decomposition is applied to perform
a tensor factorization. This will be difficult in our setting as we are required to enforce
the sub-matrix constraints that the first factored matrix must be (p×n) with n columns
and the second q × T with T columns. There is a rich literature on alternative tensor
factorizations such as the numerical algorithms for rank-k tensor approximations such
as the orthogonal tensor decompositions (Higher-Order SVD) of De Lathauwer and
Vandewalle (2004) or the Non-Negative Tensor Factorization (NTF) in Friedlandera
and Hatzb (2008).

In Theorem 2 we provide a specific tensor factorization to satisfy the constraints re-
quired by the result in Lemma 3. It is important to obtain a specific factorization that
decomposes the transformation matrix into a tensor factorization admitting a unique
solution for the original mean estimate B.

Theorem 2. Given transformed observations, Z ′∗, an analytic tensor factorization

for Q∗ satisfying the dimensionality constraints on each tensor factor in Lemma 3 is
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given by,

Q∗ =
T∑

i=1

T∑

j=1

Uij ⊗Qij ,

where Qij represent the (i, j)-th sub-block of dimension n×n in the nT ×nT transform

matrix Q∗ and Uij represent the (T × T ) matrix whose ij-th element is 1 and whose

remaining elements are 0. Therefore the mean structure of the CVAR likelihood model

in Lemma 3 is given by,

E [V ec(Z ′∗)] = Q∗V ec(D′
∗ −B′W ′

∗)

=
T∑

i=1

V ec(Qii(D′
∗ −B′W ′

∗)U
′
ii).

This allows us to make explicit the mean structure of the matrix-variate transformed

data likelihood of Lemma 3 by identifying the following elements D̃′
∗ =

∑T
i=1 QiiD

′
∗U

′
ii,

W̃ ′
∗ =

∑T
i=1 W ′

∗Uii and B̃′ =
∑T

i=1 QiiB
′.

Proof. Using identity [(1.29) p. 343] in Harville (2008) we can exploit the fact that
the transformation matrix Q∗ we have selected is a square nT × nT matrix which has
an n×n block diagonal structure. Hence we will consider the following structure in Q∗,




Q11 Q12 · · · Q1T

...
...

...
QT1 QT2 · · · QTT




T

,

with each sub matrix Qij being selected as an (n× n) matrix. Then obtain the tensor
factorization, using the fact that all Qij matrices will be comprised of 0 elements other
than those with i = j giving a sparse representation

Q∗ =
T∑

i=1

T∑

j=1

Uij ⊗Qij =
T∑

j=1

Uii ⊗Qii.

Under this factorization the mean structure we obtain in the likelihood model in Theo-
rem 1 with application of the identity in [Theorem 1.2.22] of Gupta and Nagar (1999)
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shown in Equation (7), is given by,

E [Q∗V ec(Y ′
∗)] = Q∗V ec(D′

∗ −B′W ′
∗)

=
T∑

i=1

T∑

j=1

(Uij ⊗Qij)V ec(D′
∗ −B′W ′

∗)

=
T∑

i=1

V ec(QiiD
′
∗U

′
ii −QiiB

′W ′
∗U

′
ii)).

This allows us to make explicit the mean structure of the matrix-variate transformed
data likelihood by identifying the following elements D̃′

∗ =
∑T

i=1 QiiD
′
∗U

′
ii, W̃ ′

∗ =∑T
i=1 W ′

∗U
′
ii and B̃′ =

∑T
i=1 QiiB′.

Finally, we note that we can uniquely solve the system

B̃′ =
T∑

i=1

QiiB
′,

for B′ given B̃′. This is due to the fact that the matrices Qii for i < T are constructed
from identity matrices and the case of i = T is constructed in our transform as a real
matrix of eigen vectors of covariance matrix Σ, which is therefore invertible. We can
therefore obtain the unique solution for B′ as

B′ = B̃′ ((T − 1)In + QTT )−1
.

2

Hence, we have shown that this particular choice of factorization for Q∗ ensures that
a unique solution to B′ is attainable given B̃. This result is important for the conjugate
Bayesian model derivation developed in Section 4.

4 Bayesian CVAR and Approximate Bayesian Computa-

tion

In this section we consider the composite noise model developed in Section 3 and derive
Bayesian models in the presence of the fitted α-stable inter-day noise. In general,
conjugacy is lost for the general asymmetric noise model in Equation (4). In these
cases we resort to ABC methodology. However, in the case of symmetric α-stable noise
we derive two novel conjugate models under the transformation Q∗. This is achieved
utilizing the scale mixture of Normals (SMiN) representation developed in Section 3.1.
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The two conjugate SMiN models are based around two classes of prior structure
considered in the econometrics literature. The choice of prior in CVAR models is an
important consideration, see discussions in Strachan and Inder (2004) and Kleibergen
and Paap (2002). We do not consider in detail the issue of prior distortions illustrated
by Kleibergen and Van Dijk (2009). Instead we select two popular prior choices from the
literature. The first is based on a prior specification on the cointegration space, rather
than the actual parameters, as proposed in Strachan and Inder (2004). The second
prior choice is based on linear identification constraints on the cointegration vectors
developed in Geweke (1996) and utilized in Peters et al. (2010a).

4.1 Conjugate CVAR models via a symmetric α-stable SMiN repre-

sentation

The prior model which we consider is hierarchical and produces conjugate posterior
distributions for matrix-variate parameters Σ and B.

� Σ ∼ IW (S, h) where IW (S, h) is the Inverse Wishart distribution with h degrees
of freedom and S is an (n× n) positive definite matrix.

� B′|Σ ∼ N(P ′,Σ ⊗ A−1) where N(P, Σ ⊗ A−1) is the matrix-variate Gaussian
distribution with h degrees of freedom and S is an (n×n) positive definite matrix.

The first prior we consider for the cointegration matrix β is based on the proposal
developed in Villani (2005). As discussed in Strachan and Inder (2004) there are several
approaches to prior specifications in CVAR models, either directly on the cointegration
vector parameters β or on the cointegration space, which produces an induced prior
on the parameters. A uniform prior on the cointegration space Grassman manifold is
proposed in Villani (2005) as relevant when considering models conditional on knowledge
of the rank. We follow the uniform prior specification on the Grassman manifold given
in Lemma 3.4 of Villani (2005), which results in a prior on the parameters given by

� β′ ∼ td−r×r(0, Id−r, Ir, 1) where this td−r×r represents a matrix-variate
t-distribution as defined in Definition 4.2.1 of Gupta and Nagar (1999).

The second prior we consider is based on the approach adopted in Geweke (1996)
and is identical to the choice of Geweke (1996), Peters et al. (2010a) and Sugita (2002),
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� β′ ∼ N(β̄′, Q⊗H−1) where N(β̄, Q⊗H−1) is the matrix-variate Gaussian distri-
bution with prior mean β̄, Q is an (r × r) positive definite matrix, H an (n× n)
matrix.

In this case we make identical model assumptions and restrictions for the Bayesian
CVAR model as in Peters et al. (2010a). In particular, for any non-singular matrix A,
the matrix of long run multipliers Π = αβ′ is indistinguishable from Π = αAA−1β′,
see Koop et al. (2006). As proposed in Sugita (2002), we remove this problem by
incorporating an identification constraint which imposes the required r2 restrictions as
follows β = [Ir, β

′
∗]′, where Ir denotes the r× r identity matrix. The choice of possible

constraints is not unique, though the choice we select is computationally convenient,
see discussions in Kleibergen and Van Dijk (2009).

Here we derive the conjugate model for the matrix-variate parameters of the pos-
terior under the transformation Q∗ developed in Theorem 1. By working under this
transformation, we not only obtain conjugacy but also reduce the posterior dimension
significantly from a parameterization of the posterior covariance matrix in dimension
nT × nT to parameterization in n× n dimensions.

Given parameter estimates of the multivariate α-stable statistical model,
Sα (β, γ, δ), fitted to historical price series inter-day level shifts for each asset in the
CVAR model, the following posterior conjugacy properties are satisfied for the prior
choices presented.

1. Σ Conditional: Conditional on the re-arranged un-transformed subset of ob-
servation vectors from intra-day prices matrix Ỹ we obtain an Inverse Wishart
distribution for

p(Σ|β, λ,α, Ỹ ) ∝ |SỸ |(t+h)/2|Σ|−(t+h+n+1)/2 exp
(−0.5tr(Σ−1SỸ )

)
;

where SỸ is defined to be given by

SỸ = S + Ŝ + (P − B̂)′
[
A−1 + (W ′W )−1

]−1
(
P − B̂

)
.

2. B̃ Conditional: Under the SMiN model and conditional on the re-arranged
transformed complete vector of observations for intra and inter-days, V ec(Z∗) =
Q∗V ec(Y∗) we obtain a Matrix-variate Gaussian for

p(B̃|β, λ, α, Σ, Z∗, Q∗) ∝ |AZ∗ |n/2|Σ|−k/2 exp
(
−0.5tr

(
Σ−1(B̃ −BZ∗ )

′A?(B̃ −BZ∗ )
))

where AZ∗ = Ã + W̃ ′
∗W̃∗ and BZ∗ =

(
Ã + W̃ ′

∗W̃∗
)−1

(
ÃP̃ + W̃ ′

∗W̃∗
̂̃
B∗

)
.
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3. β Conditional: Under the SMiN model and conditional on the re-arranged
transformed complete vector of observations for intra and inter-days, V ec(Z∗) =
Q∗V ec(Y∗) we obtain the marginal matrix-variate posterior for the cointegration
vectors, β given by,

p(β|λ,α, Z∗, Q∗) ∝ p(β)|SZ∗ |−(t+h+1)/2|AZ∗ |−n/2,

for
SZ∗ = S + ̂̃

S∗ + (P − ̂̃
B∗)′

[
Ã−1 + (W̃ ′

∗W̃∗)−1
]−1

(
P − ̂̃

B∗

)
,

and AZ∗ defined in Conditional 2. The choice of prior for the cointegration vec-
tors, given either by Geweke (1996) or Strachan and Inder (2004) can then be
substituted for p(β).

4. λ Conditional: Under the SMiN model we obtain the marginal distribution for
each random variable λi in the n× 1 random vector λ given by,

p(λi|α, χ, B̃, Q∗,β) ∝
∏
t∈τ

N
(
εi
t; 0, λiγi

)× Sai/2 (λi; 0, 1, 1) ,

where for all t ∈ τ we define εi
t = χi,t −

[
W(T−t̃)B

]
i,t

and χ = Y−Ỹ − 1kδT is

the inter-day observation matrix of differenced price vectors not including rows
for Ỹ after subtracting the location parameters for each α-stable fit, given by
δ =

[
δ(1), . . . , δ(n)

]′
.

The conjugacy for Conditional 1 and Conditional 2 are provided in Sugita (2002)
[Section 2.2, Equations (10) and (11)] as a direct consequence of Theorem 1 and Theorem
2 and the transformation developed and conjugate prior choices. The derivation of
Conditional 3 also follows from Sugita (2002) [Section 2.2, Equation (14)]. The proof
for Conditional 4 is presented in Godsill (2000) [Section 2 Equation (4)].

4.2 Asymmetric α-stable Approximate Bayesian Computation CVAR

When considering the asymmetric α-stable noise model, presented in Equation (4),
we have an intractable matrix-variate likelihood, which can not be evaluated point-
wise even up to a normalizing constant. To overcome this problem we formulate a
novel approximate Bayesian computation (ABC) solution. ABC modeling is a new
class of statistical estimation techniques specifically designed for situations in which
the likelihood and thus the posterior distribution is intractable. These have now been
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studied and applied in a range of settings, see Peters et al. (2010c) and Peters and
Sisson (2006) for ABC modeling for financial risk and insurance contexts. In addition,
there are now several methodological papers and reviews available for this new class of
modeling technique, see Peters et al. (2008), Tavaré et al. (1997), Fearnhead and Prangle
(2010), Beaumont et al. (2009), Del Moral et al. (2011) and the review of Sisson and
Fan (2010).

In this section we develop an ABC model and associated Markov chain Monte Carlo
(MCMC-ABC) sampler to perform estimation in this general composite asymmetric
α-stable and Gaussian noise CVAR model setting. MCMC-ABC samplers are actively
studied in the statistical literature since Tavaré et al. (1997), see a review chapter in
Sisson and Fan (2010).

The notation we will adopt to represent our ABC approximation is that developed
in the recent book chapter [Section 1.2.1] of Sisson and Fan (2010). ABC inference
adopts the approach of augmenting the target posterior distribution from the intractable
“True” model, denoted p(Σ, B, β|Y ) ∝ p(Y |Σ, B, β)p(Σ, B, β), into an augmented pa-
rameter target posterior distribution. The ABC posterior model approximation, de-
noted pABC (Σ, B, β, YS |Y ), is defined according to the representation of Reeves and
Pettitt (2005) and Wilkinson (2008) by,

pABC (Σ, B, β, YS |Y ) = p(Y |YS ,Σ, B, β)p(YS |Σ, B, β)p(Σ, B, β), (8)

where the auxiliary parameters “synthetic observation” matrix YS are a (simulated)
dataset or set of data sets from p(Y |Σ, B, β), on the same space as Y .

The function p(Y |YS ,Σ, B, β) is chosen to weight the posterior p(Σ, B, β|Y ) with
high values in regions where YS and Y are similar. There are many choices for this func-
tion, discussed and studied in Peters et al. (2010c), Sisson and Fan (2010) and Grelaud
et al. (2009). Generally, the weighting function p(Y |YS , Σ, B, β) is simplified in two
important ways, the first involves replacing the observation and synthetic data vector /
matrix with summary statistics and the second involves making a kernel approximation
to the weighting function. Therefore we obtain a kernel representation of the form

pε(Y |YS , Σ, B, β) =
1
ε
K

( |S(YS)− S(Y )|
ε

)
, (9)

see Peters et al. (2010c), Ratmann et al. (2009) and Beaumont et al. (2009). In this
simplification the data matrix Y is replaced with summary statistics (ideally sufficient
statistics) vector or matrix denoted S(Y ) of significantly lower dimension than Y . When
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sufficient statistics are not available, then summary statistics are utilized at the cost of
bias (as ε → 0), see recent discussion in Fearnhead and Prangle (2010).

In this paper we consider a popular kernel weighting function (uniform kernel) with
Euclidean distance measure between summary statistics on vectorized observation ma-
trices V ec(Y ) and V ec(YS) given by

pε(Y |YS , Σ, B, β) =

{
1 if ||S(V ec(Y ))− S(V ec(YS))|| ≤ ε

0 otherwise.
(10)

This kernel has been used successfully in several ABC studies, see discussions in Peters
et al. (2010b), Toni et al. (2009), Sisson and Fan (2010) and Fearnhead and Prangle
(2010). We note that the ABC approximation we develop can utilize any choice of
kernel.

Finally, given this ABC approximation, it is a natural statistical question to ask in
what sense is ABC approximating the intractable target posterior distribution. This
has been studied in several different contexts, see Beaumont et al. (2009), Del Moral
et al. (2011), Peters et al. (2008) and Fearnhead and Prangle (2010) for details.

Here we briefly summarize, for our ABC approximation, the discussion presented in
Sisson and Fan (2010) which describes the basic relationship between the ABC estimate
and the intractable posterior. When one assumes that the weighting function is constant
at the point YS = Y with respect to parameters Σ, B, β this results in p(Y |YS , Σ, B, β) =
c, for some constant c > 0. The result of this is that the target posterior is recovered
exactly at YS = Y , that is pABC (Σ, B, β, YS |Y ) = p(Σ, B, β|Y ).

We also mention that, given the augmented ABC posterior distribution
pABC (Σ, B, β, YS |Y ) generally inference involves the marginal posterior,

p (Σ, B, β|Y ) ∝ p(Σ, B, β)
∫

p(Y |YS ,Σ, B, β)p(YS |Σ, B, β)dYS , (11)

obtained by integrating out the auxiliary dataset. The ABC distribution
pABC (Σ, B, β|Y ) then acts as an approximation to p (Σ, B, β|Y ) and is obtained in
practice by discarding realizations of the auxiliary dataset from the output of any sam-
pler targeting the joint posterior pABC (Σ, B, β, YS |Y ). In this paper we consider the
MCMC-ABC sampler approach.

The algorithm considered in Section 5 demonstrates how to combine the SMiN and
ABC CVAR models developed. In particular we provide a general adaptive MCMC
based sampling algorithm for matrix-variate α-stable CVAR posterior distributions in
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the ABC setting. This involves use of the conjugate models derived under the SMiN
assumption being used to reduce the required dimension of the adaptive proposal kernel.

5 Sampling and Estimation

Here we present (Algorithm 1) the sampling methodology used for the posterior
pABC(Σ, B, β, YS |Y ). Our approach involves several of the posterior matrix variables
(Σ,B̃) being sampled via the conjugate model derived, in Section 4.1, for the symmetric
α-stable case. However, since we are considering the general case of asymmetric α-stable
noise, these conjugate posterior distributions, which are derived for the symmetric α-
stable noise, can therefore be considered “proposals” for the MCMC-ABC Algorithm 1.
Since, having sampled these matrices (Σ,B̃) from the conjugate model “proposals”, we
still perform an accept-reject step in the spirit of the classical Metropolis-Hastings algo-
rithm. The remaining matrix posterior parameters (β,λ) are sampled via an adaptive
Metropolis and adaptive Rejection Sampling framework. The proposals are combined
into the hybrid adaptive ABC methodology as presented in Algorithm 1.

The version of the HAdMCMC-ABC algorithm we present updates at each iteration
of the Markov chain all matrix parameters, however block Metropolis-within-Gibbs
frameworks are also possible. Proposing to update the matrix-variate Markov chain
parameters from iteration j − 1 to iteration j involves sampling proposal {Σ, B, β, λ}′
given Markov chain state {Σ, B, β, λ} [j − 1] according to the proposal,

q
({Σ, B, β,λ} [j − 1]; {Σ, B, β, λ}′)

= p(Σ| {β,λ, α}′ , Ỹ )p(B̃| {β, λ}′ , {α,Σ} [j − 1], Z∗, Q∗)

× p
(
λ| {β}′ ,

{
α, B̃

}
[j − 1], Z∗, Q∗

)
q(β[j − 1];β).

The first three distributions are given by the conjugate models derived under the
symmetric α-stable intra-day assumption, allowing them to be sampled exactly and
q(β[j − 1];β) is given by the adaptive Metropolis proposal developed in Peters et al.
(2010a) [Algorithm 2] for the cointegration modelling framework. In general several
adaption strategies are possible, see discussions in Roberts and Rosenthal (2009), Atchadé
and Rosenthal (2005), Haario et al. (2001) and Andrieu and Moulines (2006). The adap-
tive Metropolis scheme involves a proposal distribution given by,
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qj (β[j − 1], ·) = w1N

(
β;β[j − 1],

(2.38)2

d
Φj

)

+ (1− w1)N

(
β;β[j − 1],

(0.1)2

d
Id,d

)
. (12)

Here, Φj is the current empirical estimate of the covariance between the parameters
of β estimated using samples from the Markov chain up to iteration j. The theoretical
motivation for the choices of scale factors 2.38, 0.1 and dimension d are all provided in
Roberts and Rosenthal (2009). We note that the update of the covariance matrix can
be done recursively online via the following recursion,

mj+1 = mj +
1

j + 1
(β[j − 1]−mj)

Φj+1 = Φj +
1

j + 1
(
(β[j − 1]−mj) (β[j − 1]−mj)

′ − Φj

)
.

(13)

Some code associated with this paper may be made available upon request to the cor-
responding author.

6 Results and Analysis

In the first study we fit univariate α-stable models to historical price series data to
assess if there is evidence for modeling inter-day level shifts via an α-stable distribution
in the differenced price series. If the series indicates substantial deviation away from
the standard CVAR model assumption of a Gaussian error model (α = 2, β = 0), then
a composite mixture model for the errors proposed in Equation (4) becomes tenable.
Otherwise, since the Gaussian distribution is also contained in the stable family, the
model we propose reduces to the standard CVAR cointegration Bayesian model in Peters
et al. (2010a).

6.1 Real Data - α-stable Empirical Assessment

Before fitting the Bayesian CVAR model, via the MCMC-ABC sampler developed, we
first estimate the α-stable noise model parameters (α,γ, δ). These give us the model
Sα(β, γ, δ) used for the (inter-day) day boundary level shifts in each asset that comprise
the α-stable noise component in our composite noise model in Equation 5.
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Algorithm 1: Hybrid Adaptive Markov Chain Monte Carlo Approximate
Bayesian Computation (HAdMCMC-ABC).
Input: Initialized Markov chain matrix-variate states

θ(0) =
(
Σ(0), B̃(0), β(0), λ(0)

)
.

Output: Markov chain samples
{θ(j)}j=1:J = {Σ(j), B(j),β(j)}j=1:J ∼ pABC (Σ, B, β, YS |Y ).

begin
1a. Set ABC tolerance level ε (note annealing of the tolerance can be utilized).

1b. Evaluate summary statistic vector for observed price series S(V ec(Y )).
(We use a vector of quantile estimates - several choices possible - see
Fearnhead and Prangle (2010))

repeat

2. Sample conjugate proposals for matrix parameters (Σ,B̃):

2a. Sample proposed matrix state Σ∗ via inversion from posterior
p(Σ|β(j−1),λ(j−1), α(j−1), Ỹ ), [Conditional 1].

2b. Evaluate transformation matrix Q∗∗ based on proposed Σ∗

and obtain transformed observation matrix Z∗, [Lemma 3].

2c. Sample proposed matrix state B̃∗ via inversion from
p(B̃|β(j−1),λ(j−1), α(j−1), Σ∗, Z∗, Q∗∗), [Conditional 2].

3. Sample adaptive proposals for matrix parameters (β,λ):

3a. Sample components of proposed vector λ∗ from
p(λi|α,γ, δ, χ, B̃,Q∗, β), in [Conditional 4] via single
component adaptive rejection in Godsill (2000) [Section 3.1.1., p.2].

3b. Sample proposed unconstrained elements of matrix β from
adaptive Metropolis proposal in Peters et al. (2010a) [Alg. 2, p.12].

4. Generate synthetic data set YS given proposal {Σ, B, β, λ}′
and fitted intra-day model Sα(β,γ, δ), evaluate summary statistic
vector S(V ec(YS)) and calculate weighting function in Equation (10).

5. Calculate ABC - Metropolis Hastings acceptance probability according
to the general specification in Sisson and Fan (2010) [Equation (1.3.2)]
for joint proposal θ = (Σ, B, β, λ):

A
(
θ(j−1), θ∗

)
=

pABC (θ∗|Y ) q
(
θ∗ → θ(j−1)

)

pABC

(
θ(j−1)|Y )

q
(
θ(j−1) → θ∗

)

Accept θ(j) = θ∗ via rejection using A, otherwise θ(j) = θ(j−1).
Set j = j + 1.

until j = J

end
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We analyze inter-day price shifts by first extracting ‘daily’ close/open differenced
price series for each asset pairs inter-day price shifts. ‘Daily’ here refers to the times
when both markets for the pairs are first jointly open, or when the first market closes.
Data consists of 10 minute interval price data. The assets considered are AUD as
Australian Dollars, CD as Canadian Dollars, FV as a US five year note (bond), NQ
as the NASDAQ mini-index and TU as a US two year note. In total each asset pair
considers 30 contract segments, with varying numbers of days present and consecutive
segment periods in time (a segment ends when a contract rolls over for one of the assets).
Figure 1 shows each asset’s differenced price series 4xt = xt−xt−1 from open to close of
market each day, including the associated level shifts at the close/open day boundaries
in the currency in which the asset is traded.

1 2 3 4 5 6 7 8 9

x 10
5

AUD

1 2 3 4 5 6 7 8 9

x 10
5

CD

0.5 1 1.5 2 2.5 3 3.5 4

x 10
5
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0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

TU

0.5 1 1.5 2 2.5 3 3.5

x 10
5

NQ

Figure 1: Plots of observations for differenced price series over 30 contract segments.

From the data in Figure 1 we extract inter-day differenced level shifts and fit them
independently for each asset with an α-stable model. This first step in the modeling,
prior to the Bayesian CVAR estimation, is achieved via a simple maximum likelihood
based numerical approach of Nolan (1997), using open source software available at URL
(http://academic2.american.edu/~jpnolan/stable/stable.html) and detailed in
[Section VII] of Alder et al. (1998). The results of this analysis for the S0 α-stable
model, comprised of level shift data for inter-day boundaries, in the 30 segments, are

http://academic2.american.edu/~jpnolan/stable/stable.html�
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Asset i.d. # days α̂ β̂ γ̂ δ̂

AUD 1535 1.833 (0.07) 0.019 (0.34) 195.365 (9) 5.1510 (17)
CD 1535 1.666 (0.08) 0.028 (0.20) 97.344 (5) -4.699 (8)
FV 960 1.855 (0.08) -0.551 (0.42) 105.134 (6) 15.922 (11)
NQ 1054 1.254 (0.09) 0.009 (0.14) 313.678 (23) 1.673 (31)
TU 960 1.807 (0.09) -0.059(0.37) 88.119 (5) -0.088 (10)

Table 1: Maximum Likelihood estimates and in brackets half the width of the symmetric
95% CI. Dates of analysis for each asset: AUD - 05/09/99 - 30/11/05; CD - 05/09/99
- 30/11/05; FV - 05/09/99 - 18/08/03; NQ - 05/09/99 - 02/12/03; TU - 05/09/99 -
18/08/03

provided in Table 1. The approach we propose here is flexible and can involve fitting
the stable model to any sub segment of data required, with different stable parameter
estimates per data segment.

The analysis shows that, for each of the assets, the α-stable shape parameter has
95% confidence intervals which do not contain the Gaussian case α = 2, even with
large historical data sets. Furethermore, in the case of the Canadian dollar and the
NASDAQ mini index, the value of α obtained implies a signifcantly heavy-tailed model is
appropriate. Additionally, several series demonstrate asymmetry (β 6= 0) with estimated
95% CI not precluding skewness, violating the assumptions of Gaussianity at these
inter-day boundary points and also demonstrating that the symmetric simplification
proposed in Chen and Hsiao (2010) can be invalid in many real data settings. Hence,
this analysis suggests that it is clearly suitable to consider modeling the inter-day level
shifts seperately from Gaussian intra-day data, verifying the appropriateness of our
model assumption in Equation 5.

6.2 ABC Matrix-variate α-stable and Gaussian CVAR Analysis

In this section we perform three studies. The first and second studies involve analysis
of the algorithms developed to sample from the matrix-variate posterior distribution
on synthetic data sets generated with known parameters. The first study considers a
mixture noise model (Equation (4)) with very heavy-tailed symmetric α-stable inter-
day noise (α = 1.3). In this symmetric α-stable case the SMiN CVAR matrix-variate
likelihood derived in Section 3.1 and the resulting conjugate posterior models, developed
in Section 4.1, can be utilized exactly and one does not require ABC methods.
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The second study considers asymmetric heavy tailed α-stable (α = 1.3, β = 0.5)
inter-day noise. In this case we can not obtain analytic expressions for the Bayesian
CVAR model as the SMiN representation does not apply, therefore we utilize the ABC
estimation developed. Hence we compare the ABC model and MCMC results from
Algorithm 1 to the case in which intra-day level shifts are ignored in the “Gaussian”
case and sampling occurs as in Peters et al. (2010a). In the third study we consider a
real data set analysis via our general MCMC-ABC sampler in Algorithm 1, for a pair of
assets, observed in practice to have a cointegration relationship with rank r = 1, with
α-stable fits from Table 1 for AUD − CD.

In the results section we present several different sets of simulations. The estimated
results, denoted “Gaussian”, are from a Bayesian CVAR model with Gaussian likelihood
as presented in Section 2. This is the standard Gaussian CVAR model in the literature
which ignores the fact that inter-day level shifts data is best modeled with a composite
error model in Equation 5. We sample this model using the adaptive MCMC sampler
of Peters et al. (2010a) and Sugita (2009), to assess the bias in parameter estimates
if intra-day level shifts are not modeled explicitly. The estimated results, denoted by
“Mixture Exact”, are obtained under a composite error model in Equation 5, involving
the assumption of symmetric α-stable noise in which the conjugate SMiN Bayesian
CVAR model of Section 4.1 is sampled. The estimated results denoted by “Mixture
ABC” are obtained under a composite error model in Equation 5 involving general
asymmetric α-stable noise in which the ABC approximate CVAR model of Section 4.2
is sampled via Algorithm 1. In all cases we are particularly interested in the estimated
cointegration basis vectors β, which directly affect portfolio weights in Bayesian pairs
trading.

In all studies we consider pairs data, with a cointegration rank of r = 1. We ran
samplers with 10,000 burn-in and 20,000 actual samples. In studies one and two we
perform analysis on 20 independently generated pairs of price data sets, with each price
series of length 500 samples and every 50-th sample modeled with an α-stable innovation.
In the real data analysis we take the series described in Section 4.1. This corresponds
to considering 10,000 observations sampled at 10 min intervals, which is equivalent to
around 200 days of data.
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Gaussian model Mixture Gaussian and α-stable intra-day

Parameter Estimates Gaussian Mixture ABC Mixture Exact Truth

Ave. MMSE β1,2 -0.02 (0.21) 0.39 (0.27) 0.42 (0.25) 0.5

Ave. Stdev. β1,2 0.28 (0.08) 0.31 (0.12) 0.35 (0.09) -

Ave. MMSE tr (Σ) 3.17 (2.03) 2.61 (2.12) 2.23 (1.91) 2

Ave. Stdev. tr (Σ) 0.16 (0.12) 0.21 (0.16) 0.19 (0.21) -

Ave. MMSE µ1 -0.03 (0.08) -0.01 (0.03) 0.05 (0.01) -

Ave. Stdev. µ1 0.06 (0.03) 0.08 (0.02) 0.07 (0.02) -

Ave. MMSE µ2 4.0E-3 (0.01) 7E-3 (0.03) 6E-3 (0.01) 0.1

Ave. Stdev. µ2 0.05 (0.01) 0.07 (0.02) 0.09 (0.03) -

Ave. MMSE α1,1 -0.06 (0.02) 0.05 (0.02) 0.08 (0.04) 0.1

Ave. Stdev. α1,1 0.02 (2E-3) 0.03 (4E-3) 0.05 (3E-3) -

Ave. MMSE α1,2 3E-3 (0.02) -0.19 (0.01) -0.21 (0.02) -0.3

Ave. Stdev. α1,2 0.02 (0.01) 0.02 (0.01) 0.04 (0.02) -

Ave. Mean accept. prob. 0.37 0.21 1 -

Table 2: Results for the first study with composite noise model (Equation 5) considering
symmetric α-stable inter-day innovations. Sampler Analysis: Ave. MMSE and
Stdev is averaged posterior mean or variances obtained from posterior estimation of the
parameters from 20 independently generated data sets. In (·) are the standard error in
estimates.

Synthetic Data Analysis - Symmetric α-stable heavy tailed.

The model used for this synthetic study considers parameter settings β = [1, 0.5], α =
[0.1,−0.3], Σ = I2 µ = [0, 0] and (α = 1.3, β = 0, γ = 1, δ = 0). The prior settings for
the Bayesian model are those specified in Peters et al. (2010a). We considered several
tolerance ranges ε in the ABC approximation, the result used for the final simulations
was ε = 0.1. This provided a reasonable trade-off between accuracy of the estimation
results in the synthetic studies and mixing of the MCMC-ABC sampler. In Table 2
we present the results, comparing the performance of the estimation of the parameters
for the resulting Bayesian posterior model in Theorem 3. The results demonstrate that
the effect of ignoring the inter-day level shifts when fitting the Bayesian model has a
significant effect on the estimation of the cointegration vector β. In addition, it is clear
that in this symmetric case, the estimates, obtained via the exact MCMC sampler and
the ABC approximation, are similar. However, as expected, the computational cost for
the ABC approach is significantly higher than the non-ABC approach. We also see that
the estimation of the remaining parameters is accurate.
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Gaussian model Mixture Gaussian and α-stable intra-day

Parameter Estimates Gaussian Mixture ABC Truth

Ave. MMSE β1,2 -0.01 (0.21) 0.36 (0.32) 0.5

Ave. Stdev. β1,2 0.28 (0.08) 0.41 (0.16) -

Ave. MMSE tr (Σ) 2.92 (1.32) 3.0 (1.49) 2

Ave. Stdev. tr (Σ) 0.14 (0.07) 0.21 (0.12) -

Ave. MMSE µ1 -0.02 (0.07) -0.01 (0.09) 0.1

Ave. Stdev. µ1 0.06 (0.02) 0.10 (0.03) -

Ave. MMSE µ2 -3.0E-3 (0.01) 4E-3 (0.03) 0.1

Ave. Stdev. µ2 0.05 (0.01) 0.09 (0.03) -

Ave. MMSE α1,1 -0.06 (0.01) 0.06 (0.03) 0.1

Ave. Stdev. α1,1 0.01 (2E-3) 0.03 (8E-3) -

Ave. MMSE α1,2 2E-3 (0.02) 1E-3 (8E-3) -0.3

Ave. Stdev. α1,2 0.02 (0.01) 0.03 (0.01) -

Ave. Mean accept. prob. 0.42 0.28 -

Table 3: Results for the second study with composite noise model (Equation 5) consid-
ering asymmetric α-stable inter-day innovations. Sampler Analysis: Ave. MMSE or
Stdev is averaged posterior mean or variances obtained from estimation of the posterior
parameters from 20 independently generated data sets. In (·) are the standard error in
estimates.

Synthetic Data Analysis - Asymmetric α-stable heavy tailed

The model, used for this synthetic study, considers identical parameter settings and
prior settings for the CVAR model as the previous study, with the asymmetric inter-
day noise model with α-stable parameters (α = 1.3, β = 0.5, γ = 1, δ = 0). In the
asymmetric case we must work with the ABC model. In Table 3 we present the results,
comparing the performance of the estimation of the parameters for the resulting ABC
posterior versus the basic Gaussian conjugate Bayesian model. Table 3 demonstrates
that significantly more accurate results for the estimation of the cointegration vectors
occur when inter-day noise modeling is incorporated.

The results are summarized for the estimated MMSE of the cointegration vector β

in Figure 2. The left panel in Figure 2 demonstrates the first study with a symmetric
α-stable composite noise model, comparing samples from the “Gaussian” case and the
“Mixture Exact” case. The right panel in Figure 2 demonstrates the second study with
an asymmetric α-stable composite noise model, comparing samples from the “Mixture
Exact” and the “Mixture ABC” case. The “Mixture Exact” case is sub-optimal in
this study since it is assuming symmetric α-stable noise, while the “Mixture ABC”
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case appropriately assumes asymmetric α-stable noise. In all cases we are particularly
interested in the estimated cointegration basis vectors β which directly affect portfolio
weights in Bayesian pairs trading.
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Figure 2: Estimated cointegration vector β in the first and second study.

Real Data Analysis

In this section we focus on the accuracy of estimation for vectors β. These are important
to the design of algorithmic trading strategies, since they are the basis for projection of
the raw price series to obtain a stationary deviation series to consider trading analysis.
In addition we provide estimation results for the reversion rate of the stochastic trends
to stationarity as denoted by the matrix α. We analyze the performance of the basic
“Gaussian” posterior model of Peters et al. (2010a) and Sugita (2009) in the presence
of inter-day price series level shifts versus the estimation of the “Mixture ABC” model
via Algorithm 1.

We present data analysis for two pairs of assets, AUD/CD and FV/TU. The first
example demonstrates an asset pair with approximate symmetry though quite heavy
tailed level shift statistical model. The second example is the opposite with statistically
significant asymmetry and a not so heavy tailed statistical model fit for the level shift
components in each asset TU and FV. In the first case where approximate symmetry is
reasonable we demonstrate that results compare favorably between the ‘Mixture Exact’
and the ‘Mixture ABC’ results. In the second case the asymmetry requires that we
utilize the mixture ABC approach.
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Gaussian model Gaussian and α-stable intra-day

Parameter Estimates Gaussian Mixture Exact Mixture ABC

Ave. MMSE β1,2 -0.31 (0.25) 0.24 (0.19) 0.18 (0.21)

Ave. Var. β1,2 0.20 (0.04) 0.76 (0.12) 0.83 (0.08)

Ave. MMSE α1,1 -0.02 (1.36E-3) -0.04 (2.1E-3) -0.01 (3.8E-3)

Ave. Var. α1,1 3.90E-5 (4.09E-6) 4.2E-5 (9.21E-6) 5.3E-5 (2.5E-5)

Ave. MMSE α1,2 1.24E-3(1.20E-3) -2.9E-4 (2.2E-3) -6.3E-4 (1.7E-3)

Ave. Var. α1,2 2.18E-5(3.07E-6) 3.1E-5 (9.01E-4) 1.7E-5 (1.0E-3)

Table 4: Sampler Analysis: In (·) are the standard error estimates obtained from
20 batches of MCMC samples each of length 1,000, averaged over each of the sets of 2
days of data.

First we assess the price series for AUD / CD with base currency in AUD sampled at
10min intervals during the joint open market hours. Analysis is performed for the first
contract in Table 1, starting from 05/09/99, containing 60 days worth of market data,
producing a time series of prices of length 29,621 samples. The data was transformed
by translation of each series by the median and scaled by the standard deviation. The
analysis performed considers 30 batches of 2 days of data, giving on average 489 data
samples per batch, and the posterior parameter estimates are averaged over samplers
analysis of each data set and presented in Table 4. These results demonstrate that
since this asset pair has approximately symmetric, though heavy tailed inter-day level
shifts, the parameter estimates from the Mixture Exact (assuming β = 0) and Mixture
ABC (β ≈ 0) are similar. Furthermore, they demonstrate that failing to account for the
inter-day level shifts observed can significantly affect the estimation of the cointegration
vectors and reversion rates as demonstrated in the comparison in Table 4 and in Figure 4.

Next we assess the price series for FV / TU sampled at 10min intervals during the
jointly open market hours. Analysis is performed for the first contract in Table 1, start-
ing from 05/09/99, containing 53 days worth of market data, producing a time series
of prices of length 19,935 samples. The data was transformed by translation of each
series by the median and scaled by the standard deviation. The analysis performed
considers 26 batches of 2 days of data and the posterior parameter estimates are av-
eraged over samplers analysis of each data set and presented in Table 5. Again, these
results demonstrate that failing to account for the inter-day level shifts observed can
significantly affect the estimation of the cointegration vectors and reversion rates, this
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AUD−CD pair − Gaussian Model
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AUD−CD pair − Gaussian & α − Stable Model

2 day segement index

Figure 3: Estimated cointegration vector β for AUD-CD pair for 2 day segments at
10min samples. TOP: Gaussian model; Bottom: Mixture ABC model; Solid line is
estimated MMSE and dashed line is posterior 95% Confidence Interval.

time for the asymmetric case.

7 Conclusions

We studied the impact of price series level shifts on statistical estimation of matrix-
variate parameters in CVAR models utilized in algorithmic trading. In particular, we
first demonstrated the significant impact on estimation of CVAR models when failing
to appropriately model observed level shifts in price series.

We developed a composite noise model, comprised of Gaussian and α-stable innova-
tion noise, for the CVAR model in the presence of price series level shifts. The example,
that we illustrated this model on, involved the situation that occurs at deterministic
times each trading day, at inter-day market boundaries. However, we point out that
our methodology is general and extends also to settings in which the level shift times
are unknown a priori.

Working under this composite noise model of Gaussian and α-stable CVAR innova-
tions, we developed a novel conjugate Bayesian model under transformation, allowing
for exact MCMC sampling frameworks to be developed in the symmetric heavy tailed
α-stable scenario. In the asymmetric skewed noise setting, a non-standard approxi-
mate Bayesian computation model was developed and an advanced, adaptive MCMC
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Gaussian model Gaussian and α-stable intra-day

Parameter Estimates Gaussian Mixture ABC

Ave. MMSE β1,2 -1.01 (0.11) -5.55E-2 (0.12)

Ave. Var. β1,2 0.07 (9.5E-3) 0.05 (4.5E-3)

Ave. MMSE α1,1 -0.01 (2.4E-3) -0.52(5.89E-2)

Ave. Var. α1,1 1.89E-4 (1.94E-5) 7.1E-3 (1.3E-3)

Ave. MMSE α1,2 4.96E-2 (1.8E-3) 4.48E-2 (5.65E-2)

Ave. Var. α1,2 1.28E-4 (1.77E-5) 4.8E-3 (1.6E-3)

Table 5: Sampler Analysis: In (·) are the standard error estimates obtained from
20 batches of MCMC samples each of length 1,000, averaged over each of the sets of 2
days of data.

algorithm was utilized to sample this ABC posterior.

We were able to demonstrate and verify on synthetic data sets under both symmet-
ric and asymmetric α-stable models, that the sampling methodology we developed for
estimation of the MMSE for the matrix-variate posterior parameters is accurate. We
then compared the performance of our model and sampler to the standard Gaussian
Bayesian CVAR model on real financial pairs, demonstrating a marked difference in the
estimated CVAR model parameters, hence justifying the applicability of such a model
in applied financial models for trading.

The model developed in this paper assumes that the underlying model for the price
series pair is appropriately modeled by the basic CVAR model presented in Section 2.
This differs significantly from the underlying assumption of Chen and Hsiao (2010).
Alternative approaches, that could be developed in future work, include the use of a
Markov switching regime model, see for example Krolzig (1997). Under such a model
the CVAR parameters may vary depending on a latent regime state variable, see Sugita
(2008) for details.
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