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METHODOLOGY AND THEORY FOR PARTIAL LEAST SQUARES
APPLIED TO FUNCTIONAL DATA1
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The partial least squares procedure was originally developed to estimate
the slope parameter in multivariate parametric models. More recently it has
gained popularity in the functional data literature. There, the partial least
squares estimator of slope is either used to construct linear predictive mod-
els, or as a tool to project the data onto a one-dimensional quantity that is
employed for further statistical analysis. Although the partial least squares
approach is often viewed as an attractive alternative to projections onto the
principal component basis, its properties are less well known than those of
the latter, mainly because of its iterative nature. We develop an explicit for-
mulation of partial least squares for functional data, which leads to insightful
results and motivates new theory, demonstrating consistency and establishing
convergence rates.

1. Introduction. Partial least squares (PLS) is an iterative procedure for es-
timating the slope of linear models. The technique was originally developed in
high-dimensional and collinear multivariate settings and is especially popular in
chemometrics. See Wold (1975), Martens and Naes (1989), Helland (1990), Frank
and Friedman (1993), Garthwaite (1994), Goutis and Fearn (1996), Durand and
Sabatier (1997) and Nguyen and Rocke (2004).

The iterative nature of PLS can make it difficult to uncover properties in a clear
and explicit way, and for a long time PLS was regarded as a technique that worked
well, but whose properties were relatively obscure. Early theoretical developments
of multivariate PLS can be found in Lorber, Wangen and Kowalski (1987) and
Höskuldsson (1988), and further developments include those of Phatak, Reilly and
Penlidis (2002), Phatak and de Hoog (2003), Bro and Eldén (2009) and Krämer
and Sugiyama (2011).

More recently, the method has been applied in the functional data context by
Preda and Saporta (2005a), who suggest using PLS for estimating slope in func-
tional linear models; see also Reiss and Ogden (2007). Also in the functional set-
ting, the intrinsic iterative nature of PLS has made it difficult to develop intuition
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and derive clear and explicit theoretical properties. In this paper we provide a trans-
parent account of theoretical issues that underpin PLS methods in linear models
for prediction from functional data, and show that they motivate an alternative for-
mulation of PLS in that setting. This “alternative PLS,” which we refer to here as
APLS, has the advantage that it is expressed only in terms of functions that are
explicitly computable. These attributes make APLS particularly attractive, relative
to the conventional PLS formulation, and permit detailed theoretical development.

We give concise stochastic expansions for the difference between estimators
derived using APLS, and the quantities to which these estimators converge in the
large-sample limit. These expansions are valid uniformly in estimators based on
the first O(n1/2) APLS basis functions, where n denotes sample size. The ex-
pansions also lead easily and directly to a variety of results about our estimators,
including convergence rates and central limit theorems.

Besides functional linear models, PLS is employed in a variety of other data
functional problems. For example, Ferraty and Vieu (2006) use it to define a semi-
metric for nonparametric functional predictors or classifiers; Escabias, Aguilera
and Valderrama (2007) employ PLS with logit regression; Preda, Saporta and
Lévéder (2007) and Delaigle and Hall (2012) use it for functional data classifi-
cation. See also Preda and Saporta (2005b), Krämer, Boulesteix and Tutz (2008)
and Aguilera et al. (2010).

2. Functional linear models.

2.1. General bases for inference in functional linear models. Let X =
{(X1, Y1), . . . , (Xn,Yn)} denote a sample of independent data pairs, all distributed
as (X,Y ), where X is a random function defined on the nondegenerate, compact
interval I and satisfying

∫
I E(X2) < ∞, and Y is a scalar random variable gener-

ated by the linear model

Y = a +
∫

I
bX + ε.(2.1)

Here, a denotes a scalar parameter, ε is a scalar random variable with finite mean
square and satisfying E(ε | X) = 0 and b, a function-valued parameter, is a square-
integrable function on I .

Predicting the value of Y , given X, amounts to estimating the function

g(x) = E(Y | X = x) = a +
∫

I
bx,(2.2)

which, itself, requires us to estimate the scalar a and the function b from the
data. A standard approach is to express X and b in terms of an orthonormal ba-
sis ψ1,ψ2, . . . defined on I . Expansions for X and b in this basis can be written
as X = ∑

j (
∫

I Xψj)ψj and b = ∑
j vjψj , where vj = ∫

I bψj . Since, in practice,
we can calculate only a finite number of terms, the infinite-dimensional expansion
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for b is approximated by a sum of p terms, where p ≥ 1 is an integer, and each
term of this sum is then estimated from the data. Note that

∫
I bX = ∑

j vj

∫
I Xψj ,

which motivates us to take a = E(Y ) − ∫
I bE(X) and define β1, . . . , βp to be the

sequence v1, . . . , vp that minimizes

sp(v1, . . . , vp) = E

{∫
I
b(X − EX) −

p∑
j=1

vj

∫
I
(X − EX)ψj

}2

.(2.3)

The functions

bp =
p∑

j=1

βjψj ,

(2.4)

gp(x) = E(Y ) +
∫

I
bp(x − EX) = E(Y ) +

p∑
j=1

βj

∫
I
(x − EX)ψj

are approximations to b and to g(x), respectively. Their accuracy, as p increases,
depends on the choice of the sequence ψ1,ψ2, . . . .

Sometimes the basis is chosen independently of the data (e.g., sine-cosine basis,
spline basis, etc). Then the functions ψj are known, and an empirical version of
(2.4) is obtained by replacing the scalars β1, . . . , βp by the sequence v1, . . . , vp

that minimizes

n−1
n∑

i=1

{
Yi − Ȳ −

p∑
j=1

vj

∫
I
(Xi − X̄)ψj

}2

.(2.5)

A drawback of such bases is that there is no reason why their first p elements
should capture the most important information about the regression function g,
available from the data. It seems more attractive to use bases that adapt to the
properties of the population represented by the data. We discuss two such adaptive
bases in Sections 2.2 and 2.3, respectively.

2.2. Principal component basis. One of the most popular adaptive bases is
the so-called principal component basis, constructed from the covariance func-
tion K(s, t) = cov{X(s),X(t)} of the random process X. As is common in math-
ematical analysis, we shall use the notation K also for the linear transforma-
tion (a functional) that takes a square-integrable function ψ to K(ψ) given by
K(ψ)(t) = ∫

I ψ(s)K(s, t) ds.

Since
∫

I E(X2) < ∞, then
∫

I K(t, t) dt < ∞, and we can write the spectral
decomposition of K as

K(s, t) =
∞∑

k=1

θkφk(s)φk(t),(2.6)
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where the principal component basis φ1, φ2, . . . is a complete orthonormal se-
quence of eigenvectors (i.e., eigenfunctions) of the transformation K , with respec-
tive nonnegative eigenvalues θ1, θ2, . . . . That is, K(φk) = θkφk for k ≥ 1. Positive
definiteness of K implies that the eigenvalues are nonnegative, and the condition∫

I E(X2) < ∞ entails
∑

k θk < ∞. Therefore we can, and do, order the terms in
the series in (2.6) so that

θ1 ≥ θ2 ≥ · · · ≥ 0.(2.7)

In practice the scalars θj and the functions φj are unknown and are estimated
from the data, as follows. First, the covariance function is estimated by

K̂(s, t) = 1

n

n∑
i=1

{Xi(s) − X̄(s)}{Xi(t) − X̄(t)},(2.8)

where X̄(t) = n−1 ∑n
i=1 Xi(t). Then, θ1, . . . , θn and φ1, . . . , φn are estimated by

the eigenvalues θ̂1 ≥ θ̂2 ≥ · · · θ̂n ≥ 0 and the eigenfunctions φ̂1, . . . , φ̂n of the trans-
formation represented by K̂ , which can have at most n nonzero eigenvalues. Fi-
nally, an empirical version of β1, . . . , βp is defined to be the sequence v1, . . . , vp

that minimizes (2.5), where each ψj there is replaced by φ̂j . Then, gp at (2.4) is
replaced by its corresponding empirical version. In the rest of this paper, to avoid
confusion with projections of b onto other bases, we shall add a superscript PC to
coefficients obtained from projection of b onto one of the functions φj ; that is, we
shall use the notation βPC

j = ∫
I bφj .

The literature on functional linear models based on principal component anal-
ysis (PCA) is large. It includes, for example, work by Cai and Hall (2006), Reiss
and Ogden (2007), Apanasovich and Goldstein (2008), Cardot and Sarda (2008),
Baillo (2009), Müller and Yao (2010), Wu, Fan and Müller (2010) and Yao and
Müller (2010).

2.3. The orthonormal PLS basis. The principal component basis introduced
in Section 2.2 is defined in terms of the population, but only through X. In partic-
ular, while its first p elements φ1, . . . , φp usually contain most of the information
related to the covariance of X, these are not necessarily important for represent-
ing b, and all or some of the most important terms accounting for the interaction
between b and X might come from later principal components. In prediction, to
capture the main effects of interaction using only a few terms, one could construct
the basis in a way that takes this interaction into account.

Motivated by such considerations, the standard PLS basis, adapted to the func-
tional context, is defined iteratively by choosing ψp in a sequential manner, to
maximize the covariance functional

fp(ψp) = cov
{
Y − gp−1(X),

∫
I
Xψp

}
,(2.9)
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subject to∫
I

∫
I
ψj(s)K(s, t)ψp(t) ds dt = 0 for 1 ≤ j ≤ p − 1 and

(2.10)
‖ψp‖ = 1,

where ‖ · ‖ is a norm (see Section 3.1), and given that ψ1, . . . ,ψp−1 have already
been chosen. [Recall that gp was defined at (2.4).] In practice, the covariances in
(2.9) are replaced by estimates, and empirical versions of the ψj ’s are constructed
by an iterative algorithm described in Appendix A.2.

Partial least squares can also be used for prediction in nonlinear models, where
the basis that it produces is sometimes, but not always, effective for prediction.
Specifically, although the PLS basis enables a consistent approximation to g in
such cases, a large number of terms may be required to get a good approximation.

3. Properties of theoretical functional partial least squares. For prediction
and estimation of b, the PLS basis is sometimes preferred to the PCA basis, partly
because it can often capture the relevant information with fewer terms; see our
data illustrations in Section 6. Detailed theoretical properties for inference in func-
tional linear models based on the PCA basis have been studied in a number of
papers, but few results exist about their functional PLS counterpart. In this sec-
tion we provide new insight into the theoretical PLS basis, defined in (2.9) and
(2.10), and give an explicit description of the space generated by the first p PLS
basis functions ψ1, . . . ,ψp . These properties motivate an alternative formulation
of functional PLS, which we call APLS. It permits us to define the functional PLS
basis very simply, and to construct an explicitly defined algorithm to implement
empirical PLS; see Section 4. The explicit nature of the algorithm will allow us to
derive detailed theoretical properties of empirical functional PLS, including con-
vergence rates; see Section 5.

3.1. Explicit form of the orthonormal PLS basis. Our first result, Theo-
rem 3.1, below, gives an explicit account of the constrained optimization de-
scribed in Section 2.3. We use the following notation. Given α1 and α2 in the
class C(I) of all square-integrable functions on I , write

∫
I

∫
I α1α2K to denote∫

I
∫

I α1(s)α2(t)K(s, t) ds dt . For any x ∈ C(I), define ‖x‖2 = ∫
I

∫
I xxK . (Some

implementations of PLS, e.g., the one in Appendix A.2, take ‖x‖2 = ∫
I x2, but this

affects only the scale, not the main properties of the functions ψj .)

THEOREM 3.1. If
∫

I E(X2) < ∞, then the function ψp that maximizes f at
(2.9), given ψ1, . . . ,ψp−1 and subject to (2.10), is determined by

ψp = c0

[
K

{
b −

p−1∑
j=1

(∫
I
bψj

)
ψj

}
+

p−1∑
k=1

ckψk

]
,(3.1)
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where, for 1 ≤ k ≤ p−1, the constants ck are obtained by solving the linear system
of p − 1 equations ∫

I

∫
I
ψjψpK = 0, j = 1, . . . , p − 1,(3.2)

and where c0 is defined uniquely, up to a sign change, by the property

‖ψp‖ = 1.(3.3)

One of the interesting implications of the theorem is that for each j , the j th ba-
sis function determined by PLS can be expressed as a linear combination of j ex-
plicitly defined functions. More precisely, the theorem implies that ψ1 = d1K(b),
where, by (3.3) with p = 1, d1 = ‖K(b)‖−1, and more generally, the following
properties follow from the representation (3.1); the first property implies the sec-
ond:

(a) For each p ≥ 1, and given ψ1, . . . ,ψp−1, the function ψp is the linear
combination of K(b), . . . ,Kp(b) for which (2.10) holds, and is unique up
to a sign change. (b) For each p ≥ 1, representing a function as a linear
form in ψ1, . . . ,ψp is equivalent to representing it as a linear combination
of K(b), . . . ,Kp(b).

(3.4)

These properties motivate the APLS formulation and underpin the rest of the paper.
Interestingly, (3.4) continues to hold if equations (3.2) are replaced by

∫
I ψjψp =

0 for j = 1, . . . , p−1. In particular, although the functions ψ2, . . . ,ψp will change
in this case, the spaced spanned by ψ1, . . . ,ψp will not alter.

Result (3.4) is a deterministic functional version of a known result for em-
pirical PLS in the multivariate context. More specifically, suppose we have n

observations of a q-variate (nonfunctional) predictor of a variable Y , let X be
the n × q matrix of observations on the predictor, and let y be the n × 1 vec-
tor containing the observations on Y . Then it has been established that the space
spanned by the first p empirical PLS components is equal to the space generated
by XTy,DXTy, . . . ,Dp−1XTy, where D = XTX. See, for example, Bro and Eldén
(2009), and compare the empirical algorithm in Section 4.1. This is itself a par-
ticular case of results that are available more generally in Krylov spaces, although
again in the multivariate rather than functional setting, that is the subject of this
paper.

3.2. Expansions in a nonorthogonal PLS basis. The properties at (3.4) give
a clear and explicit account of the form taken by the PLS basis functions. For
example, they show that for each p, the space generated by ψ1, . . . ,ψp is the same
as the space generated (i.e., spanned) by K(b), . . . ,Kp(b). Note that the functions
Kj(b) are explicitly defined, since we have Kj(b) = ∑

k θ
j
k βPC

k φk , where φk is the
kth PCA basis function.
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Next, if we note that a = E(Y ) − ∫
I bE(X) and define γ1, . . . , γp to be the

sequence w1, . . . ,wp that minimizes

tp(w1, . . . ,wp) = E

{∫
I
(X − EX)b −

p∑
j=1

wj

∫
I
(X − EX)Kj(b)

}2

(3.5)

[compare (2.3)], then the slope function approximation bp at (2.4) has two equiv-
alent expressions,

bp =
p∑

j=1

γjK
j (b) =

p∑
j=1

βjψj ,(3.6)

where β1, . . . , βp are as defined in Section 2.1 if we take the general ψ1, . . . ,ψp

introduced there to be the specific functions given by Theorem 3.1.
In matrix notation,

γ ≡ (γ1, . . . , γp)T = H−1(α1, . . . , αp)T,(3.7)

where H = (hjk)1≤j,k≤p denotes a p × p matrix,

hjk =
∫

I
Kj+1(b)Kk(b) =

∞∑
r=1

(βPC
r )2θj+k+1

r ,(3.8)

αj =
∫

I
K(b)Kj (b) =

∞∑
r=1

(βPC
r )2θj+1

r = h0j .(3.9)

Here we have used the fact that, for p fixed, the matrix H is nonsingular because,
for finite p, the equivalence of the expansion in the orthogonal basis ψ1, . . . ,ψp

and in the basis K(b), . . . ,Kp(b) implies that the sequence γ1, . . . , γp that mini-
mizes (3.5) is unique. See also our discussion on Hankel matrices in Section 5.3.

The pth order approximation gp(x) to g(x) = E(Y | X = x), resulting from the
pth order approximation of b by either of the identities at (3.6), is given equiva-
lently by the second formula at (2.4) or by the expression

gp(x) = a +
∫

I
bpx = E(Y ) +

p∑
j=1

γj

∫
I
(x − EX)Kj(b).(3.10)

We denote by APLS the formulation of PLS based on the sequence K(b), . . . ,

Kp(b).
For the approximation at (3.6) to converge to b, that function should be express-

ible as a linear form in K(b),K2(b), . . . ,

b =
∞∑

j=1

wjK
j(b),(3.11)

where the wj ’s are constants, and the series converges in L2. The next theorem
gives conditions under which, for a general b in C(I), there exist w1,w2, . . . such
that (3.11) holds.
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THEOREM 3.2. If
∫

I E(X2) < ∞, and the eigenvalues of K are all nonzero,
then each b ∈ C(I) can be written as at (3.11), where the series converges in L2.

Under the side condition
∫

I E(X2) < ∞ the assumption in Theorem 3.2 that
all eigenvalues of K be nonzero is both necessary and sufficient for (3.11) to
hold for all b ∈ C(I). However, if some eigenvalues θj , corresponding to respec-
tive eigenvectors φj , vanish, then the respective values of

∫
I (X − EX)φj van-

ish with probability 1, and so those indices make zero contribution to
∫

I (X −
EX)b = ∑

j

∫
I (X − EX)φj · ∫

I bφj . Therefore we can delete the components of
b = ∑

j φj

∫
I bφj that correspond to indices j for which θj = 0, without affect-

ing the value of
∫

I bX; and it is only through the latter integral that b influences
prediction. Therefore the theorem can be stated in a form which asserts that even
if some of the eigenvalues of K vanish, the representation at (3.11) is sufficiently
accurate for all purposes of prediction based on (2.1). The only reason we have not
taken this course is to make our arguments relatively simple and transparent.

Note that the wj ’s in (3.11) are not determined uniquely. In particular, (3.11)
implies that K(b) = ∑

j wjK
j+1(b), and so the following expansion, among many

others, is an alternative to (3.11): b = ∑∞
j=1(wj + wj+1)K

j+1(b). This lack of
uniqueness does not violate the equivalence noted in (3.4)(b), since that property
is asserted only for a finite sequence ψ1, . . . ,ψp. However, it makes it impossible
to treat usefully the relationship between the infinite expansion of a function b in
terms of the sequence K(b),K2(b), . . . , and its infinite expansion in terms of the
PCA basis, φ1, φ2, . . . , introduced in Section 2.2. Nevertheless we can discuss the
pth order PLS projection bp = ∑p

j=1 γjK
j (b) of b onto the finite-dimensional

space spanned by K(b), . . . ,Kp(b), for an arbitrary but fixed p ≥ 1.
To this end, recall that βPC

1 , βPC
2 , . . . denote the Fourier coefficients of b with

respect to the PCA basis φ1, φ2, . . . . Then,

bp =
p∑

j=1

γjK
j (b) =

p∑
j=1

γj

∞∑
k=1

βPC
k θ

j
k φk =

∞∑
k=1

βPC
k

( p∑
j=1

γj θ
j
k

)
φk,(3.12)

and the last series expresses bp in terms of the components of the PCA basis.

4. Empirical implementation of APLS.

4.1. Algorithm for empirical APLS. A standard algorithm for empirical im-
plementation of PLS based on the sequence ψ1, . . . ,ψp is given in Appendix A.2.
In this section we describe a simple empirical algorithm for implementing APLS
based on the nonorthogonal sequence K(b), . . . ,Kp(b). As we shall see, this algo-
rithm will permit simple derivation of theoretical properties of PLS. In Section 4.2
we shall deduce two algorithms that are numerically more stable.
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To estimate K(b), . . . ,Kp(b), first note that we can estimate K(b) by

K̂(b) = 1

n

n∑
i=1

Xcent
i Y cent

i = 1

n

n∑
i=1

(Xi − X̄)(Yi − Ȳ ),

where Xcent
i = Xi − X̄ and Y cent

i = Yi − Ȳ . Then, given an estimator K̂j (b)

of Kj(b), we can estimate Kj+1(b)(t) by K̂j+1(b)(t) = ∫
I K̂j (b)(s)K̂(s, t) ds,

where K̂ is the conventional estimator of the covariance function, K̂(s, t) =
n−1 ∑n

i=1{Xi(s) − X̄(s)}{Xi(t) − X̄(t)}. Having calculated K̂j (b) for 1 ≤ j ≤ p

we take γ̂1, . . . , γ̂p to minimize

Up(w1, . . . ,wp) = 1

n

n∑
i=1

{
Y cent

i −
p∑

j=1

wj

∫
I
Xcent

i K̂j (b)

}2

(4.1)

with respect to w1, . . . ,wp [compare (3.5)]. In matrix notation,

γ̂ ≡ (γ̂1, . . . , γ̂p)T = Ĥ−1(α̂1, . . . , α̂p)T,(4.2)

where Ĥ = (ĥjk)1≤j,k≤p denotes a p × p matrix,

ĥjk =
∫

I

∫
I
K̂(s, t)K̂j (b)(s)K̂k(b)(t) ds dt =

∫
I
K̂j+1(b)K̂k(b),(4.3)

α̂j =
∫

I
K̂(b)K̂j (b).(4.4)

Finally we construct an estimator of g based on (3.10),

ĝp(x) = Ȳ +
p∑

j=1

γ̂j

∫
I
(x − X̄)K̂j (b).(4.5)

REMARK 1. Formula (3.8) demonstrates that the theoretical version H of Ĥ is
a symmetric matrix. Our estimator Ĥ does not necessarily enjoy that property, but
an alternative estimator of hjk can be defined to satisfy it. More precisely we can
take h̃jk = ∫

I K̂j+k(b)K̂(b), which produces a symmetric estimator H̃ = (h̃jk)

of H . We could use H̃ in place of Ĥ , but computing h̃jk requires K̂ to be iterated
j + k times, whereas ĥjk needs iteration at most max(j + 1, k) times. Therefore
we prefer the version Ĥ .

4.2. Stabilized algorithm for empirical APLS. The algorithm described in
Section 4.1 would provide a good solution if we were able to work in exact
arithmetic, but it can be unstable in finite precision arithmetic. This is because,
due to the nonunicity of the expression for b in terms of the infinite series
K(b),K2(b), . . . , as p increases the linear system of equations given by the em-
pirical version of (3.5) [see (4.1)] becomes closer to singular. Therefore, in finite
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precision arithmetic, as p increases it becomes more difficult to numerically iden-
tify one or more of the valid expressions arising from a large number of terms in
the sequence K̂(b), K̂2(b), . . . .

There exist a number of numerical methods for overcoming this numerical dif-
ficulty. A simple approach is to transform the linear system of equations by Gram–
Schmidt orthogonalization; see Section 7.7 of Lange (1999). There, the columns
of the n × p matrix with (i, j)th element equal to

∫
I Xcent

i K̂j (b) are transformed
into p orthonormal vectors u1, . . . , up by the modified Gram–Schimdt algorithm
(a numerically stabilized version of Gram–Schmidt algorithm; see Appendix A.3).
Instead of using γ̂ in (4.2), the sequence that minimizes (4.1) can then be computed
by solving, with respect to w1, . . . ,wp , the equivalent equation R(w1, . . . ,wp)T =
UT(Y cent

1 , . . . , Y cent
n )T, where U is a matrix with columns u1, . . . , up, and R is an

upper p × p triangular matrix. Let γ̂ ∗ = (γ̂ ∗
1 , . . . , γ̂ ∗

p )T be the solution of this
equation. We can estimate g by ĝ∗

p(x) = Ȳ + ∑p
j=1 γ̂ ∗

j

∫
I (x − X̄)K̂j (b).

Alternatively, having constructed K̂j (b) for 1 ≤ j ≤ p as in Section 4.1, we
can also transform them into an orthonormal sequence ψ̂1, . . . , ψ̂p satisfying the
standard PLS constraints,

∫
I

∫
I ψ̂j ψ̂kK̂ = 0 for j 	= k [(compare (2.10)], using,

for example, the modified Gram–Schmidt algorithm. Then we can calculate an
empirical version β̂1, . . . , β̂p of β1, . . . , βp , the latter defined in Section 2.1 (taking
there the ψj ’s to be the empirical PLS basis functions), by finding the sequence
v1, . . . , vp that minimizes (2.5). Finally, we can estimate g by

g̃p(x) = Ȳ +
p∑

j=1

β̂j

∫
I
(x − X̄)ψ̂j .(4.6)

In exact arithmetic, ĝ∗
p and γ̂ ∗ would be equal to, respectively, ĝp and γ̂ defined

in (4.5) and (4.2). Likewise, g̃p , would be equal to ĝp . In practice, these approx-
imations differ because we can only work in finite precision arithmetic, and the
algorithms leading to ĝ∗

p and g̃p are much more numerically stable than the one
leading to ĝp . In general, for prediction we found the algorithm leading to g̃p to
be preferable. However, the algorithm of Section 4.1 is important for developing
intuition and assembling theoretical arguments. On the theoretical side, the simple,
explicit formulae in Section 4.1 permit us to establish consistency and derive rates
of convergence. Of course, the equivalence between g̃p , ĝp and ĝ∗

p implies that, in
order to derive the theoretical properties of g̃p and ĝ∗

p , it suffices to derive them
for ĝp (all three have the same theoretical properties). On the intuitive side we note
that the explicit formulation of the quantities involved in our empirical algorithms
for APLS gives a much clearer account of what partial least-squares does, than the
standard empirical iterative PLS algorithm in Appendix A.2.

5. Asymptotic properties of empirical APLS.

5.1. Introduction. To our knowledge, the only existing theoretical results for
functional PLS are those of Preda and Saporta (2005a), who state generalizations
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to the functional data context of some results of Höskuldsson (1988). Although
they are of interest, the theoretical arguments there are iterative and not explicit,
and consistency of the PLS approximation is mentioned without a proof and with-
out regularity conditions or convergence rates. This is because those results are
based on the iterative empirical approximation of PLS, and the inexplicit form
of the algorithm (see Appendix A.2) apparently makes it very difficult to derive
explicit theoretical results.

Our alternative formulation, APLS, of the functional partial least-squares prob-
lem permits us to derive many properties. As already explained in Section 4.2, the
theoretical properties of the empirical approximations ĝ∗

p and g̃p in Section 4.2 are
identical to those of ĝp in Section 4.1.

5.2. Main results. Define μ = E(X), a function, and observe that we can
write:

K̂ = K + n−1/2ξ + n−1η, K̂(b) = K(b) + n−1/2ξ0 + n−1η0,(5.1)

where ξ and η are functions of two variables, ξ0 and η0 are functions of a single
variable, each equals OP (1). More specifically,

ξ(s, t) = 1

n1/2

n∑
i=1

(1 − E){Xi(s) − μ(s)}{Xi(t) − μ(t)},

ξ0(t) = 1

n1/2

n∑
i=1

(1 − E){Xi(t) − μ(t)}{Yi − E(Yi)},

η(s, t) = −n{X̄(s) − μ(s)}{X̄(t) − μ(t)},
η0(t) = −n{X̄(t) − μ(t)}(Ȳ − EȲ ).

For any square-integrable function L of two variables, define |||L|||2 = ∫
I

∫
I L2 and

put R1 = |||K||| + n−1/2|||ξ ||| + n−1|||η|||, R2 = |||ξ ||| + |||η|||. Define too

ζj (t) =
∫

I
Kj(b)(s)ξ(s, t) ds(5.2)

and

ξj = Kj−1(ξ0) +
j−2∑
k=0

Kk(ζj−k−1),(5.3)

‖ηj‖ ≤ R
j−1
1 ‖η0‖ + R2

j−1∑
k=1

R
j−k−1
1

(‖Kk(b)‖ + |||Kk−1|||‖ξ0‖)
(5.4)

+ R2|||ξ |||
j−1∑
k=1

R
j−k−1
1

k−2∑
�=0

|||K�|||‖Kk−�−1(b)‖.
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Theorem 5.1 below requires no assumptions beyond the model at (2.1), and the
condition that ∫

I
b2 < ∞, E‖X‖4 < ∞, E(ε2) < ∞.(5.5)

[Recall that ε, satisfying E(ε | X) = 0, is the error in the model at (2.1).] Note
that, under (5.5), it follows from (5.3) and (5.4) that ‖ξj‖ + ‖ηj‖ = OP (n−1/2).
Theorem 5.1 shows that the empirical approximations K̂j (b) to the basis functions
used by APLS, converge in probability to their theoretical values Kj(b) at a rate
n−1/2.

THEOREM 5.1. If (5.5) holds then, for each j ≥ 1,

K̂j (b) = Kj(b) + n−1/2ξj + n−1ηj ,(5.6)

where ξj is defined at (5.3) and ηj satisfies (5.4).

The next theorem shows that the matrix entries ĥjk , defined at (4.3), converge
in probability to their theoretical counterparts hjk , at (3.8), at a rate n−1/2. This
theorem will be used to establish consistency of the empirical coefficients γ̂j used
in the empirical APLS expansion at (4.5). Note that, since |||K|||2 = ∑

j θ2
j , the

condition 0 < θ1 < |||K||| imposed in Theorem 5.2 is equivalent to asserting that
at least two values of θj are nonzero. The condition |||K||| < 1 can be ensured by
simply changing the scale on which X is measured, and so is imposed without loss
of generality.

THEOREM 5.2. Assume (5.5), that θ1, θ2, . . . is the eigenvalue sequence in the
representation (2.6), ordered such that (2.7) holds, and that 0 < θ1 < |||K||| < 1.
Then ‖ηj‖ = Op(|||K|||j ) uniformly in 1 ≤ j ≤ Cn1/2, and

ĥjk = hjk + n−1/2
∫

I
{ξj+1K

k(b) + Kj+1(b)ξk}
(5.7)

+ Op(n−1θ
j
1 |||K|||k + n−2|||K|||j+k),

uniformly in 1 ≤ j ≤ k ≤ Cn1/2 as n → ∞, for each C > 0.

Our next result, Theorem 5.3, applies Theorems 5.1 and 5.2 to derive a stochas-
tic expansion for the difference between the theoretical approximant gp(x), at
(3.10), and its estimator ĝp(x), at (4.5). Let 
1jk = ∫

I {ξj+1K
k(b) + Kj+1(b)ξk},

denoting the coefficient of n−1/2 in the expansion (5.7), and put 
1 = (
1jk),
a p × p matrix, and δ = (
101, . . . ,
10p)T, a p-vector. Also, let λ = λ(p) be the
smallest eigenvalue of the p × p matrix H = (hjk), introduced in Section 3.2.
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THEOREM 5.3. Under the conditions of Theorem 5.2, and if each θj > 0,

‖γ̂ − {γ + n−1/2H−1(δ − 
1γ )}‖ = Op(n−1λ−3),(5.8)

ĝp(x) − gp(x)

= Ȳ − EY + n−1/2
p∑

j=1

[
{H−1(δ − 
1γ )}j

∫
I
(x − EX)Kj(b)

(5.9)

+ γj

∫
I
{(x − EX)ξj − n1/2(X̄ − EX)Kj(b)}

]
+ Op(n−1λ−1‖γ ‖ + n−1λ−3),

uniformly in functions x and integers p for which ‖x‖ ≤ C, 1 ≤ p ≤ Cn1/2 and
n1/2λ → ∞, where C > 0 is fixed but arbitrary.

Note that, by (3.8), |hjk| ≤ θ
j+k+1
1 ‖b‖2, and therefore ‖Hv‖ ≤ C1‖v‖ for all

p-vectors v, where the constant C1 does not depend on p. (Here we have used
the condition θ1 < 1, which we introduced in Theorem 5.2 and also imposed in
Theorem 5.3.) Hence λ ≤ C1 for all p. Note too that since, for finite p, H is
nonsingular (see Section 3.2), then its smallest eigenvalue λ = λ(p) is positive.
On the other hand, when p = ∞ the sequence γ1, γ2, . . . , that minimizes (3.5) is
not unique (see Section 3.2), and so we can have λ → 0 as p → ∞. The condition
n1/2λ → ∞ imposed in Theorem 5.3 reflects this property, and essentially puts an
upper bound to the speed at which p can tend to infinity as a function of n.

5.3. Implications of the main theorems and additional results.

5.3.1. Consistency and rates of convergence. Let X0 have the same distri-
bution as X1, . . . ,Xn but be independent of those random functions, and let
‖ · ‖pred denote the predictive L2 norm, conditional on X1, . . . ,Xn: if W is a
random variable, then ‖W‖pred = {E(W 2 | X1, . . . ,Xn)}1/2. For example, taking
W = ĝp(X0) − g(X0) we obtain a measure of the accuracy with which ĝp(X0)

predicts g(X0). We shall show in Section 7.6 that if p = p(n) is chosen to diverge
no faster than n1/2, and sufficiently slowly to ensure that

n−1/2λ−1‖γ ‖ + n−1λ−3 → 0(5.10)

as n → ∞, then

‖ĝp(X0) − g(X0)‖pred
(5.11)

= Op{n−1/2λ−1(1 + ‖γ ‖) + n−1λ−3 + tp(γ1, . . . , γp)1/2},
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where tp is as at (3.5). It follows from Theorem 3.2 that if all of the eigenvalues
θj are nonzero, then tp(γ1, . . . , γp) → 0 as p → ∞. (As remarked in the para-
graph immediately below that theorem, the condition that each θj is nonzero can
be dropped.) Therefore, (5.10) implies that ĝp(X0) is consistent for g(X0).

Additionally, Theorems 5.1–5.3 make it clear that, provided p does not di-
verge too quickly as a function of n, the quantities supj≤p‖K̂j (b) − Kj(b)‖,
sup1≤j,k≤p|ĥjk − hjk| and supj≤p|γ̂j − γj | [see (5.12) below] converge in proba-
bility to zero as n diverges.

5.3.2. Results in supremum metrics. For our expansions of the function K̂j (b)

at (5.6), and of the vector γ̂ at (5.8), our bounds on remainder terms are given in L2
metrics. In either case they can be extended to the supremum metric. For example,
(5.8) itself implies that

sup
1≤j≤p

|γ̂j − γj − n−1/2{H−1(δ − 
1γ )}j | = Op(n−1λ−3).(5.12)

Theorem 5.4 below states a version of (5.6) in the L∞ metric. It makes use of
the following regularity conditions:

for both Di ≡ 1 and Di ≡ Yi

sup
t∈I

∣∣∣∣∣ 1

n1/2

n∑
i=1

{Xi(t)Di − EXi(t)Di}
∣∣∣∣∣ = Op(1),(5.13)

sup
t∈I

∫
I

∣∣∣∣∣ 1

n1/2

n∑
i=1

(1 − E){Xi(s) − EXi(s)}{Xi(t) − EXi(t)}
∣∣∣∣∣
2

ds

(5.14)
= Op(1).

Conditions (5.13) and (5.14) will be discussed in Appendix A.1.

THEOREM 5.4. If (5.5), (5.13) and (5.14) hold, then supt∈I |ξj (t)| = Op(1)

for each j , and

sup
t∈I

|K̂j (b)(t) − {Kj(b)(t) + n−1/2ξj (t)}| = Op(n−1).

5.3.3. Interpreting stochastic expansions. The coefficients of n−1/2 in the ex-
pansions of K̂j (b)(t) − Kj(b)(t), ĥjk − hjk , γ̂j − γj and γ̂p(x) − γp(x) in (5.6),
(5.7), (5.8) [see also (5.12)] and (5.9), respectively, are each equal to n−1 multi-
plied by a sum of n independent and identically distributed random variables with
zero mean, plus a term that equals Op(n−1). In these cases, for fixed (j, t), (j, k),
j and (p, x), respectively, the independent random variables do not depend on n.
Therefore, their variances can be computed easily.
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For example, in the case of ĥjk −hjk , using (5.7) and the definitions of ξ and ξ0,
we have, under the conditions of Theorem 5.2 and for each fixed j and k,

ĥjk = hjk + n−1
n∑

i=1

Zijk + Op(n−1),(5.15)

where the independent and identically distributed random variables Z1jk, . . . ,Znjk

are given by

Zijk = (1 − E)

×
∫

I

(
Kk(b)(u)

[
{Yi − E(Yi)}

×
∫

I
Kj(u, t){Xi(t) − μ(t)}dt

+
j−1∑
�=0

∫
I
{Xi(t) − μ(t)}K�(t, u) dt

×
∫

I
Kj−�(b)(s){Xi(s) − μ(s)}ds

]

+ Kj+1(b)(u)

[
{Yi − E(Yi)}

×
∫

I
Kk−1(u, t){Xi(t) − μ(t)}dt

+
k−2∑
�=0

∫
I
{Xi(t) − μ(t)}K�(t, u) dt

×
∫

I
Kk−�−1(b)(s){Xi(s) − μ(s)}ds

])
du.

The distribution of Zijk does not depend on n, and, under the assumption of fi-
nite fourth moment of X and finite second moment of ε [see (5.5)], Zijk has fi-
nite variance σ 2

jk , say. Hence, for each fixed j and k it follows from (5.15) that

n1/2(ĥjk − hjk) is asymptotically normal N(0, σ 2
jk).

5.3.4. Hankel matrix properties. In Section 3.2 we demonstrated that αj =∫
xjm(dx), where m is the measure that places mass (βPC

r )2θr at the point θr for
r ≥ 1; m has no mass anywhere else. Therefore the p × p matrix H = (αj+k)

is a Hankel matrix for which the associated nonnegative measure, m, is discrete
and compactly supported. The latter property implies that m is completely deter-
mined by its moments αj , and hence that the Hankel matrix is “determinate;” see,
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for example, Berg and Szwarc (2011). In such cases the smallest eigenvalue of H

can converge to zero arbitrarily fast as p diverges [Berg and Szwarc (2011), The-
orem 2.5], although more is known about the case where m is a continuous than
that of a discrete measure, and it is particularly challenging to develop general the-
ory describing properties of H−1 in the context of our measures m. [See Lascoux
(1990) and Hou, Lascoux and Mu (2005) for access to the literature on inverses of
Hankel matrices and their determinants.] Nevertheless, as we noted in Section 3.2,
H is generally nonsingular for all p.

6. Numerical illustrations. In this section we illustrate, numerically, in a few
examples, the fact that the algorithms in Section 4.2 and Appendix A.2 do indeed
solve the same problem. We also illustrate the main difference between the PLS
basis and the PCA basis, namely that PLS can capture the interaction between X

and Y using a smaller number of terms than PCA.
In our first illustration, we take the Xi’s from a real data study, and gen-

erate the Yi’s according to the linear model at (2.1). By choosing the popula-
tion in this way, we can represent, in simulations, the vagaries of real data, but
we can still compare the performance of our methodology with the “truth.” We
take the Xi curves from a benchmark Phoneme dataset, which can be down-
loaded from www-stat.stanford.edu/ElemStatLearn. In these data, Xi(t) represents
log-periodograms constructed from recordings of different phonemes. The peri-
odograms are available at 256 equispaced frequencies t , which for simplicity we
denote by t = 1,2, . . . ,256. Hence, in this example, I = [1,256]. See Hastie, Tib-
shirani and Friedman (2009) for more information about this dataset. We used the
N = 1717 data curves Xi(t) that correspond to the phonemes “aa” as in “dark”
and “ao” as in “water.”

We computed the first J = 20 empirical PCA basis functions φ̂1(t), . . . , φ̂20(t),
and considered four different curves b, which we constructed by taking b(t) =∑J

j=1 aj φ̂j (t) for four different sequences of aj ’s: (i) aj = (−1)j · 1{j ≤ 5};
(ii) aj = (−1)j · 1{6 ≤ j ≤ 10}; (iii) aj = (−1)j · 1{11 ≤ j ≤ 15}; (iv) aj =
(−1)j · 1{16 ≤ j ≤ 20}. These four models were chosen to illustrate clearly the
advantages of the PLS basis over the PCA basis. Example (i) illustrates a situa-
tion particularly favourable to PCA, where the interaction between X and Y can
be represented by the first few PCA basis functions. There we do not expect that
PCA will need many more terms than PLS to achieve a small prediction error.
On going from example (i) to example (iv), the function b is represented by five
consecutively indexed PCA basis functions in each case, but with their indices suc-
cessively larger. However, as we shall see below, in those cases too, PLS manages
to construct a basis that captures the interaction between X and Y using only the
first few terms.

In the four cases, for i = 1, . . . ,N we generated the Yi ’s by taking Yi = ∫
I Xib+

εi , where εi ∼ N(0, σ 2), and where 5σ 2 was equal to the empirical variance of the

http://www-stat.stanford.edu/~tibs/ElemStatLearn/
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I bXi ’s calculated from the N observations. Then, in each case, we randomly split

these N observations in two parts: a training sample of size n, and a test sample of
size N − n. We did this 200 times for each of n = 30, n = 50 and n = 100, so for
each setting we generated 200 test and training samples.

For each set of test and training samples generated in this way, we constructed
our predictor using only the test sample, and then we applied it to predict

∫
I bXi for

each Xi in the associated training sample. In other words, we constructed X̄, Ȳ and
b̂ from the training sample only, where b̂ was the empirical version of bp calculated
either via the first p terms of the PLS basis (calculated from the algorithm in
Appendix A.2 or the second algorithm of Section 4.2), or via the first p terms of
the PCA basis, for each of p = 1, . . . ,10. Then, for each observation Xi in the test
sample, we calculated the predictor Ŷi = Ȳ + ∫

I b̂(Xi − X̄) of
∫

I bXi . Note that
this predictor includes the estimator Ȳ − ∫

I bX̄i of the intercept because, although
our data were generated from a model with no intercept, in practice we are not
supposed to know this.

To quantify the quality of prediction, we calculated the prediction error PE =
(N − n)−1 ∑N−n

i=1 (Ŷi − ∫
I bXi)

2 in each case, for each method, and for each test
sample. In Figure 1 we show boxplots of these prediction errors calculated in each
case from the 200 test samples. Note that here the two PLS algorithms gave exactly
the same estimators, and so the boxplots only show the results for the standard PLS
algorithm and for the PCA method. These boxplots show that as the information
about the interaction between X and Y moves further away in the sequence of φ̂j ’s
[i.e., going from case (i) to case (iv)], PLS can capture the interaction using fewer
terms than PCA. For example, in case (i), PLS took p = 3 components to reach the
prediction error that PCA reached with p = 5, but in case (iv), the prediction error
was already very small for PLS with p = 10, and was still very large for PCA with
p = 10. We also calculated the integrated squared error ISE = ∫

I (b̂ − b)2 for each
method and test sample. In Figure 2 we show boxplots of these ISEs calculated
from the 200 test samples, for models (i), (iii) and (iv). We can see that the PLS
estimator of b needs fewer components than the PCA estimator to reach small ISE
values.

In our second example we took the orange juice data which comprise N = 216
observations (Xi(t), Yi), i = 1, . . . ,N , where each Yi is the saccharose content of
a sample of orange juice, and Xi is a curve representing the first derivative of near-
infrared spectra of the juice at 700 equispaced points t . We take t = 1, . . . ,700
(hence I = [1,700]). The data can be found at www.ucl.ac.be/mlg/index.php?
page=DataBases. As with our simulated data above, we split the observations
randomly into a training sample of size n and a test sample of size N − n, for
each of n = 30, 50 and 100. We did this 200 times for each n. Then in each
case we calculated our predictor, as above, from the training sample, and ap-
plied it for predicting

∫
I Xib for the corresponding test sample. Here we did not

know the true model, so we calculated an estimator of the prediction error as

http://www.ucl.ac.be/mlg/index.php?page=DataBases
http://www.ucl.ac.be/mlg/index.php?page=DataBases
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FIG. 1. Boxplots of the prediction error using the first p PLS components (first group of 10 boxes)
or the first p PCA components (last group of 10 boxes), calculated from 200 samples of sizes n = 30
(first column) or n = 100 (second column) generated from the phoneme data. The curve b is that in
cases (i), (ii), (iii) and (iv), in, respectively, rows 1, 2, 3 and 4. From left to right, each group of 10
boxplots addresses the settings indexed by p = 1 to p = 10.
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FIG. 2. Boxplots of the ISE of b̂ using the first p PLS components (first group of 10 boxes) or the
first p PCA components (last group of 10 boxes), calculated from 200 samples of sizes n = 30 (first
row) or n = 100 (second row) generated from the phoneme data. The curve b is that in cases (i), (iii)
and (iv), in, respectively, columns 1, 2 and 3. From left to right, each group of 10 boxplots addresses
the settings indexed by p = 1 to p = 10.

P̂E = (N − n)−1 ∑N−n
i=1 (Ŷi − Yi)

2, for each (Xi, Yi) in the test sample. In this way
we obtained 200 values of P̂E for each n. Figure 3 shows, for each n, boxplots of
these 200 P̂E’s, for p = 1 to 8. As above, the two PLS algorithms (the algorithm
in Appendix A.2 and the second algorithm of Section 4.2) gave exactly the same
results, except for p = 8 where the numerical roundings of both methods differed
somewhat. Therefore we show the boxplots for both algorithms. In this example

FIG. 3. Boxplots of the estimated prediction error using the first p PLS components calculated by
the algorithm of Appendix A.2 (first group of 8 boxes) or the second algorithm of Section 4.2 (second
group of 8 boxes, denoted by PLS2), or the first p PCA components (last group of 8 boxplots). Each
box was calculated from 200 samples of sizes n = 30 (first column), n = 50 (second column) or
n = 100 (third column) drawn randomly from the orange data. From left to right, each group of
8 boxplots is for p = 1 to p = 8.
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too we can see that the two PLS algorithms clearly solve the same problem, and
that PLS needs fewer terms (i.e., p is smaller) to capture the same interactions
as PCA. This can be advantageous when computing time is an issue, for example
when a linear prediction is associated with a complex nonparametric procedure.
For example, in Ferraty and Vieu (2006), the linear fit is used in combination with
nonparametric estimators of E(Y |X).

7. Technical arguments.

7.1. Proof of Theorem 3.1. Defining σ 2 = var(ε) we see that the right-hand
side of (2.9) can be expressed as

cov

{(∫
I
bX

)
−

p−1∑
j=1

(∫
I
bψj

)(∫
I
Xψj

)
,

∫
I
Xψp

}

=
∫

I

∫
I
bψpK −

p−1∑
j=1

(∫
I
bψj

)(∫
I

∫
I
ψjψpK

)
.

The partial derivative of the right-hand side here, with respect to ψp , equals

K

{
b −

p−1∑
j=1

(∫
I
bψj

)
ψj

}
.(7.1)

The equation in ck at (3.2) is the result of adjoining Lagrange multipliers on the
right-hand side so as to accommodate the first p − 1 constraints in (2.10). The
factor c0 on the right-hand side of (3.1) accommodates the last constraint in (2.10).

7.2. Proof of Theorem 3.2. Recall that C(I) is the space of all square-
integrable functions on I , and suppose b = ∑

j βPC
j φj ∈ C(I). Write Cp(I) for the

p-dimensional subspace of C(I) generated by the PCA basis functions φ1, . . . , φp ,
and let Kp denote the transformation that takes bp ≡ ∑

1≤j≤p βPC
j φj ∈ Cp(I) to∑

1≤j≤p θjβ
PC
j φj . Now,

(θ1I − Kp) · · · (θpI − Kp)bp = 0

for all bp ∈ Cp(I). Therefore,

a0bp + a1Kp(bp) + · · · + apKp
p (bp) = 0(7.2)

for all bp ∈ Cp(I), where a0, . . . , ap are constants and a0 = θ1 · · · θp . In particular,
a0 is nonzero, and so (7.2) implies that, for constants c1, . . . , cp ,

bp = c1K(bp) + · · · + cpKp(bp).(7.3)

Let Pp denote the projection operator that takes b = ∑
j βPC

j φj ∈ C(I) to

Pp(b) = bp ∈ Cp(I). Since Pp and K commute, then Kj(bp) = KjPp(b) =
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PpKj(b). Therefore (7.3) implies that bp = Pp{c1K(b) + · · · + cpKp(b)}, or
equivalently,

Pp[b − {c1K(b) + · · · + cpKp(b)}] = 0.(7.4)

In view of (7.4), if we let D(I) denote the vector space generated by K(b),
K2(b), . . . , and if we define Pp{D(I)} = {Pp(z) : z ∈ D(I)}, then Pp(b) ∈
Pp{D(I)} for all p. Now, Pp{D(I)} ⊆ D(I), which is closed under limit oper-
ations in L2. Therefore, the limit as p → ∞ of Pp(b), that is b, must be in D(I).

7.3. Proof of Theorem 5.1. Assume it can be proved that (5.6) holds, with ξj

and ηj satisfying (5.3) and (5.4), for a particular j ≥ 1; in view of (5.1), (5.6) is
valid for j = 1. Then,

K̂j+1(b)(t) =
∫

I
K̂j (b)(s)K̂(s, t) ds

=
∫

I
{Kj(b) + n−1/2ξj + n−1ηj }(s)(K + n−1/2ξ + n−1η)(s, t) ds

= Kj+1(b)(t) + n−1/2
∫

I
{Kj(b)(s)ξ(s, t) + ξj (s)K(s, t)}ds

+ n−1
∫

I
{Kj(b)(s)η(s, t) + ηj (s)K(s, t) + ξj (s)ξ(s, t)}ds

+ n−3/2
∫

I
{ξj (s)η(s, t) + ηj (s)ξ(s, t)}ds

+ n−2
∫

I
ηj (s)η(s, t) ds.(7.5)

Therefore, taking ξj+1 to be given by the coefficient of n−1/2 in (7.5), and recalling
the definition of ζj at (5.2), we have

ξj+1(t) =
∫

I
{Kj(b)(s)ξ(s, t) + ξj (s)K(s, t)}ds

= K(ξj )(t) + ζj (t) = K2(ξj−1)(t) + K(ζj−1)(t) + ζj (t),

which, on iteration, gives (5.3).
Finally we derive the bound at (5.4) on the remainder, again arguing by induc-

tion; assuming that (5.4) holds for j we establish it for j + 1. Taking ηj+1 to equal
n times the sum of the terms in n−1, n−3/2 and n−2 in (7.5), we deduce that

ηj+1(t) =
∫

I
{Kj(b)(s)η(s, t) + ηj (s)K(s, t) + ξj (s)ξ(s, t)}ds

+ n−1/2
∫

I
{ξj (s)η(s, t) + ηj (s)ξ(s, t)}ds + n−1

∫
I
ηj (s)η(s, t) ds.
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Therefore,

‖ηj+1‖ ≤ ‖Kj(b)‖|||η||| + ‖ηj‖|||K||| + ‖ξj‖|||ξ ||| + n−1/2(‖ξj‖|||η||| + ‖ηj‖|||ξ |||)
+ n−1‖ηj‖|||η|||

≤ (‖Kj(b)‖ + ‖ξj‖)
R2 + ‖ηj‖R1

≤ (‖Kj(b)‖ + ‖ξj‖)
R2 + {(‖Kj−1(b)‖ + ‖ξj−1‖)

R2 + ‖ηj−1‖R1
}
R1

= {(‖Kj(b)‖ + ‖ξj‖) + (‖Kj−1(b)‖ + ‖ξj−1‖)
R1

}
R2 + ‖ηj−1‖R2

1

≤
{ j∑

k=1

(‖Kk(b)‖ + ‖ξk‖)
R

j−k
1

}
R2 + ‖η1‖Rj

1 ,

where the last identity follows on iteration. Observe too that, by (5.1), η1 = η0.
Therefore,

‖ηj+1‖ ≤ R
j
1‖η0‖ + R2

j∑
k=1

R
j−k
1

(‖Kk(b)‖ + ‖ξk‖)
.(7.6)

Note too that, by (5.2), ‖ζj‖ ≤ ‖Kj(b)‖|||ξ |||, and so, by (5.3),

‖ξk‖ ≤ |||Kk−1|||‖ξ0‖ + |||ξ |||
k−2∑
�=0

|||K�|||‖Kk−�−1(b)‖.

Hence, by (7.6),

‖ηj+1‖ − R
j
1‖η0‖ ≤ R2

j∑
k=1

R
j−k
1

{
‖Kk(b)‖ + |||Kk−1|||‖ξ0‖

+ |||ξ |||
k−2∑
�=0

|||K�|||‖Kk−�−1(b)‖
}

= R2

j∑
k=1

R
j−k
1

(‖Kk(b)‖ + |||Kk−1|||‖ξ0‖)

+ R2|||ξ |||
j∑

k=1

R
j−k
1

k−2∑
�=0

|||K�|||‖Kk−�−1(b)‖.(7.7)

Result (5.4) for j + 1 follows from (7.7).

7.4. Proof of Theorem 5.2. Representation (5.6) implies that

ĥjk = hjk + n−1/2
∫

I
{ξj+1K

k(b) + Kj+1(b)ξk} + n−1Rjk,(7.8)
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where

ĥjk =
∫

I
K̂j+1(b)K̂k(b), hjk =

∫
I
Kj+1(b)Kk(b),

|Rjk| ≤
∣∣∣∣∫I

{ξj+1ξk + Kj+1(b)ηk + Kk(b)ηj+1}

+ n−1/2
∫

I
(ηj+1ξk + ξj+1ηk) + n−1

∫
I
ηj+1ηk

∣∣∣∣
≤ ‖ξj+1‖‖ξk‖ + ‖Kj+1(b)‖‖ηk‖ + ‖Kk(b)‖‖ηj+1‖

+ n−1/2(‖ηj+1‖‖ξk‖ + ‖ξj+1‖‖ηk‖) + n−1‖ηj+1‖‖ηk‖.(7.9)

Next we bound |Rjk|. Observe that |||Kk|||2 = ∑
j θ2k

j = O(θ2k
1 ), ‖Kk(b)‖2 =∑

j θ2k
j (

∫
I bφj )

2 = O(θ2k
1 ) and |||η||| + |||ξ ||| + ‖η0‖ + ‖ξ0‖ = Op(1) as n → ∞.

Hence, by (5.2), ‖ζj‖ ≤ ‖Kj(b)‖|||ξ ||| = Op(θ
j
1 ), uniformly in j ≥ 1, and therefore

by (5.3),

‖ξj‖ = Op

(
θ

j
1 +

j−2∑
k=0

θk
1 θ

j−k−1
1

)
= Op(jθ

j
1 ),(7.10)

uniformly in j ≥ 1. Note too that

R
j
1 = {(|||K||| + n−1/2|||ξ ||| + n−1|||η|||)j } = Op(|||K|||j ),

uniformly in 1 ≤ j ≤ Cn1/2, for any C > 0. More simply, R2 = Op(1). Hence, by
(5.4),

‖ηj‖ = Op

(
|||K|||j +

j−1∑
k=1

|||K|||j−k−1θk
1 +

j−1∑
k=1

|||K|||j−k−1kθk
1

)

= Op(|||K|||j ),(7.11)

uniformly in 1 ≤ j ≤ Cn1/2. (Here we have used the property 0 < θ1 < |||K||| < 1.)
Combining (7.9)–(7.11) we find that

Rjk = Op{jkθ
j+k
1 + θ

j
1 |||K|||k + θk

1 |||K|||j(7.12)

+ n−1/2(|||K|||j θk
1 + |||K|||kθj

1 ) + n−1|||K|||j+k}
= Op(θ

j
1 |||K|||k + n−1|||K|||j+k),(7.13)

uniformly in 1 ≤ j ≤ k ≤ Cn1/2. Theorem 5.2 follows from (7.8) and (7.13).
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7.5. Proof of Theorem 5.3. From (3.10), (3.11) and (4.5) we deduce that

ĝp(x) − gp(x) − (Ȳ − EY)

=
p∑

j=1

{
γ̂j

∫
I
(x − X̄)K̂j (b) − γj

∫
I
(x − EX)Kj(b)

}

=
p∑

j=1

[
(γ̂j − γj )

∫
I
(x − EX)Kj(b)

+ γj

∫
I
(x − EX){K̂j (b) − Kj(b)}

− γj

∫
I
(X̄ − EX)Kj(b)

+ (γ̂j − γj )

∫
I
(x − EX){K̂j (b) − Kj(b)}

− (γ̂j − γj )

∫
I
(X̄ − EX)Kj(b)

− γ̂j

∫
I
(X̄ − EX){K̂j (b) − Kj(b)}

]
.(7.14)

Combining (5.6), (7.10) and the bound ‖ηj‖ = Op(|||K|||j ), valid uniformly in
1 ≤ j ≤ Cn1/2 for each C > 0 and given in Theorem 5.2, we deduce that

‖K̂j (b) − Kj(b)‖ ≤ n−1/2‖ξj‖ + n−1‖ηj‖
(7.15)

= Op(n−1/2jθ
j
1 + n−1|||K|||j ),

uniformly in 1 ≤ j ≤ Cn1/2 for each C > 0.
More simply, ‖X̄ − EX‖ = Op(n−1/2). Combining this bound with (7.10),

(7.14) and the properties ‖x‖ ≤ C and ‖Kj(b)‖ = O(θ
j
1 ), we deduce that

ĝp(x) − gp(x) − (Ȳ − EY)

=
p∑

j=1

[
(γ̂j − γj )

∫
I
(x − EX)Kj(b)

+ γj

∫
I
(x − EX){K̂j (b) − Kj(b)} − γj

∫
I
(X̄ − EX)Kj(b)

]

+ Op

{
n−1/2

p∑
j=1

(|γ̂j − γj | + n−1/2|γ̂j |)(jθ
j
1 + n−1/2|||K|||j )

}
,(7.16)
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uniformly in 1 ≤ p ≤ Cn1/2 and ‖x‖ ≤ C, for each C > 0. Using (5.6) and the
bound ‖ηj‖ = Op(|||K|||j ), we deduce from (7.16) that

ĝp(x) − gp(x) − (Ȳ − EY)

=
p∑

j=1

[
(γ̂j − γj )

∫
I
(x − EX)Kj(b)

+ γj

∫
I
{n−1/2(x − EX)ξj − (X̄ − EX)Kj(b)}

]

+ Op

[
n−1/2

p∑
j=1

{|γ̂j − γj |(jθ
j
1 + n−1/2|||K|||j )

+ n−1/2(|γ̂j | + |γj |)|||K|||j }
]
,(7.17)

uniformly in 1 ≤ p ≤ Cn1/2 and ‖x‖ ≤ C, for each C > 0.
Given any p ×p matrix M , define its norm by ‖M‖ = supv : ‖v‖=1 ‖Mv‖. Writ-

ing 
 for a particular p ×p matrix, and recalling that λ = λ(p) denotes the small-
est eigenvalue of H , we have ‖
H−1‖ ≤ ‖
‖/λ. Therefore, if Ĥ = (ĥjk) is the
p × p matrix obtained when ĥjk is defined as at (4.3), and we put 
 = Ĥ − H ,
then, provided that ‖
‖/λ ≤ ρ where ρ ∈ (0,1) is fixed, we have

Ĥ−1 = (I + H−1
)−1H−1 = [I − H−1
 + Op{(‖
‖/λ)2}]H−1.(7.18)

Here the matrix M represented by Op{(‖
‖/λ)2} is interpreted as having the prop-
erty ‖Mv‖ ≤ (1 − ρ)−1(‖
‖/λ)2‖v‖ for all p-vectors v (provided that ‖
‖/λ ≤
ρ), where on this occasion ‖Mv‖ and ‖v‖ denote vector norms of the indicated
quantities, and ‖
‖ is the matrix norm of 
.

We know from (5.7) that ĥjk = hjk + n−1/2
1jk + n−1
2jk , where


1jk =
∫

I
{ξj+1K

k(b) + Kj+1(b)ξk},
(7.19)

|
2jk| = Op(θ
j
1 |||K|||k + n−1|||K|||j+k),

the latter property holding uniformly in 1 ≤ j ≤ k ≤ Cn1/2. Note too that, by
(7.10), ‖ξj‖ = Op(jθ

j
1 ), uniformly in j ≥ 1, and that ‖Kj(b)‖ = O(θ

j
1 ), so

|
1jk| = Op{max(j, k)θ
j+k
1 }. Therefore, if we define 
jk = ĥjk − hjk then,

since θ1 < |||K||| < 1, we have n
∑∑

j,k≤p 
2
jk = Op(1), uniformly in p ≤ Cn1/2.

Hence, ‖
‖ = Op(n−1/2), uniformly in p ≤ Cn1/2, where 
 = (
jk) is a p × p

matrix. Therefore, if p is chosen to diverge so slowly that p = O(n1/2) and
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λ = λ(p) satisfies n1/2λ → ∞ then, by (7.18),

Ĥ−1 = {I − H−1
 + Op(n−1λ−2)}H−1,(7.20)

uniformly in p ≤ Cn1/2. [Here Op(n−1λ−2) denotes a p × p matrix, M say, for
which ‖Mv‖/‖v‖ = Op(n−1λ−2) uniformly in nonzero p-vectors v.] Note too
that, if we define 
� to be the p×p matrix with (j, k)th element 
�jk , for � = 1,2,
then, in view of the second formula at (7.19),

∑∑
j,k≤p 
2

2jk = Op(1), and so

‖
2‖ = Op(1) uniformly in p ≤ Cn1/2. Therefore (7.20) and the property 
 =
Ĥ − H = n−1/2
1 + n−1
2 imply that

Ĥ−1 = {I − n−1/2H−1
1 + Op(n−1λ−2)}H−1.(7.21)

[Here we used the fact that λ ≤ h1,1 = O(1).]
Recalling the definitions of ĥjk , α̂j and αj at (4.3), (4.4) and (3.9), we de-

duce that α̂j = ĥ0j . Noting that result (5.7) can be extended to ĥ0j , we have that
α̂j = αj + n−1/2
10j + n−1
20j , where 
10j and 
20j are given by (7.19).
Note too that, by (4.2) and (3.7), γ̂j = (Ĥ−1α̂)j and γj = (H−1α)j , where

α = (α1, . . . , αp)T and α̂ = (α̂1, . . . , α̂p)T. Since Kj(b) = O(θ
j
1 ) uniformly in

j ≥ 1, ‖ηj‖ = Op(|||K|||j ) uniformly in 1 ≤ j ≤ Cn1/2 (see Theorem 5.2) and

‖ξj‖ = Op(jθ
j
1 ) uniformly in j ≥ 1 [see (7.10)], then, by (5.6), ‖K̂j (b)‖ =

Op(θ
j
1 +n−1/2jθ

j
1 +n−1|||K|||j ) uniformly in 1 ≤ j ≤ Cn1/2. Using formula (4.4)

for α̂j , and the fact that 0 < θ1 < |||K||| < 1, we deduce that

‖α̂‖ ≤
{ p∑

j=1

‖K̂(b)‖2‖K̂j (b)‖2

}1/2

= Op(1),(7.22)

uniformly in 1 ≤ p ≤ Cn1/2.
Therefore, defining δ = (
101, . . . ,
10p)T, we have, by (7.21),

γ̂ = Ĥ−1α̂

= H−1(α + n−1/2δ) − n−1/2H−1
1H
−1α + Op(n−1λ−3)

= γ + n−1/2H−1(δ − 
1γ ) + Op(n−1λ−3),(7.23)

uniformly in 1 ≤ p ≤ Cn1/2, where the two vectors denoted by Op(n−1λ−3) have
the property that their norms equal Op(n−1λ−3) uniformly in 1 ≤ p ≤ Cn1/2.

Next we combine (7.17) and (7.23), obtaining

ĝp(x) − gp(x) − (Ȳ − EY)

=
p∑

j=1

[
n−1/2{H−1(δ − 
1γ )}j

∫
I
(x − EX)Kj(b)

+ γj

∫
I
{n−1/2(x − EX)ξj − (X̄ − EX)Kj(b)}

]
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+ Op

[
n−1λ−3 + n−1/2

p∑
j=1

{|γ̂j − γj |(jθ
j
1 + n−1/2|||K|||j )

+ n−1/2(|γ̂j | + |γj |)|||K|||j }
]
,(7.24)

uniformly in 1 ≤ p ≤ Cn1/2 and ‖x‖ ≤ C for each C > 0. Here we have used the
fact that, if V = (V1, . . . , Vp)T is the vector denoted by Op(n−1λ−3) on the far
right-hand side of (7.23), then

p∑
j=1

∣∣∣∣Vj

∫
I
(x − EX)Kj(b)

∣∣∣∣ ≤ ‖V ‖
{ p∑

j=1

∣∣∣∣∫I
(x − EX)Kj(b)

∣∣∣∣2
}2

= Op(n−1λ−3),

uniformly in 1 ≤ p ≤ Cn1/2 and ‖x‖ ≤ C, since
∑

j≥1 ‖Kj(b)‖2 < ∞.

Note too that, since ‖Kj(b)‖ = O(θ
j
1 ) and ‖ξj‖ = Op(jθ

j
1 ), uniformly in 1 ≤

j ≤ Cn1/2, then by (7.19), |
1jk| = Op(jkθ
j+k
1 ), uniformly in 1 ≤ j, k ≤ Cn1/2,

and therefore,

‖
1‖2 ≤
p∑

j=1

p∑
k=1


2
1jk = Op(1),

‖δ‖2 =
p∑

j=1


2
10j = Op(1),

uniformly in 1 ≤ p ≤ Cn1/2. Hence, by (7.23) and (7.22),

‖γ̂ − γ ‖ = Op{n−1/2λ−1(‖δ‖ + ‖
1‖‖γ ‖) + n−1λ−3}
= Op{n−1/2λ−1(1 + ‖γ ‖) + n−1λ−3}.

Therefore,

p∑
j=1

{|γ̂j − γj |(jθ
j
1 + n−1/2|||K|||j ) + n−1/2(|γ̂j | + |γj |)|||K|||j }

= Op(‖γ̂ − γ ‖ + n−1/2‖γ ‖)
= Op{n−1/2λ−1(1 + ‖γ ‖) + n−1λ−3}.(7.25)

Result (5.8) is a consequence of (7.23), and (5.9) follows from (7.24) and (7.25).
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7.6. Proof of (5.11). To derive (5.11), note that minor modifications of the
argument used to derive (5.9) can be employed to show that, under the conditions
of Theorem 5.3,

‖ĝp(X0) − gp(X0)‖pred

=
∥∥∥∥∥Ȳ − EY

+ n−1/2
p∑

j=1

[
{H−1(δ − 
1γ )}j

∫
I
(X0 − EX)Kj(b)

+ γj

∫
I
{(X0 − EX)ξj − n1/2(X̄ − EX)Kj(b)}

]∥∥∥∥∥
pred

+ Op(n−1λ−1‖γ ‖ + n−1λ−3),(7.26)

uniformly in p satisfying 1 ≤ p ≤ Cn1/2, for each C > 0. The predictive norm on
the right-hand side of (7.26) can be shown to equal Op{n−1/2λ−1(1 + ‖γ ‖)}, and
so if (5.10) holds, then

‖ĝp(X0) − gp(X0)‖pred = Op{n−1/2λ−1(1 + ‖γ ‖) + n−1λ−3}.(7.27)

Since ‖gp(X0) − g(X0)‖pred = tp(γ1, . . . , γp)1/2 then (7.27) implies (5.11).

APPENDIX

A.1. Conditions (5.13) and (5.14). Here we give examples where (5.13)
and (5.14) hold. Assume that E(X) = 0. Then the Karhunen–Loève expansion
of Xi , founded on the principal component basis introduced in Section 2.2, is
given by Xi = ∑

j θ
1/2
j ξijφj , where the random variables ξij , for j ≥ 1, are

uncorrelated and have zero mean and unit variance. For simplicity we sup-
pose that they have identical distributions with bounded fourth moments, that
E(ε4) < ∞, and that the eigenvalues θj and eigenvectors φj satisfy the condition∑∞

j=1 θ
1/2
j supt∈I |φj (t)| < ∞. Then,

E

[
sup
t∈I

∣∣∣∣∣ 1

n1/2

n∑
i=1

{Xi(t)Di − EXi(t)Di}
∣∣∣∣∣
]

≤
∞∑

j=1

θ
1/2
j

{
sup
t∈I

|φj (t)|
}
E

∣∣∣∣∣ 1

n1/2

n∑
i=1

(1 − E)ξijDi

∣∣∣∣∣
≤ (Eξ4

11 · ED4
1)1/4

∞∑
j=1

θ
1/2
j

{
sup
t∈I

|φj (t)|
}

< ∞,(A.1)
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E

[
sup
t∈I

∣∣∣∣∣ 1

n1/2

n∑
i=1

(1 − E){Xi(s) − EXi(s)}{Xi(t) − EXi(t)}
∣∣∣∣∣
2]

= E

[
sup
t∈I

∣∣∣∣∣
∞∑

j=1

∞∑
k=1

(θj θk)
1/2φj (s)φk(t)

{
n−1/2

n∑
i=1

(1 − E)ξij ξik

}∣∣∣∣∣
2]

≤ E(ξ4
11)

[ ∞∑
j=1

θ
1/2
j

{
sup
t∈I

|φj (t)|
}]4

,(A.2)

where we have used the properties{
E

∣∣∣∣∣ 1

n1/2

n∑
i=1

(1 − E)ξijDi

∣∣∣∣∣
}2

≤ E{(ξ11D1)
2} ≤ (Eξ4

11 · ED4
1)1/2,

{
E

∣∣∣∣∣ 1

n1/2

n∑
i=1

(1 − E)ξij ξik

∣∣∣∣∣
}2

≤ E{(ξ1j ξ1k)
2} ≤ E(ξ4

11).

Properties (5.13) and (5.14) follow from (A.1) and (A.2), respectively.

A.2. Conventional implementation via the PLS basis. Inference is based
on a dataset X = {(X1, Y1), . . . , (Xn,Yn)} of independent data pairs distributed as
(X,Y ). We first introduce the centred data X

[1]
i = Xi − X̄ and Y

[1]
i = Yi − Ȳ , for

1 ≤ i ≤ n. Here and below, a superscript in square brackets denotes the number, or
index, of a step in our algorithm. The algorithm goes as follows. For j = 1, . . . , p:

(1) Estimate ψj by the empirical covariance of X
[j ]
i and Y

[j ]
i : ψ̂j = ∑n

i=1 X
[j ]
i ×

Y
[j ]
i /‖∑n

i=1 X
[j ]
i Y

[j ]
i ‖.

(2) Fit the models Y
[j ]
i = βj

∫
I X

[j ]
i ψ̂j + ε

[j ]
i and X

[j ]
i (t) = δj (t)

∫
I X

[j ]
i ψ̂j +

η
[j ]
i (t) by least-squares; that is, take

β̂j =
n∑

i=1

Y
[j ]
i

∫
I
X

[j ]
i ψ̂j

/ n∑
i=1

{∫
I
X

[j ]
i ψ̂j

}2

,

δ̂j (t) =
n∑

i=1

X
[j ]
i (t)

∫
I
X

[j ]
i ψ̂j

/ n∑
i=1

{∫
I
X

[j ]
i ψ̂j

}2

.

(3) Calculate X
[j+1]
i (t) = X

[j ]
i (t) − δ̂j (t)

∫
I X

[j ]
i ψ̂j and Y

[j+1]
i = Y

[j ]
i −

β̂j

∫
I X

[j ]
i ψ̂j .

After completion of steps (1) to (3) for all j , define M = (Mj,k)1≤j,k≤p by
M−1 = (

∫
I δ̂j ψ̂k)1≤j,k≤p . Then b̂p(t) = ∑p

j,k=1 β̂kMj,kψ̂j (t) and g̃p(x) = Ȳ +∫
I b̂p(x − X̄).
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A.3. Modified Gram–Schmidt algorithm. This algorithm turns a set of
linearly independent functions v1, . . . , vp into a set of orthogonal functions
u1, . . . , up , where orthogonality is defined with respect to a scalar product 〈·, ·〉.
For example, for the second algorithm in Section 4.2, the scalar product between
two functions f1 and f2 is defined by 〈f1, f2〉 = ∫

I
∫

I f1(s)f2(t)K̂(s, t) ds dt . The
modified Gram–Schmidt algorithm is described in Lange (1999), Section 7.7. It
works as follows:

for j = 1, . . . , p

u
[1]
j = vj

for i = 1, . . . , j − 1

u
[i+1]
j = u

[i]
j − 〈

u
[i]
j , ui

〉
ui

end loop i

uj = u
[j ]
j /

∥∥u[j ]
j

∥∥
end loop j .

Acknowledgments. We are grateful to Peter Forrester and Alan McIntosh for
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