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ENSEMBLE OF MINIMUM AVERAGE VARIANCE ESTIMATORS
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We introduce a class of dimension reduction estimators based on an en-
semble of the minimum average variance estimates of functions that charac-
terize the central subspace, such as the characteristic functions, the Box–Cox
transformations and wavelet basis. The ensemble estimators exhaustively es-
timate the central subspace without imposing restrictive conditions on the
predictors, and have the same convergence rate as the minimum average vari-
ance estimates. They are flexible and easy to implement, and allow repeated
use of the available sample, which enhances accuracy. They are applicable to
both univariate and multivariate responses in a unified form. We establish the
consistency and convergence rate of these estimators, and the consistency of
a cross validation criterion for order determination. We compare the ensem-
ble estimators with other estimators in a wide variety of models, and establish
their competent performance.

1. Introduction. Sufficient dimension reduction [Li (1991, 1992), Cook and
Weisberg (1991), Cook (1994, 1996)] is a methodology for reducing the dimen-
sion of predictors while preserving its regression relation with a response. The
reduction is achieved by projecting the raw predictors on to a lower-dimensional
subspace. Let (X,Y ) be a pair of random vectors of dimensions p and s. In this
section we tentatively assume s = 1. Let S denote a subspace of R

p , and let PS
denote the orthogonal projection on to S . If Y and X are independent condition-
ing on PS X, then PS X can be used as the predictor without loss of regression
information. Such subspaces S are called dimension reduction subspaces. The in-
tersection of all such subspaces S , if itself satisfies the conditional independence,
is called the central subspace [Cook (1994)], and is denoted by SY |X . Under mild
conditions [Cook (1996), Yin, Li and Cook (2008)], the central subspace is well
defined and is unique.

A closely related concept is the notion of central mean subspace [Cook and Li
(2002)], which is the intersection of all subspaces such that E(Y |X) = E(Y |PS X).
This subspace is written as SE(Y |X). Evidently, if conditional distribution of Y
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given X depends on X only through E(Y |X), then SY |X = SE(Y |X). However,
if this conditional distribution also depends on other functions of X, such as
var(Y |X), then SE(Y |X) is a proper subspace of SY |X . Cook and Li (2002) noted
that several previously introduced dimension reduction methods, such as the ordi-
nary least squares [Li and Duan (1989), Duan and Li (1991)] and principal Hessian
directions [Li (1992), Cook (1998)], actually estimates the central mean subspaces;
whereas some other pre-existing estimates, such as the sliced inverse regression
(SIR), the SIR-II [Li (1991)] and the sliced average variance estimator (SAVE)
[Cook and Weisberg (1991)], can recover additional directions in the central sub-
space.

Yin and Cook (2002) extended central mean subspace to central moment sub-
space, based on the relation E(Y k|X) = E(Y k|PS X), which is written as SE(Y k |X).
This provides us with a graduation between the central mean subspace and the cen-
tral subspace. That is, for sufficiently large k, the subspace spanned by {SE(Y �|X),
� = 1, . . . , k} approaches the central subspace. Zhu and Zeng (2006) showed that
the central mean subspaces for E(eιtY |X), t ∈ R, when put together, recovers the
central subspace, and exploited this relation to develop a Fourier transformation
method to estimate the central subspace. Here and throughout, we use ι to denote
the imaginary unit

√−1. More recently, Zeng and Zhu (2010) developed a general
integral transform method. Both papers hint at the following fact: if one can esti-
mate the central mean subspace of E[f (X)|Y ] for sufficiently many functions f ,
then one can recover the central subspace.

In a seminal paper, Xia et al. (2002) introduced a dimension reduction method,
called the minimum average variance estimator (MAVE), based on estimation of
the gradient of the conditional expectation E(Y |X). This method has three main
advantages: (1) it estimates the central mean subspaces exhaustively; (2) it does
not impose strong assumptions on the distribution of X; (3) its computation can
be broken down into iterations between two quadratic optimization steps, each of
which having an explicit solution. However, a drawback of this method is that it
cannot estimate directions outside the central mean subspace. For example, it can-
not recover directions in the conditional variance function var(Y |X). To remedy
this deficiency, Xia (2007) and Wang and Xia (2008), respectively, proposed den-
sity MAVE (DMAVE) and sliced regression (SR) that can exhaustively estimate
the central subspace. The former is based the estimation of the gradients of the
functions E{H [(Y − a)/b]|X}, where H is a known probability density function,
a ∈ (−∞,∞) and b ∈ (0,∞). The latter is based on the estimation of the gradients
of the functions E[I (Y ≤ c)|X], where c is an arbitrary constant. Here, again, we
see the echo of the same basic fact that estimating the central mean subspaces for
a rich enough family of functions is equivalent to estimating the central subspace
itself.

The ensemble approach introduced in this paper is based on the same fact, but
it is more general, more flexible and, in the numerical examples we considered,
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more efficient. In broad outlines the procedure can be described as follows. Con-
sider a general family F of functions of Y . For each f ∈ F, let SE[f (Y )|X] denote
the central mean subspace for the conditional mean E[f (Y )|X]. We say that F

characterizes the central subspace if the subspace spanned by the collection of sub-
spaces {SE[f (Y )|X] :f ∈ F} is equal to the central subspace. We introduce a prob-
ability measure on F, and randomly sample functions f1, . . . , fm from F accord-
ing to this probability. We then assemble the central mean subspaces SE[f�(Y )|X],
� = 1, . . . ,m, together to recover the central subspace.

In principle, the ensemble approach can be used in conjunction with any esti-
mators of the central mean subspace to recover the central subspace, such as the
ordinary least squares, the principal Hessian directions, MAVE and its two vari-
ants: the outer product of gradients (OPG) and the refined MAVE (RMAVE). In
this paper we focus on its combination with MAVE and its variants, and refer to
this combination the MAVE (OPG or RMAVE) ensemble. We show that these en-
semble estimators exhaustively estimate the central subspace and that the RMAVE
ensemble has the same convergence rate as RMAVE itself. We also introduce a
cross validation criterion to determine the dimension of the central subspace, and
establish its consistency. Through a number of simulation experiments, most of
which are based on published models, we demonstrate the superb performance
of the RMAVE ensemble based on the family F = {eιtY : t ∈ R}. We also explore
other characterizing families, such as the Box–Cox transformations and wavelet
basis.

The rest of the paper is organized as follows. In Section 2 we investigate what
types of family F can characterize the central subspace. We introduce the MAVE
ensemble in Section 3 and outline the parallel developments for OPG ensemble
and the RMAVE ensemble in Section 4. In Section 5 we introduce a cross valida-
tion criterion for order determination and discuss the choices of the characterizing
family F, with emphasis on the characteristic function and the Box–Cox trans-
formations. In Section 6 we establish the consistency and derive the convergence
rate of the RMAVE ensemble, and establish the consistency of the cross validation
estimator. In Section 7 we conduct simulation comparisons between the RMAVE
ensemble and other estimators in a large variety of models. Some concluding re-
marks are made in Section 8.

2. Characterizing the central subspace. The basic fact that underlies our
approach is that the dimension reduction subspaces for the conditional means
E[f (Y )|X], when combined in unison, can recover the dimension reduction sub-
space for Y versus X. For this idea to work, the family of f needs to be sufficiently
rich, and in this section we rigorously pose and study this characterization prob-
lem.

Let X be a p-dimensional random vector defined on �X and Y be an s-dimen-
sional random vector defined on �Y . Let F be a family of functions f :�Y → F,
where F can be the set of real numbers R or complex numbers C. Let SE[f (Y )|X]
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denote the central mean subspace for the conditional mean E[f (Y )|X], as defined
in Cook and Li (2002) and Yin and Cook (2002). That is, SE[f (Y )|X] is the inter-
section of all subspaces of R

p such that

E[f (Y )|X] = E[f (Y )|PS X].(1)

Let SY |X denote the central subspace of Y versus X as defined in Cook (1994).
That is, SY |X is the intersection of all linear subspaces of R

p such that

Y ⊥⊥ X|PS X.(2)

Note that here we do allow Y to be a random vector; whereas the mentioned previ-
ous works assume Y to be a scalar. This relaxation is made possible by the trans-
formation f , which takes value in the scalar field F.

DEFINITION 2.1. Let F be a family of measurable F-valued functions defined
on �Y . If

span
{

SE[f (Y )|X] :f ∈ F
}= SY |X,(3)

then we say the family F characterizes the central subspace.

Let FY denote the distribution of Y , and let L2(FY ) be the class of func-
tions f (Y ) with finite variances, together with the inner product 〈f1, f2〉 =
E[f1(Y )f2(Y )]. Let L1(FY ) be the class of functions f (Y ) such that E|f (Y )| <

∞, together with the norm E|f (Y )|. We denote the subspace on the left-hand side
of (3) by S(F). Note that E[f (Y )|X] is finite if f ∈ L1(FY ).

LEMMA 2.1. Suppose that F ⊆ L1(FY ). Then the following assertions hold:

(1) S(F) ⊆ SY |X .
(2) If (1) being satisfied for all f ∈ F implies (2), then SY |X ⊆ S(F).

Before proving this lemma we first note the following fact. If S , S1 and S2 are
linear subspaces of R

p , then

S1 ⊆ S2 if and only if {S : S contains S2} ⊆ {S : S contains S1}.(4)

This can be easily seen by taking intersection on both sides of the equality.

PROOF OF LEMMA 2.1. (1) Let S be a subspace of R
p that contains SY |X .

Then (2) holds, and consequently (1) holds for all f ∈ F. This implies that S
contains SE[f (Y )|X] for all f ∈ F. Since S is a linear subspace, it must contain
S(F). Hence

{S : S contains SY |X} ⊆ {S : S contains S(F)},
which, by (4), proves part 1.
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(2) Let S be a subspace of R
p that contains S(F). Then (1) holds for all f ∈ F.

By assumption this implies (2), and consequently S contains SY |X . Hence

{S : S contains S(F)} ⊆ {S : S contains SY |X},
which, by (4), implies SY |X ⊆ S(F). �

Let B be the family of measurable indicator functions of Y . That is, B =
{IB :B is a Borel set in �Y }. Note that B ⊆ L2(FY ).

THEOREM 2.1. If F is a subset of L2(FY ) that is dense in B, then F charac-
terizes the central subspace.

PROOF. Because F is a subset of L2(FY ), it is also a subset of L1(FY ). Hence,
by Lemma 2.1, it suffices to show that (1) being satisfied for all f ∈ F implies (2).

Let S be a subspace such that (1) holds for all f ∈ F, and let B be a Borel
set in �Y . Because F is dense in B there is a sequence {fk} ⊆ F such that
limk→∞ E[IB(Y ) − fk(Y )]2 = 0. For any g ∈ L2(FX) we have

E{g(X)[IB(Y ) − E(IB(Y )|PS X)]}
= E{g(X)[IB(Y ) − E(fk(Y )|PS X)]}(5)

+ E{g(X)E[fk(Y ) − IB(Y )|PS X]}.
The square of the second term on the right is no more than

E[g2(X)]E{E2[fk(Y ) − IB(Y )|PS X]} ≤ E[g2(X)]E{E[fk(Y ) − IB(Y )]2} → 0.

Since fk ∈ F we have E[fk(Y )|PS X] = E[fk(Y )|X]. Hence the first term on the
right-hand side of (5) can be rewritten as

E{g(X)[IB(Y ) − E(IB(Y )|X)]} + E{g(X)E[IB(Y ) − fk(Y )|X]}.(6)

The first term is 0 by the definition of conditional expectation. The square of the
second term in (6) is no more than

E[g2(X)]E{E2[IB(Y ) − fk(Y )|X]} ≤ E[g2(X)]E{[IB(Y ) − fk(Y )]2} → 0.

Since the left-hand side of (5) does not depend on k, and the right-hand side con-
verges to 0 as k → ∞, we have E{g(X)[IB(Y ) − E(IB(Y )|PS X)]} = 0. By the
definition of conditional expectation the above being true for all g ∈ L2(FX) im-
plies E[IB(Y )|PS X)] = E[IB(Y )|X] almost surely. Since B is an arbitrary Borel
set in �X , this implies Y ⊥⊥ X|PS X. �

This theorem synthesizes several recently developed methods in the literature,
and also anticipates useful new ways to combine central mean subspaces into the
central subspace. The following examples demonstrate its potential.



ENSEMBLE 3397

EXAMPLE 2.1 (Polynomials). Let F = {Y t : t = 1,2, . . .}. Then SE[f (Y )|X] =
SE(Y t |X). This is the type of dimension reduction subspaces studied by Cook and
Li (2002), Yin and Cook (2002) and more recently Zhu and Zhu (2009). If the
conditional moment generating function E(etY |X) is finite in an open interval that
contains 0, then F is dense in L2(FY ), and hence characterizes SY |X .

EXAMPLE 2.2 (Kernel density). Let b > 0 and H be a symmetric probability
density function defined on R. Let F = span{b−1H [(y − t)/b] : t ∈ R, b ∈ R

+}.
Xia (2007) proposed a DMAVE method that, in effect, recovers SY |X by estimat-
ing SE[f (Y )|X] for f ∈ F. This family is dense in L2(FY ) when H is the normal
density. See, for example, Fukumizu, Bach and Jordan (2009).

EXAMPLE 2.3 (Slices). Let F = {I(−∞,t)(y) : t ∈ R}. Then F is clearly dense
in B. The method proposed by Wang and Xia (2008) is based on the estimation of
SE[f (Y )|X] for f in this family.

EXAMPLE 2.4 (Box–Cox transformations). Let Y be a nonnegative random
variable, and consider the family of transformations

ft (y) =
⎧⎨
⎩

yt − 1

t
, t �= 0,

log(y), t = 0.
(7)

This is the Box–Cox transformation [Box and Cox (1964)]. This family character-
izes the central subspace because it contains the family in Example 2.1.

EXAMPLE 2.5 (Characteristic function). Let F = {eιty : t ∈ R}, where ι =√−1. Note that E(eιtY |X) is simply the conditional characteristic function of Y |X.
It is well known that this family is dense in L2(FY ). It is used by Zhu and Zeng
(2006) to recover the central mean subspace and central subspace, respectively,
based on the assumption that X is multivariate normal. This family is also our
focus when we implement the ensemble estimators.

EXAMPLE 2.6 (Haar wavelets). Let

ψ(t) =
⎧⎨
⎩

1, t ∈ [0,1/2),
−1, t ∈ [1/2,1),
0, otherwise.

Consider the family F = {1} ∪ {ψ(2ny − k) :k = 0, . . . ,2n − 1;n = 1,2, . . .},
where the 1 in {1} represents the function of y that always takes the value 1. This is
the famous Haar basis often used in wavelet estimators. See, for example, Donoho
and Johnstone (1994) and Antoniadis and Fan (2001). The Haar basis is obviously
dense in B and hence characterizes the central subspace.
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In this paper we only consider parametric characterizing families F. That is,
F is of the form {ft : t ∈ �T } where �T is a subset of a Euclidean space R

q . All
the characterizing families in the above examples are parametric. In the following,
for a sequence of subspaces {Sk} and a subspace S , we say limk→∞ Sk = S if
limk→∞‖PSk

−PS ‖ = 0, where ‖ · ‖ is a matrix norm, such as the operator norm or
the Frobenius matrix norm. The two norms are topologically equivalent, and makes
no difference in asymptotic analysis. See, for example, Li, Zha and Chiaromonte
(2005). Note that we are interested in SY |X via span{SE[ft (Y )|X] : t ∈ �T }, then a
question arises is whether we can recover SY |X from a finite t ∈ �T . Indeed, we
can. Theorem 2.2 below demonstrates that, with probability 1, the central subspace
can be characterized by a finite number of functions in a characterizing family. In
essence, it relies on the following fact: if a sequence of subspaces Sm converges
to another subspace S from within, then the norm ‖Sm − S‖ is discrete in nature;
that is, if this norm converges to 0 then it must be identically 0 for large m. This
phenomenon is also noticed in Yin, Li and Cook (2008). The next lemma, albeit
simple, reveals this discrete nature of dimension reduction.

LEMMA 2.2. Let S1 ⊆ S2 be two subspaces of R
p . Then ‖PS2 −PS1‖ is either

0 or no less than 1.

PROOF. If S1 = S2, then ‖PS2 − PS1‖ = 0. If S1 �= S2, then direct difference
S2 � S1 is nonempty. We know that in this case PS2 − PS1 = PS2�S1 . Let v be a
unit vector in S2 � S1. Then

‖PS2�S1‖2 ≥ ‖vv�‖2 =
p∑

i=1

p∑
j=1

(vivj )
2 =

p∑
i=1

v2
i

p∑
j=1

v2
j = 1.

This completes the proof. �

Let B0 = (β1, . . . , βd0) be an orthogonal basis for the central subspace, SY |X ,
whose dimension is d0. In the following, we will randomly sample T1, . . . , Tm

from �T . In this setting, we assume that these random elements are defined on
a measurable space (�, A). Then �T is interpreted as the range of the mapping
Ti :� → �T . We denote a generic member of � by ω.

THEOREM 2.2. Suppose that F characterizes the central subspace, T1, T2, . . .

is an i.i.d. sequence of random variables supported on �T and, for each integer m,
B(T1, . . . , Tm) is an orthogonal basis matrix of span{SE[fTi

(Y )|X] : i = 1, . . . ,m}.
Then the following event has probability 1:

{ω ∈ �: there is an integer m0(ω) such that,

for all m ≥ m0(ω), span(B(T1(ω), . . . , Tm(ω)) = span(B0)}.
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PROOF. For u = 1, . . . , d0, let �u be a subset of {t ∈ �T } such that βu /∈
span{SE[ft (Y )|X], t ∈ �u}. If P(T ∈ �u) = 1 for some u, then F does not char-
acterize SY |X , which is a contradiction. Hence P(T ∈ �u) < 1 for u = 1, . . . , d0.
Let

δ(T1, . . . , Tm) = ‖B(T1, . . . , Tm)B�(T1, . . . , Tm) − B0B
�
0 ‖.(8)

Note that δ(T1, . . . , Tm) �= 0 if and only if, for some u ∈ {1, . . . , d0}, T1, . . . , Tm all
belongs to �u. This is the event

⋃d0
u=1

⋂m
k=1{Tk ∈ �u}, and has probability

P

(
d0⋃

u=1

m⋂
k=1

{Tk ∈ �u}
)

≤
d0∑

u=1

[P(T ∈ �u)]m.

Since
∞∑

m=1

d0∑
u=1

[P(T ∈ �u)]m =
d0∑

u=1

P(T ∈ �u)

1 − P(T ∈ �u)
< ∞,

we have, by the first Borel–Cantelli lemma, with probability 1,

lim
m→∞ δ(T1, . . . , Tm) = 0.(9)

Since span[B(T1, . . . , Tm)] ⊆ span(B0), by Lemma 2.2, event (9) occurs if and
only if δ(T1, . . . , Tm) becomes 0 for sufficiently large m. Thus, with probability 1,
there exists an m0(ω) such that for m > m0(ω), span[B(T1(ω), . . . , Tm(ω))] =
span(B0). �

3. MAVE ensemble. We first describe our method at the population level, and
then develop the estimation procedure at the sample level. The idea underlying
MAVE can be outlined as follows. Assume that the central mean subspace SE(Y |X)

has dimension d0 < p. Let β be a p × d0 matrix such that span(β) = SE(Y |X).
Then

∂E(Y |X = x)/∂x = β[∂E(Y |β�X = u)/∂u].
Since the vector on the right always belongs to span(β), we can recover span(β) by
estimating the gradient of E(Y |X = x). This is achieved by local linear regression.
Let Kh be a probability density function defined on R

p where h is proportional to
the square root of the largest eigenvalue of the variance matrix under Kh. Let fX

be the density of X. Consider the objective function∫
�X

E{[Y − a(x) − b�(x)B�(X − x)]2Kh(X − x)}fX(x) dx,

where a :�X → R, b :�X → R
d0 , B ∈ R

p×d0 . Let (a∗
h(·), b∗

h(·),B∗
h) be the min-

imizer of the above function over all possible functions a, b and constant ma-
trices B , then it can be shown that limh→0 span(B∗

h) = SE(Y |X). See Xia et al.
(2002).
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We now describe at the population level how to assemble a collection of
MAVEs to recover the central subspace. Let F = {ft : t ∈ �T } be a paramet-
ric characterizing family. Throughout we assume F = C, though the subsequent
statements are true also for F = R by simply discarding the imaginary part.
Let ft (y,1) and ft (y,2) denote the real and imaginary parts of ft (y). That is,
ft (y) = ft (y,1) + ιft (y,2). Let T be a random vector defined on �T , with distri-
bution FT . Applying the MAVE procedure to the transformed response ft (Y ) and
integrating with respect to the distribution FT leads to the following population-
level objective function:

2∑
�=1

∫
�T ×�X

E{[ft (Y, �) − a�(x)

(10)
− b�

� (x)B�(X − x)]2Kh(X − x)}dFX(x) dFT (t).

We minimize this function over all R-valued functions a�(·), � = 1,2, all R
d0 -

valued functions b�(·), � = 1,2 and all p × d0 constant matrices B .
At the sample level, suppose that (X1, Y1), . . . , (Xn,Yn) are independent copies

of (X,Y ). Let K0(·) be a symmetric probability density function define on R. For
any v ∈ R

p and h ∈ R
+, let Kh(v) = h−pK0(‖v‖/h). Let

wij (h) = Kh(Xi − Xj)
/ n∑

u=1

Kh(Xu − Xj).

Let T1, . . . , Tm be an independent sample from FT . Mimicking (10) we minimize
the sample-level objective function

2∑
�=1

m∑
k=1

n∑
j=1

n∑
i=1

ρjwij (h)[fTk
(Yi, �) − ajk(�) − b�

jk(�)B
�(Xi − Xj)]2(11)

over scalars {ajk(�) : j = 1, . . . , n, k = 1, . . . ,m, � = 1,2}, d0-dimensional vectors
{bjk(�) : j = 1, . . . , n;k = 1, . . . ,m, � = 1,2} and p × d0 matrices B . The coeffi-
cients {ρj : j = 1, . . . , n} are trimming constants. Their purpose is to exclude those
X’s with too few observations around, which are unreliable. Let ρ : R → R be a
function with a bounded second derivative such that ρ(v) > 0 if v > v0 and ρ(v) =
0 if v ≤ v0, for some small v0 > 0. We take ρj = ρ(n−1∑n

i=1 Kh(Xi − Xj)). The
bandwidth h is taken to be proportional to n−1/(p+4), which is the optimal band-
width in the sense of mean integrated squared errors. For more details about the
trimming constants and the bandwidth, see Xia et al. (2002), Fan, Yao and Cai
(2003), Wang and Xia (2008).

A rather appealing aspect of this procedure is that the minimization of the
objective function (11) can be broken down into iterations between two steps,
each of which is a quadratic optimization problem having an explicit solution.
More specifically, for a fixed B ∈ R

p×d0 , minimize (11) over ajk(�), bjk(�) for
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j = 1, . . . , n, k = 1, . . . ,m, � = 1,2. Note that, for each triplet (j, k, �), the sum-
mand of (11),

n∑
i=1

ρjwij (h)[fTk
(Yi, �) − ajk(�) − b�

jk(�)B
�(Xi − Xj)]2(12)

depends on and only on ajk(�), bjk(�). As a result, minimizing (11) jointly is
equivalent to minimizing (12) individually. This is a least-squares problem whose
solution is(

âjk(�)

b̂jk(�)

)
=
[

n∑
i=1

wij (h)ρj�ij (B)��
ij (B)

]−1[ n∑
i=1

wijρj�ij (B)fTk
(Yi)

]
,

where �ij (B) = (1, (Xi − Xj)
�B)�.

For fixed ajk(�), bjk(�), j = 1, . . . , n, k = 1, . . . ,m, � = 1,2, the minimization
of (11) is again a least-squares problem. The solution is

vec(B̂) =
[∑

ρjωij (h)
(
bjk(�) ⊗ (Xi − Xj)

)(
bjk(�) ⊗ (Xi − Xj)

)�]−1

×
[∑

ρjwij

(
bjk(�) ⊗ (Xi − Xj)

)(
fTk

(Yi, �) − ajk(�)
)]

,

where the summation is over

(i, j, k, �) ∈ {1, . . . , n} × {1, . . . , n} × {1, . . . ,m} × {1,2}.(13)

Thus, starting with an initial estimate of B̂0 of SY |X , which, for example, can be
the OPG ensemble described in the next section, we iterate between the above two
steps until convergence. More specifically, let B̂(r) be the estimate at the r th iter-
ation. We stop when ‖P

B̂(r) − P
B̂(r+1)‖ is smaller than some preassigned constant,

such as 10−6. The subspace span(B̂(r+1)) is the estimate of SY |X . We call this
procedure the MAVE ensemble and the integer m the ensemble size.

4. Variations of MAVE ensemble. Besides MAVE, Xia et al. (2002) also in-
troduced two companion estimators: the outer product of gradients (OPG) and a
refinement of MAVE (RMAVE). The former only involves eigen decompositions
and is very easy to compute. It is in general less accurate than MAVE, but can be
used as an initial estimate for MAVE. The latter involves iterations of steps, each
similar to MAVE. It is more accurate than MAVE, and can take MAVE as its ini-
tial estimate. In this section we develop parallel generalizations of these methods,
which we call the OPG ensemble and the RMAVE ensemble.

4.1. OPG ensemble. Let F, FT , T1, . . . , Tm and wij (h) be as defined in previ-
ous sections. For each j, k, �, we minimize the objective function

n∑
i=1

wij (h)[fTk
(Yi, �) − a − b�(Xi − Xj)]2
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over (a, b) ∈ R × R
p for each j = 1, . . . , n, k = 1, . . . ,m and � = 1,2. This is a

least-squares problem and its solution can be written down explicitly, as

(
âjk(�)

b̂jk(�)

)
=
[

n∑
i=1

wij�ij (Ip)��
ij (Ip)

]−1[ n∑
i=1

wijfTk
(Yi, �)�ij (Ip)

]
.

We then construct the following OPG matrix [Xia et al. (2002)]:

2∑
�=1

m∑
k=1

n∑
j=1

ρj b̂jk(�)b̂
�
jk(�).

We use the d0 eigenvectors of this matrix corresponding to its largest eigenval-
ues as an estimate of SY |X . This estimate shares the desirable property of OPG.
Numerically, all it needs is the calculation of least squares estimate and principal
components, none of which involves numerical optimization. As such it is very
easy to compute and does not run into local minimum problem, making it an ideal
initial estimate for MAVE ensemble.

4.2. RMAVE ensemble. The idea of RMAVE is to use an existing consistent
estimate of β to reduce the dimension of the kernel function, so that smoothing is
carried out over a d0-dimensional, rather than a p-dimensional subspace. When d0
is small, this can mitigate the effect of the curse of dimensionality. In particular,
when d0 ≤ 3, it achieves the

√
n-convergence rate.

Let Hh : Rd0 → R
+ be the d0-dimensional kernel function h−d0K0(‖v‖/h),

where v is a d0-dimensional vector. We minimize the objective function∑
ρj [fTk

(Yi, �) − ajk(�) − bjk(�)
�B�(Xi − Xj)]2Hh[B�(Xi − Xj)],(14)

where the summation is over the indices in (13). Notice that, if we fix the B in the
kernel Hh, then the objective function is similar to MAVE, and can be computed
by iterations between two least squares problems, as described in Section 3. We
can then substitute the updated B and repeat the process until convergence. The
algorithm for RMAVE ensemble is summarized as follows.

Let B̂0 be an initial estimate of SY |X . For example, we can use the MAVE en-
semble to calculate the initial estimate. Set h0 ∝ n−1/(p+4) and r = 1.

(1) At step r , let hr = max{ςhr−1,�}, where ς ∈ (1/2,1) and � = �0 ×
n−1/(d0+4). Note that hr is a decreasing sequence that converges to �. So � is the
final bandwidth. The purpose of starting with a wider bandwidth and narrowing it
gradually is to avoid being trapped in a local minimum at an early stage, as well
as to achieve a faster rate of consistency. The proportionality constant �0 can be
selected by the rules as suggested by Scott (1992). Let

vij (hr) = Hhr

[
B̂(r)(Xi − Xj)

]/ n∑
i=1

Hhr

[
B̂(r)(Xi − Xj)

]
.



ENSEMBLE 3403

Let

ρjr = ρ

(
n−1

n∑
i=1

Hhr

[(
B(r))�(Xi − Xj)

])
,

where ρ : R → R is as defined in Section 3.
(2) Use the two-stage iteration procedure described in Section 3, with wij (h)

and ρj therein replaced by vij (hr) and ρjr , respectively, to compute B̂(r). Note
that wij in Section 3 is computed from a p-dimensional kernel, whereas wij (hr)

here is computed from a d0-dimensional kernel.
(3) Standardize B̂(r) so that it is a semiorthogonal matrix. That is, let

B̂(r) ← B̂(r)[B̂(r)(B̂(r))�]−1/2
.

(4) If ‖B̂(r)(B̂(r))� − B̂(r−1)(B̂(r−1))�‖ is less than a preassigned small num-
ber, say 10−6, then stop and set B̂ = B̂r . Otherwise set r ← r + 1 and return to 1.

5. Order determination and choices of F. In describing the foregoing algo-
rithms we have assumed d0, the dimension of the central subspace, to be known.
In practice this dimension must also be estimated. We now propose a cross vali-
dation method to estimate d0. Let B̂ be the estimate of SY |X for a fixed working
dimension d . Then the leave-one-out fitted value of fTk

(Yj , �), for j = 1, . . . , n,
k = 1, . . . ,m and � = 1,2, is

μ̂kj (d, �) =∑
i �=j

Kh[B̂�(Xi − Xj)]fTk
(Yi, �)

/∑
i �=j

Kh[B̂�(Xi − Xj)].

The corresponding cross validation value is

CV(d) = 1

2mn

2∑
�=1

m∑
k=1

n∑
j=1

[fTk
(Yj , �) − μ̂kj (d, �)]2.

To include the trivial case of d = 0, we define μ̂kj (0, �) to be

(n − 1)−1
∑
i �=j

fTk
(Yj , �),

so that CV(d) is defined for all d = 0, . . . , p. The structural dimension d0 is esti-
mated by

d̂0 = arg min{CV(d) :d = 0, . . . , p}.
As we have mentioned in Section 2, there are many possible choices for F. In

this paper we pay special attention to two families: the family determined by the
characteristic function, as discussed in Example 2.5, and the family that corre-
sponds to the Box–Cox transformations, as discussed in Example 2.4. That is,

FC = {eιt�y : t ∈ R}, FB = {ft : t ∈ R},
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where ft is as defined in (7). An advantage of the family FC is that its members
are bounded functions, and as such are relatively robust against the outliers in Y .
Moreover, it requires virtually no condition on the distribution of Y . Also note that
when t ranges over R

s , the function eιt�y fully recovers the joint information of
the random vector Y . In this respect the ensemble estimators are akin to Projective
Resampling [Li, Wen and Zhu (2008)]. However, here the univariate and multi-
variate responses are treated in a unified manner: we simply replace eιty by eιt�y ,
whereas in projective resampling the multivariate response is treated differently
from the univariate response.

The family FB requires Y to be nonnegative. When Y is not nonnegative, we
make the transformation Yi − min{Y1, . . . , Yn} + 0.5 before applying the Box–
Cox transformation. An advantage of this family is that often a few fixed func-
tions in FB would do a reasonably good job. In our simulation studies we have
used t ∈ {−2,−1.5,−1,−0.5,0,0.5,1,1.5,2}, as one typically uses for Box–Cox
transformation. Note, however, if one uses such a finite, fixed set, then the corre-
sponding FB is not guaranteed to characterize the central subspace, unless the dis-
tribution of Y satisfies some special conditions. Alternative transformations such
as those proposed by Manly (1976), John and Draper (1980) and Bickel and Dok-
sum (1981), for instance, that do not require Y to be positive may be used to form
different family F.

Henceforth we indicate an ensemble estimator based on a family F by attaching-
F to the name of the original estimator, such as MAVE-FC or RMAVE-FB . To
implement RMAVE-FC , we modify the code for the sliced regression in Wang
and Xia (2008) based on a gradual descending algorithm; the random vectors
T1, . . . , Tm are an independent sample from N(0, Is). To implement RMAVE-FB ,
we adopt the code for RMAVE by Xia et al. (2002) and use the fixed set of t

mentioned earlier.

6. Consistency and convergence rate. In this section we investigate the
asymptotic behavior of RMAVE ensemble based on FC . We will study the con-
vergence rate, assuming the structural dimension d0 is known, and then the con-
sistency of the estimator of d0. The asymptotic analysis proceeds in two steps.
In the first step (Theorem 6.1), we establish the convergence rate for a fixed set
of functions {ft1, . . . , ftm} in F. In the second step (Theorem 6.2), we investi-
gate the asymptotic behavior when m → ∞. The first step is not fundamentally
different from the asymptotic results for DMAVE and SR as developed in Xia
(2007) and Wang and Xia (2008). We have therefore relegated the proof to an
external Appendix. The second step is a novel development and is presented in
detail. Although here we only consider RMAVE-FC , we have no doubt that the
development can be extended to other characterizing families. For any finite set
{t1, . . . , tm} ⊆ �T , let B̂(t1, . . . , tm) denote the RMAVE-FC estimator described
in Section 4.2, and let B(t1, . . . , tm) be a basis matrix of span{SE[fti

(Y )|X] : i =
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1, . . . ,m} and B be a generic matrix with p rows. Without loss of generality, as-
sume these matrices to be semiorthogonal.

We need to make the following regularity assumptions, which are similar to
those made in Xia (2007) and Wang and Xia (2008).

(C1) Marginal distribution of X: The random vector X has a bounded support;
its density function g(x) has a bounded second derivative; the functions

(u,B) �→ E(X|B�X = u), (u,B) �→ E(XX�|B�X = u)

have bounded derivatives for u ∈ R
d0 and B ∈ {B :‖BBT − B0B

T
0 ‖ ≤ c}, where

c > 0.
(C2) Conditional distribution function of Y given B�X: The conditional den-

sity function g(y|u) of Y given B�X has a bounded fourth-order derivative with
respect to x and u as B is in a small neighbor of B0.

(C3) Identifiability of minimum: For any semiorthogonal matrix B ∈ R
p×d , any

constant c > 0 and a set {t1, . . . , tm} ⊆ �T ,

inf
{B : ‖BB�−B0B

�
0 ‖≥c}

2∑
�=1

m∑
k=1

E[E(ftk (Y, �)|B�X) − E(ftk (Y, �)|B�
0 X)]2 > 0.

(C4) Kernel function: The function K0 is a symmetric univariate density with
bounded second derivative and a compact support.

(C5) Bandwidth: For a working dimension d , the bandwidths {hr : r = 0,1, . . .}
satisfy h0 ∝ n−1/(p+4), hr = max{ςhr−1,�} with 1/2 < ς < 1 and � ∝ n−1/(d+4).

The following theorem gives the convergence rate of RMAVE-FC for a fixed set
of functions in F and a fixed d0. Let d(t1, . . . , tm) be the dimension of the space
spanned by {SE[fti

(Y )|X] : i = 1, . . . ,m}.

THEOREM 6.1. Suppose conditions (C1), (C2), (C4) and (C5) are satisfied,
(C3) holds for {t1, . . . , tm} ⊆ �T and set d = d(t1, . . . , tm). Then, as n → ∞,

‖B̂(t1, . . . , tm)B̂�(t1, . . . , tm) − B(t1, . . . , tm)B�(t1, . . . , tm)‖
(15)

= OP [�4 + logn/(n�
d0) + n−1/2].

PROOF. Let

�(t1, . . . , tm) ∝ n−1/[d(t1,...,tm)+4].(16)

Then, by arguments similar to those used in Xia et al. (2002), Xia (2007) and Wang
and Xia (2008), it can be shown that

‖B̂(t1, . . . , tm)B̂�(t1, . . . , tm) − B(t1, . . . , tm)B�(t1, . . . , tm)‖
= OP

(
�

4(t1, . . . , tm) + logn/
[
n�

d(t1,...,tm)(t1, . . . , tm)
]+ n−1/2).
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See the external Appendix. By (16), the right-hand side is of the order

OP

(
n−4/[d(t1,...,tm)+4] + (logn)n−4/[d(t1,...,tm)+4] + n−1/2).

Since the function in OP (·) is increasing in d(t1, . . . , dm), which is no more
than d0, relation (15) holds. �

Note that we are interested in SY |X instead of span{SE[fti
(Y )|X] : i = 1, . . . ,m}.

The next theorem shows that, under the conditions no stronger than Theorem 6.1,
RMAVE-FC recovers the central subspace at the same rate as does RMAVE itself.

THEOREM 6.2. Suppose that conditions (C1)–(C5) hold, that T1, . . . , Tm are
an independent sample from �T and that they are independent of (X1, Y1), . . . ,

(Xn,Yn). Let B̂(T1, . . . , Tm) be the RMAVE-FC estimator of B(T1, . . . , Tm). Then,
for any ε > 0,

lim
m→∞ lim

n→∞P

(‖B̂(T1, . . . , Tm)B̂�(T1, . . . , Tm) − B0B
�
0 ‖

�4 + logn/(n�d0) + n−1/2 > ε

)
= 0.(17)

PROOF. By Theorem 2.2, we have that δ(T1, . . . , Tm) becomes 0 for suffi-
ciently large m. Consequently, P(lim infm→∞{δ(T1, . . . , Tm) = 0}) = 1. By Fa-
tou’s lemma,

lim inf
m→∞ P

(
δ(T1, . . . , Tm) = 0

)≥ P
(
lim inf
m→∞ {δ(T1, . . . , Tm) = 0}

)
= 1.(18)

Thus we see that the bias term converges to 0 infinitely fast.
Next, let an = �

4 + logn/(n�
d0) + n−1/2. We have

a−1
n

∥∥(B̂(T1, . . . , Tm)B̂�(T1, . . . , Tm) − B0B
�
0
)∥∥

≤ a−1
n δ̂n(T1, . . . , Tm) + a−1

n δ(T1, . . . , Tm),

where δ(T1, . . . , Tm) is as defined before and

δ̂n(T1, . . . , Tm)

= ‖B̂(T1, . . . , Tm)B̂�(T1, . . . , Tm) − B(T1, . . . , Tm)B�(T1, . . . , Tm)‖.
Since an �= 0, we have, by (18),

P
(
a−1
n δ(T1, . . . , Tm) �= 0

)= P
(
δ(T1, . . . , Tm) �= 0

)→ 0 as m → ∞.

Since, despite its appearance, the term on the left does not depend on n, the above
limit can be rewritten as

lim
m→∞ lim

n→∞P
(
a−1
n δ(T1, . . . , Tm) �= 0

)= 0.(19)

By Theorem 6.1, for a fixed set t1, . . . , tm, limn→∞ P(a−1
n δ̂n(t1, . . . , tm) > ε) = 0.

But because T1, . . . , Tm and (X1, Y1), . . . , (Xn,Yn) are independent, this implies

lim
n→∞P

(
a−1
n δ̂n(T1, . . . , Tm) > ε|T1 = t1, . . . , Tm = tm

)= 0.
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By the dominated convergence theorem, limn→∞ P(a−1
n δ̂n(T1, . . . , Tm) > ε) = 0,

and hence

lim
m→∞ lim

n→∞P
(
a−1
n δ̂n(T1, . . . , Tm) > ε

)= 0.(20)

Now combine (19) and (20) to prove (17). �

Theorem 6.2 implies that if d0 ≤ 3, then
√

n-consistency can be achieved by
taking � ∝ n−1/(d0+4).

Next, we establish the consistency of the estimator of d0 described in Section 5.
Let d̂(t1, . . . , tm) be the cross validation estimator of d(t1, . . . , tm). The proof of
the following lemma can be found in the external Appendix.

LEMMA 6.1. Suppose that conditions (C1), (C2), (C4) and (C5) hold, (C3) is
satisfied for {t1, . . . , tm} ⊆ �T and the bandwidth �d used for different dimension
d satisfies �d ∝ n−1/(d+4). Then we have

lim
n→∞P

(
d̂(t1, . . . , tm) = d(t1, . . . , tm)

)= 1.

We now consider the convergence to the structural dimension d0 as m → ∞.
Let d̂(T1, . . . , Tm) be the cross validation estimator of d(T1, . . . , Tm), which is the
dimension for B(T1, . . . , Tm).

THEOREM 6.3. Under the assumptions in Theorem 6.2 we have

lim
m→∞ lim

n→∞P
(
d̂(T1, . . . , Tm) = d0

)= 1.

PROOF. Following the same argument that leads to (18) in the proof of Theo-
rem 6.2, we can show that

lim
m→∞P

(
d(T1, . . . , Tm) = d0

)= lim
m→∞ lim

n→∞P
(
d(T1, . . . , Tm) = d0

)= 1.(21)

As in the proof of Theorem 2.2, since span[B(T1, . . . , Tm)] ⊆ span(B0), by
Lemma 2.2, event (9) occurs if and only if δ(T1, . . . , Tm) becomes 0 for suffi-
ciently large m. By the definition of δ(T1, . . . , Tm) in (8), for sufficiently large m,
d(T1, . . . , Tm) = d0. Consequently, P(lim infm→∞{d(T1, . . . , Tm) = d0}) = 1. By
Fatou’s lemma,

lim inf
m→∞ P

(
d(T1, . . . , Tm) = d0

)≥ P
(
lim inf
m→∞ {d(T1, . . . , Tm) = d0}

)
= 1.

Thus limm→∞ P(d(T1, . . . , Tm) = d0) = 1. Since d(T1, . . . , Tm) does not depend
on n, (21) holds.

Since T1, . . . , Tm are independent of (X1, Y1), . . . , (Xn,Yn), Lemma 6.1 implies
that limn→∞ P(d̂(T1, . . . , Tm) = d(T1, . . . , Tm)|T1 = t1, . . . , Tm = tm) = 1. By the
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dominated convergence theorem, limn→∞ P(d̂(T1, . . . , Tm) = d(T1, . . . , Tm)) =
1, which implies

lim
m→∞ lim

n→∞P
(
d̂(T1, . . . , Tm) = d(T1, . . . , Tm)

)= 1.(22)

The desired assertion follows from (21) and (22). �

Theorem 6.3 confirms that the proposed CV criterion is indeed consistent in
selecting the dimension of the central subspace.

7. Simulation studies. In this section we compare the ensemble estima-
tors, RMAVE-FC and RMAVE-FB , with existing methods such as SIR, SAVE,
DMAVE, RMAVE and SR. For an estimate B̂ of B0, both assumed to be
semiorthogonal without loss of generality, the estimation error is measured by
�(B̂,B0) = ‖B̂B̂� − B0B

�
0 ‖, where ‖ · ‖ is the operator norm [Li, Zha and

Chiaromonte (2005)]. For each setting, 100 replicates of the data are generated,
unless stated otherwise.

EXAMPLE 7.1. The purpose of this example to demonstrate that the perfor-
mance of RMAVE-FC is very stable as the ensemble size m varies. Let

Yi = cos(2Xi1) − cos(Xi2) + 0.2εi, i = 1, . . . , n,

where εi is a standard normal random variable, and Xi is a random vector in R
10.

The random vector Xi is generated by N(0,�X), where the (i, j)th entry of �X

is 0.5|i−j |. For this model d0 = 2 and B0 = (e1, e2) ∈ R
10×2, where ei is a vector

whose ith entry is 1 and other entries are 0. The model was used in Li (1992) and
Wang and Xia (2008).

In Figure 1 we plot the averages of �(B̂,B0) over the 100 simulated samples
versus different ensemble sizes m, ranging from 5 to 50. The left panel corresponds
to n = 200, and the right panel corresponds to n = 400. We see that the average
error is quite stable as m varies: for n = 200 it is between 0.1806 and 0.1922, and
for n = 400 it is between 0.1066 and 0.1086.

FIG. 1. Averaged �(B̂,B0) versus ensemble size m for Example 7.1. Left panel: n = 200. Right
panel: n = 400.
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TABLE 1
Comparisons for (Example 7.2). Entries are mean ± standard error of �(B̂0,B0) calculated from

100 simulation samples

p RMAVE-FC SR RMAVE-FB RMAVE DMAVE SIR SAVE

10 0.388 0.513 0.878 0.750 0.409 0.851 0.903
±0.134 ±0.192 ±0.136 ±0.170 ±0.153 ±0.115 ±0.117

20 0.638 0.844 0.954 0.880 0.719 0.947 0.977
±0.150 ±0.146 ±0.060 ±0.111 ±0.159 ±0.055 ±0.034

EXAMPLE 7.2. The following regression model is a modification of Exam-
ple 3 of Wang and Xia (2008):

Yi = Xi1

0.5 + (Xi2 + 1.5)2 + Xi3εi,

where εi and Xi are generated as in Example 7.1 with n = 400. In this case d0 = 3
and B0 = (e1, e2, e3) ∈ R

p×3. We use m = 15 for RMAVE-FC and the number of
slices H = 5 for SR, SIR and SAVE. Table 1 below indicates that RMAVE-FC is
the best performer, followed by DMAVE and SR.

EXAMPLE 7.3. The following model is taken from Zhu and Zeng (2006),
Example 3:

Yi = I[β�
1 Xi+σεi>1] + 2I[β�

2 Xi+σεi>0],

where εi is a standard normal random variable, σ = 0.2 and Xi ∼ N(0, Ip). The
regression coefficients are β1 = e1 + · · · + e4 and β2 = ep−3 + · · · + ep . Thus we
have d0 = 2 and B0 = (β1, β2). The specifications for n,m,H are the same as
Example 7.2. Table 2 below reports the results. In this case DMAVE is the top
performer, with RMAVE-FC as a close second.

TABLE 2
Comparisons for (Example 7.3). Entries are mean ± standard error of �(B̂0,B0) calculated from

100 simulation samples

p RMAVE-FC SR RMAVE-FB RMAVE DMAVE SIR SAVE

10 0.101 0.149 0.156 0.149 0.100 0.256 0.294
±0.023 ±0.044 ±0.047 ±0.041 ±0.019 ±0.048 ±0.063

20 0.155 0.246 0.243 0.243 0.148 0.339 0.510
±0.028 ±0.059 ±0.055 ±0.098 ±0.020 ±0.046 ±0.096
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TABLE 3
Percentage of correctly estimated d0 using the CV criterion

combined with RMAVE-FC (Example 7.4)

Model n = 100 n = 200 n = 400

A 0.95 1.00 1.00
B 0.83 1.00 1.00
C 0.39 0.60 0.79

EXAMPLE 7.4. This example is to investigate the effectiveness of the CV
criterion for order determination introduced in Section 5, as used in conjunction
with RMAVE-FC , in the spirit similar to Example 4 of Wang and Xia (2008). We
consider the following three models:

Model A: Yi = (X�
i β)−1 + 0.2εi, β0 = e1 + · · · + e4,

Model B: Yi = cos(2Xi1) − cos(Xi2) + 0.2εi,

Model C: Yi = Xi1/[0.5 + (Xi2 + 1.5)2] + X2
i3εi,

where X is generated as in Example 7.1. We take p = 10, m = 15. Table 3 shows
that, as the sample size n increases, the percentages of correctly identified di-
mensions quickly approach to 100% for all three models, which is comparable
with the results in Wang and Xia (2008). Our results for the first two models
show substantial improvement over the corresponding results in Wang and Xia
(2008) for n = 100 and n = 200. A possible explanation of this improvement is
that RMAVE-FC allows us to make repeated use of the sample of responses, with
each repetition exploring a different aspect of the central subspace. In other words
the ensemble approach makes fuller use of the data than dividing them into slices.

EXAMPLE 7.5. The four models in this example are the same as those used
in Example 5 of Wang and Xia (2008):

Model D: Yi = (X�
i β)−1 + 0.2εi, β = e1 + · · · + e4;

Model E: Yi = 0.1(X�
i β + εi)

3, β = e1 + · · · + e4;
Model F: Yi = exp(X�

i β) × εi, β = e1 + 0.5e2 + e3;
Model G: Yi = sign(2Xi1 + εi1) × log|2Xi2 + 4 + εi2|.

Here, X,n,m,H are the same as specified in Example 7.1. Table 4 below reports
the result for n = 400. We see that RMAVE-FC again consistently outperforms
other estimators in all four models, though SR is quite close to it in some cases.
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TABLE 4
Comparisons for (Example 7.5). Entries are mean ± standard error of �(B̂0,B0) calculated from

100 simulation samples

p Model RMAVE-FC SR RMAVE-FB RMAVE DMAVE SIR SAVE

10 D 0.052 0.082 0.994 0.983 0.313 0.306 0.243
±0.014 ±0.024 ±0.008 ±0.067 ±0.412 ±0.072 ±0.075

E 0.053 0.059 0.609 0.058 0.054 0.141 0.154
±0.016 ±0.015 ±0.173 ±0.015 ±0.014 ±0.037 ±0.040

F 0.163 0.178 0.869 0.798 0.208 0.225 0.230
±0.043 ±0.055 ±0.979 ±0.141 ±0.073 ±0.056 ±0.067

G 0.198 0.217 0.387 0.349 0.931 0.242 0.601
±0.053 ±0.059 ±0.178 ±0.109 ±0.084 ±0.058 ±0.230

20 D 0.080 0.122 0.955 0.996 0.501 0.399 0.363
±0.016 ±0.023 ±0.006 ±0.006 ±0.459 ±0.070 ±0.068

E 0.068 0.092 0.694 0.085 0.075 0.179 0.236
±0.015 ±0.018 ±0.200 ±0.017 ±0.014 ±0.030 ±0.061

F 0.250 0.281 0.927 0.879 0.323 0.303 0.414
±0.048 ±0.052 ±0.058 ±0.103 ±0.080 ±0.053 ±0.083

G 0.299 0.321 0.507 0.535 0.973 0.312 0.957
±0.048 ±0.054 ±0.146 ±0.166 ±0.034 ±0.050 ±0.060

EXAMPLE 7.6. As we noted before, the family FC is particularly useful for
recovering directions in the SY |X that do not belong to SE(Y |X), and when Y con-
tains outliers. This example indicates that in the case where SY |X = SE(Y |X) and
Y contains no outliers—conditions favorable to RMAVE. Consider the model

Yi = arcsin
(
1/(1 + |0.5 + Xi1|))+ 0.2εi,

where εi and Xi ∈ R
10 are generated as in Example 7.1. Note that in this case both

SY |X and SE(Y |X) are spanned by e1. We take m = 15, n = 400 and the number of
slices for SR, SIR and SAVE equal to 5. However, Table 5 indicates that RMAVE-
FC is slightly better than RMAVE.

EXAMPLE 7.7. The main point of this example is to demonstrate numerically
the

√
n-consistency of RMAVE-FC , which we have shown analytically in Sec-

tion 6 for d0 ≤ 3. A secondary point is to reconfirm the stability of this estimator
against the change of ensemble size m, for a wide range of sample sizes n, which
we have demonstrated in Example 7.1 for two sample sizes (n = 200,400). This
second point also provides us intuition about the double limits, limm→∞ limn→∞,
we took in Section 6.
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TABLE 5
Comparisons for (Example 7.6). Entries are mean ± standard error of �(B̂0,B0) calculated from

100 simulation samples

p RMAVE-FC SR RMAVE-FB RMAVE DMAVE SIR SAVE

10 0.098 0.114 0.128 0.103 0.132 0.434 0.310
±0.023 ±0.031 ±0.035 ±0.026 ±0.031 ±0.134 ±0.086

20 0.131 0.155 0.180 0.143 0.207 0.590 0.547
±0.026 ±0.033 ±0.038 ±0.028 ±0.062 ±0.106 ±0.132

Here we adopt the approach of Wang and Xia (2008), Example 8. We use
model D in Example 7.5. In Figure 2 we plot the averaged �(B̂,B0) against 1/

√
n

for m = 15,30,50,100. The value of 1/
√

n ranges from 0.045 to 0.1, correspond-
ing to sample sizes n = 100,200,300,400,500 in reverse order. We can see that
the curves are roughly straight lines passing through the origin, which confirms the√

n-consistency. We also see that the performance of RMAVE-FC is very stable as
m changes, across different sample sizes.

EXAMPLE 7.8. Finally, we investigate the performance of FC for multivariate
responses. The model is taken from Li, Wen and Zhu (2008), Model 4.4. Here p =
6, s = 5. The predictor Xi is generated from N(0, I6). The error εi is generated
from N(0,�), where � = diag(�1,�2), in which

�1 =
(

1 −1/2
−1/2 1/2

)
, �2 =

⎛
⎝1/2 0 0

0 1/3 0
0 0 1/4

⎞
⎠ .

FIG. 2. Numerical demonstration of
√

n-consistency for RMAVE-FC , as described in Example 7.7.
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TABLE 6
Comparison of different estimators for multivariate Y

(Example 7.8, n = 100)

PR-SIR RMAVE-FC PR-RMAVE

0.276 ± 0.088 0.248 ± 0.088 0.206 ± 0.071

The 5-dimensional response random vector Y is generated as:

Yi1 = Xi2 + 3Xi2/[0.5 + (Xi1 + 1.5)2] + εi,

Yi2 = Xi1 + e0.5Xi2 + εi2,

Yi3 = Xi1 + Xi2 + εi3,

Yi4 = εi4,

Yi5 = εi5.

For a fair comparison, we use the Frobenius norm instead of the operator norm
for �(B̂,B0), the former of which was used by Li, Wen and Zhu (2008). Ta-
ble 6 shows the results for n = 100, averaged over 1,000 simulated samples. The
columns PR-SIR and PR-RMAVE refer to projective resampling used in conjunc-
tion with the SIR and RMAVE, respectively. See Li, Wen and Zhu (2008). The
numbers in the PR-SIR column is taken from that paper. For RMAVE-FC we use
m = 15,000 random directions; for PR-RMAVE, we use 1,000 random directions.

In this case PR-RMAVE performs the best among the three estimators. Note
that in this example the central subspace and the central mean subspace coincide,
which is the most favorable scenario for methods derived from RMAVE.

8. Discussion. In this paper we introduce a general method for combining
estimators of a family of central mean subspaces into a single estimator of the
central subspace using the MAVE-type procedures as basic estimators for the cen-
tral mean subspaces. Different combinations of the characterizing families and
MAVE-type procedures result in a class of new estimators of the central subspace,
which we call the ensemble estimators. Ensemble estimators exhaustively estimate
the central subspace and are relatively easy to compute. The algorithm for estima-
tion can be broken down into iterations of quadratic optimization steps, whose
solutions have the least-square form. The ensemble estimators do not require spe-
cial treatment for multivariate responses, because the characterizing nature of F

automatically takes into account the multivariate information in the response. En-
semble estimators allow repeated use of the available sample of responses, and by
doing so enhance the estimation accuracy. They do not require dividing the sam-
ple into slices, which not only simplifies the operation but also avoid sensitivity
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to the number of slices. Ensemble estimators have the same convergence rates as
their corresponding MAVE-type estimators. In particular, the RMAVE ensemble
has the

√
n-rate when the structural dimension d0 is no more than 4.

An important problem is the choice of F. At this stage we do not yet have a good
theory to generate a universal criterion that can work across families. One theoreti-
cal difficulty in devising a general criterion to choose among different families F is
that different transformations of the response result in different scales that cannot
be meaningfully compared. For example, if we use cross validation of prediction
errors to choose among families, then we face the problem that the prediction er-
rors in different families have different meanings. At this stage, we suspect that
any general criterion capable of choosing among different families must be intrin-
sic to the probabilistic relation between X and Y , as reflected in the conditional
distribution of Y given X, rather than specific to any form of transformation of the
response.

Our empirical knowledge seems to indicate that bounded transformations, such
as FC and SR, are preferable to unbounded transformations, such as power trans-
formation (Example 2.1) and Box–Cox transformation (Example 2.4), especially
when the model permits extreme values in the response. A bounded characterizing
family of transformations serve the dual purposes of comprehensively describing
the central subspace and decreasing the leverage of the extreme response values.
In addition, the transformations in FC make full reuse of the data at each resam-
pling. In this respect it is rather similar to the bootstrap, except that the resampling
is done by random projection. Indeed, this is the very spirit of ensemble estima-
tor we would like to advocate in this paper, and it is this aspect that distinguishes
the ensemble estimators from other sufficient dimension reduction estimators. Fi-
nally, in the majority of examples we considered in Section 7, the FC -ensemble
estimator consistently outperforms other methods. In light of these empirical evi-
dences, we regard the FC-family as the overall best performer among the families
we considered.

The choice of number m is also important. Theorem 2.2 indicates that a large
enough m will guarantee the exhaustive recovering of the central subspace, re-
gardless of the characterizing family used. In practice, however, different families
require different choices of m. For the family FC , we recommend to choose m as
large as computationally feasible, because adding a new function in FC amounts to
reusing the data one more time. Since the functions in FC are bounded and smooth,
the ensemble estimator is stable as more functions are included.

The general formulation of the ensemble estimators also provides a synthesis
and fresh insights for many recently developed methods. In particular, it unifies the
central mean subspace [Cook and Li (2002)], the central moment subspace [Yin
and Cook (2002)], Fourier transform estimators [Zhu and Zeng (2006)], dMAVE
[Xia (2007)] and sliced regression [Wang and Xia (2008)] in a coherent system.
Although in this paper we have focussed on MAVE ensemble and its variations, the
ensemble approach can potentially be combined with any estimator of the central
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mean subspaces to recover the central subspace, such as the OLS [Li and Duan
(1989), Duan and Li (1991)], pHd [Li (1992), Cook (1998)] and Iterative Hessian
Transformations [Cook and Li (2002, 2004)].

Finally, the ensemble approach can also be used with other characterizing fam-
ilies which we cannot fully explore within this paper, but which may be especially
useful for some applications. One example is the wavelet basis, such as the Haar
basis briefly described in Example 2.6. Such families are highly effective for han-
dling response variables that have sharp discontinuities, which frequently arise in
image analysis and pattern recognition [Donoho and Johnstone (1994)]. We leave
further exploration of these possibilities to future research.
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