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Neutral-data comparisons for Bayesian testing

Dan J. Spitzner∗

Abstract. A novel approach to evidence assessment in Bayesian hypothesis testing

is proposed, in the form of a “neutral-data comparison.” The proposed assessment

is similar to a Bayes factor, but, rather than comparing posterior to prior odds, it

compares the posterior odds of the observed data to that calculated on “neutral”

data, which arise as part of the elicitation of prior knowledge. The article develops

a general theory of neutral-data comparisons, motivated largely by the Jeffreys-

Lindley paradox, and develops methodology for specifying and working with neu-

tral data in the context of Gaussian linear-models analysis. The proposed method-

ology is shown to exhibit exceptionally strong asymptotic-consistency properties

in high dimensions, and, in an application example, to accommodate challenging

analysis objectives using basic computational algorithms.

Keywords: Bayesian hypothesis testing; Bayes factors; Bayesian asymptotic-con-

sistency; model choice in high dimensions; analysis of variance.

1 Introduction

The problem of interest is to test a null hypothesis, H0, about a parameter, θ, against
an alternative, H1, on the basis of data, Y . The conventional approach to this problem
is to calculate a Bayes factor, whose purpose is to report an assessment of the strength
of evidence in Y about H0. Supposing that H1 is the negation of H0, and assuming a
suitable prior distribution under each hypothesis, the Bayes factor is

BF0 =
P [H0|Y ]/(1− P [H0|Y ])

ρ0/(1− ρ0)
, (1)

writing ρ0 = P [H0] to denote the prior null probability. A larger value of BF0 indicates
stronger support for H0, and may perhaps be interpreted within standard categories
such as “positive,” “strong,” or “very strong” support.

The form of (1) as a ratio highlights that BF0 is a comparison between the posterior
and prior odds of H0. This article proposes an alternative ratio, a “neutral-data com-
parison,” which modifies BF0’s comparison by replacing the baseline with an alternative
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quantity that reflects “neutrality” between H0 and H1. Specifically, a neutral-data com-
parison replaces the denominator in (1) with the posterior odds calculated on “neutral
data,” Ỹ , to yield

NDC0 =
P [H0|Y ]/(1− P [H0|Y ])
P [H0|Ỹ ]/(1− P [H0|Ỹ ])

. (2)

Two questions that immediately arise are: “What are neutral data?” and “Why does
it make sense to substitute P [H0|Ỹ ] for ρ0?” A starting point to answering the first
question is the following definition: neutral-data are imaginary data, identified as a

component of prior knowledge, that exhibit evidence neither for H0 nor H1. In what
follows, this definition is developed into guidelines for specifying Ỹ in practice. The
second question is answered using Good’s (1950) “device of imaginary results,” which
is described below and which will serve as a cornerstone for interpreting NDC0.

One appealing feature of NDC0 is its potential to bridge longstanding gaps between
estimation and testing, particularly with regard to the use of vague priors. In estimation,
vague priors are often formulated using reference prior analysis (cf. Berger, Bernardo,
and Sun, 2009), which typically prescribes impropriety, or by suitably transforming the
parameter and then setting a prior scale parameter to some arbitrarily large value. In
testing, however, these formulations of the prior do not readily translate for use with
Bayes factors, since BF0 may either depend on an arbitrary normalizing constant (of an
improper prior), or, when the scale parameter is large, may suffer the “Jeffreys-Lindley
paradox” (cf. Lindley, 1957), by which it becomes more sensitive to the diffuseness of
the prior than to the data. It is shown below that a neutral-data comparison sidesteps
these difficulties, and exhibits sensitivity to prior diffuseness at a level comparable to
that observed in estimation. Neutral-data comparisons thus induce a certain degree
of consistency between estimation and testing with regard to the types of priors that
are suitable for use in practice. Other practical benefits of NDC0 are possible as well,
for it is shown below that neutral-data comparisons admit natural default settings,
but readily incorporate prior knowledge about H0 and H1; they inspire model-choice
procedures with especially good asymptotic-consistency properties, and they admit a
straightforward computational method with which to carry out complicated Gaussian
linear-models analyses.
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1.1 Related literature

Existing methodologies with which neutral-data comparisons most closely align are the
calibration technique of Spiegelhalter and Smith (1982), the “intrinsic Bayes factor”
of Berger and Pericchi (1996), and the “expected-posterior prior” of Pérez and Berger
(2002), each of which uses observed or imaginary “training samples” to calibrate or
construct a Bayes factor in a way that roughly resembles the use of neutral data here.
There are sharp differences, however, not just in the way that imaginary data are
used, but in what they are intended to represent. Whereas neutral data originate
in the elicitation of prior knowledge, Spiegelhalter and Smith (1982) and Berger and
Pericchi (1996) derive their training samples by objective criteria, to reflect minimal
data configurations that are required for carrying out inference. Pérez and Berger (2002)
work with objective criteria, too; but, in addition, they consider subjective elicitation
of imaginary training samples, in a formulation whereby such data arise “from beliefs
as to how a training sample would behave” (p. 495). In contrast, neutral data locate a
balance between H0 and H1, which is a distinct aspect of prior knowledge. Conceptual
differences aside, the statistics constructed by these existing methods do intersect with
neutral-data comparisons in certain substantial ways, which are examined in Section 2.1,
below. Other related techniques worthy of mention are O’Hagan’s (1995) “fractional
likelihood” and Aitkin’s (1991) “posterior Bayes factors.”

A subset of related literature that is currently quite active explores broad criteria for
asymptotic consistency of BF0 as it relates to the choice of a prior. This is discussed in
Berger, Ghosh, and Mukhopadhyay (2003), Garćıa-Donato and Sun (2007), Liang et al.
(2008), Casella et al. (2009), Guo and Speckman (2009), Maruyama and George (2010),
and many others. Johnson and Rossell’s (2010) asymptotic analysis under “non-local”
priors is particularly relevant, in that one of their central focuses is the balance in em-
phasis between H0 and H1, a concept embodied here in the definition of Ỹ . A close
asymptotic connection between NDC0 and non-local priors is made in Section 3.2, be-
low. The use of asymptotic consistency to evaluate Bayesian procedures is conceptually
justified in Diaconis and Freedman (1986), and is by now widely accepted as guidance
for developing methodology. For instance, Berger and Pericchi (1996) state a preference
for procedures that match valid Bayes factors asymptotically. A similar point of view
motivates the well-known BIC criterion of Schwarz (1978), and it will play an important
role here as well.
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1.2 Objectives and outline

As indicated in the discussion below (2), the purpose of this article is to motivate
NDC0 both conceptually and as an applied tool, using ideas that are consistent with
Bayesian thinking. Its goals are to establish a foundation for theoretical and method-
ological development, to provide basic guidelines for eliciting neutral data in practice,
and to demonstrate interesting capabilities of neutral-data comparisons. The approach
to achieving these goals is described in the following outline of discussion.

Section 2 lays out a theory and interpretation of NDC0 in broad generality. The
entry point is a reinterpretation of the Jeffreys-Lindley paradox as a particular type
of incoherency that is revealed upon using the device of imaginary results to check
elicitation of the parameter ρ0. Subsequently, NDC0 is interpreted as (i) a reasonably
good approximation to an ideal Bayes factor; and (ii), an alternative to BF0 that is
better suited to accommodate the above type of incoherency. The conceptual setup is
also extended to the scenarios involving multiple hypotheses.

The remainder of the article is concerned with implementation of the theory laid out
in Section 2. Its scope is limited to testing linear hypotheses under a Gaussian model,
and many results are furthermore asymptotic in nature. Despite its narrower focus, the
context is still broad enough to achieve the article’s applied goals, and it carries special
importance as a widely-used analysis framework. Within this discussion, Section 3 de-
scribes how neutral data may be elicited from prior knowledge that is expressed in the
traditional form of a probability distribution. Section 4 investigates neutral-data com-
parisons in high-dimensional analysis, where they are shown to inspire a model-choice
procedure that rivals the strongly-performing “sure independence screening” procedure
of Fan and Lv (2008). Performance criteria in that section are set at a high bar, in con-
sidering sparse signals and dimensionality that increases at an exponentially fast rate.
Section 5 demonstrates the use of neutral-data comparisons in an example application of
Bayesian “analysis of variance.” The example highlights that neutral-data comparisons
are computationally attractive in their manner of achieving complicated analysis objec-
tives such as partition analysis, whose typical implementation using product-partition
models can be delicate. (See, e.g., Crowley, 1997, for basic ideas.) Section 6 offers
concluding discussion, and an appendix compiles all technical derivations.



D. J. Spitzner 607

2 Motivation

In this section, the motivation for NDC0 is laid out in steps, beginning with an ex-
ploration of key distinctions between the behavior of NDC0 and BF0, and leading to
the interpretations of NDC0 indicated in Section 1.2. It is assumed throughout that a
suitable setting for Ỹ exists and is specified (possibly from techniques described later
in Section 3) in accordance with the definition of neutral data given below (2). To be
clear, Ỹ is held fixed throughout this section, for reasons that are explained in Section
2.4.

2.1 Comparison of BF0 and NDC0

Exploration and comparisons of BF0 and NDC0 are aided by the alternative formulas

BF0 =
π(Y |H0)
π(Y |H1)

and NDC0 =
π(Y |H0)/π(Y |H1)
π(Ỹ |H0)/π(Ỹ |H1)

, (3)

where π(y|H) =
∫

H
π(y|θ)π(θ|H)dθ is a marginal density for the data, given the hy-

pothesis H. These are equivalent to the formulas (1) and (2), and highlight that both
BF0 and NDC0 may be calculated without having specified ρ0. Independence from ρ0

is often touted as a benefit to the use of BF0, and we see now that NDC0 shares the
same property.

The formulas in (3) furthermore show that NDC0 is insensitive to individual renor-
malization of the conditional priors, while BF0 is not. To see this, consider revising
π(θ|H1) to π∗(θ|H1) = cπ(θ|H1), for some constant c, a revision that might be thought
logically inconsequential given that the relative probabilities within H1 are unaffected;
yet, it is clear from (3) that only NDC0 is left unchanged, while BF0 is rescaled by
the factor 1/c. For perspective on this behavior, consider the unconditional posterior
density π(θ|Y ) ∝ ρ0π(Y |θ)π(θ|H0) + (1 − ρ0)π(Y |θ)π(θ|H1), which clearly becomes
modified, as does BF0, upon renormalizing π(θ|H1) but not π(θ|H0). By working with
π(θ|Y ), the source of the behavior becomes clear: disproportionate renormalization
changes in the relative probabilities between H0 and H1. Accordingly, the sensitivity of
π(θ|Y ) to renormalization is not so strange; hence, neither is such sensitivity of BF0,
but the insensitivity of NDC0 to renormalization is now seen to be a strong and surpris-
ing property. What is more is that it is possible for π(θ|Y ) to inherit this insensitivity
property from NDC0, by a route that is described in Section 2.5, below.

The statistics BF0 and NDC0 are, in addition, drastically different in their sen-
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sitivity to prior scale parameters. To see this, suppose Y |θ ∼ N(θ, I), where θ is
ν1-dimensional, and that π(θ|H1) is revised to π∗(θ|H1) = τ−ν1π(θ/τ |H1), for some
scale parameter τ > 0. Suppose also that both the observed and neutral posterior
densities π(θ|Y ,H1) and π(θ|Ỹ , H1) peak sharply at unique modes in H1, respectively
denoted θ̂1 and θ̃1, which admits accurate study of BF0 and NDC0 using Laplace
approximations to π(Y |H1) and π(Ỹ |H1) (cf., Kass and Raftery, 1995, sec. 4.1); the
resulting expressions are

BF0 ≈ τν1 × |I + τ−2S(θ̂1/τ)|1/2π(Y |H0)
(2π)ν1/2π(Y |θ̂1)π(θ̂1/τ |H1)

(4)

NDC0 ≈ |I + τ−2S(θ̂1/τ)|1/2

|I + τ−2S(θ̃1/τ)|1/2

π(Ỹ |θ̃1)π(θ̃1/τ |H1)
π(Y |θ̂1)π(θ̂1/τ |H1)

π(Y |H0)
π(Ỹ |H0)

,

writing S(t) to denote the Hessian matrix of logπ(t|H1). As τ →∞, typically θ̂1 → Y ,
θ̃1 → Ỹ , and all of S(θ̂1/τ), S(θ̃1/τ), π(θ̂1/τ |H1), and π(θ̃1/τ |H1) tend to nonzero
constants (this is not true of non-local priors, which are considered later in Section 3.2);
hence, the expressions in (4) show that NDC0 typically stabilizes, while BF0 increases
without bound, at the rate τν1 , to eventually assess arbitrarily strong support for H0,
regardless of Y . This behavior of BF0 is an illustration of the Jeffreys-Lindley paradox,
about which more is said below. Moreover, NDC0 is shown in (4) to depend on τ

predominantly through θ̂1 and θ̃1, statistics representative of the estimation context
(e.g., θ̂1 itself might be reported as a point estimate of θ, conditional on H1). By
viewing these statistics through their connection to θ̂1 and θ̃1, NDC0 is seen to be
sensitive to prior diffuseness at a level comparable to estimation, while the sensitivity
of BF0 is seen to be much stronger.

2.2 The operational and authentic priors

Although the Jeffreys-Lindley paradox prevents straightforward translation to testing
of priors that are suitable for estimation, it has long been accepted as part of Bayesian
thinking, and is justified in various ways. In prediction, Smith and Spiegelhalter (1980,
p. 216) point out that the Jeffreys-Lindley paradox allows BF0 to “function as a fully

automatic Occam’s Razor—cutting back to the simpler model when there is nothing
lost by so doing.” In testing, the Jeffreys-Lindley paradox typically serves as a caution
against using priors that place a substantial proportion of mass far from H0. Jeffreys
(1961, p. 251), referring to a point-null hypothesis H0 : θ = 0, argues as much in stating,
“the mere fact that it has been suggested that [the parameter] is zero corresponds to
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some presumption that it is fairly small.” Jeffreys’s statement thus indicates that a
vague prior, which puts relatively little prior mass in regions where where the parameter
is “fairly small,” must be interpreted in a careful way. To this end, a vague prior is
here interpreted as no more than an “operational prior,” a prior that represents what
prior knowledge is readily available, and what is to be used as input to data analysis,
but which may ultimately paint an incomplete picture. In other words, a vague prior
is a partial elicitation of prior knowledge in which prior mass that is far from H0, and
possibly elsewhere, is described only loosely. By this interpretation, there is, at least
conceptually, a second prior to consider, an “authentic prior,” which is a prior that
precisely and completely describes the picture of prior knowledge, but is somehow not
fully accessible. Differences between the operational and authentic priors are common
in practice, and often arise when the analyst faces insurmountable challenges to fully
eliciting prior knowledge, perhaps due to limited resources, or lack of access to an expert,
which puts the authentic prior out of reach. In these situations, a vague prior may be
the best description of prior knowledge that is available, and NDC0 is to provide a
vehicle with which to exploit it.

It will be useful to consider these ideas in a more formal way, paralleling discussion
that appears in Robert (1993). Working again in the setup surrounding (4), consider the
impact of increasing τ on the probabilities associated with individual subregions in H1.
In an echo of Jeffreys’s statement, above, Robert (1993, p. 603) suggests that a prior
should “give sufficient weight to the range of values of [the parameter] which actually
caused H0 to be tested.” This “range of values” would, in the present context, be taken
to be some particular subset Θ̃1 ⊂ H1 that lies adjacent to H0, one that captures the
values within a “‘reasonable’ range” from H0. (By implication, there is also a subset
of values in H1 that lie beyond a reasonable range from H0, which shall be assumed to
have infinite volume.) Robert observes that as τ → ∞, P [Θ̃1|H1] → 0; hence, unless
ρ0 → 0 also (at the same rate as P [Θ̃1|H1] → 0), a severely uneven balance between H0

versus H1 would eventually arise in the operational prior, at least with respect to the
portion of H1 that is in Θ̃1. This means that, as τ → ∞, eventually ρ0/(1 − ρ0) may
very well misrepresent the prior odds, which consequently diminishes BF0 as a sensible
comparison of posterior to prior odds.

Such uneven balance between H0 versus H1 is not present in the authentic prior.
Under that prior, write P̃ to denote “authentic” probabilities, and set ρ̃0 = P̃ [H0]. The
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statistics of present consideration are

B̃F 0 =
P̃ [H0|Y ]/(1− P̃ [H0|Y ])

ρ̃0/(1− ρ̃0)
and ÑDC0 =

P̃ [H0|Y ]/(1− P̃ [H0|Y ])
P̃ [H0|Ỹ ]/(1− P̃ [H0|Ỹ ])

, (5)

each of which represents an ideal assessment that the analyst would want to report.
Interpreting as above, the conditional probability P̃ [Θ̃1|H1] falls near one, and ρ̃0/(1−
ρ̃0) correctly represents the prior odds; hence, B̃F 0 is indeed a sensible comparison of
posterior to prior odds. For reasons that are discussed next, so is ÑDC0, for it is argued
below that the two statistics are identical, ÑDC0 = B̃F 0.

2.3 The device of imaginary results

The role of the device of imaginary results in these arguments is to allow meaningful
examination of the relationship between a prior null probability, ρ0 or ρ̃0, and its cor-
responding posterior probability calculated on neutral data, P [H0|Ỹ ] or P̃ [H0|Ỹ ]. As
for a definition of this device, Good (1950) formulates it as an exercise to assist the
analyst in checking the suitability of the prior: the analyst is to imagine a data set
that is interesting in some way, then apply Bayes’s rule and check whether the resulting
(imaginary) posterior distribution exhibits sensible characteristics in light of the given
input. In the present context, the “interesting” data set is Ỹ , neutral data, and the
characteristic of the prior that is under check is ρ0 or ρ̃0. The two are connected by the
neutrality of Ỹ : since neutral data exhibits evidence for neither hypothesis, one would
expect the posterior update made on such data to leave knowledge about H0 versus H1

unchanged. In other words, one would expect the device of imaginary results to yield
ρ0 = P [H0|Ỹ ] and ρ̃0 = P̃ [H0|Ỹ ].

Nevertheless, it is implied from the Jeffreys-Lindley paradox that the presence of an
arbitrarily large scale parameter would render one of these criteria, ρ0 = P [H0|Ỹ ],
impossible to satisfy. This is clear from the form of the Bayes factor in (1), for,
writing BF0(Ỹ ) to denote BF0 evaluated on Ỹ , the criterion ρ0 = P [H0|Ỹ ] implies
BF0(Ỹ ) = 1, but this is impossible since BF0(Ỹ ) →∞ as τ →∞, regardless of what is
specified as neutral data. On the other hand, to reflect the accurate, complete picture
of prior knowledge embodied in the authentic prior, it is expected that ρ̃0 = P̃ [H0|Ỹ ]
(i.e., B̃F 0(Ỹ ) = 1, using analogous notation) would indeed hold true. An immediate
consequence is that ÑDC0 = B̃F 0, as was claimed in the discussion under (5).
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2.4 Interpretation of NDC0

The pieces are now in place to expound on the two interpretations of NDC0 from Sec-
tion 1.2, which are reiterated using present notation as follows.
Interpretation 1: NDC0 is a reasonably good approximation to B̃F 0.
Interpretation 2: NDC0 is an adjustment to BF0 that corrects for possible misrepre-
sentation of the balance between H0 versus H1 by ρ0.

Interpretation 1 formally treats the operational prior as an approximation to the
authentic prior. Hence, since ÑDC0 = B̃F 0, both BF0 and NDC0 are approximations
to B̃F 0, and the sensitivity comparison of Section 2.1 suggests a preference for NDC0.
That is, the approximation of NDC0 is at least “good” relative to BF0, when the
operational prior is vague. Nevertheless, the types of sensitivity examined in Section
2.1 are quite specific, and there is ample room for investigations of accuracy beyond the
scope of that discussion. Further support for Interpretation 1 is provided in Section 3,
below, in an investigation that ties the accuracy of NDC0 to the analyst’s choice of Ỹ .

Interpretation 2 is attractive since it need not involve consideration of any prior
other than the operational prior. By this interpretation, a failure of ρ0 = P [H0|Ỹ ]
indicates that only one of ρ0 or P [H0|Ỹ ] may accurately represent the balance between
H0 versus H1, but the behavior P [Θ̃1|H1] → 0 as τ →∞, observed in Section 2.2, casts
doubt on ρ0 serving in that way. Further manipulation of the quantities involved will
moreover lend positive support for P [H0|Ỹ ] as the better representative of the balance
between H0 versus H1. For this, consider solving (1) for ρ0, and substituting Ỹ for Y ;
the result is

ρ0 =
P [H0|Ỹ ]
BF0(Ỹ )

[
1

1− P [H0|Ỹ ]{1− 1/BF0(Ỹ )}

]
, (6)

which identifies the factors at play in attempting to achieve the criterion ρ0 = P [H0|Ỹ ].
Suppose, now, that P [H0|Ỹ ] is set to a representative value of the balance between H0

versus H1, say P [H0|Ỹ ] = 1/2. Subsequently, as τ →∞, it will follow that BF0(Ỹ ) →
∞, and so formula (6) provides that ρ0 → 0. According to Section 2.2, this behavior of ρ0

is precisely what is needed to make sense of the corresponding behavior P [Θ̃1|H1] → 0.
In other words, P [H0|Ỹ ] is the preferred representative of the balance between H0

versus H1 because sensible patterns emerge upon putting it in that role. As a bonus,
these patterns suggest an interpretation of ρ0 as representing the balance between H0

versus the portion of H1 that is in Θ̃1.

A similar pattern clarifies the role of Ỹ in eliciting prior knowledge. In the setup
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surrounding (4), consider if Ỹ was not held fixed, but was instead allowed to vary with τ

in such a way that fixes BF0(Ỹ ) = 1. From (4), this would require π(Ỹ |H0) = O(1/τν1),
hence ‖Ỹ ‖ → ∞; but then surely Ỹ would eventually cease to represent neutrality, for
its divergence would lead θ̃1, an imaginary conditional estimate of θ, to simultaneously
shift far from H0, to even the unreasonable range of values beyond Θ̃1, eventually.
Careful elicitation of Ỹ thus requires a certain degree of separation from τ , and is best
carried out under this general guideline: avoid deliberately tying neutral data to loose
descriptions of prior knowledge. Stated differently, in the presence of differences between
the operation and authentic priors, the role of Ỹ is to open an alternative channel
through which to elicit prior knowledge, to potentially offset unresolved imprecision in
descriptions of prior knowledge that are obtained through other channels.

Finally, observe that each of Interpretations 1 and 2 identify a quantity that is
to represent the balance between H0 versus H1: in Interpretation 1, that quantity is
ρ̃0; in Interpretation 2, it is P [H0|Ỹ ]. In practice, either quantity would be specified
by the analyst, and either would presumably be set to the same value, since they
each represent the same concept. To reflect this notion, it will be convenient to write
ρ̃0 = P [H0|Ỹ ], and to simplify terminology by using the term “corrected prior null
probability” as a catchall to refer either to ρ̃0, P [H0|Ỹ ], or to “the balance between H0

versus H1.” Note that there is heuristic intuition that arises by setting ρ̃0 = P [H0|Ỹ ],
for such equality suggests that ρ̃0 might double as a “phantom” prior null probability,
a (potentially nonsensical) null probability that remains unchanged upon application
of the operational prior’s posterior calculation to Ỹ . It is worthwhile to note, too,
that setting ρ̃0 = 1/2 reduces NDC0 to just the posterior odds, whose interpretation is
satisfying in certain ways discussed in Lavine and Schervish (1999).

2.5 Derived posterior probabilities

Recall the formulas in (3), which show that neither BF0 nor NDC0 need involve ρ0 in its
calculation. In contrast, any comprehensive data analysis would involve consideration
of P [H0|Y ], as a component of the full posterior distribution, whose calculation does
indeed require a precise setting for ρ0. As (6) shows, it is possible to derive a value of ρ0

from P [H0|Ỹ ], which might then be used to calculate P [H0|Y ] by standard formulas.
Nevertheless, it is convenient to avoid formula (6) entirely, and instead derive P [H0|Y ]
from values of P [H0|Ỹ ] and NDC0, by solving (2). The result is

P [H0|Y ] =
{
1 +

(
ρ−1
0 − 1

)
/BF0

}−1
=

{
1 +

(
ρ̃−1
0 − 1

)
/NDC0

}−1
, (7)
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where ρ̃0 = P [H0|Ỹ ], which is written to highlight parallels between the pairs (ρ0, BF0)
and (ρ̃0, NDC0).

In addition, the posterior distribution, when derived in this way, inherits the strong
insensitivity of NDC0 to individual renormalization of π(θ|H0) and π(θ|H1), discussed
in Section 2.1. To see this, first deduce that π(θ|Y ) = P [H0|Y ]π(θ|Y ,H0) + (1 −
P [H0|Y ])π(θ|Y ,H1); each of π(θ|Y , H0) and π(θ|Y ,H1) is automatically insensitive
to renormalization, and (7) shows that P [H0|Y ] is insensitive as well, since it is a
function of ρ̃0 and NDC0 only.

2.6 Multiple hypotheses

The above concepts extend to situations in which there are multiple hypotheses un-
der consideration. Following convention, the hypotheses in this context may be called
“hypothesis-models,” or just “models,” and the context itself may be called “model
choice.” Suppose there are up to a countable number of models to consider, the j’th
of which is denoted as Mj , and that comparisons are made in pairs, Mj versus Mk.
The proposed formulation of neutral-data comparisons permits neutral data to on the
models being compared; hence, write Ỹjk to denote neutral data elicited with respect
to the comparison Mj versus Mk. The neutral-data comparison for Mj versus Mk is
defined according to

NDCjk =
P [Mj |Y ,Mj ∪Mk]/P [Mk|Y ,Mj ∪Mk]

ρ̃jk/ρ̃kj
(8)

=
π(Y |Mj)/π(Y |Mk)

π(Ỹjk|Mj)/π(Ỹjk|Mj)
,

in which ρ̃jk = P [Mj |Ỹjk,Mj ∪ Mk] is the corrected conditional prior probability
of Mj , given Mj ∪ Mk. The analogous uncorrected prior null probability is ρjk =
P [Mj |Mj ∪Mk].

When extending ideas to model choice, a critical issue is that the Ỹjk must be
constructed in such a way as to preserve the standard rules of probability. In other
words, it is required that both sets of probabilities ρ̃jk and ρjk are coherent across all
model comparisons, and that they are connected by the analogue to (6) given by

ρjk/ρkj =
ρ̃jk/ρ̃kj

BFjk(Ỹjk)
, (9)

where BFjk(Ỹjk) = π(Ỹjk|Mj)/π(Ỹjk|Mk) is the Bayes factor for Mj versus Mk,
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calculated on Ỹjk. Alternatively, in terms of Ỹjk only, the required criteria are

BFjk(Ỹjk) =
1

BFkj(Ỹkj)
and (10)

BFjl(Ỹjl) = BFjk(Ỹjk)BFkl(Ỹkl), whenever Mj ⇒Mk ⇒Ml.

The analogue to (7) in model choice is

P [Mj |Y ]
P [Mk|Y ]

=
ρjk

ρkj
BFjk =

ρ̃jk

ρ̃kj
NDCjk, (11)

where BFjk = BFjk(Y ), which allows ratios of posterior probabilities to be calculated
from either the pairs (ρjk, BFjk) or (ρ̃jk, NDCjk). The unconditional posterior proba-
bilities P [Mj |Y ] are implied from these ratios, and may often be calculated efficiently
using standard Markov chain Monte Carlo algorithms, as is demonstrated in the appli-
cation example of Section 5, below.

3 Eliciting neutral data

Having now established the basic concepts of neutral-data comparisons, the remainder
of the article is concerned with the development of an associated methodology, and is
henceforth carried out in the limited context of testing linear hypotheses in Gaussian
settings. This section’s main goal is to develop guidelines for specifying neutral data in
practice, but its setup is also exploited for the secondary purpose of exploring accuracy
in the context of Interpretation 1 from Section 2.4.

3.1 The model and asymptotic setup

The basic hypotheses are now H0 : θ = 0 versus H1 : θ 6= 0, for a νn,1-dimensional
parameter, θ. The model is

Yn|θ, σ2 ∼ N(θ, n−1σ2I) and θ|H1, σ
2 ∼ N(0, σ2τ2

nI), (12)

where σ may or may not be known. When σ is unknown, it is supposed there is a
statistic σ̂2

n, independent of Yn, for which νn,2σ̂
2
n/σ2 ∼ χ2

νn,2
; an associated prior is

specified according to λ/σ2 ∼ χ2
κ, for parameters κ, λ ≥ 0, where κ = 0 and λ = 0

are each understood as a limit. (The parameter σ is treated here in the simplest way
possible, but an alternative setup, used often in linear-models analysis, would treat σ

separately under H0 and H1, and similar results would be obtained. See Spiegelhalter
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and Smith, 1982, p. 378, for discussion.) The parameter n in (12) specifies the precision
of the model, given σ, whose exact (i.e., non-asymptotic) setting may be determined
by the conventions of the analysis context, as is done in the application example of
Section 5, below. Note also that the prior may depend on n, through τn, but most of
the properties deduced below will hold when τn is fixed at “some large value.”

Asymptotic analysis will consider the behavior of NDCn,0 as n → ∞, nτ2
n → ∞,

and νn,2 → ∞, where NDCn,0 is the neutral-data comparison for H0 versus H1 under
the model (12). Depending on the context, νn,1 may be held fixed at νn,1 = ν1 or may
vary with n, the purpose the varying νn,1 being to identify leading constants, and not
to study the impact of dimensionality, which is treated in Section 4. Although θ may
depend on n through its dimensionality, νn,1, its individual entries are fixed, and so
subscripting is omitted. Also fixed are the parameters σ, κ, and λ.

It will be convenient to define standardized versions of the observed and neutral data
as Zn = nYn/σ and Z̃n = nỸn/σ. The model provides that ‖Zn‖2 ∼ χ2

νn,1
(n‖θ‖2/σ2)

and νn,2σ̂
2
n/σ2 ∼ χ2

νn,2
, given θ and σ2; subsequently, Chebyshev’s inequality implies

‖Zn‖2 = νn,1 + n‖θ‖2/σ2 + O

(√
2νn,1 + 4n‖θ‖2/σ2

)
(13)

σ̂2
n = σ2 + O

(√
2σ4/νn,2

)
.

The mode of convergence here is “in probability,” which is too weak for the Bayesian
concept of asymptotic consistency, and must be strengthened to the stronger mode of
“almost sure” convergence. To this end, almost sure convergence is assumed in (13),
and in other expressions like it that will follow, as part of the construction of the model.
Refer to Spitzner (2008, sec. 4.1) for detailed discussion of this point.

When σ is known, the relevant neutral-data comparison (2) has

− 2logNDCn,0 = wn

{
‖Zn‖2 − ‖Z̃n‖2

}
, (14)

where wn = 1/{1 + 1/(nτ2
n)}. When σ is unknown, set

Fn =
n‖Yn‖2/νn,1

σ̂2
n + λ/νn,2

=
σ2‖Zn‖2/νn,1

σ̂2
n + λ/νn,2

, (15)

and suppose that neutral data take the form of a neutral value, F̃n, of Fn; the neutral-
data comparison has −2logNDCn,0 = Qn(Fn)−Qn(F̃n), where

Qn(F ) = −(νn,1 + νn,2 + κ)log
{

1− wn
(νn,1/νn,2)F

1 + (νn,1/νn,2)F

}
. (16)
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The expansion (13) provides intuition for specifying neutral data: either ‖Z̃n‖2 is to
lie “near” νn,1, or F̃n is to lie “near” one. Accordingly, write ‖Z̃n‖2 = νn,1 +rn

√
νn,1 or

F̃n = 1+rn/
√

νn,1, for some rn, which parameterizes “how near” a neutral-data statistic
is set from its reference value. Treated this way, straightforward analysis precisely
delineates conditions for asymptotic-consistency of NDCn,0: if rn → ∞ and νn,1 =
o(νn,2), then (13) provides that

NDCn,0 ≈
{

exp{wnrn
√

νn,1/2} under H0

exp{−wnn‖θ‖2/(2σ2)} under H1, if rn = o(n/
√

νn,1);
(17)

asymptotic-consistency fails under H0 when rn = O(1).

3.2 Eliciting neutral data from a probability distribution

Working strictly with asymptotic-consistency criteria, one possible approach to eliciting
neutral data would be to decide on a suitable rate at which it is desirable to establish H0,
and then use (17) to set rn in such a way as to achieve it. This may provide a suitable
working method in some contexts, but to expand the possibilities for understanding and
developing NDCn,0 it is desirable to connect the elicitation of neutral data to traditional
expressions of prior knowledge. That connection is made by working formally with
Interpretation 1 from Section 2.4, by which Ỹn is thought to satisfy B̃Fn,0(Ỹn) = 1.
(The notation here follows Section 2, but with the subscript n added.) The criterion
B̃Fn,0(Ỹn) = 1 links Ỹn to the authentic prior, and by that criterion it will be shown
that certain isolated characteristics of the prior determine the rate at which ‖Z̃n‖2 →∞.
A suitable setting for neutral data is thus possible, using traditional tools, by focusing
specifically on those characteristics.

For simplicity, the technique is developed supposing that σ is known; generalizations
to unknown σ involve additional technical complication, but yield essentially the same
results. Operationally, settings derived in the former case may be translated to the latter
by extracting rn from the parameterization ‖Z̃n‖2 = νn,1 + rn

√
νn,1 and substituting

in F̃n = 1 + rn/
√

νn,1.

Write π̃(θ|H1, σ) to denote the authentic conditional prior under H1, with σ known.
The following theorem provides the desired analysis for cases where the authentic prior
is of a standard type, such that π̃(0|H1, σ) > 0, although its statement (iii) covers more
general cases also. The symbol “³” used in statement (ii) is asymptotic similarity:
an ³ bn if both an = O(bn) and bn = O(an).
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Theorem 1. Consider testing H0 : θ = 0 versus H1 : θ 6= 0 under the model (12),
with σ known and νn,1 = ν1 fixed. Suppose B̃Fn,0 is defined from a twice-differentiable
prior density π̃(θ|H1, σ) such that sn(t) = n{‖t‖2− 2tT y}/(2σ2)− logπ̃(t|H1, σ) is, for
any y, locally convex except possibly at t = 0. Define NDC0 according to (14), with
nτn →∞.

(i) Suppose π̃(0|H1, σ) > 0 and 1/τn = O(1). If ‖Z̃n‖2 = ν1log(n/σ2) − 2log
π̃(0|H1, σ) − ν1log(2π), then B̃Fn,0(Ỹn) → 1, and also NDCn,0 ≈ B̃Fn,0 under
H0, but NDCn,0 ≈ C0B̃Fn,0 under H1, where C0 = π̃(θ|H1, σ)/π̃(0|H1, σ).

(ii) Suppose π̃(0|H1, σ) > 0. If ‖Z̃n‖2 = ν1logn + O(1), then B̃Fn,0(Ỹn) ³ 1, and
also −2logNDCn,0 ≈ −2logB̃Fn,0 (or NDCn,0 ³ B̃Fn,0 if 1/τn = O(1)) under
both H0 and H1.

(iii) If (logn)/‖Z̃n‖2 = O(1), but still ‖Z̃n‖2/n → 0, then −2logNDCn,0 ≈
−2logB̃Fn,0, under H1. If (logn)/‖Z̃n‖2 → 0, then B̃Fn,0/NDCn,0 → 0, un-
der H1.

Statement (i) of Theorem 1 provides a very close examination of accuracy between
NDCn,0 and B̃Fn,0 when neutral data are selected so that B̃Fn,0(Ỹn) = 1. It shows
the approximation to be quite accurate under H0 and under portions of H1 that are
near H0, thereby providing strong conceptual support for Interpretation 1 of NDCn,0.
Statement (ii) suggests a specific default choice for neutral data, which serves in that
capacity by covering the wide range of standard scenarios relevant to that statement.
Stated for both ‖Z̃n‖2 = νn,1 + rn

√
νn,1 and F̃n = 1 + rn/

√
νn,1, assuming a common

rn, that setting has

‖Z̃n‖2 = νn,1logn and F̃n = logn. (18)

Further properties of this setting are explored in Section 3.3, below. Statement (iii)
identifies limits to the accuracy of NDCn,0 when ‖Z̃n‖2 → ∞ at rates possibly faster
than the proposed default setting in (18).

It is of interest to carry out a similar examination of the following class of non-
standard priors.

Definition 1. A prior density π̃(θ|H1, σ) is a regular non-local prior density with
spherical contours near zero if it is twice-differentiable and

π̃(θ|H1, σ) ≈ c−ν1/2 exp
{
−1

2
f

(
σ2

‖θ‖2
)}

as ‖θ‖2 → 0, (19)
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where c is a normalizing constant, and f is an increasing, twice-differentiable function
such that f0(x) = f(ex) is convex, and furthermore γ(x) = xf ′(x)/f(x) → γ, as x →∞,
for some 0 ≤ γ < ∞.

Each prior of the type in Definition 1 has π̃(0|H1, σ) = 0, and the function f(x)
controls the rate at which π̃(θ|H1, σ) → 0 as θ → 0. Johnson and Rossell (2010) study
the specific cases where f(x) ∝ logx and f(x) ∝ xγ for γ > 0. They suggest that non-
local priors are intuitively attractive for imposing continuity in π̃(θ|H1, σ) as θ → 0, and
furthermore show that such continuity improves the asymptotic performance of B̃Fn,0

in establishing H0. Moreover, they show that the degree of improvement is determined
by the rate at which π̃(θ|H1, σ) → 0. This last pattern is reminiscent of the asymptotic
behavior observed in (17), by which the divergence rate of NDCn,0 is determined by
the rate at which ‖Z̃n‖2 → ∞. The following theorem ties these properties together,
while complementing the results of Theorem 1.

Theorem 2. Consider testing H0 : θ = 0 versus H1 : θ 6= 0 under the model (12),
with σ known and νn,1 = ν1 fixed. Suppose B̃Fn,0 is defined from a prior density
π̃(θ|H1, σ), of the type in Definition 1, and let f(x) be the function in (19), such that
γ(x) = xf ′(x)/f(x) → γ ≥ 0. Suppose further that sn(t) = n{‖t‖2 − 2tT y}/(2σ2) +
f(σ2/‖t‖2)/2 is, for any y, locally convex except at t = 0.

(i) If Z̃n is such that B̃Fn,0(Ỹn) → 1, then ‖Z̃n‖2 solves

‖Z̃n‖2 ≈ (γ + 1)2

2γ + 1

[
f

(
n

ã2‖Z̃n‖2
)

+ ν1logn

]
, (20)

where ã = 1 + γ/(γ + 1), hence 1 ≤ ã < 2. The solution is unique up to the
accuracy of the approximation.

(ii) At each n, the equation

a2
n‖Zn‖2

(
1− 1

an

)
=

(
n

a2
n‖Zn‖2

)
f ′

(
n

a2
n‖Zn‖2

)
(21)

is solved uniquely for an > 0. Subsequently, for such an,

− 2logB̃Fn,0 ≈ −
[
(γ + 1)f

(
n

a2
n‖Zn‖2

)
+ ν1logn

]
, (22)

under H0.

Statement (i) of Theorem 2 is especially useful to translate the behavior of the prior
near H0 into a setting for neutral data. The idea here is that, to specify neutral data,
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prior knowledge might be elicited sufficiently well as to fix a suitable function f(x),
from which it becomes possible to solve (20) for the desired quantity ‖Z̃n‖2. Such
elicitation may or may not yield sufficient information with which to incorporate f(x)
into the operational prior, since all attention is focused on a neighborhood near H0.
Supposing that it does not, our interest is to examine the accuracy of NDCn,0 as an
approximation to B̃Fn,0 when f(x) is used only to specify ‖Z̃n‖2. The accuracy of
that approximation under H1 is described in Theorem 1.iii; its accuracy under H0 is
described by the following result.

Corollary 1. In the setting of Theorem 2, define NDCn,0 according to (14), with ‖Z̃n‖2
as in (20), and nτn →∞.

(i) Suppose f(x) = klogx for k > 0. Then ‖Z̃n‖2 = (k + ν1)logn, an = 1/2 +
{k/‖Zn‖2+1/4}1/2, −2logB̃Fn,0 ≈ −(k+ν1)logn, and −2logNDCn,0 ≈ −2logB̃Fn,0,
under H0.

(ii) Suppose f(x) = kxγ for k, γ > 0. Then ‖Z̃n‖2 ≈ C1n
γ/(γ+1) and −2logB̃Fn,0

≈ −C2n
γ/(γ+1), where

C1 =
{

k(γ + 1)2

ã2γ(2γ + 1)

}1/(γ+1)

and C2 =
k(γ + 1)
γγ/(γ+1)

, (23)

and −2logNDCn,0 ≈ (C1/C2){−2logB̃Fn,0}, under H0.

Corollary 1 shows that NDCn,0 approximates B̃Fn,0 reasonably well (at least on
a logarithmic scale), even when the operational and authentic priors are substantially
different in the region near H0. Accuracy does decline in moving from f(x) ∝ logx to
f(x)logxγ , and in the latter case it is interesting that accuracy depends on the leading
constant k, through C1 and C2. Upon further examination, it is seen that C1/C2 → 1
as γ → 0 and C1/C2 → 1/(4k) as γ → ∞, thus suggesting that accuracy is fine-tuned
at k = 1/4. At that setting, numerical exploration provides that C1/C2 has a unique
minimum of 0.75 at γ = 0.5, and other contours of C1/C2 = 0.80 at γ = 0.15 and 1.56,
C1/C2 = 0.90 at γ = 0.04 and 5.16, and C1/C2 = 0.95 at γ = 0.01 and 12.13.

3.3 Comparisons

Taking into account both Theorem 1 and Corollary 1, the results of Section 3.2 suggest
that Interpretation 1 of NDCn,0 is quite reasonable in the sense that its scheme to set Ỹ

so that B̃Fn,0(Ỹn) = 1 puts NDCn,0 well within the vicinity of B̃Fn,0. Nevertheless,
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that analysis uncovers disagreements between NDCn,0 and B̃Fn,0 also, which, upon
careful examination, indicate that the direction of any bias of NDCn,0 toward H0 or H1

varies by situation: on one hand, for standard prior types such that π̃(θ|H1, σ) decreases
as θ shifts from zero, the constant C0 < 1 in Theorem 1.i indicates that NDCn,0 is biased
toward H1; on the other hand, for a non-local prior with f(x) = (1/4)logx, the ratio
C1/C2 < 1 in Corollary 1.ii indicates a bias of NDCn,0 toward H0.

In addition to bias comparisons with B̃Fn,0, comparisons of NDCn,0 with closely
related methods are also possible. For this purpose, consider the repeated sampling
case in which Yn = n−1

∑n
i=1 Xi for independent Xi ∼ N(θ, σ2I). In this context,

a minimal training sample, as both Spiegelhalter and Smith (1982) and Berger and
Pericchi (1996) would define it, is an individual Xi; hence, if the operational prior has
π(θ|H1, σ) ∝ 1, respective Bayes factors prescribed by those authors’ techniques are

BFSS
n,0 = nνn,1/2 exp

{−‖Zn‖2/2
}

(24)

BFAI
n,0 = nνn,1/2Â−1

n exp
{−‖Zn‖2/2

}
,

superscripting “SS” for “Spiegelhalter and Smith,” and “AI” for Berger and Pericchi’s
“arithmetic intrinsic” Bayes factor, where

Ân =
1
n

n∑

i=1

exp
{−‖Xi‖2/(2σ2)

} → 2−νn,1/2 exp
{−‖θ‖2/(4σ2)

}
.

The BIC criterion of Schwarz (1978) also implies an approximation to a Bayes factor,
which in this context is identical to BFSS

n,0 . Pérez and Berger (2002) discuss few details
of Bayes factors derived by subjective expected-posterior priors, but those derived by
objective criteria for the most part copy BFAI

n,0.

By applying the device of imaginary results, each formula in (24) implies a corre-
sponding setting for neutral data. Write X̃ n = (X̃1, . . . , X̃n) to denote a neutral-data
version of X n = (X1, . . . , Xn). It is seen that BFSS

n,0(X̃ n) = 1 when calculated on
neutral data such that ‖Z̃n‖2 = ν1logn, which matches the default setting (18), and
yields NDC0 = BFSS

n,0 . The neutral data implied analogously by the intrinsic Bayes
factor are unusual, since ‖Z̃n‖2 varies among the solutions to BFAI

n,0(X̃ n) = 1. Another
interesting choice sets ‖Z̃n‖2 = ν1logn − 2logÂn, which makes BFAI

n,0(X̃ n) = 1 and
NDC0 = BFAI

n,0, but it, too, is unusual since it formulates neutral data partly as a
function of the observed data. Yet, the potential benefit of this latter choice is appar-
ent, for if the authentic prior has θ|H1, σ

2 ∼ N(0, 2σ2I), which is Berger and Pericchi’s
“intrinsic prior” for this context, then NDCn,0 ≈ B̃Fn,0 under both H0 and H1.
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The possibility suggested above of a data-dependent choice for neutral data is in-
triguing, but tangential to the present focus on a more straightforward neutral-data
concept; further discussion is deferred to Section 6. Absent such a choice, the default
setting ‖Z̃n‖2 = ν1logn puts NDCn,0 subject to a criticism shared with BFSS

n,0 , but not
BFAI

n,0, of being asymptotically biased toward H1. Yet, as has been shown, NDCn,0 is
more flexible than BFSS

n,0 in that its emphasis on H0 or H1 can be adjusted by a suitable
non-default choice of Ỹn. This becomes critically important in Section 4, below, where
NDCn,0 is adjusted to emphasize H0 much more strongly than does either of BFSS

n,0 or
BFAI

n,0, in order to achieve asymptotic-consistency in high-dimensions. It is important
to keep in mind, too, that criticisms of asymptotic bias relative to a Bayes factor apply
only to Interpretation 1 of NDCn,0, since Interpretation 2 motivates NDCn,0 as a valid
Bayesian procedure in its own right, not just an approximation to one.

4 Model choice in high-dimensions

Discussion here and in the next section examines the performance of neutral-data com-
parisons in non-trivial applications. The present section considers high-dimensional
performance in a context where the goal is to select the components of a “true model”
from a huge pool of candidate components. This goal is relevant to a variety of scientific
disciplines, most notably genetics, where the number of candidate components may be
in the hundreds or thousands, or even higher. (See, e.g., Fan and Lv, 2010, for a recent
survey.)

To study this context, the Gaussian setup of Section 3.1 is extended to describe
individual components, Yn,i and σ̂2

n,i, collected independently across i = 1, . . . , pn.
These have

Yn,i|θi, σ
2
i ∼ N(θi, n

−1σ2
i I) and νn,2iσ̂

2
n,i/σ2

i |σ2
i ∼ χ2

νn,2i
, (25)

in which θi is of dimension νn,1i. The setup is now sufficiently complicated that it will
be convenient to write Yn to denote “all of the data” (i.e., all Yn,i and σ̂2

n,i across
i = 1, . . . , pn). Component-specific hypotheses are

H0i : θi = 0 versus H1i : θi 6= 0. (26)

The prior is specified such that the θi and σ2
i are independent across i, and each has

θi|H1i, σ
2
i ∼ N(0, σ2

i τ2
n,iI) and λi/σ2

i ∼ χ2
κi

. (27)
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Each component is thus an independent copy of the scenario in Section 3.1. The testing
problem is defined in the model-choice context of Section 2.6. Relevant hypothesis-
models are those of the form

Mn,j = Mn(Aj) =





⋃

i∈Aj

H0i



 ∩





⋃

i/∈Aj

H1i



 (28)

across all index-subsets Aj ⊂ {1, . . . , pn}. Collectively, the parameters θi are consistent
with exactly one of these models, M∗

n = Mn(A∗n), where A∗n = {i : H0i is true}. This
is the “true” model. Accordingly, the goal of analysis is to select a promising candidate
for M∗

n and report with it an assessment of evidence in favor of that candidate actually
being M∗

n.

This problem is difficult when pn is large, and it is especially difficult when A∗n
is large also, in which case the true-model configuration is said be “sparse.” Rele-
vant performance criteria for asymptotic evaluation take pn → ∞ as n → ∞, and
consider both the rate at which pn increases and the strength at which the true H1i

reveal themselves to be true. One particularly challenging set of such criteria is for-
mulated by Fan and Lv (2008), which describes sparsity in “ultra-high” dimensions:
fix constants a > 0 and b > 0 such that a < 1 − b; ultra-high dimensionality allows
logpn = O(na), and sparsity in this context requires only the existence of some c > 0
such that mini/∈A∗n

{‖θi‖2/σ2
i

} ≥ cn−b. Their strategy for carrying out data analysis
in ultra-high dimensions is to first apply “sure independence screening” (SIS) to reduce
the context to mere “high-dimensionality,” in which pn increases only at a polynomial
rate; once high-dimensionality is achieved, any of a number of well-known procedures
can take over the analysis. SIS itself works by first specifying some postulated number,
dn, of true H1i, and then selecting for A∗n the component indices associated with the
smallest pn − dn values of ‖Yn,i‖. Fan and Lv identify (for the case νn,1i = 1) a certain
polynomial rate for dn that will guarantee convergence to one of the probability that
the indices selected for A∗n by SIS are truly in A∗n.

The following describes how neutral-data comparisons yield a procedure that per-
forms as well as SIS in ultra-high dimensions. To formulate the procedure, first observe
that the neutral-data comparison, NDCn,0i, for H0i versus H1i has

− 2logNDCn,0i = Qn,i(Fn,i)−Qn,i(F̃n,i), (29)

where Fn,i and Qn,i are identical to (15) and (16), but defined with the subscript i

added to all of Yn, σ̂n, νn,1, νn,2, λ, κ, and wn, for which wn,i = 1/{1 + 1/(nτ2
n,i)}.
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Independence assures that the coherency criteria (10) are satisfied for pairwise com-
parisons of the models (28), provided that each F̃n,i is independent of any particular
comparison. Here, these quantities are parameterized as F̃n,i = 1 + rn/

√
νn,1i, using

the same rn across all components, whose preferred settings are identified in Theorem
3, below. The proposed model-choice procedure derives from the formula

P [Mn(A)|Yn] =

{∏

i∈A

P [H0i|Yn,i, σ̂n,i]

}{∏

i/∈A

P [H1i|Yn,i, σ̂n,i]

}
, (30)

where each P [H0i|Yn,i, σ̂n,i] =
{
1 +

(
ρ̃−1

n,0i − 1
)
/NDC0,i

}−1
, as in (7), for component-

specific ρ̃n,0i. The procedure itself proceeds by searching among subsets A ⊂ {1, . . . , pn}
for that which maximizes (30). If it can be shown that P [M∗

n|Yn] → 1, then, since
probabilities sum to one, it will follow that A∗n eventually maximizes (30), and the
procedure will select it.

The following result gives conditions under which the desired asymptotic-consistency
is achieved.

Theorem 3. Assume the high-dimension model (25) and prior (27), specified with
κi, λi = 0. Suppose the component posterior probabilities in (30) are defined with
NDCn,0i as in (29), ρ̃n,i = 1/2, and F̃n,i = 1 + rn/

√
νn,1i. Suppose further that

each νn,1∗ < νn,1i < ν∗n,1, nci < νn,2i, wn∗ < wn,i < w∗n for positive bounds νn,1∗, ν∗n,1,
ci, wn∗, and w∗n such that ν∗n,1 = o(n), ci is independent of n, and wn∗ → 1. Then
P [M∗

n|Yn] → 1 whenever all of

−
√

ν∗n,1log(1− w∗n)
rn

= o(1),
logpn

rn
√

νn,1∗
= o(1), and

rn
√

νn,1∗
n min

i/∈A∗n

{‖θi‖2/σ2
i

} = o(1).

Applying Theorem 3 to Fan and Lv’s performance criteria (for νn,1i = 1, say), it is
seen that by setting rn = n(1+a−b)/2, and the wn,i so that −log(1 − w∗n) = O(rn), the
conditions of the theorem are satisfied, and the proposed procedure achieves asymptotic-
consistency. Moreover, since (30) is associated with a full posterior distribution, the
procedure not only screens components to lower dimensions, but provides a coherent
testing and estimation methodology that works in ultra-high dimensions.

It is interesting to compare the required settings for asymptotic-consistency between
the current model-choice problem and that of testing a single component, H0i versus

H1i, discussed in Section 3. Observe that the current problem requires a faster rate,
rn = n(1+a−b)/2, than the default setting (18), where the rate of rn is logn. Compar-
ing with (17), the model-choice setting represents an adjustment toward more quickly
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Main effects 2-way interactions 3-way int.

Effect group Onc. Material Form M × O F × O M × F M × F × O

d.f. (pg) 12 1 2 12 24 2 24

Table 1: Effect groupings and degrees of freedom of the simulated tumor data.

establishing any individual H0i, an adjustment that might reasonably be interpreted to
accomodate for multiple testing. (See, e.g., Scott and Berger, 2006, for related discus-
sion.) It is also interesting to interpret rn = n(1+a−b)/2 in the context of Corollary 1.ii:
each NDCn,0i is seen to approximate a Bayes factor formulated from a non-local prior,
as in Definition 1, with f(x) ∝ xγ , where γ = (1 + a− b)/(1− a + b) > 0.

5 Linear-models analysis

This next section showcases the capabilities of neutral-data comparisons in the applied
context of “analysis of variance” (ANOVA). Bayesian solutions to ANOVA often focus
on estimation (cf. Gelman, 2005), but it is shown in what follows how neutral-data
comparisons can beneficially supplement such solutions by adding a testing component.

5.1 Simulated tumor data

The example analysis works with a data set described in Hoaglin, Mosteller, and Tukey
(1991, secs. 6A, 7A). The data set compiles measurements obtained from thirteen oncol-
ogists as they repeatedly judged, by touch only, the cross-sectional areas of six simulated
tumors. These six tumors are distinct from each other and represent all possible com-
binations of two materials (cork or rubber) and three forms (small, oblong, or large).
Each was judged twice per oncologist. The data set thus comprises two replications of
seventy-eight possible factor combinations, totaling 156 measurements altogether. The
layout is a standard (balanced) three-way factorial ANOVA, in which the factors are
“oncologists,” “materials,” and “forms.”

A linear-models formulation of ANOVA uses linear transformations to identify inde-
pendent components of a factorial structure. The components are grouped by “effect”
into an “ANOVA table,” which also records the number of components per group as
the effect’s “degrees of freedom.” An effect is either a “main effect,” of which there
is one per factor, or an “interaction effect,” of which each may involve two or more
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factors. For the simulated tumor data, there are seven effect groups: three main effects,
three two-way interactions, and one three-way interaction. These and their associated
degrees of freedom are listed in Table 1. A related concept is the “grand mean,” or
overall average, which is an additional component that represents the “center” of the
model; each effect-component is understood as a shift from center. The grand mean
has one degree of freedom. See Hoaglin, Mosteller, and Tukey (1991) for details of the
construction of these components.

Traditional targets of inference in ANOVA are each effect-group’s “finite population
standard deviation” (FPSD), using terminology from Gelman (2005). Each FPSD is a
rescaled total Euclidean distance from zero of the group’s component mean parameters,
where rescaling standardizes FPSD across groups with respect to degrees of freedom.
When an FPSD is positive, the effect is said to be “present.” In addition to an effect’s
overall FPSD, certain linear relationships among its components may be interesting as
well. Pairwise differences between a main effect’s individual components are interesting
for the possibility of “separating” the levels of a factor into subgroups, in the manner
of a partition analysis. Similarly, the individual components of an interaction effect
are interesting for providing details of any non-additive relationships in the factorial
structure.

5.2 The linear model and hypotheses

The model (25), of Section 4, serves to describe the individual components of the
ANOVA scheme. Among pn total components, the index-values i are partitioned
into subsets B1, . . . , BGn , corresponding to Gn − 1 effect-groups, plus one additional
group for the grand mean. The g’th subset has p∗g = |Bg| degrees of freedom. In
ANOVA, the dimension, νn,1i, of component Yn,i, is typically one, but there is little
additional complication to working generally, provided that components in the same
group have the same dimension, νn,1i = ν∗n,1g across i ∈ Bg. The FPSD for group g is

FPSDg =
{∑

i∈Bg
‖θi‖2/(p∗gν∗1g)

}1/2

. ANOVA also defines “variability due to error,”
which refers to a common variance parameter σ2 = σ2

1 = · · · = σ2
pn

. Associated with
this is an aggregated statistic σ̂2

n, independent of the Yn,i, such that νn,2σ̂
2
n/σ2 ∼ χ2

νn,2
,

where νn,2 is the “error degrees of freedom.” A convention in ANOVA is to regard the
error degrees of freedom as an indicator of precision; hence, the index of precision in
(25) is set to n = νn,2. The simulated tumor data has νn,2 = 78.

The testing framework here is model-choice, with hypothesis-models defined in the
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following way by linear constraints. It is supposed that Mj identifies Aj groups, and
on each group g ∈ Aj is placed ug

j linearly independent constraints: the model is

Mj :
∑

i∈Bg

cgl
ijθi = 0 for l = 1, . . . , ug

j , across g ∈ Aj , (31)

for coefficients cgl
ij of the l’th constraint. A group indexed by g /∈ Aj has ug

j = 0. The
continuous portion of the prior is specified conditionally, given each Mj , as a Gaussian
prior on the model’s “free parameters:” To describe this portion of the prior, it is
assumed, without loss of generality, that the coefficients, cgl

ij , have been orthonormalized
within groups by the Gram-Schmidt procedure (cf. Bellman, 1960), so that

∑

i∈Bg

cgl
ijc

gm
ij = 1 if l = m or 0 if l 6= m (32)

across l,m = 1, . . . , ug
j . It is furthermore possible to augment the coefficients cgl

ij for
l = 1, . . . , ug

j with additional coefficients cgl
ij for l = ug

j , . . . , p
∗
g such that (32) holds

across l, m = 1, . . . , p∗g. The conditional prior is now
∑

i∈Bg

cgl
ijθi|Mj , σ

2 ∼ N(0, n−1σ2τ∗2g I), (33)

independently across l = ug
j + 1, . . . , p∗g, for each g. The discrete portion of the prior is

implied from the discussion below.

5.3 Neutral-data comparisons and posterior probabilities

As part of the analysis setup, the models Mj are assumed to be highly connected in the
sense that it is possible to move from any one modelMj to any other modelMk through
a series of “simple steps,” each made by adding or removing a subset of constraints from
a single group. Consequently, once NDCn,jk is formulated for Mj and Mk related by
a single such simple step, the formulation immediately extends to general comparisons
through the formula (8), provided that the coherency criteria (10) hold.

Suppose now that Mj and Mk are such that Mj is just Mk with the addition of
uh

j − uh
k constraints to group h ∈ Aj . By the construction in Section 5.2, it may be

assumed without loss of generality that chl
ij = chl

ik for l = uh
k + 1, . . . , uh

j . The second
formula in (8) then yields −2logNDCn,jk = Qn,jk − Q̃n,jk, where, writing νn,1T =∑pn

i=1 νn,1i,

Qn,jk = (νn,1T + νn,2 + κ)log
{

1 + w∗n,h

Sn,1

1 + Sn,2

}
, (34)
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for which w∗n,h = 1/{1 + 1/(nτ∗2n,h)},

Sn,1 =
ν∗n,1h

νn,2

uh
j∑

l=uh
k+1

Fhl
n,j , and Sn,2 =

Gn∑
g=1

ν∗n,1g

νn,2




ug
k∑

l=1

F gl
n,k +

p∗g∑

l=ug
k+1

F gl
n,k

1 + nτ∗2g


 ,

with

F gl
n,j =

n‖∑
i∈Bg

cgl
ijYn,i‖2/ν∗n,1g

σ̂2
n + λ/νn,2

,

and Q̃n,jk defined as in (34), but with each F gl
n,j replaced with a neutral version, F̃ gl

n,j . In
this example, neutral-data are specified according to F̃ gl

n,j = logνn,2, using the analogue
to default setting (18), having set n = νn,2. The coherency criteria (10) are guaranteed
by this setting since each F̃ gl

n,j is independent of the model against which Mj might be
compared.

Posterior probabilities P [Mj |Yn], are calculated from the NDCn,jk and ratios
ρ̃n,jk/ρ̃n,kj = 1, through (11), by exploiting the connectedness of the models in a
Metropolis-Hastings algorithm. The reader should consult Robert and Casella (1999)
for full technical details of this type of algorithm. The present version transitions
through the models in simple steps, to form a Markov chain whose limiting distribution
is identical to the posterior distribution of model probabilities. This yields probabilities
associated with the discrete portion of the posterior distribution; but, at each transition,
the algorithm additionally draws from the continuous portion of the posterior by direct
simulation, conditionally on the current model, so that the final output of the algorithm
represents a sample from the full posterior distribution. The results presented below
were calculated from one million iterations of this algorithm, after a burn-in of 25,000
iterations.

5.4 Analysis of the simulated tumor data

Two versions of the analysis are considered. Analysis 1 tests each effect only for its
presence or absence: effect-group g is either “totally constrained,” with ug

j = p∗g, or
“totally free,” with ug

j = 0. (The grand-mean group is always totally free.) Analysis 2
incorporates additional hypothesis-models that accommodate the detailed linear rela-
tionships discussed at the end of Section 5.1. Specifically, for each two-way interaction
group, Analysis 2 incorporates the associated component-specific tests of H0i versus

H1i, which describe detailed patterns of non-additivity; and, for each main-effect group,
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Figure 1: ANOVA diagram for the simulated tumor data of Hoaglin, Mosteller, and

Tukey (1991). The left panel displays posterior quantiles of FPSDg in pairs corre-

sponding to Analysis 1 (top) and Analysis 2 (bottom). Thin lines connect 5% and 95%

quantiles; thick lines connect 25% and 75% quantiles; and vertical bars identify the

medians. The evidence for the presence of each effect is listed as −2logNDCn,jk next

to its effect-group label. The far right column lists pairs of posterior probabilities of

no effect. The right panel displays posterior quantiles are displayed of the underlying

means for oncologists, grouped by vertical dotted lines in such a way that there is no

“strong” evidence of a mean difference between any pair in the group.

it formulates a partition analysis, which is done by incorporating linear constraints on
the mean parameters of factor-level pairs. To accommodate the partition analyses, cor-
responding transitions of the Metropolis-Hastings algorithm are made by either merging
two partition cells (hence adding a constraint), or breaking a single partition cell in two
(hence removing a constraint). The three-way interaction group is treated identically
(presence or absence only) between the two analyses. The quantities w∗n,h in (34) are
always set to one, which effectively takes the prior variance parameters to have been set
arbitrarily large.

Analysis results are indicated in Figure 1, in a format suggested in Gelman (2005),
where the posterior quantiles of FPSD are plotted for each group. These estimates
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Partition P [Mj |Yn] −2logNDCn,1j

(1,2,3,13)(4,7,8,9,11,12)(5,10)(6) 0.035 0.00
(1)(2,3,9,13)(4,7,8,11,12)(5,10)(6) 0.016 1.53
(1,3)(2,9,13)(4,7,8,11,12)(5,10)(6) 0.014 1.76
(1)(2,3,13)(4,7,8,9,11,12)(5,10)(6) 0.014 1.88
(1,3)(2,9,13)(4,7,8,11,12)(5)(6)(10) 0.013 2.01
(1,2,3,9,13)(4,7,8,11,12)(5)(6)(10) 0.012 2.15
(1,3)(2,13)(4,7,8,9,11,12)(5,10)(6) 0.011 2.36
(1,3,13)(2,4,7,8,9,11,12)(5,10)(6) 0.010 2.58
(1)(2,3,13)(4,7,8,11,12)(5,10)(6)(9) 0.009 2.67
(1)(2,3,13)(4,7,8,9,11,12)(5)(6)(10) 0.008 3.04

Table 2: Posterior modal partitions of oncologist means with posterior probabilities and

comparisons.

are reported with an associated value of −2logNDCn,jk, in a configuration for testing
the “absence” (Mj) versus “presence” (Mk) of the effect. The results are displayed
in pairs, corresponding to Analyses 1 and 2. The strength of evidence indicated by
each neutral-data comparison value is interpreted using standard categories described
in Kass and Raftery (1995): values of −2logNDCn,jk greater than 2 indicate “positive”
evidence for Mk; those greater than 6, indicate “strong” evidence; and those greater
than 10, “very strong” evidence. The negations of these values indicate the strength of
evidence for Mj .

Several interesting observations can be made. First, differences between the two
analyses are most apparent in results associated with the “M x O” and “F x O” inter-
actions, where evidence points in different directions: Analysis 1 suggests the absence
of the effects and Analysis 2 suggests their presence. This seems to reflect a greater
flexibility of the Analysis 2 to explore the detailed structure of an effect. Surprisingly,
almost no differences are seen between the analysis results associated with the main ef-
fects. Certain results from Analysis 2 are displayed in the right panel of Figure 1, which
aim to describe the inferred structure of the “Oncologist” main effect. The results are
presented in a manner resembling a classical mean-separation procedure (partly to il-
lustrate its limitations): oncologists are arranged in the order of their estimated mean
responses, calculated here as posterior medians, and are then grouped in such a way
that there is no “strong” evidence for mean differences in any pair of oncologists in
the same group. It is not unusual that such mean-separation groups will overlap, as
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happens here, and that creates logical confusion when interpreting the results. An alter-
native, preferred report of results is shown in Table 2, which lists actual partitions of the
oncologists. The first several posterior modal partitions–those with highest posterior
probability–are displayed in order, and they are accompanied by evidence assessments
of the top partition versus each partition below it. Though considerable ambiguity yet
remains, this alternative report provides a clear, logically consistent interpretation of
the analysis output.

6 Conclusions

This article has presented neutral-data comparisons as a new way of assessing evidence
in a Bayesian framework, which is sensible and powerful, even when used with a vague
prior. The statistic NDC0 is interpreted as both an approximation to B̃F 0 and an
alternative to BF0, which is motivated to accommodate a type of incoherency, revealed
by the device of imaginary results, that leads to the Jeffreys-Lindley paradox. Guide-
lines for eliciting neutral data have been formulated, and an applied methodology for
neutral-data comparisons has been developed for testing linear hypotheses in Gaus-
sian linear-models analysis. Within this context, neutral-data comparisons are shown
to possess strong asymptotic-consistency properties in high-dimensions, and they have
been demonstrated to accommodate sophisticated testing problems, such as partition
analysis, using straightforward computational algorithms.

It is worthwhile to remark on possible specifications for neutral data, and special
issues that arise, in alternative applied contexts than are explored here. In some ap-
plications, the choice of neutral data may be obvious; for instance, when testing one-
sided hypotheses of a normal mean, H0 : θ ≤ 0 versus H1 : θ > 0, based on data
Y |θ ∼ N(θ, σ2), under a prior that is symmetric about zero, the obvious setting for
neutral data is Ỹ = 0. In the analogous discrete-data setting, however, the obvious
choice may require additional care. To see this, consider a simple treatment-versus-
control model in which Y1 and Y2 are incidence counts from n1 and n2 independent
trials. Suppose the problem is to test H0 : θ1 ≤ θ2 versus H1 : θ1 > θ2, where θ1 and θ2

denote the respective incidence probabilities. A plausible choice for neutral data would
set Ỹ1 = n1θ̂ and Ỹ2 = n2θ̂, where θ̂ = (Y1 + Y2)/(n1 + n2). Yet, notice this presents
another example, in addition to that of Section 3.3, of neutral data being set partly
as a function of the observed data. Another conceptual issue arises as well, which is
that this setting allows non-integer values, hence neutral data that falls outside of the
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the data space. Accommodation of these complexities is not far-fetched, and represents
an important task for future investigations: it is conjectured that the data-dependency
issue may be understood through some formal concept for “updating” neutral data from
what is observed, and that the discrete-data issue may be resolved through a continuous
generalization of the model.

Also of interest for future investigation is the development of an exact theory that
broadens, refines, and explains the many asymptotic results presented here. One di-
rection of immediate interest would examine the prior structure for ANOVA used in
Gelman (2005), where τ∗g is not fixed, necessarily, but is equipped with a hyperprior
whenever the number of free-parameters exceeds two. The usual goal of such hierarchi-
cal constructions is to reduce expected quadratic loss, and this begs the question of what
impact the addition of a complicated testing component would have on a procedure’s
decision-theoretic properties. The development of associated computational algorithms
is also important, and that task is expected to require special care as scenarios become
more complex. For instance, one would want to avoid running an intensive computa-
tional algorithm multiple times on observed and neutral data. The ideas discussed here
lay a sturdy groundwork for carrying out all of these investigations, and for continued
development of neutral-data comparisons as a useful applied tool with a meaningful
interpretation.

Appendix

Proof. (Theorem 1) A Laplace approximation to the Bayes factor at yn (which might
be Yn or Ỹn) is B̃Fn,0(yn) ≈ (2π)−ν1/2|Sn(t∗n)|1/2 exp{sn(t∗n)} for Sn(t) = (n/σ2)I −
Sπ̃(t), writing Sπ̃(t) to denote the Hessian matrix of logπ̃(t|H1, σ), and t∗n such that
∇sn(t∗n) = 0. Note that ‖∇sn(t)‖ = (n/σ2)‖(t− yn)− (σ2/n)∇logπ̃(t|H1, σ)‖, and so
if ‖∇logπ̃(yn|H1, σ)‖ = O(1), it must be that |t∗n − yn| → 0. Subsequently, |Sn(t∗n)| =
(n/σ2)ν1{1+o(1)}, and B̃Fn,0(yn) ≈ exp{−(1/2)‖zn‖2+(ν1/2)log(n/σ2)−logπ̃(t∗n|H1, σ)−
(ν1/2)log(2π)}, writing zn =

√
nyn/σ. The statements are readily checked upon noting

that Yn → θ, and, by (13), ‖Zn‖2 = n‖Yn‖2/σ2 ≈ n‖θ‖2/σ2 under H1.

Proof. (Theorem 2) Note the following properties of f(x) and f0(y) = f(ey), which
are implied from γ(x) → γ ≥ 0: (A.) d

dy logf0(y) → γ and d
dy logf ′0(y) → γ; (B.) if

y1,n, y2,n → ∞ as n → ∞, then {logf0(y2,n) − logf0(y1,n)}/{y2,n − y1,n} → γ; (C.)
xf ′′(x)/f ′(x) → γ − 1; (D.) {logf(x)}/logx → γ; and (E.) (logx)/f(x) = O(1). Prop-
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erty A is deduced by writing γ(x) as d
dy logf0(y) = f ′0(y)/f0(y) evaluated at y = logx,

and then applying l’Hôpital’s rule to d
dy logf ′0(y) = f ′′0 (y)/f ′0(y) (unless f ′′0 (y) is bounded,

in which case the limit γ = 0 is deduced directly). Property B is a consequence
of the mean-value theorem applied to A. Property C follows from A by expanding
d
dy logf ′0(y) = 1 + eyf ′′(ey)/f ′(ey). Property D follows from A by applying l’Hôpital’s
rule to {logf0(y)}/y = {logf(x)}/logx, for y = logx. Property E follows from the con-
vexity of f0(y); this requires 1/{xf ′(x)} = O(1), hence E follows by applying l’Hôpital’s
rule to (logx)/f(x) ≈ {1/x}/f ′(x) = O(1), starting at the right or left side according
to whether f ′(x) → 0.

To prove statement (i), define s̃n(t) = n{‖t‖2 − 2tT Ỹn}/(2σ2) + f(σ2/‖t‖2)/2, and
consider the system of equations in t̃n and Z̃n given by

∇s̃n(t̃n) = 0 and (2π/c)−ν1/2|S̃n(t̃n)|1/2 exp{s̃n(t̃n)} = 1,

where ∇s̃n(t) = n{t− Ỹn}/σ2−σ2(t/‖t‖4)f ′(σ2/‖t‖2) and S̃n(t) is the Hessian matrix
of s̃n(t). The second equation is to provide a Laplace approximation to B̃Fn,0(Ỹn),
and requires a solution for which t̃n → 0. Writing t̃n = ãnỸn, the equations become a
system in ãn > 0 and ‖Z̃n‖2 that is equivalent to

‖Z̃n‖2 =
(γ̃n + 1)2

2γ̃n + 1

[
f

(
n

ã2
n‖Z̃n‖2

)
+ log|S̃n(t̃n)| − ν1log(2π/c)

]
(35)

γ̃n = γ

(
n

ã2
n‖Z̃n‖2

) /[
1 +

log|S̃n(t̃n)| − ν1log(2π/c)
f(n/{ã2

n‖Z̃n‖2})

]
,

where ãn = 1 + γ̃n/(γ̃n + 1). In translating to (35), an intermediate expression is

ã2
n‖Z̃n‖2(1− 1/ãn) = gn(ã2

n‖Z̃n‖2), (36)

where gn(x) = (n/x)f ′(n/x); since f(x) increases, hence xf ′(x) > 0, this requires ãn > 1
(although ãn → 1 is possible). The requirement t̃n → 0 translates to n/(ã2

n‖Z̃n‖2) →
∞. To evaluate |S̃n(t̃n)|, substitute (36) and apply xf ′′(x)/f ′(x) → γ − 1 (by Prop-
erty C, above) to see that S̃n(t̃n) ≈ {n/(σ2ãn)}{I + 2(ãn − 1)(1 + 2γ)ZnZT

n /‖Zn‖2}.
Sylvester’s determinant theorem then provides |S̃n(t̃n)| = {n/(σ2ãn)}ν1{1+2(ãn−1)(1+
2γ)}. Subsequently, Properties D and E imply that {log|S̃n(t̃n)|}/f(n/{ã2

n‖Z̃n‖2}) has
a limit that is never negative, and is only positive when γ > 0; therefore, γ̃n → γ. Prop-
erty B, with y1,n = log{n/(ã2‖Z̃n‖2)} and y2,n = log{n/(ã2

n‖Z̃n‖2)}, then provides that
f(n/{ã2

n‖Z̃n‖2}) ≈ f(n/{ã2‖Z̃n‖2}). The first equation in (35) is thus asymptotically
equivalent to (20). Property E, above, and the monotonicity of f(x) imply that ‖Z̃n‖2
must be unique, to the accuracy of approximation.
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To prove statement (ii), first note that any positive solution to (21) has an =
1/2 + {gn(a2

n‖Zn‖2) / ‖Zn‖2 + 1/4}1/2. Since f(x) increases, xf ′(x) > 0, and the
convexity of f0(x) implies that gn(x) = f ′0(log(n/x)) does not increase in x; hence
each an must be unique. Notice also that, since ‖Zn‖2 ∼ χ2

ν1
under H0, n/a2

n → ∞,
1/an = O(1), and an →∞ when γ > 0. Next define ŝn(t) = n{‖t‖2 − 2tT Yn}/(2σ2) +
f(σ2/‖t‖2)/2, and note that the t∗n such that ∇ŝn(t∗n) = 0 is t∗n = anYn. The prop-
erty a2

n/n → 0 implies ‖t∗n‖ → 0, which admits the Laplace approximation B̃F 0 ≈
(2π/c)−ν1/2|Ŝn(t∗n)|1/2 exp{ŝn(t∗n)}, where Ŝn(t) is the Hessian matrix of ŝn(t). We
have

ŝn(t∗n) = (1/2)a2
n‖Zn‖2(1− 2/an) + (1/2)f(n/{a2

n‖Zn‖2}), (37)

and |Ŝn(t∗n)| ≈ {n/(σ2an)}ν1{1 + 2(an − 1)(1 + 2γ)} (cf. the approximation to S̃n(t̃n)
in the proof of statement i). To complete the proof, substitute a2

n‖Zn‖2(1 − 1/an) =
gn(a2

n‖Zn‖2) = γ(n/{a2
n‖Zn‖2})f(n/{a2

n‖Zn‖2}) in (37), and log|Ŝn(t̃n)| ≈ ν1logn,
and recall that an →∞ when γ > 0.

Proof. (Corollary 1) Each statement is deduced by direct substitution into formulas
(20, 21, 22).

Lemma 1. Assume the high-dimension model (25) and prior (27), specified with κi, λi

= 0. Suppose the component posterior probabilities in (30) are defined with NDCn,0i as
in (30), for corrected prior null probabilities ρ̃n,i. Suppose further that each νn,1i = o(n)
and there are fixed constants ci > 0 for which each νn,2i/n > ci for all n. Then
P [M∗

n|Yn] → 1 whenever both

Bn,0 =
∑

i∈A∗n

(
1− ρ̃n,i

ρ̃n,i

)(
1

1− wn,i

)νn,1i/2

exp
{
−1

2
Qn,i(F̃n,i)

}
(38)

and

Bn,1(θ) =
∑

i/∈A∗n

(
ρ̃n,i

1− ρ̃n,i

)
exp

{
1
2
Qn,i(F̃n,i)− nciUwn,i

(‖θi‖2/σ2
i

2ci

)}
(39)

converge to zero, where Uw(ξ) is defined for ξ > 0 according to

Uw(ξ) = ξlog
{

t0(ξ)
tw(ξ)

}
+ log

[
1− t0(ξ)

{1− tw(ξ)}{1− wtw(ξ)}
]

(40)

with

tw(ξ) =
(

1 + w

2w

) (
1 + ξ

2 + ξ

) {
1−

√
1− 4w

(1 + w)2

(
ξ

1 + ξ

) (
2 + ξ

1 + ξ

)}
(41)
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and t0(ξ) = limw→0 tw(ξ) = ξ/(1+ξ). Furthermore, Uw(ξ) is positive, strictly increasing
in ξ, Uw(ξ) = ξlog(1 + w) + o(ξ) as ξ → 0, and Uw(ξ) → −log(1− w) as ξ →∞.

Proof. (Lemma 1) Substitute P [H0i|Yn,i, σ̂n,i] = NDCn,0i(ρ̃−1
n,i−1)/{1+NDCn,0i(ρ̃−1

n,i

− 1)}, then apply log(1 + x) ≤ x to establish that −logP [M∗
n|Yn] ≤ Bn, where

Bn =
∑

i∈A∗n

(
1− ρ̃n,i

ρ̃n,i

)
exp

[
1
2
{Qn,i(Fn,i)−Qn,i(F̃n,i)}

]

+
∑

i/∈A∗n

(
ρ̃n,i

1− ρ̃n,i

)
exp

[
−1

2
{Qn,i(Fn,i)−Qn,i(F̃n,i)}

]
.

Since the terms of this sum are nonnegative and independent, an extension of the
Borel-Cantelli lemmas (cf. Billingsley, 1995, prob. 22.3, p. 294) provides that Bn

will converge almost surely whenever E[Bn] converges. It will be shown that E[Bn] ≤
{Bn,0 + Bn,1(θ)}{1 + o(1)}.

Having set each λi = 0, Fn,i follows a non-central Fνn,1i,νn,2i(δn,i) distribution with
non-centrality parameter δn,i = n‖θi‖2/σ2

i . Johnson et al. (1994, vol. 2, p. 484) provide
that the density of Gn,i = (νn,1i/νn,2i)Fn,i is

πn,i(g) =
∞∑

k=0

{
(δn,i/2)ke−δn,i/2

k!

}
1

B(νn,1i/2 + k, νn,2i/2)
gνn,1i/2+k−1

(1 + g)(νn,1i+νn,2i)/2+k
,

where B(α, β) =
∫ 1

0
tα−1(1 − t)β−1dt is the beta function. Note that Qn,i(Fn,i) =

−(νn,1i + νn,2i)log{1 − wn,iGn,i/(1 + Gn,i)}, having set κi = 0. If δn,i = 0, integrate
with respect to the change of variable t = (1 − wn,i)g to see that E[e

1
2 Qn,i(Fn,i)] =

(1 − wn,i)−νn,1i/2. This shows that Bn,0 is the expected value of the first term in the
definition of Bn. If δn,i > 0, integrate with respect to the change of variable t = g/(1+g)
to see that E

[
e−

1
2 Qn,i(Fn,i)

]
is

∞∑

k=0

{
(δn,i/2)ke−δn,i/2

k!

}
2F1

(
−νn,1i + νn,2i

2
,
νn,1i

2
+ k,

νn,1i + νn,2i

2
+ k,wn,i

)
, (42)

where 2F1(−γ, α, α + β, w) =
∫ 1

0
(1 − wt)γtα−1(1 − t)β−1dt/B(α, β) is an evaluation of

the hypergeometric function. A well known representation of this function has

2F1(−γ, α, α + β,w) =
∞∑

k=0

(−γ)k(α)k

(α + β)k

wk

k!
, (43)

writing (x)0 = 1 and (x)k =
∏k

j=1(x + j − 1), which, upon substituting γ = (νn,1i +
νn,2i)/2 and β = νn,2i/2, shows that E

[
e−Qn,i(Fn,i)/2

]
becomes smaller with any in-

crease of νn,2i. It therefore suffices to check only the case where each νn,2i = nci.
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Set α = δn,i/(2n) = ‖θn,i‖2/(2σ2
n,i), β = νn,2i/n = ci, and ξ = α/β; then note the

Laplace expansion
∫ 1

0

tαn{1+o(1)}{(1− t)(1− wt)}βn{1+o(1)}dt ≈ exp hw(tw(ξ))√
|h′′w(tw(ξ))|/(2π)

, (44)

where hw(t) = n[αlogt + βlog{(1 − t)(1 − wt)}], for which tw(ξ), defined in (41), is its
maximizing argument. Reflecting that the series (42) is weighted by Poisson probabil-
ities, its relevant terms are those for which k is within a slowly increasing multiple of√

δn,i/2 from δn,i/2. Hence, the expansion above provides that

E
[
e−

1
2 Qn,i(Fn,i)

]
≈

√
|h′′0(t0(ξ))|

|h′′wn,i
(twn,i(ξ))|

exp{−βnUwn,i(ξ)},

for Uw(ξ) defined in (40). A straightforward calculus exercise yields |h′′0(t0(ξ))| <

|h′′w(tw(ξ))|. It follows that Bn,1(θ) bounds the expected value of the second term
in the definition of Bn. Another calculus exercise will establish the stated properties of
Uw(ξ).

Proof. (Theorem 3) In the context of Lemma 1, write Dn,1(θ) = mini/∈A∗n

{‖θi‖2/σ2
i

}

and note that the property Uw(ξ) = ξlog(1 + w) + o(ξ) as ξ → 0 implies the existence
of a constant c > 0 such that

2n min
i/∈A∗n

{
ciUwn,i

({‖θi‖2/σ2
i }/{2ci}

)} ≥ cnDn,1(θ),

for sufficiently large n. Noting also that each Qn,i(F̃n,i) ≈ wn,iνn,1iF̃n,i, the setup of
this scenario therefore establishes that logBn,0 is bounded above by

−1
2
wn∗rn

√
νn,1∗

{
1− 2log|A∗n|

wn∗rn
√

νn,1∗
+
√

νn,1∗{1 + w−1
n∗ log(1− w∗n)}
rn

}
{1 + o(1)}

and logBn,1(θ) is bounded above by

− c

2
nDn,1(θ)

{
1− 2log(pn − |A∗n|)

cnDn,1(θ)
− ν∗n,1 + rn

√
ν∗n,1

cnDn,1(θ)

}
{1 + o(1)},

for sufficiently large n, which diverge to −∞ under the stated conditions.
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